
On Kilian’s Randomization of Multilinear Map
Encodings
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Abstract. Indistinguishability obfuscation constructions based on ma-
trix branching programs generally proceed in two steps: first apply Kil-
ian’s randomization of the matrix product computation, and then encode
the matrices using a multilinear map scheme. In this paper we observe
that by applying Kilian’s randomization after encoding, the complexity
of the best attacks is significantly increased for CLT13 multilinear maps.
This implies that much smaller parameters can be used, which improves
the efficiency of the constructions by several orders of magnitude.
As an application, we describe the first concrete implementation of multi-
party non-interactive Diffie-Hellman key exchange secure against existing
attacks. Key exchange was originally the most straightforward applica-
tion of multilinear maps; however it was quickly broken for the three
known families of multilinear maps (GGH13, CLT13 and GGH15). Here
we describe the first implementation of key exchange that is resistant
against known attacks, based on CLT13 multilinear maps. For N = 4
users and a medium level of security, our implementation requires 18 GB
of public parameters, and a few minutes for the derivation of a shared
key.

1 Introduction

Multilinear maps and indistinguishability obfuscation. Since the break-
through construction of Garg, Gentry and Halevi [GGH13a], cryptographic mul-
tilinear maps have shown amazingly powerful applications in cryptography, most
notably the first plausible construction of program obfuscation [GGH+13b]. A
multilinear map scheme encodes plaintext values {ai} into encodings {[ai]} such
that the ai’s are hidden; only a restricted class of polynomials can then be
evaluated over these encoded values; eventually one can determine whether the
evaluation is zero or not, using the zero testing procedure of the multilinear map
scheme.

The goal of program obfuscation is to hide secrets in arbitrary running
programs. The first plausible construction of general program obfuscation was
described by Garg, Gentry, Halevi, Raykova, Sahai and Waters (GGHRSW)
in [GGH+13b], based on multilinear maps; the construction has opened many
new research directions, because the notion of indistinguishability obfuscation
(iO) has tremendous applications in cryptography [SW14]. Since the publica-
tion of the GGHRSW construction, many variants of GGHRSW have been



described [MSW14,AGIS14,PST14,BGK+14,BMSZ16]. Currently there are es-
sentially only three known candidate constructions of multilinear maps:

• GGH13. The first candidate construction of multilinear maps is based on
ideal lattices [GGH13a]. Its security relies on the difficulty of the NTRU
problem and the principal ideal problem (PIP) in certain number fields.

• CLT13. An analogous construction but over the integers was described
in [CLT13], based on the DGHV fully homomorphic encryption scheme
[DGHV10].

• GGH15. Gentry, Gorbunov and Halevi described another multilinear maps
scheme [GGH15], based on the Learning With Errors (LWE) problem with
encoding over matrices, and defined with respect to a directed acyclic graph.

However the security of multilinear maps is still poorly understood. The most
important attacks against multilinear maps are “zeroizing attacks”, which con-
sist in using linear algebra to recover the secrets of the scheme from the encod-
ings of zero. At Eurocrypt 2015, Cheon et al. described a devastating zeroizing
attack against CLT13; when CLT13 is used to implement non-interactive multi-
partite Diffie-Hellman key exchange, the attack completely breaks the protocol
[CHL+15]. The attack was also extended to encodings variants, where encodings
of zero are not directly available [CGH+15]. The key-exchange protocol based
on GGH13 was also broken by a zeroizing attack in [HJ16]. Finally, the Diffie-
Hellman key exchange protocol under GGH15 was broken in [CLLT16], using an
extension of the Cheon et al. zeroizing attack.

However, not all attacks against the above multilinear map schemes can
be applied to indistinguishability obfuscation. While multipartite key exchange
based on any of the three families of multilinear map schemes is broken, iO is not
necessarily broken by zeroizing attacks, because of the particular structure that
iO constructions induce on the computation of multilinear map encoded values.
Namely, in iO constructions, no low-level encodings of zeroes are available, and
the obfuscation of a matrix branching program can only produce zeroes at the
last level, moreover when evaluated in a very specific way. However some partial
attacks against iO constructions have already been described. In [CGH+15] it
was shown how to break the GGHRSW branching-program obfuscator when in-
stantiated using CLT13, when the branching program to be obfuscated has a very
simple structure (input partition). For GGH13, Miles, Sahai and Zhandry intro-
duced “annihilation attacks” [MSZ16] that can break many obfuscation schemes
based on GGH13; however, the attack does not apply to the GGHRSW construc-
tion, because in GGHRSW the matrix program is embedded in a larger matrix
with random entries (diagonal padding). In [CGH17], the authors showed how
to break iO constructions under GGH13, using a variant of the input partition-
ing attack; the attack applies against the GGHRSW construction with diagonal
padding. A new tensoring technique was introduced in [CLLT17] to break iO
constructions for branching programs without the input partition structure. Fi-
nally, an attack against iO over GGH15 was described in [CVW18] based on
computing the rank of a certain matrix.
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Obfuscating matrix branching programs. The GGHRSW construction and
its variants consist of a “core component” for obfuscating matrix branching
programs, and a bootstrapping procedure to obfuscate arbitrary programs based
on the core component, using fully homomorphic encryption and proofs of correct
computation. The core component relies on multilinear maps for evaluating a
product of encoded matrices corresponding to a branching program, without
revealing the underlying value of those matrices.

More precisely, the core component of the GGHRSW construction and its
variants proceeds in two steps: first apply Kilian’s randomization of the ma-
trix product computation, and then encode the matrices using a multilinear
map scheme. In this paper, our main observation is that for CLT13 multilinear
maps, the complexity of the best attacks is significantly increased when Kilian’s
randomization is also applied after encoding. We note that applying Kilian’s
randomization “on the encoding side” was already used in GGH15 multilinear
maps as an additional safeguard [GGH15, §5.1]. For CLT13 this implies that one
can use much smaller parameters (noise and encoding size), which improves the
efficiency of the constructions by several orders of magnitude.

More precisely, a matrix branching program BP of length n is evaluated on
input x ∈ {0, 1}` by computing:

C(x) = b0 ×
n∏
i=1

Bi,xinp(i)
× bn+1 (1)

where {Bi,b}1≤i≤n,b∈{0,1} are square matrices and b0 and bn+1 are bookend vec-
tors; then BP(x) = 0 if C(x) = 0, and BP(x) = 1 otherwise. The function inp(i)
indicates which bit of x is read at step i of the product matrix computation. To
obfuscate a matrix branching program, the GGHRSW construction proceeds in
two steps. First one randomizes the matrices Bi,b as in Kilian’s protocol [Kil88]:

choose n+ 1 random invertible matrices {Ri}ni=0 and set B̃i,b = Ri−1Bi,bR
−1
i ,

with also b̃0 = b0R
−1
0 and b̃n+1 = Rnbn+1. The randomized matrix branching

program can then be evaluated by computing C(x) = b̃0×
∏n
i=1 B̃i,xinp(i)

× b̃n+1.
Namely the successive randomization matrices Ri cancel each other; therefore
the matrix product computation evaluates to the same result as in (1).

The second step in the GGHRSW construction is to encode the entries of the
matrices B̃i,b using a multilinear map scheme. Every entry of a given matrix is

encoded separately; the bookend vectors b̃0 and b̃n are also encoded similarly.
Therefore one defines the matrices and vectors B̂i,b = Encode{i+1}(B̃i,b), b̂0 =

Encode{1}(b̃0), b̂n = Encode{n+2}(b̃n+2). The matrix branching program from
(1) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ×
n∏
i=1

B̂i,xinp(i)
× b̂n+1 (2)

Eventually one obtains an encoded Ĉ(x) over the universe set S = {1, . . . , n+2},
and one can use the zero-testing procedure of the multilinear map scheme to
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check if C(x) = 0, thereby learning the output of the branching program BP(x),
without revealing the values of the matrices Bi,b.

(In)efficiency of iO. However, even with some efficiency improvements (as in
[AGIS14]), the main issue is that indistinguishability obfuscation is currently not
feasible to implement in practice. The first obstacle is that when converting the
input circuit to a matrix branching program using Barrington’s theorem [Bar86],
one induces an enormous cost in performance, as the length of the branching
program grows exponentially with the depth of the circuit being evaluated. The
second obstacle is that the multilinear map noise and parameters grow with
the degree of the polynomial being computed over encoded elements, which
corresponds to the length of the matrix branching program.

In this paper, we consider both issues. For the second one, we show that for
CLT13 multilinear maps, when applying Kilian’s randomization “on the encod-
ing side”, one can significantly reduce the noise and encoding size while keeping
the same level of security; this leads to major improvements of performance. For
the first issue, we craft a sequence of matrix products that only performs a mul-
tipartite DH key-exchange, rather than generating one from a circuit through
Barrington’s theorem, so that its degree becomes much more manageable. We
can then describe the first concrete implementation of multipartite DH key-
exchange based on multilinear maps that is resistant against existing attacks.

Kilian’s randomization on the encoding side. As already observed in
[GGH15], Kilian’s randomization can also be applied over the encoding space, as
an additional safeguard. Namely starting from the encoded matrices B̂i,b used to

compute Ĉ(x) as in Equation (2), one can again choose n+ 1 random invertible
matrices {R̂i}ni=0 and then randomize the matrices B̂i,b with:

B̄i,b = R̂i−1B̂i,bR̂
−1
i

with also b̄0 = b̂0R̂
−1
0 and b̄n+1 = R̂nb̂n+1. Since the matrices R̂i cancel each

other in the matrix product computation, the evaluation proceeds exactly as in
(2), with Ĉ(x) = b̄0×

∏n
i=1 B̄i,xinp(i)

× b̄n+1, and therefore the same zero-testing

procedure can be applied to Ĉ(x). Note that the R̂i matrices are applied on
the encoding side, that is on the encoded matrices B̂i,b, instead of the plaintext
matrices Bi,b as previously; obviously both randomizations (before and after
encoding) can be applied independently.

In this paper we focus on Kilian’s randomization on the encoding side in the
context of the CLT13 multilinear maps. In CLT13 the encoding space is the set
of integers modulo x0, where x0 =

∏n
j=1 pj ; therefore the matrices {R̂i}ni=0 are

random invertible matrices modulo x0. We show that the complexity of the best
attacks against CLT13 is significantly increased thanks to Kilian’s randomization
of the encodings. One can therefore use much smaller parameters (noise size and
encoding size), which can improve the efficiency of a construction by several
orders of magnitude.
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More precisely, the security of CLT13 is based on the hardness of the multi-
prime Approximate-GCD problem. Given x0 =

∏n
i=1 pi for random primes pi,

and polynomially many integers cj such that

cj ≡ rij (mod pi) (3)

for small integers rij ’s, the goal is to recover the secret primes pi’s. The multi-
prime Approximate-GCD problem is an extension of the single-prime problem,
with a single prime p to be recovered from encodings cj = qj ·p+rj and x0 = q0 ·p,
for small integers rj . The two main approaches for solving the Approximate-GCD
problem are the orthogonal lattice attacks and the GCD attacks.

First contribution: solving the multi-prime Approximate-GCD prob-
lem. For the single-prime Approximate-GCD problem, the classical orthogonal
lattice attack has complexity 2Ω(γ/η2), where γ is the size of x0 and η is the size
of the prime p; see [DGHV10, §5.2]. However, extending the attack to the multi-
prime case as in CLT13 is actually not straightforward; in particular, we argue
that the approach described in [CLT13] is incomplete and does not recover the
primes pi’s, except for small values of n; we note that solving the multi-prime
case was actually considered as an open problem in [GGM16].

Our first contribution is to solve this open problem with an algorithm that
proceeds in two steps. The first step is the classical orthogonal lattice attack;
it recovers a basis of the lattice generated by the vectors ri = c mod pi, where
c = (c1, . . . , ct). However, the vectors ri cannot be recovered directly; namely
by applying LLL or BKZ one recovers a basis of moderately short vectors, and
not necessarily the ri’s which are the shortest vectors in the lattice. Therefore
the approach described in [CLT13] does not work, except in low dimension.
In the second step of our algorithm, using the lattice basis obtained from the
first step, we show that by computing the eigenvalues of a well chosen matrix,
we can recover the primes pi’s, as in the Cheon et al. attack [CHL+15]. The
asymptotic complexity of the full attack is the same as in the single-prime case;
using γ = η ·n for the size of x0 as previously, where n is the number of primes pi,
the complexity is 2Ω(n/η). Therefore, as in [CLT13], one must take n = ω(η log λ)
to prevent the lattice attack, where λ is the security parameter.

Second contribution: extension to the Vector Approximate-GCD prob-
lem. When working with matrix branching programs and Kilian’s randomiza-
tion on the encoding side, we must actually consider a vector variant of the
Approximate-GCD problem, in which we have access to randomized vectors of
encodings instead of scalar values as in (3). Therefore, our second contribution
is to extend the orthogonal lattice attack to the Vector Approximate-GCD prob-
lem, and to show that the extended attack has complexity 2Ω(m·n/η), for vectors
of dimension m. This implies that the new condition on the number n of primes
pi in CLT13 becomes:

n = ω
( η
m

log λ
)
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Compared to the previous condition, the number of primes n in CLT13 can
therefore be divided by a factor m, for the same level of security, where m is the
matrix dimension. This implies that the encoding size γ can also be divided by
a factor m, which provides a significant improvement in efficiency.

Third contribution: GCD attacks against the Vector Approximate-
GCD problem. The naive GCD attack against the Approximate-GCD prob-
lem with c1 = q1 · p + r1 and x0 = q0 · p consists in computing gcd(c1 − r1, x0)
for all possible r1 and has complexity O(2ρ), where ρ is the bitsize of r1. At Eu-
rocrypt 2012, Chen and Nguyen [CN12] described an improved attack based on
multipoint polynomial evaluation, with complexity Õ(2ρ/2). The Chen-Nguyen
attack was later extended by Lee and Seo at Crypto 2014 [LS14], when the ci’s
are multiplicatively masked by a random secret z modulo x0, as it is the case in
the CLT13 scheme; their attack has the same complexity Õ(2ρ/2).

As previously, when working with matrix branching programs and Kilian’s
randomization on the encoding side, we must consider the vector variant of
the Approximate-GCD problem. Our third contribution is therefore to extend
the Lee-Seo attack to this vector variant; we obtain a complexity Õ(2m·ρ/2)
instead of Õ(2ρ/2), where m is the vector dimension. Assuming that this is the
best possible attack, one can therefore divide the noise size ρ by a factor m.
Similarly, when Kilian’s randomization is applied to a m ×m matrix, we show
that the attack complexity becomes Õ(2m

2·ρ/2), and therefore the noise size
ρ used to encode those matrices in CLT13 can be divided by m2. Combined
with the previous improvement, this improves the efficiency of CLT13 based
constructions by several orders of magnitude.

Fourth contribution: non-interactive DH key exchange from multilin-
ear maps. In principle the most straightforward application of multilinear maps
is non-interactive multipartite Diffie-Hellman (DH) key exchange with N users,
a natural generalization of the DH protocol for 3 users based on the bilinear
pairing. This was originally described for GGH13, CLT13 and GGH15, but was
quickly broken for the three families of multilinear maps; in particular, key ex-
change based on CLT13 was broken by the Cheon et al. attack [CHL+15]. The
main question is therefore:

Can we construct a practical N -way non-interactive key-exchange protocol
from candidate multilinear maps constructions?

In this paper we provide a first step in that direction. Namely our fourth
contribution is to describe the first implementation of N -way DH key exchange
resistant against known attacks. Our construction is based on CLT13 multilinear
maps and is secure against the Cheon et al. attack and its variants. Our con-
struction contains many ingredients from the GGHRSW and other similar con-
structions. Namely we express the session key as the result of a matrix product
computation, and we embed the matrices into larger randomized matrices before
encoding, together with some special “bookend” components at the start and
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end of the computation, as in [GGH+13b]. We use the “multiplicative bundling”
technique from [GGH+13b] to prevent the adversary from combining the matri-
ces in arbitrary ways. As explained previously, we use Kilian’s randomization on
the encoding side. With no additional cost, we can also use the straddling set
systems from [BGK+14] to further constrain the attacker, and Kilian’s random-
ization at the plaintext level. Finally, we use k repetitions in order to prevent the
Cheon et al. attack against CLT13, when considering input partitioning attacks
as in [CGH+15], and its extension with the tensoring attack [CLLT17]. We argue
that the extended Cheon et al. attack has complexity Ω(m2k−1) in our scheme,
where m is the matrix dimension and k the number of repetitions.

For N = 4 users and a medium (62 bits) level of security, our implementation
requires 18 GB of public parameters, and a few minutes for the derivation of
a shared key. We note that without Kilian’s randomization of encodings our
construction would be completely unpractical, as it would require more than
100 TB of public parameters.

Related work. In [MZ18], Ma and Zhandry described a multilinear map scheme
built on top of CLT13 that is provably resistant against zeroizing attack, and
which can be used to directly construct a non-interactive DH key-exchange. More
precisely, the authors develop a new weak multilinear map model for CLT13 to
capture all known attack strategies against CLT13. The authors then construct
a new multilinear map scheme on top of CLT13 that is secure in this model.
The construction is based on multiplying matrices of CLT13 encodings as in iO
schemes. To prevent zeroizing attacks, the same input is read multiple times, as
in iO constructions. The input consistency is ensured by a clever use of “enforc-
ing” matrices based on some permutation invariant property. Finally, the authors
construct a non-interactive DH key-exchange scheme based on their new multi-
linear map scheme. However, the authors do not provide implementation results
nor concrete parameters (except for multilinear map degree and number of public
encodings), so it is difficult to assess the practicality of their construction. The
authors still provide the following parameters for a 4-party DH key exchange
with 80 bits of security; see Table 1. We provide our corresponding parameters
for comparison (see more details in Section 7).

Scheme MMap degree Public encodings Public-key size

Boneh et al. [BISW17] 4150 244

Ma-Zhandry (setting 1) 52 262

Ma-Zhandry (setting 2) 160 233

Ma-Zhandry (setting 3) 1040 219

Ma-Zhandry (setting 4) 2000 214

Our construction 266 220 1848 GB

Table 1. Comparison of parameters for 4-party DH key exchange, with 80 bits of
security.
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The main advantage of the Ma-Zhandry construction is that it has a proof of
security in a weak multilinear map model, whereas our construction has heuris-
tic security only. It seems from Table 1 that our construction would require a
smaller multilinear map degree for the same number of public encodings. We
stress however that providing concrete parameters is actually a complex opti-
mization problem (see Section 7), so Table 1 should be handled with care. In
any case, the Ma-Zhandry construction can certainly benefit from our analysis,
since Kilian’s randomization on the encoding side can also be applied “for free”
in their construction.

Source code. We provide the source code of our construction, and the source
code of the attacks, in [CP19].

2 Preliminaries

We denote by [a]n or a mod n the unique integer x ∈ (−n2 ,
n
2 ] which is congruent

to a modulo n. The set {1, 2, . . . , n} is denoted by [n].

2.1 The CLT13 multilinear map

We briefly recall the (asymmetric) CLT13 multilinear map scheme; we refer to
[CLT13] for a full description. For large secret primes pi’s, let x0 =

∏n
k=1 pi,

where n is the number of primes. We denote by η the bitsize of the pi’s, and
by γ the bitsize of x0; therefore γ ' n · η. The plaintext space of CLT13 is
Zg1 × Zg2 × · · · × Zgn for secret prime integers gi’s of α bits.

The CLT13 scheme is based on CRT representations. We denote by CRT(a1,
. . . , an) or CRT(ai)i the number a ∈ Zx0

such that a ≡ ai (mod pi) for all
i ∈ [n]. An encoding of a vector m = (m1, . . . ,mn) at level set S = {j} is an
integer c ∈ Zx0 such that c = [CRT(m1 + g1r1, . . . ,mn + gnrn)/zj ]x0 for integers
ri of size ρ bits, where zj is a secret mask in Zx0

uniformly chosen during the
parameters generation procedure of the multilinear map. This gives:

c ≡ mi + giri
zj

(mod pi) (4)

for all 1 ≤ i ≤ n. To support a `-level multilinearity, one uses ` distinct zj ’s.

It is clear that encodings from the same level can be added via addition
modulo x0. Similarly multiplication between encodings can be done by modu-
lar multiplication in Zx0

, but the encodings must be of disjoint level sets; the
resulting encoding level set is then the union of the input level sets. At the top
level set S = {1, . . . , `}, one can zero-test an encoding by multiplication with the

zero-test parameter pzt =
(∏`

j=1 zj

)
·CRT(p∗i hig

−1
i )i mod x0, where p∗i = x0/pi

and the hi’s are random β-bit integers. Namely given a top-level encoding c with
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c =
CRT(mi+giri)i∏`

j=1 zj
mod x0, we obtain after multiplication by pzt:

c · pzt = CRT(hip
∗
i (mig

−1
i + ri))i =

n∑
i=1

hip
∗
i (mig

−1
i + ri) (mod x0) (5)

and therefore if mi = 0 for all 1 ≤ i ≤ n then the result will be small compared to
x0. From the previous equation the high-order bits of c ·pzt mod x0 only depend
on the mi’s; therefore from the zero-testing procedure one can extract a value
that only depends on the mi’s.

2.2 The Approximate-GCD Problem and its Variant

The security of the CLT13 multilinear map scheme is based on the Approximate-
GCD problem. For a specific η-bit prime integer p, we use the following distri-
bution over γ-bit integers:

Dγ,ρ(p) =
{
Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q ·p+r

}
We also consider a noise-free x0 = q0 · p where q0 is a random (γ − η)-bit prime
integer (alternatively the product of γ/η − 1 primes of size η bits each).

Definition 1 (Approximate-GCD problem with noise-free x0). For a
random η-bit prime integer p, given x0 = q0 · p and polynomially many samples
from Dγ,ρ(p), output p.

We also consider the following variant, in which instead of being given ele-
ments from Dγ,ρ(p), we get vectors of elements multiplied by a secret random
invertible matrix K modulo x0.

Definition 2 (Vector Approximate-GCD problem with noise-free x0).
For a random η-bit prime integer p, generate x0 = q0 ·p and a random invertible
m × m matrix K modulo x0. Given x0 and polynomially many samples ṽ =
v ·K mod x0 where v ← (Dγ,ρ(p))m, output p.

The vector variant of the Approximate-GCD problem cannot be easier than
the original problem, since any algorithm solving the vector variant can be used
to solve the Approximate-GCD problem, simply by generating vectors ṽ = v ·K
(mod x0) for some random matrix K. However, the vector variant could be
harder to solve, so that smaller parameters could be used when dealing with
the Vector Approximate-GCD problem. We show in the next sections that the
generalizations of the attacks to the vector variant indeed have higher complexity.

In the context of the CLT13 scheme, one actually works with multiple primes
pi’s. Therefore we consider the multi-prime variant of the Approximate-GCD
problem.

Definition 3 (Multi-prime Approximate-GCD problem). For n random
η-bit prime integers pi, let x0 =

∏n
i=1 pi. Given x0 and polynomially many inte-

gers cj = CRT(rij)i where rij ← Z ∩ (−2ρ, 2ρ), output the primes pi.
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Finally, we consider the vector variant of the multi-prime Approximate-GCD
problem.

Definition 4 (Vector multi-prime Approximate-GCD problem). For n
random η-bit prime integers pi, let x0 =

∏n
i=1 pi. Let K be a random invertible

m×m matrix modulo x0. Given x0 and polynomially many vectors ṽ = v·K mod
x0, where v = (v1, . . . , vm) and vj = CRT(rij)i where rij ← Z∩(−2ρ, 2ρ), output
the primes pi.

The two main approaches for solving the Approximate-GCD problem are
the orthogonal lattice attacks and the GCD attacks. We consider the orthogonal
lattice attacks in Section 3, and the GCD attacks in Section 4.

3 Lattice attack against the Approximate-GCD Problem

We first recall the lattice attack against the single-prime Approximate-GCD
problem [DGHV10, §B.1], based on the Nguyen-Stern orthogonal lattice attack
[NS01]. As mentioned in introduction, extending the attack to the multi-prime
case is actually not straightforward; in particular, we argue that the approach
described in [CLT13] is incomplete and does not recover the primes pi’s, except
for small values of n. Therefore, we describe a new algorithm for solving the
multi-prime Approximate-GCD problem, using a variant of the Cheon et al.
attack against CLT13. We then extend the algorithm to the vector variant of the
Approximate-GCD problem. Finally, we run our attacks against both the multi-
prime Approximate-GCD problem and the vector variant, in order to derive
concrete parameters for our construction. We provide the source code of our
attacks in [CP19].

3.1 The orthogonal lattice

We first recall the definition of the orthogonal lattice, following [NS97]. Let L
be a lattice in Zm. The orthogonal lattice L⊥ is defined as the set of elements in
Zm which are orthogonal to all the lattice points of L, for the usual dot product.
We define the lattice L̄ = (L⊥)⊥; it is the intersection of Zm with the Q-vector
space generated by L; we have that L ⊂ L̄ and the determinant of L̄ divides the
determinant of L. We have that dim(L) + dim(L⊥) = m and det(L⊥) = det(L̄).

From Minkowski’s bound, we expect that a reduced basis of a “random”
lattice L has short vectors of norm ' (detL)1/ dimL. For a “random” lattice
L, we also expect that det(L) ' det(L̄) = det(L⊥). Moreover, for a lattice L
generated by a set of d “random” vectors bi ∈ Zm, from Hadamard inequality we
expect that detL '

∏d
i=1 ‖bi‖. In that case, we therefore expect the short vectors

of L⊥ to have norm ' (detL⊥)1/(m−d) ' (detL)1/(m−d) ' (
∏d
i=1 ‖bi‖)1/(m−d).

3.2 The classical orthogonal lattice attack against the single-prime
Approximate-GCD problem

In this section we recall the lattice attack against the Approximate-GCD prob-
lem, based on the Nguyen-Stern orthogonal lattice attack [NS01]; see also the

10



analysis in [DGHV10, §B.1]. We consider a set of t integers xi = p · qi + ri and
x0 = p · q0, for ri ∈ (−2ρ, 2ρ) ∩ Z. We consider the lattice L of vectors u that
are orthogonal to x modulo x0, where x = (x1, . . . , xt):

L = {u ∈ Zt | u · x ≡ 0 (mod x0) }

The lattice L is of full rank t since it contains x0Zt. Moreover, we have detL =
[Zt : L] = x0/ gcd(x0, x1, . . . , xt) = x0. Therefore, applying lattice reduction
should yield a reduced basis (u1, . . . ,ut) with vectors of length

‖uk‖ ≤ 2ιt · (detL)1/t ≈ 2ιt+γ/t (6)

where γ is the size of x0, for some constant ι > 0 depending on the lattice
reduction algorithm, where 2ιt is the Hermite factor.

Now given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that
u · r ≡ 0 (mod p) where r = (r1, . . . , rt). The main observation is that if u is
short enough, the equality will hold over Z. More precisely, if ‖u‖ · ‖r‖ < p, we
get u · r = 0 in Z. From (6), this happens under the condition:

2ιt+γ/t · 2ρ < 2η. (7)

In that case, the vectors (u1, . . . ,ut−1) from the previous lattice reduction step
should be orthogonal to the vector r. One can therefore recover ±r by computing
the rank 1 lattice orthogonal to those vectors. From r one can recover p by
computing p = gcd(x0, x1 − r1).

Asymptotic complexity. We derive a heuristic lower bound for the complexity
of the attack, as in [DGHV10, §5.2]. From condition (7) the attack requires
a minimal lattice dimension t > γ/η; therefore from the same condition we
must have ι < η2/γ. Achieving an Hermite factor of 2ιt heuristically requires at
least 2Ω(1/ι) time, by using BKZ reduction with block-size β = ω(1/ι) [HPS11].

Therefore, the orthogonal lattice attack has time complexity at least 2Ω(γ/η2).

3.3 Lattice attack against multi-prime Approximate GCD

We consider the setting of CLT13, that is we are given a modulus x0 =
∏n
i=1 pi

and a set of integers xj ∈ Zx0
such that xj mod pi = rij for rij ∈ (−2ρ, 2ρ) ∩ Z,

and the goal is to recover the secret primes pi.

First step: orthogonal lattice attack. As previously we consider the integer
vector x formed by the first t integers xj , and we consider the lattice L of vectors
u that are orthogonal to x modulo x0:

L = {u ∈ Zt | u · x ≡ 0 (mod x0) }

Note that the lattice L is of full rank t since it contains x0Zt. For 1 ≤ i ≤ n, let
ri = x mod pi. For any u ∈ Zt, if u ·ri = 0 in Z for all 1 ≤ i ≤ n, then u ·x ≡ 0
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(mod x0). Therefore, denoting by Lr the lattice generated by the vectors ri,
the lattice L contains the sublattice L⊥r of the vectors orthogonal in Z to the n
vectors ri’s. Assuming that the n vectors ri’s are linearly independent, we have
dimL⊥r = t − n, and we expect a reduced basis of L⊥r to have vectors of norm
(
∏n
i=1 ‖ri‖)1/(t−n) ' 2ρ·n/(t−n).

Given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that
u · ri ≡ 0 (mod pi) for all 1 ≤ i ≤ n. As previously, if u is short enough, the
equalities will hold over Z. More precisely, if ‖u‖ · ‖ri‖ < pi for all 1 ≤ i ≤ n, we
get u · ri = 0 in Z for all i; therefore we must have u ∈ L⊥r under the condition
‖u‖ < (min pi)/(max ‖ri‖) ' 2η−ρ. Hence, when applying lattice reduction to
the lattice L, we expect to recover the vectors from the sublattice L⊥r if there is
a gap of at least 2ι·t between the short vectors in L⊥r and the other vectors in
L \ L⊥r , where 2ι·t is the Hermite factor. Since the vectors in L \ L⊥r must have
norm at least approximately 2η−ρ, this gives the condition:

2ρ·n/(t−n) · 2ιt < 2η−ρ, (8)

In that case, applying lattice reduction to L should yield a reduced basis (u1, . . . ,
ut) where the first t− n vectors belong to the sublattice L⊥r . By computing the
rank n lattice orthogonal to those vectors, one recovers a basis B = (b1, . . . , bn)
of the lattice L̄r = (L⊥r )⊥, where Lr is the lattice generated by the n vectors ri,
However this does not necessarily reveal the original vectors ri. Namely even by
applying LLL or BKZ on the basis B, we do not necessarily recover the short
vectors ri’s, except possibly in low dimension; therefore the approach described
in [CLT13] only works when n is small.

However, the main observation is that since each vector bj of the basis B is
a linear combination of the vectors ri, it can play the same role as a zero-tested
value in the CLT13 scheme. More precisely, since the vectors b1, . . . , bn form a
basis of L̄r, we can write for all 1 ≤ j ≤ n:

bj =

n∑
i=1

λjiri

for unknown coefficients λji ∈ Q. The above equation is analogous to Equation
(5) on the zero-tested value c · pzt, which is a linear combination of the ri’s over
Z when all mi’s are zero. Therefore, we can apply a variant of the Cheon et al.
attack to recover the primes pi’s, by computing the eigenvalues of a well chosen
matrix. Since we have n vectors bj instead of a single pzt value, we only need to
work with equations of degree 2 in the xj ’s, instead of degree 3 as in [CHL+15].

Second step: algebraic attack. The second step of the attack is similar to
the Cheon al. attack. Recall that we receive as input x0 =

∏n
i=1 pi and a set of

integers xj ∈ Zx0
such that xj mod pi = rij for rij ∈ (−2ρ, 2ρ) ∩ Z. Since we

must work with an equation of degree 2 in the inputs, we consider an additional
integer y ∈ Zx0 with y mod pi = si with si ∈ (−2ρ, 2ρ) ∩ Z for all 1 ≤ i ≤ n.
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We define the column vector x =
[
x1 . . . xn

]T
. Instead of running the or-

thogonal lattice attack with x, we run the orthogonal lattice attack from the
previous step with the column vector z of dimension t = 2n defined as follows:

z =

[
x
y · x

]
Letting ri = x mod pi, this gives the column vectors for 1 ≤ i ≤ n:

z mod pi =

[
ri

si · ri

]
We denote by Z the 2n× n matrix of column vectors z mod pi:

Z =

[
r1 · · · rn

s1 · r1 · · · sn · rn

]
=

[
R

R ·U

]
where R is the n× n matrix of column vectors ri, and U := diag(s1, . . . , sn).

By applying the orthogonal lattice attack of the first step on the known
vector z, we obtain a basis of the lattice intersection of Z2n with the Q-vector
space generated by the n vectors z mod pi, which corresponds to the columns of
the matrix Z. Therefore we obtain two matrices W0 and W1 such that:

W0 = R ·A
W1 = R ·U ·A

for some unknown matrix A ∈ Qn×n. Therefore, as in the Cheon et al. attack,
we compute the matrix:

W = W1 ·W0
−1 = R ·U ·R−1

and by computing the eigenvalues of W , one recovers the components si of the
diagonal matrix U , from which we recover the pi’s by taking gcd’s. We provide
the source code of the attack in [CP19].

Asymptotic complexity. As previously, we derive a heuristic lower bound for
the complexity of the attack. The attack requires a lattice dimension t = 2n,
and moreover the vectors ri have norm ' 22ρ instead of 2ρ; therefore condition
(8) gives 4ρ+2ιn < η which implies the condition ι < η

2n . Achieving an Hermite

factor of 2ιt heuristically requires 2Ω(1/ι) time, by using BKZ reduction with
block-size β = ω(1/ι) [HPS11]. Therefore, the orthogonal lattice attack has
time complexity at least 2Ω(n/η). Note that with γ = η · n, we get the same
time complexity lower bound 2Ω(γ/η2) as for the single-prime Approximate-GCD
problem. Finally, as shown in [CLT13], to prevent the orthogonal lattice attack,
one must take:

n = ω(η log λ) (9)

Namely, in that case there exists a function c(λ) such that n(λ) = c(λ)η(λ) log2 λ
with c(λ) → ∞ for λ → ∞. With a time complexity at least 2k·n/η for some
k > 0, the time complexity is therefore at least 2k·c(λ) log2 λ = λk·c(λ). This
implies that the attack is not polynomial time under Condition 9.
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3.4 Lattice attack against the Vector Approximate-GCD Problem

In this section we extend the previous orthogonal lattice attack to the vector
variant of the Approximate-GCD problem with multiple primes pi’s. We still
consider a modulus x0 =

∏n
i=1 pi, but instead of scalar values xj , we consider t

row vectors vj , each with m components (vj)k, such that:

(vj)k = rijk (mod pi)

for all components 1 ≤ k ≤ m and all 1 ≤ i ≤ n, where rijk ∈ (−2ρ, 2ρ) ∩ Z. We
consider the t×m matrix V of row vectors vj . We don’t publish the matrix V
directly; instead we first generate a random secret m ×m invertible matrix K
modulo x0 and publish the t×m matrix:

Ṽ = V ·K (mod x0)

The goal is to recover the primes pi’s as in the previous attack.
Actually, we cannot solve the original multi-prime vector Approximate-GCD

problem directly, since the algebraic step of the attack requires degree 2 equations
in the inputs. Instead, we assume that we can additionally obtain two m ×m
matrices:

C̃0 = K−1 ·C0 ·K′ (mod x0)

C̃1 = K−1 ·C1 ·K′ (mod x0)

for some random invertible matrix K′ modulo x0, where the components of the
matrices C0,C1 ∈ Zm×mx0

are small modulo each pi. This assumption is verified
in our construction of Section 5.

First step: orthogonal lattice attack. In our extended attack we consider
the lattice L of vectors u that are orthogonal to all columns of Ṽ modulo x0:

L = {u ∈ Zt | u · Ṽ ≡ 0 (mod x0) }

Since the matrix K is invertible, we obtain:

L = {u ∈ Zt | u · V ≡ 0 (mod x0) } (10)

The lattice L is of full rank t since it contains x0Zt. Let Ri = V mod pi. As
previously, the lattice L contains the sublattice L′ of dimension t−m · n of the
vectors orthogonal in Z to the m · n column vectors in Ri for 1 ≤ i ≤ n. We
expect a reduced basis of L′ to have vectors of norm ' 2ρ·m·n/(t−m·n). Therefore,
applying lattice reduction to L should yield a reduced basis (u1, . . . ,ut) where
the first t−m·n vectors belong to the sublattice L′, under the modified condition:

2ιt+ρ·m·n/(t−m·n) < 2η−ρ (11)

As previously, by computing the rank n · m lattice orthogonal to the vectors
(u1, . . . ,ut−m·n), we obtain a basis of the lattice intersection of Zt with the
Q-vector space generated by the column vectors of the Ri’s.
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Second step: algebraic attack. The second step is similar to the second step
of the attack from Section 3.3 and is described in the full version of this paper
[CP18], with a lattice dimension t = 2mn.

Asymptotic complexity. As previously, we derive a heuristic lower bound
for the complexity of the attack. Since the attack requires a lattice dimension
t = 2mn, condition (11) with noise size 2ρ instead of ρ gives 4ρ+2ιmn < η which
gives the new condition ι < η

2mn . Therefore, the orthogonal lattice attack has

time complexity at least 2Ω(n·m/η). This implies that to prevent the orthogonal
lattice attack, we must have:

n = ω
( η
m

log λ
)

Compared to the original condition of [CLT13] recalled by (9), the value of n
can therefore be divided by m. This implies that the encoding size γ = η · n
can also be divided by m. We show in Section 7 that this brings a significant
improvement in practice.

3.5 Practical experiments and concrete parameters

Practical experiments. We have run our two attacks from sections 3.3 and 3.4
against the multi-prime approximate-GCD problem and its vector variant; we
provide the source code in [CP19]. We summarize the running times for various
values of n in tables 2 and 3. We see that the running time of the lattice step
in the vector variant is roughly the same as in the non-vector variant, when the
number of primes n is divided by m in the vector variant. This confirms the
asymptotic analysis of the previous section.

For the algebraic step of the non-vector problem, it is significantly more
efficient to compute the matrix kernel and eigenvalues modulo some arbitrary
prime integer q of size η, instead of over the rationals. However we have not
found a similar optimization for the vector variant; we see in Table 3 that for
larger n the cost of the algebraic step becomes prohibitive (but still polynomial
time) for the vector variant. In this paper we conservatively fix our concrete
parameters by considering the lattice step only. We leave as an open problem
the derivation of a “practical” algebraic step for the vector variant.

LLL and BKZ practical complexity. To derive concrete parameters for our
construction from Section 5, we have run more experiments with LLL and BKZ
lattice reduction algorithms applied to a lattice similar to the lattice L of the
previous section. Recall that we must apply lattice reduction on the lattice:

L = {u ∈ Zt | u · Ṽ ≡ 0 (mod x0) }

with t = 2nm. We write u = [u1,u2] with u1 ∈ Zt−m and u2 ∈ Zm. Similarly

we write Ṽ =

[
A
W

]
where W is a m ×m matrix. With high probability W is
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n η ρ lat. dim. Time LLL Time alg.

20 335 80 40 1.5 s 0.6 s
30 335 80 60 9 s 0.7 s
40 335 80 80 37 s 1.5 s
60 335 80 120 4 min 4 s
80 335 80 160 20 min 8 s

Table 2. Running time of the LLL step and the algebraic step for solving the multi-
prime Approximate-GCD problem, on a 3.2 GHz Intel Core i5.

n m η ρ lat. dim. Time LLL Time alg.

4 5 335 80 40 1.4 s 2.3 s
6 5 335 80 60 9 s 20 s
8 5 335 80 80 32 s 27 min
12 5 335 80 120 6 min −
16 5 335 80 160 12 min −

Table 3. Running time of the LLL step and the algebraic step for solving the vector
multi-prime Approximate-GCD problem, on a 3.2 GHz Intel Core i5.

invertible modulo x0, otherwise we can partially factor x0. We obtain

u ∈ L ⇐⇒ u1A + u2W ≡ 0 (mod x0)

⇐⇒ u1AW−1 + u2 ≡ 0 (mod x0)

Therefore, a basis of L is given by the matrix of row vectors:

L =

[
It−m −AW−1

x0Im

]
For simplicity, we have performed our experiments on a simpler lattice:

L′ =

[
It−m A′

x0Im

]
where the components of A′ are randomly generated modulo x0. We expect to
obtain a reduced basis (u1, . . . ,ut) with vectors of norm:

‖uk‖ ' 2ι·t(detL)1/t ' 2ι·t+m·γ/t

where 2ι·t is the Hermite factor, and γ the size of x0. Experimentally, we observed
the following running time (expressed in number of clock cycles) for the LLL
lattice reduction algorithm in the Sage implementation:

TLLL(t, γ,m) ' 2 · t3.3 · γ ·m (12)

The Sage implementation also includes an implementation of BKZ 2.0 [CN11].
Experimentally we observed the following running-times (in number of clock
cycles):

TBKZ(t, β) ' b(β) · t4.3 (13)
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where the observed constant b(β) and the Hermite factor are given in Table 4.
However we were not able to obtain experimental results for block-sizes β > 60,
so for BKZ-80 and BKZ-100 we used extrapolated values, assuming that the
cost of BKZ sieving with blocksize β is poly(t) ·20.292β+◦(β) (see [BDGL16]). The
Hermite factors for BKZ-80 and BKZ-100 are from [CN11].

LLL BKZ-60 BKZ-80 BKZ-100

(Hermite factor)1/t = 2ι 1.021 1.011 1.01 1.009

Running time parameter b(β) − 103 6 · 104 3 · 106

Table 4. Experimental values of running time and Hermite factor for LLL and BKZ
as a function of the blocksize β. The parameters for β = 80, 100 are extrapolated.

Setting concrete parameters. When applying LLL or BKZ with blocksize β
on the original lattice L, we obtain an orthogonal vector u under the condition
(11), which gives with t = 2nm and vectors with noise size 2ρ instead of ρ:

ι · 2nm+ 4ρ < η (14)

Therefore we must run LLL or BKZ-β with a large enough blocksize β so that ι
is small enough for condition (14) to hold. For security parameter λ, we require
that Tlat(t, γ) ≥ 2λ, with t = 2nm, where the running time (in number of clock
cycles) Tlat(t, γ) is given by (12) or (13), for γ = η · n. We use that condition to
provide concrete parameters for our scheme in Section 7.

4 GCD Attacks against the Approximate-GCD Problem
and its Variants

4.1 The Naive GCD Attack.

For simplicity we first consider the single prime variant of the Approximate-
GCD problem. More precisely, we consider x0 = q0 · p and an encoding c with
c ≡ r (mod p), where r is a small integer of size ρ bits. The naive GCD attack,
which has complexity O(2ρ), consists in performing an exhaustive search of r
and computing gcd(c− r, x0) to obtain the factor p.

4.2 The Chen-Nguyen Attack

At Eurocrypt 2012, Chen and Nguyen described an improved attack based on
multipoint polynomial evaluation [CN12], with complexity Õ(2ρ/2). One starts
from the equation:

p = gcd

(
x0,

2ρ−1∏
i=0

(c− i) (mod x0)

)
(15)
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The main observation is that the above product modulo x0 can be written as the
product of 2ρ/2 evaluations of a single polynomial of degree 2ρ/2. Using a tree
structure, it is possible to evaluate a polynomial of degree 2ρ/2 at 2ρ/2 points in
Õ(2ρ/2) time and memory, instead of O(2ρ).

More precisely, one can define the following polynomial f(x) of degree 2ρ/2,
with coefficients modulo x0; we assume for simplicity that ρ is even:

f(x) =

2ρ/2−1∏
i=0

(c− (x+ i)) mod x0

One can then rewrite (15) as the product of 2ρ/2 evaluations of the polynomial
f(x):

p = gcd

x0, 2ρ/2−1∏
k=0

f(2ρ/2k) (mod x0)


There are classical algorithms which can evaluate a polynomial f(x) of degree

d at d points, using at most Õ(d) operations in the coefficient ring; see for
example [Ber03]. Therefore, the Chen-Nguyen Attack has time and memory
complexity Õ(2ρ/2). We provide in [CP19] an implementation of the Chen-
Nguyen attack in Sage; our running time is similar to [CN12, Table 1]; see Table
5 below for practical experiments. In practice, the running time in number of
clock cycles of the Chen-Nguyen attack with a γ-bit x0 is well approximated by:

TCN (ρ, γ) = 0.3 · ρ2 · 2ρ/2 · γ · log2 γ (16)

4.3 The Lee-Seo Attack

The Chen-Nguyen attack was later extended by Lee and Seo at Crypto 2014
[LS14], when the encodings are multiplicatively masked by a random secret z
modulo x0, as it is the case in the CLT13 scheme; their attack has the same
complexity Õ(2ρ/2). Namely in the asymmetric CLT13 scheme recalled in Section
2.1, an encoding c at level set {i0} is such that:

c ≡ ri · gi +mi

zi0
(mod pi)

for some random secret zi0 modulo x0. Therefore, we consider the following
variant of the Approximate-GCD problem. Instead of being given encodings ci
with ci ≡ ri (mod p) for small ri’s, we are given encodings ci with:

ci ≡ ri · z (mod p)

for some random integer z modulo x0, where the ri’s are still ρ-bit integers. Since
c1/c2 ≡ r1/r2 (mod p), the naive GCD attack consists in guessing r1 and r2 and
computing p = gcd(c1/c2 − r1/r2 mod x0, x0), with complexity O(22ρ).

The Lee-Seo attack with complexity Õ(2ρ/2) is as follows. First, one generates
two lists L1 and L2 of such encodings, and we look for a collision modulo p
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between those two lists; such collision will appear with good probability when
the size of the two lists is at least 2ρ/2. More precisely, let ci be the elements
of L1 and dj be the elements of L2, with ci ≡ ri · z (mod p) and dj = sj · z
(mod p). If ri = sj for some pair (i, j), then ci ≡ dj (mod p) and therefore:

p = gcd

∏
i,j

(ci − dj) mod x0, x0


where the product is over all ci ∈ L1 and dj ∈ L2. A naive computation of this
product would take time |L1| · |L2| = 2ρ; however, as in the Chen-Nguyen attack,
this product can be computed in time and memory Õ(2ρ/2). Namely one can
define the polynomial f(x) =

∏
i

(ci − x) mod x0 of degree |L1| = 2ρ/2 and the

previous equation can be rewritten:

p = gcd

∏
j

f(dj) mod x0, x0


This corresponds to the multipoint evaluation of the degree 2ρ/2 polynomial f(x)
at the 2ρ/2 points of the list L2; therefore, this can be computed in time and
memory Õ(2ρ/2).

As observed in [LS14], if only a small set of elements ci is available (much less
than 2ρ/2), one can still generate exponentially more ci’s by using small linear
integer combinations of the original ci’s, and the above attack still applies, with
only a slight increase in the noise ρ. We provide in [CP19] an implementation
of the Lee-Seo attack in Sage. Its running time is roughly the same as Chen-
Nguyen, except that the attack is probabilistic only; its success probability can
be increased by taking slightly larger lists L1 and L2 to improve the collision
probability.

4.4 GCD Attack against the Vector Approximate GCD Problem

We now consider the Vector Approximate-GCD problem (Definition 2). We con-
sider a set of row vectors vi of dimension m, such that for each vector vi, all
components (vi)j of vi are small modulo p:

(vi)j = rij (mod p)

However, we only obtain the randomized vectors:

ṽi = vi ·K (mod x0)

for some random invertible matrix K modulo x0. The goal is still to recover the
prime p.
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Our attack is similar to the Lee-Seo attack recalled previously. We only con-
sider the first component ci = (ṽi)1 of each vector ṽi. We have:

ci = (ṽi)1 =

m∑
j=1

(vi)j ·Kj1 =

m∑
j=1

rij ·Kj1 (mod p)

We build the two lists L1 and L2 from the ci’s as in the Lee-Seo attack. Since
each ci is a linear combination modulo p of m random values rij ’s (where the
coefficients are initially generated at random modulo p), it has m · ρ bits of
entropy modulo p, instead of ρ in the Lee-Seo attack. Therefore a collision be-
tween the two lists will occur with good probability when the lists have size
at least 2m·ρ/2. This implies that the attack has time and memory complexity
Õ(2m·ρ/2). Note that the entropy of each ci modulo p is actually upper-bounded
by the bitsize η of p. If m ·ρ > η, the attack complexity becomes Õ(2η/2), which
corresponds to the complexity of the Pollard’s rho factoring algorithm. We pro-
vide in [CP19] an implementation of the attack in Sage; see Table 5 below for
practical experiments.

With an attack complexity Õ(2mρ/2) instead of Õ(2ρ/2), one can therefore
divide the size of the noise ρ by a factor m compared to the original CLT13,
which is a significant improvement. For example, it is recommended in [CLT13]
to take ρ = 89 bits for λ = 80 bits of security; with a vector dimension m = 10,
one can now take ρ = 9 for the same level of security. Note that we can take
m · ρ/2 < λ because we only require that the running time in number of clock-
cycles is at least 2λ. More precisely, the running time can be approximated by
TCN (mρ, γ) for a γ-bit x0, where TCN (ρ, γ) is given by (16), and we require
TCN (mρ, γ) ≥ 2λ.

With matrices. The previous GCD attack can be generalized tom×mmatrices
Vi instead of m-dimensional vectors vi. More precisely, we consider a set of
matrices Vi of dimension m×m with small components modulo p, that is:

(Vi)jk = rijk (mod p) (17)

for ρ-bit integers rijk. As previously, instead of publishing the matrices Vi, we
publish the randomized matrices

Ṽi = K · Vi ·K′ (mod x0) (18)

for two random invertible m×m matrices K and K′ modulo x0. In that case,
each component of Ṽi depends on the m2 elements of the matrix Vi. This implies
that the entropy of each component of Ṽi is now m2 · ρ and therefore the GCD
attack has complexity Õ(2m

2·ρ/2).
Formally, using the Kronecker product, we can rewrite (18) as vec (Ṽi) =

(K′T ⊗K) vec (Vi), where vec (Vi) denotes the column vector of dimension m2

formed by stacking the columns of Vi on top of one another, and similarly for
vec (Ṽi). We can therefore apply the previous attack with vectors of dimension
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m2 instead of m; the attack complexity is therefore Õ(2m
2·ρ/2). This implies that

we can divide the noise size ρ by a factor m2 compared to [CLT13], where m is
the matrix dimension. We provide in [CP19] an implementation of the attack
in Sage; see Table 5 below for practical experiments.

With multiple primes pi’s. Instead of considering an encoding c that is small
modulo a single prime p, we consider as in CLT13 a modulus x0 =

∏n
i=1 pi and

an integer c ∈ Zx0 such that c mod pi = ri for ρ-bit integers ri. With good
probability, we have |ri| ≤ 2ρ/n for some i but not all i, and Equation (15) from
the Chen-Nguyen attack can be rewritten:

pi| gcd

x0, b2ρ/nc∏
j=0

(c− j) (mod x0)


where the gcd is not equal to x0; therefore a sub-product of the pi’s is revealed.
Since the number of terms in the product is divided by n, the complexity of the
Chen-Nguyen attack for recovering a single pi (or a sub-product of the pi’s) is
divided by

√
n. By repeating the same attack n times in different intervals of the

ri’s, one can recover all the pi’s; the running time of the Chen-Nguyen attack is
then increased by a factor

√
n.

Similarly, in the Lee-Seo attack with multiple primes pi’s, the collision prob-
ability for recovering a single pi is multiplied by n, and therefore the attack
complexity is divided by

√
n for recovering a single pi. The same applies to our

variant attack against the Vector Approximate GCD problem and to the matrix
variant. In the later case, with noise size ρm, the running time of the attack in
number of clock cycles can therefore be approximated by

TGCD(m, γ, ρm, n) = TCN (ρ, γ)/
√
n (19)

with ρ = m2ρm. We will use that approximation to provide concrete parameters
for our scheme in Section 7.

Practical experiments. We provide in Table 5 the result of practical exper-
iments against the Approximate-GCD problem and its vector variant with a
single prime p. We see that our attack against the vector variant with dimension
m and noise size ρv has roughly the same running time as the Chen-Nguyen at-
tack on the original problem with noise ρ = m ·ρv; similarly, the running time of
our attack against m×m matrices with noise ρm has roughly the same running
time as Chen-Nguyen with noise ρ = m2 · ρm; this confirms the above analysis.
We provide the source code in [CP19].

5 Our Construction

5.1 Non-interactive Multipartite Diffie-Hellman Key Exchange

A multipartite key exchange protocol aims to derive a shared value between N
parties. This is achieved via a procedure in which the parties broadcast some
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AGCD: Chen-Nguyen
ρ 12 16 20 24

time (s) 0.3 2.5 15 94

m-vector AGCD: our attack (m = 4)
ρv 3 4 5 6

time (s) 1.5 9.3 53 301

m×m-matrix AGCD: our attack (m = 2)
ρm 3 4 5 6

time (s) 1.5 10 54 300

Table 5. Running time of the Chen-Nguyen attack against the Approximate-GCD
problem and our attack against the vector variant and matrix variants with η = 100
and x0 of size γ = 16 000, on a 3.2 GHz Intel Core i5.

values and then use some secret information together with the values broadcasted
by the other parties to set up the shared key. In a non-interactive protocol,
the parties broadcast their public values only once and at the same time (or
equivalently, the values broadcasted by each party do not depend on the values
broadcasted by the others). Following the notation of [BS03], such protocol can
be described with three randomized probabilistic polynomial-time algorithms as
follows.

– Setup(1λ, N): This algorithm runs in polynomial time in the security pa-
rameter λ ∈ N and in the number of parties N , and outputs the public
parameters params.

– Publish(params, u): Given a party u ∈ [N ], this algorithm generates a pair of
keys (sku, pku). Party u broadcasts pku and keeps sku secret.

– KeyGen(params, v, skv, {pku}u 6=v): Party v ∈ [N ] uses its secret skv and all
the values pku broadcasted by other parties to generate a session key sv.

We say that the protocol is correct if s = s1 = s2 = · · · = sN , i.e., if all the
parties share the same value at the end. We say that the protocol is secure if no
probabilistic polynomial-time adversary can distinguish the shared value s from
a random string given the public parameters params and the broadcasted values
pk1, . . . , pkN .

5.2 Our Construction

We describe our N -party one-round key exchange protocol. We start with the
Setup procedure, which is run a single time by a trusted authority to generate the
public parameters. As illustrated in Table 6, Setup generates for each party v two

sequences of matrices (C
(v)
i,b )i=1,...,` for b ∈ {0, 1}. In the KeyGen procedure, each

party v will use the product of the matrices C
(v)
i,b on his row v to generate the

session-key. The product is computed according to the secret-key skv of Party v
and the secret-keys sku of the other parties. Therefore, in the Publish procedure,
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each party u will compute and publish the partial sub-products corresponding
to his sku on the other rows v 6= u, to be used by each party v on his row v.

Party 1
C

(1)
1,0 C

(1)
2,0 . . . C

(1)
`,0

C
(1)
1,1 C

(1)
2,1 . . . C

(1)
`,1

Party 2
C

(2)
1,0 C

(2)
2,0 . . . C

(2)
`,0

C
(2)
1,1 C

(2)
2,1 . . . C

(2)
`,1

Party 3
C

(3)
1,0 C

(3)
2,0 . . . C

(3)
`,0

C
(3)
1,1 C

(3)
2,1 . . . C

(3)
`,1

Table 6. Public matrices for N = 3 generated during the Setup procedure.

Setup(1λ, N): given a security parameter λ and the number of participants N ,
we set the length µ of each parties’ secret, the number of repetitions k, and
the dimension m of the matrices, with m ≡ 0 (mod 3). We then instantiate the
CLT13 multilinear map with degree of multilinearity ` + 2 with ` := µNk. Let
g =

∏n
i=1 gi be the integer defining the message space Zg. Let ν be the number

of high-order bits that can be extracted from a zero-tested value.

To ensure that all users 1 ≤ u ≤ N compute the same session-key, we define

A
(u)
i,b as a larger matrix embedding a matrix Bi,b that is the same for all users,

with some random block padding in the diagonal and the multiplicative bundling

scalars α
(u)
i,b to prevent the adversary from switching the corresponding bits bi’s

between the k repetitions of the secret keys:

A
(u)
i,b ∼



$ . . . $
...

. . .
...

$ . . . $
$ . . . $
...

. . .
...

$ . . . $

α
(u)
i,b ·Bi,b


(20)

More precisely, we first sample 2` random invertible matrices Bi,b in Zm′×m′

g

where m′ = m/3, for 1 ≤ i ≤ ` and b ∈ {0, 1}. For each u ∈ [N ], we additionally

sample 2`N scalars α
(u)
i,b in Z?g and 4`N random invertible matrices S

(u)
i,b and

T
(u)
i,b in Zm′×m′

g , for 1 ≤ i ≤ ` and b ∈ {0, 1}. As illustrated in (20), we let

A
(u)
i,b := diag(S

(u)
i,b , T

(u)
i,b , α

(u)
i,b ·Bi,b) (21)
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The scalars α
(u)
i,b must satisfy the following condition:

∀u, v ∈ [N ],∀i ∈ [Nµ],∀b ∈ {0, 1},
k−1∏
j=0

α
(u)
j·N ·µ+i−1,b =

k−1∏
j=0

α
(v)
j·N ·µ+i−1,b (mod g)

In addition, we sample the vectors s∗, t∗ uniformly from Zm′

g , and for each u ∈
[N ] we define a left bookend vector

s(u) := (0, . . . , 0, $, . . . , $, s∗) ∈ Zmg
where the block of 0’s and the block of randoms have the same length m′ = m/3
as s∗, and similarly a right bookend vector t(u) := ($, . . . , $, 0, . . . , 0, t∗) ∈ Zmg .

We let Ã
(u)
i,b ∈ Zm×mx0

be the matrix obtained by encoding each entry of

A
(u)
i,b independently. Similarly we encode s(u) and t(u) entry-wise, obtaining s̃(u)

and t̃(u). For each u ∈ [N ], we sample uniformly random invertible matrices

K
(u)
i ∈ Zm×mx0

for 0 ≤ i ≤ `. We then use Kilian’s randomization “on the
encoding side” and define:

C
(u)
i,b := K

(u)
i−1Ã

(u)
i,b

(
K

(u)
i

)−1
(mod x0)

Similarly, we define s̄(u) := s̃(u)
(
K

(u)
0

)−1
(mod x0) and t̄(u) := K

(u)
` t̃(u)pzt

(mod x0). Note that thanks to Kilian’s randomization “on the encoding side”,

the matrices A
(u)
i,b can be encoded with denominator zj = 1 in (4) for all levels

j; namely we obtain the same distribution in the final C
(u)
i,b as with random zj ’s.

Finally we output params, which is defined as the set containing all the matrices

C
(u)
i,b , the bookend vectors s̄(u) and t̄(u), and the scalars µ, k,N, `, x0, ν and m.

Publish(params, u): Party u samples a bit string sk(u) ∈ {0, 1}µ and for each
v ∈ [N ] such that u 6= v, Party u computes k products using matrices from
the row of party v. This ensures that from the extraction procedure of the
multilinear map scheme, each user u can derive the session key from his own
sk(u) by computing on his row u the partial products corresponding to his sk(u),
combined with the published partial matrix products from the other users. More
precisely, Party u computes and broadcasts the following products:

D(u→v)
r :=

µ−1∏
i=0

C
(v)

(r−1)Nµ+(u−1)µ+i,sk(u)[i] (mod x0) (22)

for each v 6= u and r ∈ [k]. The notation u → v stands for “computed by u to

be used by v”. We let pku = {D(u→v)
r : v ∈ [N ], v 6= u, r ∈ [k]}.

KeyGen(params, v, sk(v), {pku}u 6=v): Using secret sk(v), party v computes the prod-

ucts D
(v→v)
r for all r ∈ [k] using (22), and then the product

z(v) := s̄(v)

(
k∏
r=1

(
N∏
u=1

D(u→v)
r

))
t̄(v) (mod x0). (23)
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Eventually the shared key is obtained by applying a strong randomness extractor
to the ν most-significant bits of z(v). This terminates the description of our
construction.

Correctness. It is easy to verify the correctness of our construction. Namely
defining sk as the concatenated secret-keys with the k repetitions:

sk = (sk(1), . . . , sk(N)︸ ︷︷ ︸
First repetition

, . . . , sk(1), . . . , sk(N)︸ ︷︷ ︸
k-th repetition

) (24)

we obtain from (22) and (23), and then from the cancellation of Kilian’s ran-
domization on the encoding side:

z(v) = s̄(v)

(∏̀
i=1

C
(v)
i,sk[i]

)
t̄(v) = s̃(v)

(∏̀
i=1

Ã
(v)
i,sk[i]

)
t̃(v)pzt (mod x0).

This corresponds to a zero-tested encoding of:

vv = s(v) ·

(∏̀
i=1

A
(v)
i,sk[i]

)
· t(v) = s∗ ·

(∏̀
i=1

α
(v)
i,sk[i]

)
·

(∏̀
i=1

Bi,sk[i]

)
· t∗ (mod g)

From the condition satisfied by the α
(v)
i,b ’s, the products

∏`
i=1 α

(v)
i,sk[i] are indepen-

dent from v. Therefore, each party v will extract from z(v) the same session-key,
as required.

5.3 Additional safeguard: straddling sets

As an additional safeguard one can use the straddling set systems from [BGK+14].

Like the multiplicative bundling scalars α
(u)
i,b , this prevents the adversary from

switching the secret-key bits between the k repetitions. Additionally, the strad-

dling set system prevents the adversary from mixing the matrices Ã
(u)
i,0 and Ã

(u)
i,1 ,

since in that case the matrices are encoded at a different level set.

6 The Cheon et al. Attack and its Generalization using
Tensor Products

At Eurocrypt 2015, Cheon et al. described in [CHL+15] a total break of the basic
key-exchange protocol of CLT13. The attack was then extended and applied to
several constructions based on CLT13. In the full version of this paper [CP18],
we argue that the complexity of the Cheon et al. attack against our construction
is Ω(m2k−1), where m is the matrix dimension and k the number of repetitions.
Therefore, the Cheon et al. attack is prevented by using a large enough k.
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7 Optimizations and Implementation

In this section we describe a few optimizations in order to obtain a concrete
implementation of our construction from Section 5.

7.1 Encoding of elements

For the bookend vectors, the components are CLT13-encoded with random noise
of size ρb bits. Letting α be the size of the gi’s, for simplicity we take ρb = α.
Therefore the encoded bookend vectors have α · (2m/3) +ρb ·m = 5αm/3 bits of
entropy on each slot. For the matrices, we can use a much smaller encoding noise

thanks to the analysis from Section 4.4. On a single slot, the matrices A
(u)
i,b have

entropy ' α ·m2/3, and when CLT13-encoded with noise ρm, the matrices Ã
(u)
i,b

have entropy ' α ·m2/3 + ρm ·m2 on each slot; the GCD attack complexity is

therefore Õ(2m
2·(ρm+α/3)/2). For the parameters from Table 7 below, it suffices

to take ρm = 2 to prevent GCD attacks.

7.2 Number of matrices per level

Instead of taking only two matrices A
(u)
i,0 , A

(u)
i,1 for each 1 ≤ i ≤ `, we can take

2τ matrices for each i. In that case, the secret key of each user has µ words of
τ bits, where each word selects one of the 2τ matrices; the size of the secret-key
is therefore µ · τ bits. For the same secret-key size, one can therefore divide the
total degree ` by a factor τ , but the number of encoded matrices is multiplied
by a factor 2τ/τ . In order to minimize the size of the public parameters, we use
τ = 3.

7.3 Other attacks

Orthogonal lattice attack on zero-tested values. There is an orthogonal
lattice attack against the values obtained by subtracting two zero-tested last-
level encodings from two different rows. The attack is analogous to the attack

described in Section 3.3, and is prevented under the condition n = ω( ν2

η−ν log λ),
where ν is the number of extracted bits in the zero-tested values.

Meet-in-the-middle attack. Given the matrix products D
(u→v)
r published

by each party u corresponding to his secret sk(u), there is a meet-in-the-middle
attack that can recover sk(u). Since each sk(u) has length µ · τ bits, the at-
tack’s complexity is O(2µ·τ/2). More precisely, the attack complexity is at least
M(m, γ) · 2µ·τ/2, where M(m, γ) is the time it takes to multiply m×m matrices
with entries of size γ. We ensure M(m, γ) · 2µ·τ/2 ≥ 2λ.
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7.4 Concrete parameters and implementation results

In this section we propose concrete parameters for our key-exchange construction
with N = 4 parties. These parameters are generated so that all known attacks
have running time ≥ 2λ clock cycles. In the construction the total number of
encoded matrices is 2τ · ` · N with τ = 3, with a total degree ` = µ · k · N .
Therefore, the total number of CLT13 encodings is NCLT13 ' 2τ · ` ·N ·m2. The
size of the secret key is τµ = 3µ bits. The size η of the primes pi is adjusted so
that we extract ν = λ bits. During the publish phase, each party must broadcast
k · (N − 1) matrices of dimension m × m and γ-bit entries. The size of those
broadcasted values along with the other parameters are shown in Table 7.

λ η m n µ α k γ = n · η ` NCLT13 params broadcast

Small 52 1759 6 160 15 11 2 281 · 103 120 1.4 · 105 4.8 GB 7.6 MB

Medium 62 2602 6 294 21 12 2 764 · 103 168 1.9 · 105 18.5 GB 20 MB

Large 72 3761 6 1349 27 14 2 5073 · 103 216 2.5 · 105 157.8 GB 137 MB

High 82 5159 9 4188 33 16 2 21605 · 103 264 6.8 · 105 1848.0 GB 1312 MB

Table 7. Concrete parameters for a 4-party key-exchange.

The main difference with the original (insecure) key-exchange protocol from
[CLT13] is that we get a much larger public parameter size; for λ = 62 bits
of security, we need 18 GB of public parameters, instead of 70 MB originally.
However our construction would be completely unpractical without Kilian’s ran-
domization on the encoding side. Namely for λ = 62 and a degree ` = 168, one
would need primes pi of size η ' (α+ρ) · ` ' 2.4 ·104 with α = 80 and ρ = 62 as
in [CLT13]. Since γ = ω(η2 log λ) in [CLT13], one would need γ ' 4 · 109. With
NCLT13 = 1.9 · 105, that would require 100 TB of public parameter size. Hence
Kilian’s randomization on the encoding side provides a reduction of the public
parameter size by a factor ' 104.

We have implemented the key-exchange protocol in SAGE [S+17] and exe-
cuted it on a machine with processor Intel Core i5-8600K CPU (3.60GHz), 32
GB of RAM, and Ubuntu 18.04.2 LTS. The execution times are shown in Ta-
ble 8. We could not run the Large and High instantiations (λ = 72 and λ = 82)
because of the huge parameter size. While the Setup time is significant, since
we need to sample all the random values and perform expensive operations like
CRT and inverting matrices, the Publish and KeyGen times remain reasonable.
In fact, each user just has to multiply m ×m matrices µ · k · (N − 1) times to
publish their values and k · (µ+N) times to derive the shared key. We provide
the source code of the key-exchange in [CP19].
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Setup (once) Publish (per party) KeyGen (per party)

Small 2 h 20 min 45 s 19 s

Medium 12 h 23 min 3 min 35 s 1 min 24 s

Table 8. Timings for a 4-party key-exchange.

8 Conclusion

We have shown that Kilian’s randomization “on the encoding side” can bring
orders of magnitude efficiency improvements for iO based constructions when
instantiated with CLT13 multilinear maps. As an application, we have described
the first concrete implementation of multipartite DH key exchange secure against
existing attacks. The main advantage of Kilian’s randomization is that it can be
applied essentially for free in any existing implementation; for example it could
be easily integrated in the 5Gen framework [LMA+16] for experimenting with
program obfuscation constructions.
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