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Abstract. Many constructions based on multilinear maps require in-
dependent slots in the plaintext, so that multiple computations can be
performed in parallel over the slots. Such constructions are usually based
on CLT13 multilinear maps, since CLT13 inherently provides a compos-
ite encoding space, with a plaintext ring

⊕n
i=1 Z/giZ for small primes

gi’s. However, a vulnerability was identified at Crypto 2014 by Gentry,
Lewko and Waters, with a lattice-based attack in dimension 2, and the
authors have suggested a simple countermeasure. In this paper, we iden-
tify an attack based on higher dimension lattice reduction that breaks
the author’s countermeasure for a wide range of parameters. Combined
with the Cheon et al. attack from Eurocrypt 2015, this leads to the re-
covery of all the secret parameters of CLT13, assuming that low-level
encodings of almost zero plaintexts are available. We show how to ap-
ply our attack against various constructions based on composite-order
CLT13. For the [FRS17] construction, our attack enables to recover the
secret CLT13 plaintext ring for a certain range of parameters; however,
breaking the indistinguishability of the branching program remains an
open problem.

1 Introduction

Multilinear maps. In 2013, Garg, Gentry and Halevi described the first plau-
sible construction of cryptographic multilinear maps based on ideal lattices
[GGH13a]. Since then many amazing applications of multilinear maps have been
found in cryptography, including program obfuscation [GGH+13b]. Shortly after
the publication of GGH13, an analogous construction over the integers was de-
scribed in [CLT13], based on the DGHV fully homomorphic encryption scheme
[DGHV10]. The GGH15 scheme is the third known family of multilinear maps,
based on the LWE problem with encoding over matrices [GGH15].

In the last few years, many attacks have appeared against multilinear maps,
and the security of multilinear maps is still poorly understood. An important
class of attacks against multilinear maps are "zeroizing attacks", which can re-
cover the secret parameters from encodings of zero, using linear algebra. For the
non-interactive multipartite Diffie-Hellman key exchange, the zeroizing attack
from Cheon et al. [CHL+15] recovers all secret parameters from CLT13; the
attack can also be extended to encoding variants where encodings of zero are



not directly available [CGH+15]. The zeroizing attack from [HJ16] also breaks
the Diffie-Hellman key-exchange over GGH13. Finally, the key exchange over
GGH15 was also broken in [CLLT16], using an extension of the Cheon et al.
zeroizing attack.

Even though direct multipartite key exchange protocols are broken for the
three known families of multilinear maps, more complex constructions based on
multilinear maps are not necessarily broken, in particular indistinguishability
obfuscation (iO); namely low-level encodings of zero are generally not avail-
able in iO constructions. However the Cheon et al. attack against CLT13 was
extended in [CGH+15] to matrix branching programs where the input can be
partitioned into three independent sets. The attack was further extended in
[CLLT17] to branching programs without a simple input partition structure,
using a tensoring technique. For GGH13 based obfuscation, Miles, Sahai and
Zhandry introduced "annihilation attacks" that can break a certain class of ma-
trix branching programs [MSZ16]; the attack was later extended in [CGH17]
to break the [GGH+13b] obfuscation under GGH13, using a variant of the in-
put partitioning attack. Finally, Chen, Vaikuntanathan and Wee described in
[CVW18] an attack against iO over GGH15, based on computing the rank of
a well chosen matrix. In general, the above attacks only apply against branch-
ing programs with a simple structure, and breaking more complex constructions
(such as dual-input branching programs) is currently infeasible.

Multilinear maps with independent slots. Many constructions based on
multilinear maps require independent slots in the plaintext, so that multiple
computations can be performed in parallel over the slots when evaluating the
multilinear map. For example, [GLW14] and [GLSW15] use independent slots
to obtain improved security reductions for witness encryption and obfuscation.
Multilinear maps with independent slots were also used in the circuit based
constructions of [AB15,Zim15]. The construction from [FRS17], which gives a
powerful technique for preventing zeroizing attacks against iO, is also based on
multilinear maps with independent slots.

The CLT13 multilinear map scheme inherently supports a composite integer
encoding space, with a plaintext ring Z/GZ '

⊕n
i=1 Z/giZ for small secret

primes gi’s and G = g1 · · · gn. For example, in the construction from [FRS17],
every branching program works independently modulo each gi. In that case, the
main difference with the original CLT13 is that the attacker can obtain encodings
of subring elements which are zero modulo all gi’s except one; for example, in
[FRS17] this would be done by carefully choosing the input so that all branching
programs would evaluate to zero except one. Whereas in the original CLT13
construction, one never provides encodings of subring elements; instead one uses
an "all-or-nothing" approach: either the plaintext element is zero modulo all gi’s,
or it is non-zero modulo all gi’s (with high probability).

The attack and countermeasure from [GLW14]. At Crypto 2014, Gentry,
Lewko and Waters observed that using CLT13 with independent slots leads to
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a simple lattice attack in dimension 2, which efficiently recovers the (secret)
plaintext ring

⊕n
i=1 Z/giZ [GLW14, Appendix B]. Namely, when using CLT13

with independent slots, the attacker can obtain encodings where all slots are zero
modulo gi except one. For example, for a matrix branching program evaluation
as in [FRS17], the result of the program evaluation could have the form:

A(x) ≡
n∑
i=1

hi · (ri +mi · (g−1i mod pi)) ·
x0
pi

(mod x0)

where mi = 0 for all i except mj 6= 0 for some 1 ≤ j ≤ n. This implies:

gj ·A(x) ≡ hj(rjgj +mj)
x0
pj

+
∑
i 6=j

gjhiri
x0
pi

(mod x0)

and therefore gj · A(x) mod x0 is "small" (significantly smaller than x0). Since
gj is very small, we can then recover gj using lattice reduction in dimension 2,
while normally the gi’s are secret in CLT13. Moreover, once we know gj , we
can simply multiply the evaluation by gj to obtain a "small" result, even if the
evaluation of the branching program is non-zero modulo gj ; in particular, this
cancels the effect of the protection against input partitioning from [FRS17].

The countermeasure considered in [GLW14, Appendix B] is to give many
"buddies" to each gi, so that we do not have a plaintext element which is non-
zero modulo a single isolated gi. Then, either an encoding is 0 modulo gi and
all its prime buddies gj , or it is (with high probability) non-zero modulo all of
them. In other words, instead of using individual gi’s to define the plaintext
slots, every slot is defined modulo a product of θ prime gi’s, for some 1 ≤ θ < n.
Therefore, we obtain a total of bn/θc plaintext slots (instead of n). While the
above attack can be extended by multiplying A(x) by the θ corresponding gi’s,
for large enough θ the right-hand side of the equation is not "small" anymore
and the attack is thwarted.

Our contributions. In this paper we identify an attack based on higher dimen-
sion lattice reduction that breaks the countermeasure from [GLW14, Appendix
B] for a wide range of parameters, with significant impact on the security of
CLT13 multilinear maps with independent slots. More precisely, our contribu-
tions are as follows:

1. Analysis of the attack from [GLW14]. Our first contribution is to pro-
vide a theoretical study of the above attack, in order to derive a precise
bound on θ as a function of the CLT13 parameters (there was no explicit
bound in [GLW14]), where θ is the number of primes gi’s for each plaintext
slot. We argue that, when ν denotes the number of bits that can be extracted
from zero-testing in CLT13, the 2-dimensional lattice attack requires:

αθ <
ν

2
(1)

where α is the bit size of the gi’s.
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2. Breaking the countermeasure from [GLW14]. Our main contribution
is to extend the 2-dimensional attack to break the countermeasure for larger
values of θ. Our attack is based on higher dimension lattice reduction, by
using a similar orthogonal lattice attack as in [NS99] for solving the hidden
subset sum problem. In this extension, we use ` encodings {cj : 1 ≤ j ≤ `}
where the corresponding plaintexts have only θ non-zero components modulo
the gi’s (instead of ` = 1 in the previous attack). Using a lattice attack in
dimension `+1, we show that our attack requires the approximate condition(
1 + 1

`

)
αθ < ν for the parameters. Therefore, for moderately large values of

`, we get the simpler condition:

αθ < ν

which improves (1) by a factor 2.
In the same vein, we show how to further improve this condition by

considering products of encodings of the form cj · dk for 1 ≤ j ≤ ` and
1 ≤ k ≤ d, where as previously, the plaintexts of the cj ’s have only θ non-
zero components modulo the gi’s. In that case, using a variant of the previous
lattice attack (this time in dimension `+ d), the bound improves to:

αθ = O(ν2)

The above bound also applies when a vector of zero-testing elements is avail-
able, instead of a single pzt. While the original attack from [GLW14] recovers
the secret plaintext ring of CLT13, we additionally recover the plaintext mes-
sages {mj : 1 ≤ j ≤ `} for the encodings {cj : 1 ≤ j ≤ `}, up to a scaling
factor.

We provide in Section 4.5 the result of practical experiments. For the
original parameters of [CLT13], our attack takes a few seconds for θ = 40, and
a few hours for θ as large as 160, while the original attack from [GLW14] only
works for θ = 1. In summary, our attack is more powerful than the attack in
[GLW14], as it additionally recovers secret information about the plaintext
messages, moreover for much larger values of θ. Finally, we suggest a set of
secure parameters for CLT13 multilinear maps that prevents our extended
attack. For λ = 80 bits of security, we recommend to take θ ≥ 1789.

3. Recovering all the secret parameters of CLT13. For the range of
parameters derived previously, we show how to combine our attack with the
Cheon et al. attack from [CHL+15], in order to recover all secret parameters
of CLT13. More precisely, when intermediate-level encodings of partially
zero messages are available, our approach consists in applying the lattice
attack to generate intermediate-level encodings of zero; then the Cheon et
al. attack is applied on these newly-created encodings of zero, to recover all
secret parameters.

4. Application to CLT13-based constructions. Finally we show how our
attack affects the parameter selection of several schemes based on CLT13
multilinear maps with independent slots, namely the constructions from
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[GLW14,GLSW15,Zim15] and [FRS17]. For the [FRS17] construction, our
attack enables to recover the secret CLT13 plaintext ring for a certain range
of parameters; however, breaking the indistinguishability of the branching
program remains an open problem.

Source code. We provide in

https://pastebin.com/7WEMHBE9

the source code of our attacks in Sage [S+17].

2 The CLT13 Multilinear Map Scheme

We first recall the CLT13 multilinear map scheme over the integers [CLT13]. For
n ∈ Z≥1, the instance generation of CLT13 generates n distinct secret "large"
primes p1, . . . , pn of size η bits, and publishes the modulus x0 =

∏n
i=1 pi. We let

γ denote the bit size of x0; therefore γ ' n · η. One also generates n distinct
secret "small" prime numbers g1, . . . , gn of size α bits. The plaintext ring is
composite, i.e. a plaintext is an element m = (m1, . . . ,mn) of the ring Z/GZ '⊕n

i=1 Z/giZ where G =
∏n
i=1 gi. Let κ ∈ Z≥1 be the multilinearity parameter.

For k ∈ {1, . . . , κ}, an encoding at level k of the plaintext m is an integer c ∈ Z
such that

c ≡ rigi +mi

zk
(mod pi) , for all 1 ≤ i ≤ n (2)

for "small" random integers ri of bit size ρ. The random mask z ∈ (Z/x0Z)× is
the same for all encodings. It is clear that two encodings at the same level can
be added, and the underlying plaintexts get added in the ring Z/GZ. Similarly,
the product of two encodings at level i and j gives an encoding of the product
plaintexts at level i+ j, as long as the numerators in (2) do not grow too large,
i.e. they must remain smaller than each pi.

For an encoding at the last level κ, one defines the following zero-testing
procedure. The instance generation publishes the zero-testing parameter pzt,
defined by

pzt =

n∑
i=1

hiz
κ(g−1i mod pi)

x0
pi

mod x0 , (3)

where hi ∈ Z are "small" random integers of size nh bits. Given an encoding c
at the last level κ, we compute the integer:

ω := pzt · c mod x0 ≡
n∑
i=1

hi(ri +mi(g
−1
i mod pi))

x0
pi

(mod x0) (4)

and we consider that c encodes the zero message if ω is "small" compared to x0.
Namely, if mi = 0 for all i, we obtain ω ≡

∑n
i=1 hiri

x0

pi
(mod x0), and since the

integers hi and ri are "small", the resulting ω will be "small" compared to x0.
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More precisely, let ρf be the maximum bit size of the noise ri in the encodings.
Then the integers hirix0/pi have size roughly γ−η+nh+ρf , and therefore letting

ν = η − nh − ρf , (5)

the integers hirix0/pi have size roughly γ − ν bits. Therefore, when mi = 0 for
all i, the integer ω has size roughly γ − ν bits; whereas when mi 6= 0 for some
i, we expect that ω is of full size modulo x0, that is γ bits. The parameter ν in
(5) corresponds to the number of bits that can be extracted from zero-testing;
namely from (4), the ν most significant bits of ω only depend on the plaintext
messages mi, and not on the noise ri. Note that to get a proper zero-testing
procedure, one needs to use a vector of n elements pzt; namely with a single pzt
there exist encodings c with mi 6= 0 while pzt ·c is "small" modulo x0. In the rest
of the paper, for simplicity, we mainly consider a single pzt, as it is usually the
case in constructions over CLT13 multilinear maps. We refer to [CLT13, Section
3.1] for the setting of the parameters.

3 Basic Attack against CLT13 with Independent Slots

Many constructions based on multilinear maps require independent slots in the
plaintext, so that multiple computations can be performed in parallel over the
slots when evaluating the multilinear map; see for example [GLW14,GLSW15]
and [AB15,Zim15,FRS17]. The CLT13 multilinear maps inherently provide in-
dependent slots, as the plaintext ring is

⊕n
i=1 Z/giZ for small secret primes

g1, . . . , gn. Therefore we can have independent computations performed over the
n plaintext slots modulo gi; for example, in the construction from [FRS17], every
branching program works independently modulo each gi.

The basic attack from [GLW14]. When using CLT13 with independent
slots, the attacker can obtain encodings of plaintext elements where all slots are
zero modulo gi except one. For example, in the [FRS17] construction where each
branching program works modulo gi, the attacker can choose the input so that
the resulting evaluation is 0 modulo all gi’s except one, say g1, without loss of
generality. Let c be a level-κ encoding of a plaintext m = (m1, . . . ,mn) where
mi = 0 for all 2 ≤ i ≤ n. From Equation (4) we obtain the following zero-testing
evaluation:

ω ≡ h1 ·m1 · (g−11 mod p1) ·
x0
p1

+

n∑
i=1

hi · ri ·
x0
pi

(mod x0)

This implies:

g1 · ω ≡ h1 ·m1 ·
x0
p1

+

n∑
i=1

g1 · hi · ri ·
x0
pi

(mod x0)

and therefore g1 · ω mod x0 is significantly smaller than x0, as the integers hi
and ri are "small". This implies that we can recover g1, and similarly the other
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gi’s using lattice reduction in dimension 2, while normally the gi’s are secret
in CLT13. This eventually recovers the plaintext ring. We analyze the attack
below.

The countermeasure from [GLW14]. The following countermeasure was
therefore suggested by the authors: instead of using individual gi’s to define the
plaintext slots, every slot is defined modulo a product of θ prime gi’s, where
2 ≤ θ < n. Therefore, a plaintext element cannot be non-zero modulo a single
prime gi; it has to be non-zero modulo at least θ primes gi’s. This gives a total
of n/θ plaintext slots (instead of n); for simplicity we assume that θ divides n.

Therefore, the original plaintext ring R = Z/g1Z×· · ·×Z/gnZ can be rewrit-
ten as R =

⊕n/θ
j=1Rj , where for all 1 ≤ j ≤ n/θ, the subrings Rj are such that

Rj '
⊕θ

i=1 Z/g(j−1)θ+iZ. We can assume that the attacker can obtain encodings
of random subring plaintexts in Rj for any 1 ≤ j ≤ n/θ. In that case, the at-
tacker obtains an encoding c of m = (m1, . . . ,mn) ∈ R where mi ≡ 0 (mod gi)
for all i ∈ {1, . . . , n} \ {(j− 1)θ+1, . . . , jθ}. In that case we will say that m has
non-zero support of length θ.

Analysis of the basic attack. In this section we analyze in more details the
attack from [GLW14], and we derive an explicit bound on the parameter θ, as a
function of the other CLT13 parameters. Given an integer 1 ≤ θ < n (the above
attack is obtained for θ = 1), we consider a message having non-zero support of
length θ; that is, (without loss of generality) of the form m = (m1, . . . ,mn) ∈ Zn
with 0 ≤ mi < gi such that mi = 0 for θ + 1 ≤ i ≤ n, i.e. we assume that the
non-zero support of m is located in the first slot. We consider a top level κ
encoding c of m, that is:

c ≡ rigi +mi

zκ
(mod pi) , 1 ≤ i ≤ n

with integers ri of bit size ρf . From zero-testing, we obtain from (4):

ω ≡ pzt · c ≡
θ∑
i=1

hi(g
−1
i mod pi)mi

x0
pi

+

n∑
i=1

hiri
x0
pi

(mod x0)

By multiplying out by g :=
∏θ
i=1 gi we obtain

gω ≡
θ∑
i=1

himi
g

gi

x0
pi

+

n∑
i=1

ghiri
x0
pi

(mod x0) ,

gω ≡ U (mod x0) (6)

where U =
∑θ
i=1 himi(g/gi)(x0/pi) +

∑n
i=1 ghiri(x0/pi). Since the integers hi

and ri are "small" in order to ensure correct zero-testing, the integer U is "small"
in comparison to x0. More precisely, the proposition below shows that if g · U
is a bit smaller than x0, then we can recover g and U by lattice reduction in
dimension 2.
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Proposition 1. Let g, ω, U ∈ Z≥1 and x0 ∈ Z≥1 be such that gω ≡ U (mod x0),
ω ∈ (Z/x0Z)× and gcd(U, g) = 1. Assume that g · U < x0/10. Given ω and x0
as input, one can recover g and U in polynomial time.

Proof. Without loss of generality we can assume g ≤ U , since otherwise we
can apply the algorithm with Uω−1 ≡ g (mod x0). Let B ∈ Z≥1 such that
U ≤ Bg ≤ 2U . When the bit size of g and U is unknown, such a B can be
found by exhaustive search in polynomial time. We consider the lattice L ⊆ Z2

of vectors (Bx, y) such that xω ≡ y (mod x0). From gω ≡ U (mod x0) it follows
that L contains the vector v = (Bg,U). We show that v is a shortest non-zero
vector in L.

By Minkowski’s Theorem, we have λ1(L) ≤
√
2 det(L). From Hadamard’s

Inequality, with det(L) = Bx0, we obtain:

λ2(L) ≥
det(L)

λ1(L)
≥
√

det(L)√
2

=

√
Bx0√
2

>
√

5BgU ≥
√
5U.

Moreover, we have:
‖v‖ = ((Bg)2 + U2)1/2 ≤

√
5U.

This implies that ‖v‖ < λ2(L) and therefore v is a multiple of a shortest non-
zero vector in L: we write v = ku with ‖u‖ = λ1(L), and k ∈ Z\{0}. Letting
u = (Bu1, u2), we have g = ku1 and U = ku2. Hence k divides both g and U .
Since gcd(g, U) = 1 one has k = ±1. This shows that v is a shortest non-zero
vector of L.

By running Lagrange-Gauss reduction on the matrix of row vectors:[
B ω
0 x0

]
one obtains in polynomial time a length-ordered basis (b1, b2) of L satisfying
‖b1‖ = λ1(L) and ‖b2‖ = λ2(L), which enables to recover g and U . ut

Using the same notations as in Section 2, the integer g =
∏θ
i=1 gi has

approximate bit size θ · α, while the integer U has an approximate bit size
γ − η + nh + ρf + θα. From the condition g · U < x0/10 of Proposition 1, we
obtain by dropping the term log2(10), the simplified condition

γ − η + nh + ρf + θ · α+ θ · α < γ .

Writing as previously ν = η−nh−ρf for the number of bits that can be extracted
during zero testing, the attack works under the condition:

2αθ < ν (7)

where α is the bit size of the gi’s. In the next section we describe a high-
dimensional lattice reduction attack with an improved bound on θ.
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4 An extended attack against CLT13 with Independent
Slots

Outline of our new attack. Our new attack improves the bound on θ com-
pared to the attack recalled in Section 3; it also enables to recover multiples
of the underlying plaintext messages, instead of only the CLT13 plaintext ring.
The main difference is that we work with several messages instead of a single
one, using high-dimensional lattice reduction instead of dimension 2.

Let ` ≥ 1 be an integer. Assume that we have ` level-κ encodings cj of
plaintext elements mj = (mj1, . . . ,mjn) for 1 ≤ j ≤ `, where each message has
non-zero support of length θ. Without loss of generality, we can assume that
mji = 0 for all θ + 1 ≤ i ≤ n and all 1 ≤ j ≤ `. We consider the zero-testing
evaluations ωj = pzt · cj mod x0 of these encodings, which gives as previously:

ωj ≡
θ∑
i=1

hi(rji +mji(g
−1
i mod pi))

x0
pi

+

n∑
i=θ+1

hirji
x0
pi

(mod x0) , 1 ≤ j ≤ `

for integers rji. We can rewrite the above equation as:

ωj ≡
θ∑
i=1

αi ·mji +Rj (mod x0) , 1 ≤ j ≤ ` (8)

for some integers αi, where for each evaluation ωj , the integer Rj is significantly
smaller than x0.

We can see Equation (8) as an instance of a "noisy" hidden subset sum
problem. Namely in [NS99], the authors consider the following hidden subset
sum problem. Given a positive integer M , and a vector b = (b1, . . . , b`) ∈ Z`
with entries in [0,M − 1], find integers α1, . . . , αn ∈ [0,M − 1] such that there
exist vectors x1, . . . ,xn ∈ Z` with entries in {0, 1} satisfying:

b ≡ α1x1 + α2x2 + · · ·+ αnxn (mod M)

In our case, the weights α1, . . . , αn are hidden as in [NS99], but for each
equation we have an additional hidden noisy term Rj . Moreover, the weights
αi = hi · (g−1i mod pi) · x0/pi have a special structure, instead of being random
in [NS99]. Thanks to this special structure, using a variant of the orthogonal
lattice approach from [NS99], we can recover the secret product g = g1 · · · gθ
and the plaintext elements mji up to a scaling factor.

4.1 Preliminaries on lattices

Let L be a lattice in Rd of rank 0 < n ≤ d. We recall that Hadamard’s Inequality
gives the following upper bound on the determinant of L, for every basis B of L:

det(L) ≤
∏
b∈B

‖b‖

Based on Hadamard’s Inequality, we prove the following simple lemma.
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Lemma 2. Let 1 ≤ n ≤ d be integers and let L ⊆ Zd be a lattice of rank n. Let
x1, . . . ,xn−1 ∈ L be linearly independent. Then for every vector y ∈ L not in
the linear span of x1, . . . ,xn−1, one has ‖y‖ ≥ det(L)/

∏n−1
i=1 ‖xi‖.

Proof. Since x1, . . . ,xn−1,y ∈ L are linearly independent, they generate a rank-
n sublattice L′ of L and hence det(L) ≤ det(L′) as det(L) divides det(L′). By
Hadamard’s Inequality, det(L) ≤ det(L′) ≤ ‖y‖ ·

∏n−1
i=1 ‖xi‖. The bound follows.

ut

We recall that the LLL algorithm [LLL82], given an input basis of L, produces
a reduced basis of L with respect to the choice of a parameter δ ∈ (1/4, 1); we
call such a basis δ-reduced. More precisely, we will use the following theorem.

Theorem 3. Let 1 ≤ n ≤ d be integers and let L ⊆ Zd be a lattice of rank n.
Let {bi : 1 ≤ i ≤ n} be a basis of L. Let B ∈ Z≥1 be such that ‖bi‖2 ≤ B for
1 ≤ i ≤ n. Let δ ∈ (1/4, 1). Then the LLL algorithm with reduction parameter
δ outputs a δ-reduced basis {b′i : 1 ≤ i ≤ n} after O(n5d log3B) operations.
Moreover, the first vector in such a basis satisfies:

‖b′1‖ ≤ c(n−1)/2‖x‖

for every non-zero x ∈ L, and where c = 1/(δ − 1/4).

4.2 Our first lattice-based attack

Setting. In this section, we describe our first attack based on a variant of the
hidden subset-sum problem. We consider plaintext elements m1, . . . ,m` ∈ Zn
and write mji for the i-th entry of the j-th message, where 0 ≤ mji < gi for
all 1 ≤ i ≤ n and 1 ≤ j ≤ `. As previously, we assume that mji = 0 for all
θ+ 1 ≤ i ≤ n. We write M for the matrix of row vectors mj for 1 ≤ j ≤ `; and
we will denote its columns by m̂i for 1 ≤ i ≤ n, that is, M =

[
m̂1 · · · m̂n

]
∈

Mat`×n(Z). By construction, the vectors m̂i for θ + 1 ≤ i ≤ n are all zero. We
also assume that for all 1 ≤ i ≤ θ, m̂i 6≡ 0 (mod gi). For 1 ≤ j ≤ `, we let cj
denote an encoding of mj at the last level κ:

cj ≡
rjigi +mji

zκ
(mod pi) , 1 ≤ i ≤ n

where rji ∈ Z are ρf -bit integers. Letting c = (cj)1≤j≤`, this gives a vector
equation over Z`:

c ≡ z−κ (giri + m̂i) (mod pi) , 1 ≤ i ≤ n (9)

for ri = (rji)1≤j≤`. Let pzt be the zero-testing parameter, as defined in (3). From
zero-testing we obtain the following equations:

ωj ≡ cj · pzt ≡
θ∑
i=1

himji(g
−1
i mod pi)

x0
pi

+

n∑
i=1

hirji
x0
pi

(mod x0) , 1 ≤ j ≤ `
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which can be rewritten as ωj ≡
∑θ
i=1 αimji + Rj (mod x0), where we use the

shorthand notations:

αi := hi(g
−1
i mod pi)

x0
pi

, 1 ≤ i ≤ θ (10)

and Rj :=
∑n
i=1 hirji

x0

pi
for 1 ≤ j ≤ `. As a vector equation, this reads:

ω ≡ pzt · c ≡
θ∑
i=1

αim̂i +R (mod x0) (11)

with ω = (ωj)1≤j≤`; for 1 ≤ i ≤ θ the vectors m̂i are as above and R =
(Rj)1≤j≤` =

∑n
i=1 hi

x0

pi
ri.

In the above equation, the components of R have approximate bit size ρR =
γ− η+nh+ ρf . Using, as previously, ν = η−nh− ρf as the number of bits that
can be extracted, we have therefore ρR = γ − ν. As explained above, Equation
(11) is similar to an instance of the hidden subset sum problem, so we describe
a variant of the orthogonal lattice attack from [NS99], which recovers the secret
CLT13 plaintext ring and the hidden plaintexts {m̂i : 1 ≤ i ≤ θ}, up to a scaling
factor. For the sequel, we assume that the prime numbers g1, . . . , gθ are distinct,
and that for every 1 ≤ i ≤ θ, we have gcd(gi, hix0/pi) = 1.

The orthogonal lattice L. We consider the lattice L of vectors (Bu, v) ∈ Z`+1,
with u ∈ Z` and v ∈ Z, such that (u, v) is orthogonal to (ω, 1) modulo x0, where
B ∈ Z≥1 is a scaling factor that will be determined later. Since L contains the
sublattice x0Z`+1, it has full-rank `+ 1. We note that this lattice is known (i.e.
we can construct a basis for it) since ω and x0 are given. Our attack is based on
the fact that L contains a rank-` sublattice L′, generated by reasonably short
vectors {(Bui, vi) : 1 ≤ i ≤ `} of L, which can be used to reveal the secret
product g =

∏θ
i=1 gi.

More precisely, for every (Bu, v) ∈ L, we obtain from (11):

〈u,ω〉+ v ≡
θ∑
i=1

αi〈u, m̂i〉+ 〈u,R〉+ v ≡ 0 (mod x0)

and therefore, the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R〉+ v) is orthogonal mod-
ulo x0 to the vector a = (α1, . . . , αθ, 1). To obtain balanced components, we
use another scaling factor C ∈ Z≥1 and we consider the vector:

pu,v := (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R〉+ v )

Following the original orthogonal lattice attack from [NS99], if a vector
(Bu, v) ∈ L is short enough, then the associated vector pu,v = (Cx, y) will
also be short, and if (x, y) becomes shorter than a shortest non-zero vector or-
thogonal to a modulo x0, we must have pu,v = 0, which implies 〈u, m̂i〉 = 0 for
all 1 ≤ i ≤ θ. We will see that in our setting, because of the specific structure
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of the coefficients αi’s, we only get 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ.
Therefore, by applying lattice reduction to L, we expect to recover the lattice
Λ⊥ of vectors u which are orthogonal to all m̂i modulo gi; since by assumption
m̂i 6≡ 0 (mod gi) for all 1 ≤ i ≤ θ, the lattice Λ⊥i = {u ∈ Z` : 〈u, m̂i〉 ≡ 0
(mod gi)} has determinant gi, and since g1, . . . , gθ are distinct primes, the lattice
Λ⊥ = ∩θi=1Λ

⊥
i has determinant equal to g =

∏θ
i=1 gi. In particular, any basis for

this lattice reveals g by computing its determinant.

The lattice A⊥. Henceforth, we must study the short vectors in the lattice of
vectors orthogonal to a modulo x0. More precisely, we consider the lattice A⊥
of vectors (Cx, y) ∈ Zθ+1, such that (x, y) is orthogonal to a = (α1, . . . , αθ, 1)
modulo x0; therefore pu,v ∈ A⊥. The lattice A⊥ has full-rank θ + 1 and we
have det(A⊥) = Cθx0. Namely, we have an abstract group isomorphism A⊥ '
(CZ)θ ⊕ x0Z, sending (Cx, y) to (Cx, 〈x,a〉+ y).

As mentioned previously, the coefficients αi’s in the vector a have a particular
structure. Namely, we have αi = (g−1i mod pi)hix0/pi, and therefore

gi · αi ≡ hi ·
x0
pi

(mod x0)

for all 1 ≤ i ≤ θ. Therefore the lattice A⊥ contains the θ linearly independent
short vectors qi = (0, . . . , 0, Cgi, 0, . . . , 0,−si), where si = hi · x0/pi. Using
C := 2ρR−α, we get ‖qi‖ ' C · 2α.

We now derive a condition on ‖pu,v‖ so that the vector pu,v belongs to
the sublattice of A⊥ generated by the short vectors {qi : 1 ≤ i ≤ θ}. From
Lemma 2, if ‖pu,v‖ < det(A⊥)/

∏θ
i=1 ‖qi‖, then pu,v must belong to the linear

span generated by the qi’s; since by assumption, the gi’s are distinct primes and
gcd(si, gi) = 1 for all 1 ≤ i ≤ θ, this implies that it must belong to the sublattice
generated by the qi’s. In that case, we have:

〈u, m̂i〉 ≡ 0 (mod gi) , 1 ≤ i ≤ θ (12)

From det(A⊥) = Cθ · x0 and ‖qi‖ ' C · 2α, the previous condition ‖pu,v‖ <
det(A⊥)/

∏θ
i=1 ‖qi‖ gives the approximate condition:

‖pu,v‖ < 2γ−α·θ (13)

Short vectors in L. We now study the short vectors of L; more precisely, we
explain that L contains ` linearly independent short vectors of norm roughly
2ρR+αθ/`. We show that these vectors can be derived from the lattice Λ⊥ of
vectors u ∈ Z` satisfying (12), i.e. that are orthogonal to m̂i modulo gi for
every 1 ≤ i ≤ θ. This is a full-rank lattice of dimension ` and determinant
g =

∏θ
i=1 gi, with g ' 2αθ. Therefore, we heuristically expect that the lattice

Λ⊥ contains ` linearly independent vectors of norm roughly (detΛ⊥)1/` ' 2αθ/`.
We show that from any short u ∈ Λ⊥, we can generate a vector (u, v) with
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small v, and orthogonal to (ω, 1) modulo x0, and consequently a short vector
(Bu, v) ∈ L. For this, we write 〈u, m̂i〉 = kigi with ki ∈ Z, and we have:

〈u,ω〉+ v ≡
θ∑
i=1

αi〈u, m̂i〉+ 〈u,R〉+ v ≡
θ∑
i=1

ki · gi · αi + 〈u,R〉+ v (mod x0)

≡
θ∑
i=1

ki · si + 〈u,R〉+ v (mod x0)

Therefore, it suffices to let v := −〈u,R〉 −
∑θ
i=1 ki · si to obtain 〈u,ω〉+ v ≡ 0

(mod x0); the vector (u, v) is then orthogonal to (ω, 1) modulo x0, and thus
(Bu, v) ∈ L. We obtain |v| ' ‖u‖ · 2ρR ; therefore letting B := 2ρR , we get
‖(Bu, v)‖ ' 2ρR‖u‖. In summary, the lattice L contains a sublattice L′ of rank
`, generated by ` vectors of norm roughly 2ρR+αθ/`. That the recovered vectors
are indeed linearly independent is the content of the following lemma, which we
prove in Appendix A.1.

Lemma 4. Let {(Buj , vj) : 1 ≤ j ≤ `+1} be a basis of the lattice L and assume
that the vectors {puj ,vj : 1 ≤ j ≤ `} belong to the sublattice of A⊥ generated by
the vectors {qi : 1 ≤ i ≤ θ}. Then the vectors {uj : 1 ≤ j ≤ `} are R-linearly
independent.

Recovering g =
∏θ
i=1 gi. By applying lattice reduction to the lattice L, we

expect that the first ` vectors {(Buj , vj) : 1 ≤ j ≤ `} of a reduced basis belong
to the above sublattice L′ and have norm roughly:

‖(Buj , vj)‖ ' 2ρR+αθ/` · 2ι(`+1) , 1 ≤ j ≤ ` (14)

where 2ι(`+1) is the Hermite factor for some positive constant ι depending on the
lattice reduction algorithm. With C = 2ρR−α, we have ‖pui,vi‖ ' ‖(Bui, vi)‖
for all 1 ≤ i ≤ `. From the condition given by (13), we have that ui ∈ Λ⊥

if ‖pui,vi‖ < 2γ−α·θ; therefore combining with (14) we get the approximate
condition:

ρR +
αθ

`
+ ι(`+ 1) < γ − αθ

Using ρR = γ − ν where ν is the number of bits that can be extracted from
zero-testing, this condition becomes

αθ

(
1 +

1

`

)
+ ι(`+ 1) < ν . (15)

In summary, when Condition (15) is satisfied, we expect to recover a basis
{ui : 1 ≤ i ≤ `} of the lattice Λ⊥; then since det(Λ⊥) = g =

∏θ
i=1 gi, the

absolute value of the determinant of the basis matrix reveals g.
From Equation (15), we observe that the parameter ` can be kept relatively

small (say ` ' 10), as larger values of ` would not significantly improve the
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bound; this implies that the lattice dimension `+1 on which LLL is applied can
be kept relatively small. Moreover for LLL, experiments show that 2ι ' 1.021 so
that ι is approximately 0.03, and therefore for such small values of `, the term
ι · (`+ 1) is negligible. Thus we can use the simpler approximate bound for our
attack:

αθ < ν (16)

This gives a factor 2 improvement compared to the previous bound given by (7),
following the attack of [GLW14]. In the next subsection we will see how to get
a much more significant improvement, with αθ = O(ν2).

A proven variant. The above algorithm is heuristic only. Below we describe a
proven variant that can recover a vector u such that 〈u, m̂i〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ, using the LLL reduction algorithm. Although we only recover a
single vector u instead of a lattice basis, this will be enough when combined with
the Cheon et al. attack to recover all secret parameters of CLT13 (see Section
5). We provide the proof of Proposition 5 in Appendix A.2.

Proposition 5. Let `, θ ∈ Z≥1, x0 ∈ Z≥1 and let gi ∈ Z≥2 be distinct α-bit
prime numbers for 1 ≤ i ≤ θ and some α ∈ Z≥1. For 1 ≤ i ≤ θ, let αi ∈ Z such
that gi · αi ≡ si (mod x0), for si ∈ Z satisfying |si| ≤ 2ρR , for some ρR ∈ Z≥1
and assume that gcd(gi, si) = 1. For 1 ≤ i ≤ θ, let m̂i ∈ Z` be vectors with
entries in [0, gi) ∩ Z such that m̂i 6≡ 0 (mod gi), and let R ∈ Z` such that
‖R‖∞ ≤ 2ρR . Let ω ∈ Z` such that ω ≡

∑θ
i=1 αim̂i + R (mod x0). Assume

that

αθ

(
1 +

1

`

)
+
`+ θ

2
+ log2(`

√
`+ 1 · θ) + 4 < log2(x0)− ρR . (17)

Given the integers `, θ, ρR, x0 and the vector ω, one can recover in polynomial
time a vector u ∈ Z` such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ, satisfying
‖u‖ ≤ 2`/2

√
`(`+ 1)(

∏θ
i=1 gi)

1/`.

We remark that by replacing log2(x0)− ρR by γ − ρR = ν, we recover, up to
additional logarithmic terms, the approximate bound established in (15).

4.3 Extended Orthogonal Lattice Attack

In this section we describe an extended attack that significantly improves the
bound on θ established in (16). Let `, d ≥ 1 be integers. As previously, we
assume that we have encodings cj of plaintext elements mj = (mj1, . . . ,mjn)
for 1 ≤ j ≤ `, where only the first θ components of each mj are non-zero, that
is, mji = 0 for θ + 1 ≤ i ≤ n. However, we assume that these encodings are
at level κ − 1, and that we also have an additional set of d level-1 encodings
{c′k : 1 ≤ k ≤ d} of plaintext elements xk = (xk1, . . . , xkn) for 1 ≤ k ≤ d.
By computing the top-level κ product encodings, we can therefore obtain the
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following zero-testing evaluations:

ωjk ≡ (cj · c′k) · pzt ≡
θ∑
i=1

himjixki(g
−1
i mod pi)

x0
pi

+

n∑
i=1

hirjki
x0
pi

(mod x0)

(18)
for some integers rjki. Since every encoding cj encodes a message with non-zero
support of length θ, the product encodings cjc′k maintain their zero slots. Note
that the same remains valid if the encodings cj are at even lower levels, because
they can be raised to level κ−1 without removing their zero slots. As previously,
we rewrite Equation (18) as:

ωjk ≡
θ∑
i=1

αikmji +Rjk (mod x0)

where we let

αik = hixki(g
−1
i mod pi)

x0
pi

, 1 ≤ i ≤ θ, 1 ≤ k ≤ d

and Rjk =
∑n
i=1 hirjkix0/pi for all 1 ≤ j ≤ ` and 1 ≤ k ≤ d. As before,

for 1 ≤ i ≤ θ, we denote by m̂i ∈ Z` the vector with components mji for
1 ≤ j ≤ `, and similarly ωk and Rk the corresponding vectors in Z`. We assume
that m̂i 6≡ 0 (mod gi) for all i. The previous equation can then be rewritten as:

ωk ≡
θ∑
i=1

αikm̂i +Rk (mod x0) (19)

The difference with Equation (11) from our first lattice attack is that the vectors
{m̂i : 1 ≤ i ≤ θ} now satisfy d equations for 1 ≤ k ≤ d, instead of a single
equation, as in Subsection 4.2. With more constraints on the vectors m̂i, we
can therefore break the countermeasure from [GLW14] for much higher values
of θ. In order to derive a condition on the parameters, we proceed as previously.
Namely, the lattices that we considered in Subsection 4.2 now admit natural
higher-dimensional analogues.

The orthogonal lattice L. As previously, for a scaling factor B ∈ Z≥1, we
consider the lattice L of vectors (Bu,v) ∈ Z`+d, with u ∈ Z` and v ∈ Zd, such
that (u,v) is orthogonal to the d vectors {(ωk, ek) : 1 ≤ k ≤ d} modulo x0,
where ek ∈ Zd is the kth unit vector for 1 ≤ k ≤ d. This gives for all 1 ≤ k ≤ d
and all (Bu,v) ∈ L, writing v = (v1, . . . , vd):

〈u,ωk〉+ vk ≡
θ∑
i=1

αik〈u, m̂i〉+ 〈u,Rk〉+ vk ≡ 0 (mod x0)

and therefore the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R1〉+ v1, . . . , 〈u,Rd〉+ vd)
is orthogonal modulo x0 to the d vectors ak = (α1k, . . . , αθk, ek), for 1 ≤ k ≤ d.
Again, using a scaling factor C ∈ Z≥1, we let

pu,v = (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R1〉+ v1, . . . , 〈u,Rd〉+ vd) .

15



The lattice A⊥. In order to bound the norm of the vector pu,v, we must
study the short vectors in the lattice of vectors orthogonal to the vectors ak
modulo x0 (instead of single vector a). As previously, we consider the lattice
A⊥ of vectors (Cx,y) ∈ Zθ+d such that (x,y) is orthogonal to the d vectors
{ak : 1 ≤ k ≤ d} modulo x0; therefore pu,v ∈ A⊥. The lattice A⊥ has full-rank
θ + d and determinant Cθxd0. As previously, the coefficients αik in the vectors
ak have a special structure, since they satisfy the congruence relations

gi · αik ≡ hi · xik ·
x0
pi

(mod x0)

for all 1 ≤ i ≤ θ and 1 ≤ k ≤ d. Therefore letting sik = hi ·xik ·x0/pi, the lattice
A⊥ contains the θ short vectors qi = (0, . . . , 0, Cgi, 0, . . . , 0,−si1, . . . ,−sid) for
1 ≤ i ≤ θ. Using C = 2ρR−α, we get as previously ‖qi‖ ' C · 2α.

We now derive a bound on ‖pu,v‖ so that pu,v belongs to the sublattice
generated by the θ vectors {qi : 1 ≤ i ≤ θ}. We expect a reduced basis of A⊥ to
have the first θ vectors with approximately the same norm as the vectors {qi :
1 ≤ i ≤ θ}, and to have the last d vectors with norm U satisfying (C · 2α)θ ·Ud '
det(A⊥). Using det(A⊥) = Cθxd0, this gives U ' x0/2

αθ/d. This implies that,
heuristically, if ‖pu,v‖ < U , then pu,v must belong to the sublattice generated
by the θ vectors {qi : 1 ≤ i ≤ θ}. As previously, in that case we have that for
all 1 ≤ i ≤ θ :

〈u, m̂i〉 ≡ 0 (mod gi) . (20)

Short vectors in L. We now study the short vectors of L; as previously,
we show that L contains ` linearly independent short vectors of norm roughly
2ρR+αθ/`, which can be derived from the the lattice Λ⊥ of vectors u ∈ Z` satis-
fying (20). Since, as previously, Λ⊥ heuristically contains ` linearly independent
vectors of norm roughly (detΛ⊥)1/` ' 2αθ/`, the lattice L contains ` linearly
independent vectors of norm roughly 2ρR+αθ/`. Therefore, by applying lattice re-
duction to the lattice L, we expect that the first ` vectors {(Bui,vi) : 1 ≤ i ≤ `}
of the basis have norm roughly:

‖(Bui,vi)‖ ' B · 2αθ/` · 2ι(`+d)

where 2ι(`+d) is the Hermite factor. With B = 2ρR and C = 2ρR−α, we have
‖pui,vi‖ ' ‖(Bui,vi)‖. From the condition ‖pui,vi‖ < U , we get the condition:

ρR +
αθ

`
+ ι(`+ d) < γ − αθ

d

which gives using ρR = γ − ν:

αθ ·
(
1

`
+

1

d

)
+ ι(`+ d) < ν (21)

Remark that with d = 1 the previous bound gives Equation (15). Since (21) is
concave and symmetric in both ` and d, the optimum is to take ` = d. This
gives the bound:

2αθ

`
+ 2ι` < ν (22)
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Recovering g =
∏θ
i=1 gi. When the above condition is satisfied, as previously

we expect to recover a basis {ui : 1 ≤ i ≤ `} of the lattice Λ⊥. Then since
det(Λ⊥) = g =

∏θ
i=1 gi, the absolute value of the determinant of the basis

matrix reveals g. In particular, it follows that the attack requires ` > 2αθ/ν,
and we must have:

ι <
ν2

4αθ

Heuristically, achieving a Hermite factor of 2ι2` requires 2Ω(1/ι) using BKZ re-
duction with block-size β = ω(1/ι), [HPS11]. The attack has therefore complex-
ity 2Ω(αθ/ν2); the attack has therefore (heuristic) polynomial-time complexity
under the condition:

αθ = O(ν2)
which significantly improves our previous bound given by (16). Conversely, one
expects that the attack is prevented under the condition:

θ = ω

(
ν2

α
log λ

)
(23)

In Section 4.5 we provide concrete parameters for CLT13 multilinear maps
with independent slots. We will see that Condition (23) requires a much higher
value for θ than the condition 2θα ≥ ν for preventing the [GLW14] attack.
Namely for λ = 80 bits of security, the bound 2θα ≥ ν already holds for θ = 2,
while a concrete application of Condition (23) requires θ ≥ 1789.

Analogy of the attacks. We remark that our extended attacks share similar-
ities with the 2-dimensional attack from Section 3. For `, d ∈ Z≥1, our extended
lattice attack works by reducing the (`+ d)-dimensional lattice

L(`,d) = {(Bu,v) ∈ Z` × Zd : 〈(u,v), (ωk, ek)〉 ≡ 0 (mod x0), 1 ≤ k ≤ d} ,

where B ∈ Z≥1 is fixed. With this notation, the three attacks work by reducing
the lattices L(1,1), L(`,1) and L(`,d), respectively. Note that L(1,1) is the lattice
{(Bu, v) ∈ Z2 : uω + v ≡ 0 (mod x0)}. For the extended attacks, the ` × `
top-left submatrix of a reduced basis of L(`,d) (divided by B) has determinant
±g. Note that this coincides with the 2-dimensional case ` = d = 1: the first
entry (divided by B) of the first vector in a reduced basis equals ±g (i.e. a
"1× 1 submatrix" of determinant ±g). As such, our higher-dimensional attacks
are consistent generalizations of the 2-dimensional attack.

Summary. We have described a lattice-based attack, which under the condition
αθ = O(ν2), and given as input a collection of encodings (or products of encod-
ings) of messages with non-zero support of length θ, outputs the secret plaintext
ring of CLT13. More precisely, our extended lattice attack with the improved
bound αθ = O(ν2) can be described in the following three steps, with parame-
ters `, d ≥ 1. We provide in https://pastebin.com/7WEMHBE9 the source code
in Sage [S+17].
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Input: Sets of level-κ encodings {cj ·c′k mod x0 : 1 ≤ j ≤ `, 1 ≤ k ≤ d} where
cj encodes a message of non-zero support of length θ.
Output: g =

∏θ
i=1 gi

1. For 1 ≤ k ≤ d, compute the vectors ωk ∈ Z` with (ωk)j = cj · c′k ·
pzt mod x0.

2. Let B = 2ρR and compute a LLL-reduced basis of the lattice L(`,d) ⊆
Z`+d of vectors {(Bu,v) ∈ Z`×Zd : 〈(u,v), (ωk, ek)〉 ≡ 0 (mod x0), 1 ≤
k ≤ d}, where ek ∈ Zd is the kth unit vector for 1 ≤ k ≤ d. Denote by
{(Buj ,vj) : 1 ≤ j ≤ `+ d} the LLL-reduced basis.

3. Form the ` × ` matrix P of vectors {uj : 1 ≤ j ≤ `} and compute
|det(P )| = g =

∏θ
i=1 gi.

Variant with multiple pzt. In many concrete constructions based on com-
posite order multilinear maps, intermediate-level encodings of almost zero plain-
texts are not necessarily available. We refer to Section 6 for the application of
our attacks to concrete constructions. In order to get around this assumption,
we consider a variant of the above attack, where we have multiple zero-testing
elements pzt instead of a single one. Namely, as described in [CLT13], in order
to get a proper zero-testing procedure, one needs to use a vector of n elements
pzt. We denote by pzt,k for 1 ≤ k ≤ n those zero-testing elements:

pzt,k =

n∑
i=1

hikz
κ(g−1i mod pi)

x0
pi

mod x0

for corresponding integers hik. As previously, we assume that we have encodings
cj of plaintext elements mj = (mj1, . . . ,mjn) for 1 ≤ j ≤ `, where only the
first θ components of each mj are non-zero, that is, mji = 0 for θ + 1 ≤ i ≤ n.
We can now assume that these encodings are at the last level κ. Thanks to the
multiple zero-testing elements, we can therefore obtain the following zero-testing
evaluations:

ωjk ≡ cj · pzt,k ≡
θ∑
i=1

hikmji(g
−1
i mod pi)

x0
pi

+

n∑
i=1

hikrjki
x0
pi

(mod x0)

for some integers rjki, which is similar to (18) with hik = hi · xki. Therefore the
same attack applies and the secret g =

∏θ
i=1 gi can be recovered in (heuristic)

polynomial-time under the condition αθ = O(ν2).

4.4 Revealing information about the plaintext elements

We show that our attack not only reveals the secret CLT13 plaintext ring, but
also information about the secret plaintext elements {m̂i : 1 ≤ i ≤ θ}. Namely,
the orthogonal lattice attack not only recovers g =

∏θ
i=1 gi, but also constructs

a matrix U of rows {uj : 1 ≤ j ≤ `} orthogonal to the vectors {m̂i : 1 ≤ i ≤ θ}
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modulo gi (i.e. a basis of the lattice Λ⊥, following the previous notation) and
we can use this matrix U in order to recover scalar multiples of the plaintext
vectors {m̂i : 1 ≤ i ≤ θ}.

More precisely, we show that for each 1 ≤ i ≤ θ, we can recover the one-
dimensional linear space generated by m̂i modulo gi. The first step is to factor
g =

∏θ
i=1 gi to recover the primes gi’s; this is feasible if the gi’s are small enough.1

Since we have a basis matrix U of the lattice of vectors u with 〈u, m̂i〉 ≡ 0
(mod gi) for all 1 ≤ i ≤ θ, it suffices to compute the Z/giZ-kernel of the ` × `
matrix Ugi = U mod gi; assuming that m̂i 6≡ 0 (mod gi), we have that ker(Ugi)
has dimension 1 over over Z/giZ and therefore, we recover a non-trivial multiple
λim̂i of the original messages m̂i modulo gi, for 1 ≤ i ≤ θ. With the ECM
[Len87] the factorization of g =

∏θ
i=1 gi can be computed in time exp(c

√
α lnα)

for some positive constant c and where α is the bit size of the gi’s, which gives
a sub-exponential time attack.

Alternatively, to avoid the factorization of g, we can compute the integer
right kernel of the matrix [U | gI`], where I` denotes the identity matrix in
dimension `. The following proposition shows that we can recover in polynomial
time a non-trivial multiple of the vector m̂, such that m̂ ≡ m̂i (mod gi) for all
1 ≤ i ≤ θ.

Proposition 6. Let `, θ ∈ Z≥1. Let g1, . . . , gθ be distinct prime numbers. For
1 ≤ i ≤ θ, let m̂i ∈ Z` ∩ [0, gi)

` be vectors such that m̂i 6≡ 0 (mod gi). Let
{uj : 1 ≤ j ≤ `} be a basis of the lattice of vectors u ∈ Z` such that 〈u, m̂i〉 ≡ 0

(mod gi) for all 1 ≤ i ≤ θ. Then, given g =
∏θ
i=1 gi and the vectors {uj : 1 ≤

j ≤ `}, one can recover in polynomial time a vector λ · m̂ ∈ Z` ∩ [0, g)` with
gcd(λ, g) = 1, such that m̂ ≡ m̂i (mod gi) for all 1 ≤ i ≤ θ.

Proof. By the Chinese Remainder Theorem, there exists a unique vector m̂ ∈
Z` ∩ [0, g)` satisfying m̂ ≡ m̂i (mod gi) for all 1 ≤ i ≤ θ. Consider the composi-
tion of maps Z` π→ (Z/gZ)` φ→ Z/gZ, where π is reduction modulo g and φ sends
u to 〈u, m̂〉. By the Chinese Remainder Theorem, the map φ corresponds to
a vector of maps φ = (φ1, . . . , φθ) : (

∏
i Z/giZ)` →

∏
i Z/giZ with components

φi : (Z/giZ)` → Z/giZ for 1 ≤ i ≤ θ. Let 1 ≤ i ≤ θ; since m̂i 6≡ 0 (mod gi),
the map φi is surjective with kernel ker(φi) = im(Ugi) where Ugi = U mod gi.
Since gi is prime, ker(φi) = im(Ugi) is a Z/giZ-vector space of dimension `− 1.
It follows that the kernel of Ugi has dimension 1 over Z/giZ. This holds for all
1 ≤ i ≤ θ, so by the Chinese Remainder Theorem, ker(Ug) (where Ug is the
matrix U modulo g) is a free Z/gZ-module of rank 1, generated by m̂. In partic-
ular, there exists k ∈ Z` such that (m̂,k) belongs to the Z-kernel of the matrix
[U | gI`]. The integer kernel of this matrix can be computed in polynomial time
from g and U and the left ` × ` submatrix of the Hermite normal form of the
basis of the Z-kernel gives in the first row a vector λm̂ with λ ∈ (Z/gZ)×. ut
1 For the concrete parameters provided in [CLT13], the gi’s are 80-bit primes; therefore
the factorization is straightforward.
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4.5 Concrete parameters and practical experiments

Concrete parameters. We provide concrete parameters for CLT13 multilinear
maps with independent slots, for various values of the security parameter λ. We
start from the same concrete parameters as provided in [CLT13]; we assume that
the encoding noise is set so that the number of extracted bits is ν = 2λ + 12;
we take α = λ. We then provide the minimum value of θ that ensures the same
level of security against lattice attacks; see Table 1. As in [CLT13], the goal is
to ensure that the best attack takes at least 2λ clock cycles.

While in Table 1 the number of independent slots nslots = bn/θc appears to
be relatively small, it is always possible to increase the number of independent
slots by increasing the value of n.

Instantiation λ n η γ = n · η ν θ nslots

Small 52 1080 1981 2.1 · 106 116 540 2
Medium 62 2364 2055 4.9 · 106 136 1182 2
Large 72 8250 2261 18.7 · 106 156 1472 5
Extra 80 26115 2438 63.7 · 106 172 1789 14

Table 1. Concrete parameters for CLT13 multilinear maps with independent
slots, for security parameter λ.

Practical experiments. We have run our extended attack from Section 4.3
with the "Extra" parameters of CLT13 from Table 1, for increasing values of θ.
Note that for such parameters, the original attack from [GLW14] only applies
for θ = 1. To improve efficiency, we give as input to LLL a truncated matrix
basis, where we keep only the ν most significant bits. Table 2 shows that our
attack works in practice for much larger values of θ than the original attack from
[GLW14], which can only work for θ = 1. We provide in https://pastebin.
com/7WEMHBE9 the source code in Sage [S+17].

θ α ν ` = d lat. dim. running time
Basic attack [GLW14] 1 80 172 1 2 ε

Extended attack (Section 4.3) 2 80 172 2 4 ε

Extended attack (Section 4.3) 40 80 172 39 78 10 s
Extended attack (Section 4.3) 100 80 172 100 200 11 min
Extended attack (Section 4.3) 160 80 172 163 326 11 hours

Table 2. Running time of our LLL-based attack, as a function of the parameter
θ, for the "Extra" parameters of CLT13. The lattice dimension is `+ d = 2`.
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5 Application to the Cheon et al. Attack

In 2015, Cheon et al. published in [CHL+15] a polynomial time attack against
CLT13 resulting in a total break of the multipartite Diffie-Hellman key exchange
protocol. The attack relies on the availability of low-level encodings of zero. In
this section, we show how to adapt the Cheon et al. attack to the setting of CLT13
with independent slots: we assume that no encodings of zero are available to the
attacker (otherwise the Cheon et al. attack would apply immediately), but as
previously, the attacker can obtain low-level encodings where only θ components
of the plaintext are non-zero. In particular, this contributes to a cryptanalysis
of CLT13 multilinear maps where no encodings of zero are available beforehand;
this was considered as an open problem in [CLR15, Section 4].

5.1 The original Cheon et al. attack with encodings of zero

We first recall the basic Cheon et al. attack against CLT13. For simplicity, we
take κ = 3; the attack is easily extended to κ > 3. Consider a set A = {aj :
1 ≤ j ≤ n} of encodings of zero at level one, a pair B = {b0, b1} of encodings at
level one, and a set C = {ck : 1 ≤ k ≤ n} of encodings at level one. We write
aj ≡ aji/z (mod pi), bt ≡ bti/z (mod pi), ck ≡ cki/z (mod pi), with integers
aji ≡ 0 (mod gi), for all 1 ≤ j, i, k ≤ n and t ∈ {0, 1}. We obtain the zero-testing
evaluations:

ω
(t)
jk = ajbtckpzt mod x0 =

n∑
i=1

hi
gi
ajibticki

x0
pi

where the equality holds over Z because the products ajbtck are level-3 encodings
of 0. This can be written in matrix form as

ω
(t)
jk =

[
aj1 · · · ajn

] bt1pzt,1 . . .
btnpzt,n


ck1...
ckn

 .
where pzt,i = (hi/gi) · x0/pi for all 1 ≤ i ≤ n. Writing out the matrices W t =

(ω
(t)
jk )1≤j,k≤n for t ∈ {0, 1}, one obtains the integer matrix equalities W t =

A∆tC for t ∈ {0, 1}, where the rows of A are the vectors (aj1, · · · , ajn)j , the
columns of C are the vectors (ck1, · · · , ckn)k, and ∆t is the diagonal matrix
diag(bt1pzt,1, . . . , btnpzt,n).

Provided that at least one of W 0,W 1 is invertible over Q (say W 1), one
then evaluates over Q the matrix product:

W 0 ·W−1
1 = A(∆0∆

−1
1 )A−1

The attacker can thus compute the eigenvalues of W 0W
−1
1 , by factoring the

characteristic polynomial (over Q). By similarity of these matrices, these eigen-
values coincide with those of ∆0∆

−1
1 = diag(b01/b11, . . . , b0n/b1n), which are

{b0i/b1i : 1 ≤ i ≤ n}. These ratios are now enough to factor x0. Namely, writing
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the quotients b0i/b1i = xi/yi for coprime integers xi, yi and using that bt ≡ bti/z
(mod pi), we obtain:

xib1 − yib0 ≡ (xib1i − yib0i)/z ≡ 0 (mod pi)

and therefore gcd(xib1 − yib0, x0) = pi with good probability. In summary, the
Cheon et al. attack recovers all secret pi’s in polynomial time given the low-level
encodings of zero {aj : 1 ≤ j ≤ n}.

5.2 Adaptation of the Cheon et al. attack to our cryptanalysis

We now show how to adapt the Cheon et al. attack when no encodings of zero
are available, but the attacker can obtain low-level encodings where only θ com-
ponents of the underlying plaintexts are non-zero. The attack is divided in two
steps: first the attacker generates encodings of zero using the orthogonal lattice
attack from Section 4, and then applies the original Cheon et al. attack to reveal
the primes {pi : 1 ≤ i ≤ n}.

We consider the following setting with κ = 4. Let ` ≥ 1; we consider a set
Y = {yj : 1 ≤ j ≤ `} of level-one encodings of messages m1, . . . ,m` where
only the first θ components of each mj are non-zero. Moreover, we consider as
in the previous section three sets A = {aj : 1 ≤ j ≤ n}, B = {b0, b1} and
C = {ck : 1 ≤ k ≤ n} of level-one encodings of non-zero messages.

First step: orthogonal lattice attack. We show that the orthogonal lattice
attack from Section 4.2 can compute a short vector u ∈ Z` such that y′ = 〈u,y〉
is a level-1 encoding of zero, where y = (y1, . . . , y`). We write for all 1 ≤ j ≤ `:

yj ≡
rji · gi +mji

z
(mod pi) , 1 ≤ i ≤ n,

with the usual CLT13 notations, where mji = 0 for θ + 1 ≤ i ≤ n. Note that
our orthogonal lattice attack from Section 4.2 uses level-κ encodings; therefore
it can be applied on level-κ encodings of the form:

ej = yj · a1 · b0 · c1 mod x0

for level-one encodings a1, b0, c1; we obtain:

ej ≡
r′ji · gi +mji · xi

zκ
(mod pi) , 1 ≤ i ≤ n

for some r′ji ∈ Z and where xi is the i-th component of the plaintext correspond-
ing to the encoding a1 · b0 · c1. Clearly, since the messages {mj : 1 ≤ j ≤ `}
have non-zero support of length θ, the messages {(mji · xi)1≤i≤n : 1 ≤ j ≤ `}
have non-zero support of length at most θ. Therefore, applying the orthog-
onal lattice attack from Section 4.2 on the encodings ej (i.e. on the vector
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ω = pzt · (ej)1≤j≤` mod x0), we obtain a vector u ∈ Z` such that 〈u, m̂i ·xi〉 ≡ 0
(mod gi) for all 1 ≤ i ≤ θ, where the m̂i’s are the vectors (m1i, . . . ,m`i) for
1 ≤ i ≤ θ. Provided that xi 6≡ 0 (mod gi), this implies 〈u, m̂i〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ. Therefore, for all 1 ≤ i ≤ n, we can write

∑`
j=1 ujmji = kigi for

integers ki (and ki = 0 for θ + 1 ≤ i ≤ n). This gives:

y′ =
∑̀
j=1

ujyj ≡ gi

∑̀
j=1

ujrji + ki

 · z−1 (mod pi) , 1 ≤ i ≤ n

and therefore y′ is a level-1 encoding of zero, moreover with small noise since
the vector u is short. Note that we only need a single vector u; therefore the
first step of the attack is proven by Proposition 5.

Second step: Cheon et al. attack. The second step consists in applying the
Cheon et al. attack with the three sets A′ = {y′ · aj : 1 ≤ j ≤ n}, B = {b0, b1}
and C = {ck : 1 ≤ k ≤ n}. Since y′ is an encoding of zero, all encodings in A′ are
encodings of zero, and we can apply the Cheon et al. attack on the three sets
A′, B and C to recover all secret primes pi.

Since the orthogonal lattice attack more generally provides a set of ` vectors
uj ∈ Z` (instead of a single u; and all satisfying 〈uj , m̂i〉 ≡ 0 (mod gi) for
all i), a variant of the above attack with κ = 3 consists in starting from a set
A = {aj : 1 ≤ j ≤ n} of ` = n encodings where only the first θ components of
the underlying plaintexts are non-zero, and then generating a set A′ = {〈uj ,a〉 :
1 ≤ j ≤ n} of encodings of zero, with the vector of encodings a = (a1, . . . , an).
One can then apply the Cheon et al. attack as previously on the three sets A′,
B and C.

Note that the first step of the attack above (i.e. the generation of encodings
of zero) uses the orthogonal lattice attack from Section 4.2 with the bound
αθ < ν. The attack from Section 4.3 is easily adapted to reach the improved
bound αθ = O(ν2). In this case the attacker can obtain ` · d level-two encodings
of zero given by {〈uj , ck〉 : 1 ≤ j ≤ `, 1 ≤ k ≤ d} where ck is the vector of
encodings (cj · c′k)1≤j≤` with the encodings cj · c′k considered in Section 4.3.

6 Application to constructions based on CLT13 with
independent slots

In this section we show that our orthogonal lattice attack from Section 4 can be
applied to various constructions over CLT13 multilinear maps with independent
slots.

6.1 The multilinear subgroup elimination assumption from
[GLW14,GLSW15]

The multilinear subgroup elimination assumption is used in [GLW14] for witness
encryption and in [GLSW15] for constructing program obfuscation, based on a
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single assumption, independent of the particular circuit to be obfuscated. The
multilinear subgroup elimination assumption is stated for a generic model of
composite-order multilinear maps. Below, we show that our attacks break this
assumption over CLT13 composite-order multilinear maps. We note that since
the GLW14 scheme also includes encodings of zeroes, it could also be broken more
directly by the Cheon et al. attack. We recall the definition from [GLSW15].

Definition 7 ((µ, ν)-multilinear subgroup elimination assumption ). Let
G be a group of order N = a1 · · · aµb1 · · · bνc where a1, . . . , aµ, b1, . . . , bν , c are
µ+ν+1 distinct primes. We give out generators xa1 , . . . , xaµ , xb1 , . . . , xbν for each
prime order subgroup except for the subgroup of order c. For each 1 ≤ i ≤ µ, we
also give out a group element hi sampled uniformly at random from the subgroup
of order ca1 · · · ai−1ai+1 · · · aµ. The challenge term is a group element T ∈ G
that is either sampled uniformly at random from the subgroup of order ca1 · · · aµ
or uniformly at random from the subgroup of order a1 · · · aµ. The task is to
distinguish between these two distributions of T .

For simplicity, we consider the assumption with µ = 1 and ν = 0; the gener-
alization of our attack to any (µ, ν) is straightforward. Therefore G is a group
of order a1c. The challenge T ∈ G is either generated at random from the sub-
group of order a1c, or from the subgroup of order a1. In the context of a CLT13
instantiation, we assume that a1 =

∏θ
i=1 gi and c =

∏n
i=θ+1 gi. In that case, a1

and c are not primes, but the assumption can still be considered for composite
ai’s, bi’s and c. The encoding T is then either generated from a random plaintext
m ∈

⊕n
i=1 Z/giZ, or from a random plaintext with only the θ first components

non-zero, that is m ≡ 0 (mod gi) for θ + 1 ≤ i ≤ n. It is easy to see that our
attacks from Section 4.2 and Section 4.3 apply in this setting. Namely, when
only the first θ components of the plaintext m corresponding to the challenge
T are non-zero, our attacks recover the product a1 =

∏θ
i=1 gi, whereas the at-

tacks will fail when m is a random plaintext. Therefore the challenge T is easily
distinguished unless θ is large enough; more precisely, θ must satisfy the bound
given by (23) to prevent the attack.

6.2 The Zimmerman circuit obfuscation scheme

At Eurocrypt 2015, Zimmerman described a technique to obfuscate programs
without matrix branching programs, based on composite-order multilinear maps
[Zim15]. A plaintext m belongs to Z/NZ for a composite modulus N = Nev ·
Nchk, and the ring Z/NZ is viewed as a direct product of an "evaluation" ring
Z/NevZ to evaluate the circuit, and a "checksum" ring Z/NchkZ to prevent the
adversary from evaluating a different circuit; those two evaluations are performed
in parallel. Using the CLT13 notations from Section 2, one can let Nev =

∏θ
i=1 gi

andNchk =
∏n
i=θ+1 gi. In that case, the parameter θ must satisfy the bound given

by (23) to prevent our lattice attack.
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6.3 The FRS17 construction for preventing input partitioning
attacks

At Asiacrypt 2017, Fernando, Rasmussen and Sahai described three construc-
tions of "stamping functions" for preventing input-partitioning attacks on ma-
trix branching programs [FRS17]. Their third construction is based on permu-
tation hash functions and is instantiated over CLT13 multilinear maps with in-
dependent slots. More precisely, the permutation hash function is written as
a matrix branching program, and multiple such permutation hash functions
hi are evaluated in parallel along with the main matrix branching program;
this is to ensure that only inputs of the form x‖h(x) can be evaluated, where
h(x) = h1(x)‖ · · · ‖ht(x), which prevents input partitioning attacks.

Matrix branching programs. We first recall the construction of [GGH+13b]
to obfuscate matrix branching programs. A matrix branching program BP of
length np on `-bit inputs x ∈ {0, 1}` is evaluated by computing:

C(x) = b0 ·
np∏
i=1

Bi,xinp(i)
· bnp+1 (24)

where {Bi,b : 1 ≤ i ≤ np, b ∈ {0, 1}} are 2np square matrices and b0 and bnp+1

are bookend vectors; then BP(x) = 0 if C(x) = 0, and BP(x) = 1 otherwise.
The integer inp(i) ∈ {1, . . . , `} indicates which bit of x is read at step i of
the product matrix computation. The matrices Bi,b are first randomized by
choosing np+1 random invertible matrices {Ri : 0 ≤ i ≤ np} and letting B̃i,b =

Ri−1Bi,bR
−1
i for 1 ≤ i ≤ np, with also b̃0 = b0R

−1
0 and b̃np+1 = Rnpbnp+1. We

obtain a randomized matrix branching program with the same result since the
randomization matrices Ri cancel each other: C(x) = b̃0 ·

∏np
i=1 B̃i,xinp(i)

· b̃np+1.

The entries of the matrices B̃i,b are then independently encoded, as well as
the bookend vectors b̃0 and b̃np . We obtain the matrices and vectors B̂i,b =

Encode{i+1}(B̃i,b), b̂0 = Encode{1}(b̃0) and b̂np+1 = Encode{np+2}(b̃np+1). Here
Encode{i}(·) denotes an encoding relative to the singleton i. The matrix branch-
ing program from (24) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ·
np∏
i=1

B̂i,xinp(i)
· b̂np+1 (25)

The resulting Ĉ(x) is then a last-level encoding that can be zero-tested to check
if C(x) = 0, which reveals the output of the branching program BP(x), without
revealing the matrices Bi,b.

Application to the FRS17 construction. The [FRS17] scheme constructs
a modified matrix branching program BP′ that receives as input u‖v1 . . . vt and
checks whether vi = hi(u) for all 1 ≤ i ≤ t, where the hi’s are permutation hash
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functions; in that case, BP′ returns BP(u) where BP is the original branching
program; otherwise, it returns some non-zero value. As explained in [FRS17],
multiple branching programs can be evaluated in parallel with composite order
multilinear maps; with the countermeasure from [GLW14] over CLT13, each
branching program is then evaluated modulo a product of θ of the primes gi’s,
instead of a single gi in [FRS17].

It is easy to generate an input u‖v1 . . . vt such that BP(u) = 0 and vi = hi(u)
for all 1 ≤ i ≤ t except for some i = i?; in that case, only one of the t+ 1 paral-
lel matrix branching program will evaluate to a non-zero value. The orthogonal
lattice attack from Section 4.2 can therefore recover the secret plaintext ring⊕n

i=1 Z/giZ of CLT13, under the condition αθ < ν. Alternatively, if multiple
pzt’s are available, the extended attack from Section 4.3 applies under the con-
dition αθ = O(ν2), as described at the end of Section 4.3.

We note however that in both cases, our attack against [FRS17] only recovers
the secret plaintext ring

⊕n
i=1 Z/giZ of CLT13, and not all secret parameters of

CLT13; we leave that as an open problem.
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A Proofs

A.1 Proof of Lemma 4

Let B = {(Buj , vj) : 1 ≤ j ≤ ` + 1} be a basis of L. We show that the vectors
{uj : 1 ≤ j ≤ `} corresponding to the first ` vectors, must necessarily be
linearly independent over R. For the sake of contradiction, we assume they are
linearly dependent. For every vector (Buj , vj) (with 1 ≤ j ≤ `), we consider the
associated vector puj ,vj . By assumption, the vectors {puj ,vj : 1 ≤ j ≤ `} belong
to the lattice generated by the vectors {qi : 1 ≤ i ≤ θ}, so there are integers
βij ∈ Z such that puj ,vj =

∑θ
i=1 βijqi for every 1 ≤ j ≤ `. The definition of the

vectors {qi : 1 ≤ i ≤ θ} gives puj ,vj = (Cβ1jg1, . . . , Cβθjgθ,−
∑θ
i=1 βijsi) for

every 1 ≤ j ≤ `; and from the definition of the vector puj ,vj , we conclude by
equalizing the components, the relations

βijgi = 〈uj , m̂i〉 (26)

and

−
θ∑
i=1

βijsi = 〈uj ,R〉+ vj (27)

for every 1 ≤ j ≤ `, 1 ≤ i ≤ θ. Combining Equations (26) and (27) gives

vj = −
θ∑
i=1

si
gi
〈uj , m̂i〉 − 〈uj ,R〉 , 1 ≤ j ≤ `

This implies that if the vectors {uj : 1 ≤ j ≤ `} are linearly dependent over
R, then also the vectors {(Buj , vj) : 1 ≤ j ≤ `} are linearly dependent over R,
which contradicts the fact that B is a basis of L. ut

A.2 Proof of Proposition 5

Let a = (α1, . . . , αθ, 1) ∈ Zθ+1. We let C = 2ρR−α+1 and consider the lattice
A⊥ of vectors (Cx, y) ∈ Zθ × Z such that (x, y) is orthogonal to a modulo
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x0. Further, we let B = θ2ρR+2 and let L ⊆ Z`+1 denote the lattice of vectors
(Bu, v) ∈ Z` × Z such that the vector (u, v) is orthogonal to the vector (ω, 1)
modulo x0.

Let Λ⊥ be the lattice of vectors u ∈ Z` such that 〈u, m̂i〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ. We denote by u0 a shortest non-zero vector of Λ⊥. We write
〈u0, m̂i〉 = kigi with ki ∈ Z. To u0 we thus associate the vector F (u0) =

(Bu0,−
∑θ
i=1 kisi−〈u0,R〉). From the definition of ω and the congruence rela-

tions giαi ≡ si (mod x0), we have that (u0,−
∑θ
i=1 kisi−〈u0,R〉) is orthogonal

to (ω, 1) modulo x0, and therefore F (u0) ∈ L.
Letting g =

∏θ
i=1 gi, we now show that F (u0) has square norm upper

bounded by

‖F (u0)‖2 ≤ (`+ 1)B2‖u0‖2 ≤ `(`+ 1)B2g2/` . (28)

Indeed, we write ‖F (u0)‖2 ≤ B2‖u0‖2+(
∑θ
i=1 |kisi|+‖u0‖‖R‖)2. From ‖m̂i‖ ≤√

`2α, we obtain 2α−1|ki| ≤ |ki|gi ≤ ‖u0‖‖m̂i‖ ≤
√
`2α‖u0‖; i.e. |ki| ≤ 2

√
`‖u0‖

for all i. Combined with ‖R‖ ≤
√
`‖R‖∞ ≤

√
`2ρR , this gives

θ∑
i=1

|kisi|+‖u0‖‖R‖ ≤
√
`‖u0‖·(2ρR+1θ+2ρR) ≤

√
`‖u0‖(2·2ρR+1θ) =

√
`B‖u0‖

Therefore, ‖F (u0)‖2 ≤ B2‖u0‖2 + `B2‖u0‖2 = (` + 1)B2‖u0‖2. Now, since
u0 has length λ1(Λ⊥), it follows from Minkowski’s Theorem that ‖u0‖ ≤

√
`g1/`

where g = det(Λ⊥), and (28) easily follows.

Let x1 = (Bu1, v1) be the first vector in a (3/4)-reduced basis of the lattice
L, obtained from LLL. By Theorem 3, it satisfies ‖x1‖ ≤ 2`/2‖F (u0)‖, that is,
combined with (28), ‖x1‖ ≤ 2`/2

√
`(`+ 1)Bg1/`. In particular, we obtain the

bounds

‖u1‖ ≤ 2`/2
√
`(`+ 1) · g1/` (29)

|v1| ≤ 2`/2B
√
`(`+ 1) · g1/`. (30)

For simplicity we writeK = 2`/2
√
`(`+ 1)g1/`. Now, to the vector x1 ∈ L, we as-

sociate, for C as above, the vector f(x1) = (C〈u1, m̂1〉, . . . , C〈u1, m̂θ〉, 〈u1,R〉+
v1) ∈ A⊥. Because (Bu1, v1) ∈ L, it is a direct check that f(x1) ∈ A⊥. Its square
norm is upper bounded by

‖f(x1)‖2 ≤ C2
θ∑
i=1

‖u1‖2‖m̂i‖2 + (‖u1‖‖R‖+ v1)
2.

Using once again that ‖m̂i‖ ≤ 2α
√
` and ‖R‖ ≤ 2ρR

√
`, and combining with

(29) and (30), we obtain

‖f(x1)‖2 ≤ C2K2 · θ`22α + (K
√
`2ρR +KB)2 ≤ C2K2 · θ`22α + (2K

√
`B)2

= K2`(C2θ22α + 4B2)
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so that, using C2θ22α ≤ B2 = 16θ222ρR , this gives

‖f(x1)‖ ≤ 4
√
5 ·
√
` · θ ·K · 2ρR . (31)

We now consider the vectors {qi : 1 ≤ i ≤ θ} defined by qi = (0, . . . 0, Cgi,
0, . . . , 0,−si) ∈ Zθ+1. They are linearly independent; moreover, from the con-
gruence relations giαi ≡ si (mod x0) for 1 ≤ i ≤ θ we deduce that for all
i, 〈qi,a〉 ≡ 0 (mod x0); i.e. qi ∈ A⊥. Further, as |si| ≤ 2ρR , their norm
is upper bounded by ‖qi‖2 ≤ C2g2i + 22ρR ≤ C2g2i + Cg2i ≤ 2C2g2i because
Cgi ≥ 2ρR−α+1 · 2α−1 = 2ρR . Consequently,

θ∏
i=1

‖qi‖ ≤ 2θ/2Cθ
θ∏
i=1

gi = 2θ/2Cθg. (32)

Now, (17) together with g ≤ 2αθ, implies (1 + 1/`) log2(g) + (` + θ)/2 +
log2(4

√
5
√
`+ 1θ`) < log2(x0)− ρR and, by raising to the power of 2, we obtain

g1+1/` · 2`/2 · 2θ/2 · 4
√
5
√
`+ 1θ` < x0/2

ρR . This is equivalent to

g1/` · 2`/2 · 2ρR · 4
√
5
√
`+ 1 · θ` < Cθx0

Cθ2θ/2g
. (33)

The left hand side is lower bounded by ‖f(x1)‖ by (31), and the right hand side is
upper bounded by det(A⊥)/

∏θ
i=1 ‖qi‖, by (32) together with det(A⊥) = Cθx0.

Therefore (33) implies ‖f(x1)‖ < det(A⊥)/
∏θ
i=1 ‖qi‖. It follows from Lemma 2

that f(x1) is in the linear span generated by the vectors {qi : 1 ≤ i ≤ θ}. Since
gi are distinct prime numbers and gcd(si, gi) = 1 for 1 ≤ i ≤ θ, we conclude that
f(x1) is in the sublattice generated by the vectors {qi : 1 ≤ i ≤ θ}. Consequently,
for all 1 ≤ i ≤ θ, one has 〈u1, m̂i〉 ≡ 0 (mod gi).

The rows {bj : 1 ≤ j ≤ `+ 1} of the matrix[
BI` −ωT
0 x0

]
,

where I` denotes the `×` identity matrix, form a Z-basis of L. Hence, by running
LLL on this matrix with δ = 3/4, we obtain a vector x1 of which the first ` entries,
divided by B, produce a vector u = u1 satisfying 〈u1, m̂i〉 ≡ 0 (mod gi) for all
i. By Theorem 3, the algorithm terminates in polynomial time. ut
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