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Abstract. Electronic cash (e-cash) is the digital analogue of regular
cash which aims at preserving users’ privacy. Following Chaum’s seminal
work, several new features were proposed for e-cash to address the prac-
tical issues of the original primitive. Among them, divisibility has proved
very useful to enable efficient storage and spendings. Unfortunately, it is
also very difficult to achieve and, to date, quite a few constructions exist,
all of them relying on complex mechanisms that can only be instantiated
in one specific setting. In addition security models are incomplete and
proofs sometimes hand-wavy.
In this work, we first provide a complete security model for divisible e-
cash, and we study the links with constrained pseudo-random functions
(PRFs), a primitive recently formalized by Boneh and Waters. We ex-
hibit two frameworks of divisible e-cash systems from constrained PRFs
achieving some specific properties: either key homomorphism or delega-
bility. We then formally prove these frameworks, and address two main
issues in previous constructions: two essential security notions were ei-
ther not considered at all or not fully proven. Indeed, we introduce the
notion of clearing, which should guarantee that only the recipient of a
transaction should be able to do the deposit, and we show the exculpabil-
ity, that should prevent an honest user to be falsely accused, was wrong
in most proofs of the previous constructions. Some can easily be repaired,
but this is not the case for most complex settings such as constructions
in the standard model. Consequently, we provide the first construction
secure in the standard model, as a direct instantiation of our framework.

1 Introduction

Electronic payment systems offer high usage convenience to their users but at the
cost of their privacy. Indeed, transaction data, such as payee’s identity, date and
location, leak sensitive information about the users, such as their whereabouts,
their religious beliefs, their health status, etc.

However, secure e-payment and strong privacy are not incompatible, as shown
by Chaum in 1982 [22] when he introduced the concept of electronic cash (e-
cash). Informally, e-cash can be thought of as the digital analogue of regular cash
with special focus on users’ privacy. Such systems indeed consider three kinds of
parties: the bank, the user and the merchant. The bank issues coins that can be



withdrawn by users and then spent to merchants. Eventually, the latter deposit
the coins on their account at the bank. Compared to other electronic payment
systems, the benefit of e-cash systems is that the bank is unable to identify the
author of a spending. More specifically, it can neither link a particular withdrawal
—even if it knows the user’s identity at this stage— to a spending nor link two
spendings performed by the same user.

At first sight, this anonymity property might seem easy to achieve: one could
simply envision a system where the bank would issue the same coin (more specifi-
cally, one coin for each possible denomination) to each user. Such a system would
obviously be anonymous but it would also be insecure. Indeed, although e-cash
aims at mimicking regular cash, there is an intrinsic difference between them:
e-cash, as any electronic data, can easily be duplicated. This is a major issue
because it means that a user could spend the same coin to different merchants.
Of course, some hardware countermeasures (such as storing the coins on a secure
element) can be used to mitigate the threat but they cannot completely remove
it. Moreover, the prospect of having an endless (and untraceable) reserve of coins
will constitute a strong incentive to attack this hardware whose robustness is not
without limits.

To deter this bad behaviour, e-cash systems must therefore enable (1) de-
tection of re-used coins and (2) identification of defrauders. Besides invalidating
the trivial solution sketched above (a unique coin for each denomination) these
requirements impose very strong constraints on e-cash systems: users should re-
main anonymous as long as they behave honestly while becoming traceable as
soon as they begin overspending, from the first cent.

Chaum’s idea, taken up by all subsequent works, was to associate each with-
drawn coin with a unique identifier called a “serial number”4. The latter remains
unknown to all parties, except the user, until the coin is spent. At this time, it
becomes public and so can easily be compared to the set of all serial numbers
of previously spent coins. A match then acts as a fraud alert for the bank which
can then run a specific procedure to identify the cheater.

Unfortunately, by reproducing the features of regular cash, e-cash also re-
produces its drawbacks, in particular the problem of paying the exact amount.
Worse, as we explain below, the inherent limitations of e-cash compound this
issue that becomes much harder to address in a digital setting. This has led
cryptographers to propose a wide variety of solutions to mitigate the impact on
user’s experience. They include for example on-line e-cash, transferable e-cash
or divisible e-cash.

1.1 Related Work

On-line/Off-line Anonymous e-Cash. The original solution proposed by
Chaum for anonymous payment was based on the concept of blind signature.
This primitive, later formalized in [37,38], allows anyone to get a signature σ on

4 Actually, this specific terminology appeared later [23] but this notion is implicit in
the Chaum’s paper.
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a message m that is unknown to the signer. Moreover, the latter will be unable
to link the pair (σ,m) to a specific issuance. Applying this idea to the payment
context leads to the following e-cash system. A coin is a blind signature issued
by a bank to a user during a withdrawal. To spend his coin, the user simply
shows the signature to a merchant who is able to verify it using the bank’s
public key. Two cases may then appear. Either the e-cash system does not allow
identification of defrauders, in which case the bank must be involved in the
protocol to check that this coin has not already been spent. The resulting system
is then referred to as on-line e-cash. Otherwise, the coin may be deposited later
to the bank, leading to an off-line e-cash system. Obviously, the latter solution
is preferable since it avoids a costly connection to the servers of the bank during
the payment. In the following, we will only consider off-line e-cash systems.

Transferable vs. Divisible e-Cash. In theory, the problem of anonymous
payment is thus solved by blind signatures for which several instantiations have
been proposed (see e.g. [38]). However, as we mention above, it remains to ad-
dress the problem of paying the exact amount, which becomes trickier in a digital
setting. Indeed, let us consider a consumer that owns a coin whose denomina-
tion is e 10 and that wants to pay e 8.75. A first solution could be to contact
his bank to exchange his coin against coins of smaller denominations but this
would actually reintroduce the bank in the spending process and so would rather
correspond to an on-line system. It then mainly remains two kinds of solutions:
those where the merchant gives back change and those that only use coins of the
smallest possible denomination (e.g. e 0.01). They both gave rise to two main
streams in e-cash: transferable e-cash and compact/divisible e-cash.

Let us go back to our example. At first sight, the simplest solution (inspired
from regular cash) is the one where the merchant gives back change, by re-
turning, for example, a coin of e 0.05, one of e 0.20 and one of e 1. However,
by receiving coins, the user technically becomes a merchant (in the e-cash ter-
minology) which is not anonymous during deposit. Therefore, the only way to
retain anonymity in this case is to ensure transferability of the coin, meaning
that the user will be able to (anonymously) re-spend the received coins instead
of depositing them. While this is a very attractive feature, it has unfortunately
proved very hard to achieve. Worse, Chaum and Pedersen [24] have shown that
a transferable coin necessarily grows in size after each spending. Intuitively, this
is due to the fact that the coins must keep information about each of its owner
to ensure identification of defrauders. In the same paper, Chaum and Pedersen
also proved that some anonymity properties cannot be achieved in the pres-
ence of an unbounded adversary. Their results were later extended by Canard
and Gouget [17] who proved that these properties were also unachievable under
computational assumptions. More generally, identifying the anonymity proper-
ties that a transferable e-cash system can, and should, achieve has proved to be
tricky [3, 17].

All these negative results perhaps explain the small number of results on
transferable e-cash, and quite recent constructions [3,8,19] are too complex for a
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large-scale deployment or rely on a very unconventional model [26]. In particular,
none of them achieves optimality with respect to the size, meaning that the coin
grows much faster than the theoretical pace identified by Chaum and Pedersen.

Now, let us consider our spending of e 8.75 in the case where all coins are
of the smallest possible denomination. This means that the user no longer has a
coin of e 10 but has 1000 coins of e 0.01. Such a system can handle any amount
without change but must provide an efficient way to store and to spend hundreds
of coins at once. A system offering efficient storage is called compact and a system
supporting both efficient storage and spending is called divisible.

Anonymous Compact e-Cash. Anonymous compact e-cash was proposed by
Camenisch, Hohenberger and Lysyanskaya [15] and was informally based on the
following idea. Let N be the amount of a wallet withdrawn by a user (i.e. the
wallet contains N coins that all have the same value). During a withdrawal, a
user gets a certificate on some secret value s that will be used as a seed for a
pseudo-random function (PRF) F , thus defining the serial numbers of the N
coins as Fs(i) for i ∈ [1, N ].

To spend the i-th coin, a user must then essentially reveal Fs(i) and prove, in
a zero-knowledge way, that it is well-formed, i.e. that (1) s has been certified and
that (2) the serial number has been generated using Fs on an input belonging to
the set [1, N ]. All of these proofs can be efficiently instantiated in many settings.
Anonymity follows from the zero-knowledge properties of the proofs and from
the properties of the pseudo-random function, as it is hard to decide whether
Fs(i) and Fs(j) have been generated under the same secret key s.

Unfortunately, compact e-cash only provides a partial answer to the practical
issues of spendings: storage is very efficient but the coins must still be spent one
by one, which quickly becomes cumbersome. An ultimate answer to this issue
was actually provided by Okamoto and Ohta [34] and later named divisible e-
cash. The core idea of divisible e-cash is that the serial numbers of a divisible
coin5 can be revealed by batches, leading to efficient spendings.

However, this is easier said than done, and it took 15 years to construct the
first anonymous divisible e-cash system [16]. Moreover, the latter was more a
proof of concept than a practical scheme, as pointed out in [2, 18]. Although
several improvements followed (e.g. [2, 18, 20, 36]), the resulting constructions
are still rather complex, which makes their analysis difficult. We highlight this
issue by pointing out below a problem on exculpability that has been overlooked
in the security proofs of these constructions.

1.2 A Major Issue with Exculpability in Previous Constructions

Intuition of the Problem. Among the natural properties expected from an
e-cash system is the one, called exculpability, stating that a coin withdrawn by

5 The terminology can be confusing here: the “divisible coin” considered by most of
the papers corresponds to the “wallet” of a compact e-cash system. In particular,
the divisible coin contains several coins that are all associated to a serial number.
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a user whose public key is upk∗ can only be spent by the latter. In particular
this means that he cannot falsely be accused of double-spendings: in case of
overspending detection, this user is necessarily guilty. All e-cash constructions
enforce this property by requiring a signature (potentially a signature of knowl-
edge) on the transaction under upk∗. Intuitively, this seems enough: a transaction
accusing an honest user of fraud should contain a signature (or more specifically
a proof of knowledge of a signature) under upk∗ and so would imply a forgery.
Actually, this argument is ubiquitous in previous papers6 and leads to quite sim-
ple security proofs. It is explicitly stated in Section D.3 of the full version of [32]
and in Section 4.6 of [18], and implicitly used in Section 6.3 of [20], in Section
6.2 of [36], and in the security proofs (page 22) of the full version of [15].

Unfortunately, this argument is not correct because of the complex identifica-
tion process of e-cash systems, based on so-called double spending tags. Indeed,
the public key upk∗ returned by the identification algorithm is not extracted from
the signature itself, but from a complex formula involving several elements, such
as PRF seeds, scalars, etc. An adversary might then select appropriate values
that will lead this algorithm to output upk∗ while taking as input two trans-
actions generated with different public keys. This scenario, that has not been
taken into account in previous papers, invalidates their proofs7 because, in such
a case, the transactions do not contain a valid signature under upk∗.

Concrete Example. To illustrate this problem, let us consider the lattice-based
construction proposed by Libert et al [32]. In this system, each user selects a
short vector e and defines his public key as F.e for some public matrix F.
Each coin withdrawn by this user is associated with two vectors k and t. The
former is used to generate the i-th serial number yS = bAi · kcp for some public
matrix Ai while the latter is used to generate the double-spending tag yT =
upk+ H(R) · bAi · tcp, where H(R) is a matrix derived from public information
associated with the transaction R.

If two transactions R and R’ yield the same serial number, then one com-
putes y∗ = (H(R) − H(R’))−1(yT − y′T ) and returns yT − H(R) · y∗. One
can note that this formula indeed returns a public key upk∗ if both transactions
have been generated by the user upk∗ and tag t, as y∗ is then bAi · tcp. How-
ever, there is no equivalence here, and an adversary might manage to generate
R,R’, t, t’, upk, upk′ (in the exculpability game the adversary controls the bank,
the merchants and all dishonest users) such that upk∗ = yT −H(R) · (H(R)−
H(R’))−1(yT − y′T ).

If we modify the original protocol, to ensure that collisions only occur when
t = t′, the previous relation still gives us

upk∗ = upk−H(R) · (H(R)−H(R’))−1(upk− upk′)

6 Our comment obviously only applies to papers that provide a security proof.
7 We stress that the problem is located in the proofs and not in the definition of the

exculpability property.
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from which it is not possible to conclude that upk∗ = upk = upk′. In particular,
it does not seem possible to extract from these transactions a short vector e∗

such that upk∗ = F · e∗, which invalidates the original proof.

Discussion. This problem is not exclusive to lattice-based constructions but
we note that the proofs can be fixed in the case where upk = gx for some secret
scalar x and where the transactions contain a signature of knowledge of the
different secret values (including x). This is actually quite frequent in existing
constructions (e.g. [15, 16,18] and the ROM constructions of [20,21,36]).

Indeed, in such a case, the double-spending tag is of the form T = upk ·
Fs(i)

R where s is a seed, i ∈ [1, N ] is an integer, and R is derived from public
information. In case of double-spending, there are two tags T and T′ from which

one can recover upk by computing (TR
′
/(T′)R)

1
R′−R .

Here again, an adversary might generate upk, s, R, upk′, s′, R′ such that the

corresponding tags T and T′ satisfy (TR
′
/(T′)R)

1
R′−R = upk∗, for some honest

public key upk∗. However, in this case, the reduction can recover the discrete
logarithm of upk∗ by extracting all the secret values from the proofs generated
by the adversary. This means that exculpability can still be proven under the
discrete logarithm assumption and so that the original proofs can easily be fixed
by adding this remark.

Unfortunately, this patch is inherent to signatures of knowledge of discrete
logarithms in the Random Oracle Model, and so cannot be applied to other
settings (e.g. lattices [32]) or to standard model constructions [20, 21, 36]. In
particular, this means that divisible e-cash secure in the standard model or even
lattice-based compact e-cash is still an open problem.

1.3 Contributions

One can note that the above issue has remained undetected for more than a
decade, whereas all compact/divisible e-cash systems are based on the same
intuition. However, the latter has never been formalized. Intuition is necessary
to design and understand a scheme but we must be very careful when it comes to
complex primitives. This pleads for a more formal approach, where the common
intuition are translated into a generic framework.

In addition, this lack of generic framework leads designers to create and
combine several ad-hoc mechanisms, with complex security proofs that often
rely on tailored computational assumptions. This stands in sharp contrast with
a related primitive, group signature, whose foundations were studied by Bellare
et al [5, 6] and for which very efficient constructions exist.

Two Generic Frameworks and Concrete Instantiations. In this work, we
propose two generic frameworks that yield secure divisible e-cash systems from
constrained PRFs, a well-known cryptographic primitive. For each framework,
we identify the properties it must achieve and, so, we reduce the problem of
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constructing divisible e-cash systems to a simpler one: efficient instantiations of
the building blocks. We additionally provide examples of instantiations to show
that our frameworks are not artificial but can lead to practical schemes.

Our Approach: Constrained Pseudo-Random Functions. Starting from
the work of Camenisch et al [15] that defines the serial numbers as outputs of
a PRF, we formalize the requirements on divisible e-cash systems as properties
that must be achieved by the PRFs. Actually, the main requirement is that the
serial numbers can be revealed by batches, which means that it must be possible
to reveal some element kS that (1) allows to compute Fs(i) ∀i ∈ S ⊂ [1, N ] and
(2) does not provide any information on the other serial numbers, i.e. on the
outputs of the PRF outside S. This exactly matches the definition of constrained
PRF, a notion formalized in [12,14,31].

There are also several requirements that must implicitly be fulfilled by the
constrained key kS , for anonymity to hold, and namely unlinkability of the trans-
actions: different constrained keys generated from the same master key must be
unlinkable, which also requires kS to hide any information on the subset S (be-
sides its cardinality, which will represent the amount). All these notions were
already defined in previous papers on constrained PRFs (e.g. [4,9,11]), although
we only need here weaker versions of the original definitions.

Collision Resistance. Intuitively, unlinkability of kS will ensure honest users’
privacy. However, e-cash systems must also be able to deal with dishonest parties,
including the bank itself. In such a case, the adversary has much more power than
in usual PRF security games: it has a total control on the seeds and could use
it to create collisions between serial numbers or worse, falsely accuse an honest
user. To thwart such attacks, we need to introduce a new security property for
constrained PRFs, that we call collision resistance. It requires that different keys
(even chosen by the adversary) yield different outputs, similarly to the standard
collision resistance notion for hash functions. We provide more details in Section
2.2.

Key Homomorphic vs. Delegable Constrained PRFs. We then investi-
gate two different scenarios, leading to two different (but related) frameworks.
In the former, we consider key homomorphic constrained PRF [4] whereas we
use delegatable constrained PRF [31] in the latter. Interestingly, we note that
all existing divisible e-cash systems can be associated with one of these frame-
works, which brings two benefits. First, this means that it is possible to get,
from existing systems, constrained PRFs (either key homomorphic or delegat-
able) that achieve all the properties we list above. We therefore believe that our
results might be of independent interest outside e-cash since it draws attention
on (implicit) constructions of constrained PRFs that might have been ignored.
Second, it means that some of the constructions affected by the exculpability
issue (see Section 1.2) could be fixed by using the same tricks we introduce in
our frameworks.
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Serial Numbers and Double Spending Tags. Once we have identified the
sufficient properties for our PRFs, we explain how to use them to generically
construct the serial numbers and the double spending tags. This is definitely the
main contribution of the paper. We then describe how to combine these PRFs
with very standard primitives, namely digital signatures, commitment schemes
and NIZK proofs, to get a divisible e-cash system.

First Divisible e-Cash System Secure in the Standard Model. Finally,
we provide detailed proofs for both frameworks to show that the security of the
overall construction generically holds under the security of each of the building
blocks. Concretely, this means that, for any setting, one can construct a secure di-
visible e-cash system by essentially designing a constrained PRF achieving some
simple properties. To illustrate this point, we describe, by using our framework,
the first divisible e-cash system secure in the standard model, since previous
analyses in the standard model are all wrong, as explained above.

Several Security Issues. Another interesting outcome of our formalization
process is that it highlights some security issues that have often been overlooked
in previous papers.

First, there is the critical issue with exculpability, as discussed in Section 1.2.
Second, security models of e-cash systems only deal with the security of the

users and the bank. We indeed note that (almost) no property related to the
security of the merchant has ever been formalized. In particular, the ability of
the merchants to deposit the electronic coins they received is not ensured by the
e-cash scheme itself. For example, in most systems, nothing prevents the spender
from depositing the coins he has just spent8: we define a new property, called
clearing, that formalizes the security requirements for the merchants.

Eventually, in the withdrawal procedure, the coins secret values are tradition-
ally generated collaboratively by the bank and the user. Our security analysis
shows that this collaborative generation does not seem to provide any relevant
benefit, at least for our frameworks.

1.4 Organization

We recall in Section 2.1 the notion of constrained pseudo-random functions and
detail the security properties required in order to construct divisible e-cash sys-
tems in Section 2.2 (concrete instantiations of constrained PRFs can be found in
the full version [13]). The syntax and the security model of divisible e-cash are
described in Section 3. We provide, in Section 4, the intuition behind our two
frameworks, however, due to space limitations, Section 5 only contains the for-
mal description of our first framework, the second one being described in the full

8 Identification of the spender is not possible in this case because the two transcripts
received by the bank (the one sent by the spender and the one sent by the merchant)
are exactly the same.
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version [13]. The security analysis of our generic constructions is provided in the
full version. The latter also contains a concrete instantiation of our framework
along with an additional security notion for delegatable constrained PRFs.

2 Constrained Pseudo-Random Function

Our constructions of divisible e-cash systems will heavily rely on constrained
pseudo-random functions [12,14,31] with special features that we present below.
But first, we recall the syntax of this primitive.

2.1 Syntax

For sake of simplicity, our PRF K × S → Y will only be constrained on subsets
of S. We will then not consider the more general setting where it is constrained
according to a circuit. Our PRF thus consists of the following five algorithms.

– Setup(1λ, {Si}ni=1): On input a security parameter λ and a set of admissible
subsets Si ⊂ S, this algorithm outputs the public parameters pp that will
be implicitly taken as inputs by all the following algorithms;

– Keygen(): this algorithm outputs a master secret key s ∈ K;
– CKey(s,X ): On input the master key s and a set X , this deterministic9

algorithm outputs a constrained key kX ∈ KX or ⊥;
– Eval(s, x): On input the master key s and an element x ∈ S, this determin-

istic algorithm outputs a value y ∈ Y;
– CEval(X , kX , x): On input a set X , a constrained key kX and an element
x ∈ X , this deterministic algorithm outputs a value y ∈ Y.

For conciseness, we will denote CEval(X , kX , x) by CEvalX (kX , x).
A constrained PRF is correct for a family of subsets {Si}ni=1 if, for all λ ∈ N,

pp ← Setup(1λ, {Si}ni=1), s ← Keygen() and x ∈ Si ⊆ S, we have, with over-
whelming probability, CEvalSi(CKey(s,Si), x) = Eval(s, x). And this common
value is PRFs(x).

Definition 1. A constrained PRF is key homomorphic [4, 10] if:

1. Y, K and KSi are groups ∀i ∈ [1, n]
2. ∀i ∈ [1, n], CEvalSi(k1 ·k2, x) = CEvalSi(k1, x)·CEvalSi(k2, x), ∀k1, k2 ∈ KSi

and x ∈ Si.
3. CKey(s1 · s2,Si) = CKey(s1,Si) · CKey(s2,Si), ∀s1, s2 ∈ K and i ∈ [1, n]

We use the multiplicative notation for our group operations, in K and KSi . As
in [4], we require that the CKey algorithm, for any Si, is a group homomorphism
from K into KSi .

Finally, some of our constructions will require the ability to derive a con-
strained key kSi from any key kSj such that Si ⊂ Sj . This requires the following
modifications of the syntax and of the correctness property.

9 Although the general definition in [12] allows randomized CKey algorithm, all our
constructions will require this algorithm to be deterministic.
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Definition 2. A constrained pseudo-random function is delegatable [31] if it
additionally supports the following algorithm:

– CKey(kX ,X ′): on input a constrained key kX ∈ KX and a set X ′ ⊆ X , this
algorithm outputs a constrained key kX ′ ∈ KX ′ or ⊥.

To be correct, the delegatable constrained PRF must additionally satisfy, for a
family of subsets {Si}ni=1, that, for all λ ∈ N, pp ← Setup(1λ, {Si}ni=1), s ←
Keygen(), Si ⊂ Sj ⊆ S, and kSj ← CKey(s,Sj), we have, with overwhelming
probability, CKey(kSj ,Si) = CKey(s,Si).

2.2 Security Model

Our divisible e-cash constructions will use different types of constrained PRF,
satisfying some of the following security requirements. Most of them have already
been defined in previous works but we will need specific variants for some of
them.

Pseudo-Randomness (PR). The first property one may expect from a con-
strained PRF is pseudo-randomness, which informally requires that an adversary,
even given access to constrained keys, cannot distinguish the PRF evaluation
from random, for a new point (not already queried and outside sets of known

constrained keys). It is defined by Exp
pr−b
A (1λ, {Si}ni=1) in Figure 1 where the

adversary has access to the following oracles:

– OCKey(X ): on input a set X , this algorithm returns CKey(s,X ) if ∃i ∈ [1, n]
such that X = Si and ⊥ otherwise.

– OEval(x): on input an element x ∈ S, this algorithm returns Eval(s, x).

A constrained PRF is pseudo-random if Advpr (A) = |Pr[Exppr−1A (1λ, {Si}ni=1) =

1] - Pr[Exppr−0A (1λ, {Si}ni=1) = 1]| is negligible for any A.

Key Pseudo-Randomness (KPR). We note that the previous definition only
requires pseudo-randomness for the output of the PRF. As in [4] we extend this
property to the constrained keys themselves, leading to a property that we call
key pseudo-randomness. However, compared to [4], we additionally require some
form of key privacy, in the sense of [31]. In particular, we need that constrained
keys issued for subsets of the same size10 should be indistinguishable.

Let F be a constrained PRF defined for a family of subsets {Si}ni=1 satisfying
KSi = KSj ∀i, j such that |Si| = |Sj |. F is key pseudo-random if Advkpr (A) =

|Pr[Expkpr−1A (1λ, {Si}ni=1) = 1] - Pr[Expkpr−0A (1λ, {Si}ni=1) = 1]| is negligible for

any A, where the game Exp
kpr−b
A (1λ, {Si}ni=1) is defined in Figure 1.

10 We note that our privacy requirements are weaker than the ones of [9, 11] since we
allow the constrained keys to leak the size of the subsets.
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Exp
pr−b
A (1λ, {Si}ni=1) – Pseudo-Randomness

1. pp← Setup(1λ, {Si}ni=1)
2. s← Keygen()
3. x← AOCKey,OEval(pp)
4. y0 ← Eval(s, x)

5. y1
$← Y

6. b∗ ← AOCKey,OEval(pp, yb)
7. If OEval was queried on x, return 0
8. If OCKey was queried on X 3 x, return 0
9. Return b∗

Exp
kpr−b
A (1λ, {Si}ni=1) – Key Pseudo-Randomness

1. pp← Setup(1λ, {Si}ni=1)
2. s← Keygen()
3. i∗ ← AOCKey,OEval(pp)
4. k0 ← CKey(s,Si∗)
5. k1

$← KSi∗
6. b∗ ← AOCKey,OEval(pp, kb)
7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ 6= ∅, return 0
9. Return b∗

Exp
ckpr−b
A (1λ, {Si}ni=1) – Combined Key Pseudo-Randomness

1. ppj ← Fj .Setup(1λ, {Si}ni=1), ∀j ∈ [1, t]
2. s← F1.Keygen()
3. i∗ ← AOCKey,OEval({ppj}tj=1)
4. (k10, . . . , k

t
0)← (F1.CKey(s,Si∗), . . . , Ft.CKey(s,Si∗))

5. (k11, . . . , k
t
1)

$← KtSi∗
6. b∗ ← AOCKey,OEval({ppj}tj=1, (k

1
b , . . . , k

t
b))

7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ , return 0
9. Return b∗

Fig. 1. Pseudo-Randomness Games for Constrained Pseudo-Random Functions

Combined Key Pseudo-Randomness (CKPR). In practice, divisible e-
cash systems require multiple pseudo-random values, some acting as the unique
identifier of the coin (the serial number) and some being used to mask the
spender’s identity. If F is key pseudo-random, a solution could be to split the
constrained key kSi ← CKey(s,Si) into several parts, each of them being used
as pseudo-random values. Unfortunately, combining this solution with zero-
knowledge proofs would be very complex. In our frameworks, we will follow
a different approach and will generate several pseudo-random values by using
different PRFs F1, . . . , Ft evaluated on the same master key s and the same
subset Si: Let F1 . . . , Ft be constrained PRFs K × S → Y defined for the same
family of subsets {Si}ni=1 satisfying KSi = KSj ∀i, j such that |Si| = |Sj |. We
say that the family (F1, . . . , Ft) achieves combined key pseudo-randomness if
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Advckpr (A) = |Pr[Expckpr−1A (1λ, {Si}ni=1) = 1] - Pr[Expckpr−0A (1λ, {Si}ni=1) = 1]|
is negligible for any A, where the game Exp

ckpr−b
A (1λ, {Si}ni=1) is defined in Fig-

ure 1.

This can be done very easily by constructing each Fi similarly but with
different public parameters: let us assume that F1.CKey(s,Si) = k1Si = gαi·s

1 ∀i
for some generator g1 of KSi . We can define other PRFs F2, . . . Ft with the same
input spaces by setting Fj .CKey(s,Si) = kjSi = gαi·s

j for a different generator gj .

In such a case, we get t values (k1Si , . . . , k
t
Si) which are indistinguishable from

a random element of KtSi assuming key pseudo-randomness of F1 and the DDH
assumption (see the full version [13] for more details).

Collision Resistance (CR). In our divisible e-cash constructions, the PRFs
will mostly be used to generate serial numbers that act as unique identifiers of
the coins. If a coin is spent twice (or more) the same serial number will appear in
several transactions, which provides a very simple way to detect frauds. However,
it is important to ensure that collisions between serial numbers only occur in
such cases. Otherwise, this could lead to false alerts and even false accusations
against an honest user.

At first sight, it might seem that this property is implied by pseudo-randomness.
Unfortunately, this is not true in the context of e-cash where the adversary has
total control of the master secret keys, contrarily to the adversary of the pseudo-
randomness game. We therefore need to define a new property that we call col-
lision resistance. Informally, it says that it should be hard to generate collisions
between the outputs of the PRFs. However, some subtleties arise because of the
different kinds of keys (secret master keys, constrained keys) that we consider
here. We then define three variants of this property that are described in Figure
2.

For k ∈ {1, 2, 3}, a constrained PRF achieves collision resistance-k if, for any
A, Advcr−k(A) = Pr[Expcr−kA (1λ, {Si}ni=1) = 1] is negligible. We provide in the
full version [13] several examples of PRFs achieving these properties.

3 Divisible E-Cash

The syntax and the formal security model are drawn from [20,36]. We neverthe-
less introduce several changes to make them more generic but also to add some
specifications that were previously implicit only.

3.1 Syntax

A divisible e-cash system is defined by the following algorithms, that involve
three types of entities, the bank B, a user U and a merchant M. Our model
defines a unique value N for the divisible coin but it can easily be extended to
support several different denominations.

12



Collision Resistance 1
Expcr−1
A (1λ, {Si}ni=1)

1. pp← Setup(1λ, {Si}ni=1)
2. (s1, s2, x1, x2)← A(pp)
3. If (s1, x1) = (s2, x2), return 0
4. Return Eval(s1, x1) = Eval(s2, x2)

Collision Resistance 2
Expcr−2
A (1λ, {Si}ni=1)

1. pp← Setup(1λ, {Si}ni=1)
2. (i, k1, k2, x)← A(pp)
3. If k1 = k2, return 0
4. Return CEvalSi(k1, x) = CEvalSi(k2, x)

Collision Resistance 3
Expcr−3
A (1λ, {Si}ni=1) (for Key Homomorphic Constrained PRFs only)

1. pp← Setup(1λ, {Si}ni=1)
2. (i, j, ki, kj , x)← A(pp)
3. If i = j, return 0
4. If ki = 1KSi ∨ kj = 1KSj , return 0

5. Return CEvalSi(ki, x) = CEvalSj (kj , x)

Fig. 2. Collision Resistance Games for Constrained Pseudo-Random Functions

– Setup(1λ, N): On input a security parameter λ and an integer N , this prob-
abilistic algorithm outputs the public parameters pp for divisible coins of
global value N . We assume that pp are implicit to the other algorithms, and
that they include λ and N . They are also given as an implicit input to the
adversary, we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a
key pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a mer-
chant M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that
usk (resp. msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value N or outputs ⊥ (in case of failure) while the bank stores the
transcript of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk, V ),M(msk, bpk, info, V )): This is an interactive proto-
col between a user U and a merchant M. Here, info denotes a set of public
information associated to the transaction, by the merchant, and V denotes
the amount of this transaction. At the end of the protocol the merchant gets
Z along with a proof of validity Π or outputs ⊥. U then either updates C
or outputs ⊥.

– Deposit(M(msk, bpk, (V, info, Z,Π)),B(bsk, L,mpk)): This is an interactive
protocol between a merchant M and the bank B where the former first
sends a transcript (V, info, Z,Π) along with some additional data µ. B then
checks (1) the validity of all these elements and (2) that this merchant has
not already deposited a transcript associated with info. If condition (1) is
not fulfilled, then B aborts and outputs ⊥. If condition (2) is not fulfilled,
then B returns another transcript (V ′, info, Z ′, Π ′) along with the associated
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µ′. Otherwise, B recovers the V serial numbers SNi0 , . . . , SNiV−1
11 derived

from Z and compares them to the set L of all serial numbers of previ-
ously spent coins. If there is a match for some index ik, then B returns a
transcript (V ′, Z ′, Π ′, info′) such that SNik is also a serial number derived
from Z ′. Else, B stores these new serial numbers in L and keeps a copy of
(V, info,mpk, Z,Π).

– Identify((V, info,mpk, Z,Π), (V ′, info′,mpk′, Z ′, Π ′), bpk): On the wo tran-
scripts, this deterministic algorithm outputs 0 if info = info′, if one of the
transcripts is invalid, or if the serial numbers derived from these transcripts
do not collide. Else it outputs a user’s public key upk or ⊥.

– CheckDeposit([(V, info,mpk, Z,Π), µ], bpk): This deterministic algorithm out-
puts 1 if [(V, info, Z,Π), µ] are valid elements deposited by a merchant whose
public key is mpk and 0 otherwise.

Our model does not place restrictions on the values that can be spent nor on
the size of a spending transcript. It is therefore more generic and in particular
also fits compact e-cash systems where the serial numbers can only be revealed
one by one.

3.2 Security Model

Existing security models essentially focus on the the user’s and the bank’s inter-
ests. The former must indeed be able to spend their coins anonymously without
being falsely accused of frauds while the latter must be able to detect frauds and
identify the perpetrators. This is formally defined by three security properties
in [20]: anonymity (user’ spendings are anonymous, even with respect to the
bank), exculpability (honest users cannot be falsely accused, even by the bank)
and traceability (an author of overspending should be traced back).

However, all these notions (and the corresponding ones in previous papers)
fail to capture an important security property for the merchant: he must always
be able to clear his transactions, but also, he should be the only one able to de-
posit them. This is especially problematic for e-cash because users can reproduce
the transcripts of their spendings. Designers of existing divisible e-cash systems
seem to be more or less aware of this issue12 because they usually attribute a
signing key to the merchant. However, these systems do not specify the security
properties expected from the corresponding signature scheme and most of them
even do not specify which elements should be signed.

11 We do not make any assumption on the indices i0, . . . , iV−1, contrarily to some
previous works that assume they are consecutive.

12 The “correctness for merchant”, informally defined in [2], is related to this issue. It
ensures that the transcript deposited by an honest merchant will be accepted, even
if the spender is dishonest and double-spends his coin. However, it only considers
an honest bank and it does not consider situations where the transcript would be
deposited by another entity. In particular, the scheme in [2] does not ensure that the
merchant is the only one able to clear his coins.
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For completeness, we therefore add the property of clearing (only the recipi-
ent merchant can perform the deposit) to the above usual ones. All of them are
defined in Figure 3 and make use of the following oracles:

– OAdd() is an oracle used by the adversary A to register a new honest user
(resp. merchant). The oracle runs the Keygen algorithm, stores usk (resp.
msk) and returns upk (resp. mpk) to A. In this case, upk (resp. mpk) is said
honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp.
merchant) whose public key is upk (resp. mpk). The oracle then returns the
corresponding secret key usk (resp. msk) to A along with the secret values
of every coin withdrawn by this user. From now on, upk (resp. mpk) is said
corrupted.

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted
user (resp. merchant) whose public key is upk (resp. mpk). In this case, upk
(resp. mpk) is said corrupted. The adversary could use this oracle on a public
key already registered (during a previous OAdd query) but for simplicity,
we do not consider such case as it will gain nothing more than using the
OCorrupt oracle on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw

protocol. This oracle will be used by A playing the role of the bank against
the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw
protocol. This oracle will be used by A playing the role of a user whose
public key is upk against the bank.

– OSpend(upk, V ) is an oracle that executes the user’s side of the Spend pro-
tocol for a value V . This oracle will be used by A playing the role of the
merchant M.

– OReceive(mpk, V ) is an oracle that executes the merchant’s side of the
Spend protocol for a value V . This oracle will be used by A playing the role
of a user.

– ODeposit(mpk, V, info) is an oracle that executes the merchant’s side of the
Deposit protocol for a transaction of amount V associated with the value
info. This oracle cannot be queried on two inputs with the same value info.
It will be used by A playing the role of the bank.

In the experiments, users are denoted by their public keys upk, cupk denotes the
amount already spent by user upk during OSpend queries, mupk the number of di-
visible coins that he has withdrawn and Tri the transcript (Vi, infoi,mpki, Zi, Πi)
for any i ∈ N. This means that the total amount available by a user upk is
mupk ·N . The number of coins withdrawn by all users during an experiment is
denoted by m.

For sake of simplicity, we assume that all merchants are corrupted, and added
through OAddCorrupt queries, in the traceability, exculpability and anonymity
experiments. We therefore do not need to add access to the OReceive and
ODeposit oracles in the latter. We stress that this is not a restriction since
the OAddCorrupt oracle provides more power to the adversary than the OAdd
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and OCorrupt ones. Similarly, we assume that the bank and all the users are
corrupted in the clearing game and so do not provide access to the OSpend,
OWithdrawU and OWithdrawB oracles in it.

ExptraA (1λ, N) – Traceability Security Game

1. pp ← Setup(1λ, N)
2. (bsk, bpk)← BKeygen()

3. {(Vi, infoi,mpki, Zi, Πi)}ui=1
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u
i=1 Vi > m ·N and ∀i 6= j, Identify(Tri,Trj , bpk) =⊥, then return 1

5. Return 0

ExpexcuA (1λ, N) – Exculpability Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. [Tr1,Tr2]← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify(Tr1,Tr2, bpk) = upk and upk not corrupted, then return 1
5. Return 0

Expanon−bA (1λ, N) – Anonymity Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. (V, upk0, upk1,mpk)← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upki is not registered for i ∈ {0, 1}, then return 0
5. If cupki > mupki ·N − V for i ∈ {0, 1}, then return 0
6. (V,Z,Π, info)← Spend(C(uskb, C,mpk, V ),A())
7. cupk1−b

← cupk1−b
+ V

8. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
9. If upki has been corrupted for i ∈ {0, 1}, then return 0

10. Return (b = b∗)

ExpclearA (1λ, N) – Clearing Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. [(V, info,mpk, Z,Π), µ]← AOAdd,OCorrupt,OAddCorrupt,OReceive,ODeposit()
4. If CheckDeposit([(V, info,mpk, Z,Π), µ], bpk) = 0, then return 0
5. If mpk is corrupted, then return 0
6. If (mpk, V, info) has been queried to ODeposit, then return 0
7. Return 1

Fig. 3. Security Games for Divisible E-Cash

Our clearing game ensures that no one can forge a valid deposit query from
the merchant. This means in particular that the bank cannot rightfully refuse
the deposit of an honest merchant (because it will not be able to provide a valid
proof that the transcript has already been deposited) and that it cannot falsely
accuse a merchant of trying to deposit the same transcript several times.

A divisible E-cash system is said to be traceable, exculpable, anonymous,
and/or clearable if Succtra(A), Succexcu(A), Advanon(A), and/or Succclear (A),
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are respectively negligible for any probabilistic polynomial adversary A, where

Succtra(A) = Pr[ExptraA (1λ, N) = 1] Succexcu(A) = Pr[ExpexcuA (1λ, N) = 1]

Succclear (A) = Pr[ExpclearA (1λ, N) = 1]

Advanon(A) = |Pr[Expanon−1A (1λ, N) = 1]− Pr[Expanon−0A (1λ, N) = 1]|

4 High-Level Description

Before introducing a generic framework for divisible e-cash, we focus on the
heart of such systems, namely the construction of the serial numbers and of the
double-spending tags.

Regarding the former, the fact that each serial number SN must look random
has led designers to use pseudo-random functions (PRFs). More specifically,
every anonymous divisible e-cash scheme defines SNi as F.Eval(s, i) where s is
the master key and i ∈ [1, N ]. However, to avoid a cost linear in the amount V it
is necessary to provide a way to reveal these serial numbers by batches. Designers
of divisible e-cash systems (e.g. [2,16,18,20,21,36]) have thus constructed pseudo-
random functions with a special feature: given s and a subset X ⊆ [1, N ], one
can compute kX allowing to evaluate the PRF only on the elements of X . This
matches the definition of constrained PRFs, as described above. To spend a value
V , the user can now simply reveal a constrained key kX for a set X of size V .
However additional properties are required here to achieve anonymity. Indeed,
informally, the constrained key must hide information on the spender (more
specifically on the master secret key) and on the subset X 13 itself. All these
properties are captured by key pseudo-randomness that we defined in Section 2.
Eventually, to avoid false positive in the fraud detection process, we will need
the collision resistance properties defined in the same section.

Therefore, constructing divisible e-cash with efficient double-spending de-
tections is roughly equivalent to constructing a key pseudo-random, collision
resistant constrained PRF for subsets of [1, N ] that smoothly interacts with
Non-Interactive Zero-Knowledge (NIZK) proofs. However, detection of double
spending is not enough, it must also be possible to identify double spenders
by using the additional information contained in the double-spending tag. This
adds further requirements on the PRF and leads to two constructions that we
present below.

4.1 Construction using Key Homomorphism

Our first construction of double-spending tag is reminiscent of the techniques
used by compact e-cash systems [15, 32]. In these papers, the double spending
tag Ti associated with SNi is of the form ID · (F ′.Eval(s′, i))R, where ID is the
“identity” of the spender (usually his public key), F ′ is a PRF seeded with a

13 Actually the size of X can leak as it corresponds to the public amount of the trans-
action.
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master secret key s′ (note that we may have F = F ′ or s = s′ but not both) and
R is a public identifier of the transaction.

Intuitively, the idea behind this tag is that (F ′.Eval(s′, i))R will perfectly
mask the user’s identity as long as the latter does not overspend his coin. In

case of double spendings, there will indeed be two tags T
(1)
i and T

(2)
i of the form

ID · (F ′.Eval(s′, i))R1 and ID · (F ′.Eval(s′, i))R2 . Therefore, by computing:

((T
(1)
i )R2/(T

(2)
i )R1)1/(R2−R1)

the bank can directly recover the identity ID of the defrauder. This idea was
adapted in [20,21,36] to the context of divisible e-cash by replacing F ′.Eval(s′, i)
with a key constrained to the appropriate subset.

However, we have explained in Section 1.2 that this process of identification is
problematic and could lead to false accusations against honest user, thus break-
ing exculpability. Concretely, the problem arises from the fact that the above

formula may output ID while involving tags T
(1)
i and T

(2)
i produced for different

identities. Indeed, in the exculpability game, a malicious bank could cooperate
with malicious users and merchants to select values ID1, ID2, R1, R2, s1 and

s2 such that ((T
(1)
i )R2/(T

(2)
i )R1)1/(R2−R1) = ((ID1 · (F ′.Eval(s1, i1))R1)R2/(ID2 ·

(F ′.Eval(s2, i2))R2)R1)1/(R2−R1) = ID. This means that, in general, this tag
construction cannot be used as it is.

To prevent this problem, our generic construction uses four PRFs, that we
will denote by F1, F2, F3 and F4, defined for the same family of subsets {Si}ni=1

and sharing the same key space K. We additionally require F2, F3 and F4 to be
key homomorphic.

Let s ∈ K be a secret master key and Si be a subset of size V , the amount

of the transaction. As previously14, our first PRF will be used to reveal k
(1)
Si ←

F1.CKey(s,Si). Likewise, our third PRF will be used to generate an element of
the form15 IDR · k3Si , with k3Si ← F3.CKey(s,Si). The novelty here is that these
values will only constitute a part of the serial number and of the double spending

tag. The other parts will be derived from k
(2)
Si ← F2.CKey(s · id,Si), where id

is some element of K associated with the public identity ID, and from ID · k4Si
where k4Si ← F4.CKey(s,Si). More specifically,

SNj = F1.CEvalSi(k
(1)
Si , j)||F2.CEvalSi(k

(2)
Si , j) TSi = (IDR · k3Si , ID · k

4
Si).

Intuitively, the fact that the master secret key of F2 depends on id will ensure
that no collision can occur for different users, which thwarts the previous attack.
Moreover, the first part of SNj still ensures that collisions can only occur for
spendings involving the same master key, evaluated on the same element j ∈ S.

14 For sake of clarity, we assume here that the elements associated with the users’
identity live in the right spaces. Our formal definition will make use of suitable maps
to ensure this fact.

15 We need to apply the exponent R on the identity itself instead of the constrained
key to rely on the correctness of CEval, but the principle is the same.
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The last element of the double-spending tag has a more technical purpose, it
prevents identification errors in the case where the colliding serial numbers have
been generated using different subsets (see Remark 3).

Therefore, if two spendings with respective tags T
(1)
Si1

and T
(2)
Si2

lead to a

collision, then we have:

T
(1)
Si1

= (IDR1 · k3Si1 , ID · k
4
Si1

) T
(2)
Si2

= (IDR2 · k3Si2 , ID · k
4
Si2

)

with j ∈ Si1 ∩ Si2 . If Si1 = Si2 = Si, we can compute:

F3.CEvalSi(T
(1)
Si [1], j) = F3.CEvalSi(ID

R1 , j) · F3.CEvalSi(k
3
Si , j)

F3.CEvalSi(T
(2)
Si [1], j) = F3.CEvalSi(ID

R2 , j) · F3.CEvalSi(k
3
Si , j)

Since k3Si1
and k3Si2

are derived from the same master key, correctness ensures

that F3.CEvalSi(k
3
Si , j) = F3.CEvalSi(k

3
Si , j). Therefore:

F3.CEvalSi(T
(2)
Si [1], j) · F3.CEvalSi(T

(1)
Si [1], j)−1

= F3.CEvalSi(ID
R2 , j) · F3.CEvalSi(ID

−R1 , j)

The bank can then perform an exhaustive search on the set of public identities
{IDi} until it gets a match. Identification of defrauders is then possible with a
linear cost in the number of users of the system.

Now in the case where Si1 6= Si2 , we have, for any identity ID∗:

F4.CEvalSi1 (T
(1)
Si1

[2]/(ID∗), j) = F4.CEvalSi1 (ID/(ID∗), j) · F4.CEvalSi1 (k4Si1 , j)

F4.CEvalSi2 (T
(1)
Si2

[2]/(ID∗), j) = F4.CEvalSi2 (ID/(ID∗), j) · F4.CEvalSi2 (k4Si2 , j)

Here again, F4.CEvalSi1 (k4Si1
, j) = F4.CEvalSi2 (k4Si2

, j), therefore:

F4.CEvalSi1 (T
(1)
Si1

[2]/(ID∗), j)/F4.CEvalSi2 (T
(1)
Si2

[2]/(ID∗), j)

= F4.CEvalSi1 (ID/(ID∗), j)/F4.CEvalSi2 (ID/(ID∗), j)

and one can easily identify the case where ID∗ = ID since this it is the only one
where the right member equals to 1Y if F4 achieves collision resistance-3.

Remark 3. The use of two elements in the double-spending tag may seem sur-
prising, in particular because the equality

F3.CEvalSi1 (T
(2)
Si2

[1], j) · F3.CEvalSi2 (T
(1)
Si2

[1], j)−1

= F3.CEvalSi1 (IDR2 , j) · F3.CEvalSi2 (ID−R1 , j)

still holds for the right ID in the case where Si1 6= Si2 . However, in this case, we
cannot ensure that this equality only holds for ID, it might also work for other
identities, leading to obvious identification issues.
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4.2 Construction using Delegation

Our second construction is inspired by what has been the main framework for
divisible e-cash for many years (e.g. [16,18,33]). It makes use of a family of two
delegatable PRFs (F1, F2) and two functions16 (H,H ′) such that H : K → G
and H ′ : KSi → G for some group G (we here assume that KSi = KSj for all
i, j ∈ [1, N ]). We assume that the subsets {Si} of [1, N ] supported by the PRFs
F1 and F2 satisfy the following requirement:

Si ∩ Sj 6= ∅ ⇒ Si ⊂ Sj or Sj ⊂ Si

Therefore, for each subset Si 6= [1, N ], it is possible to define the smallest subset
containing strictly Si. Its index is given by a function D.

To spend a value V , a user whose coin secret key is s selects a subset Si
containing V elements and will reveal the following information:

1. k
(1)
Si ← F1.CKey(s,Si)

2. k
(2)
Si ← upk · F2.CKey(s,Si)

3. TSi ← upk ·H ′(F1.CKey(s,SD(Si)))
R

for some public element R. The first element will be used by the bank to de-

rive the serial numbers SNt ← F1.CEvalSi(k
(1)
Si , t) ∀t ∈ Si. The second element

prevents the problem we mention in Section 4.1: it will be used to discard col-
lisions between spendings involving different users. Finally, the last element is
the double-spending tag but the identification process is more subtle than in the
previous case, as we explain below.

Let (k
(1)
Si , k

(2)
Si , TSi) and (k

(1)
Sj , k

(2)
Sj , TSj ) be two spendings leading to a collision,

i.e. such that there are ti ∈ Si and tj ∈ Sj verifying the equation:

F1.CEvalSi(k
(1)
Si , ti) = F1.CEvalSj (k

(1)
Sj , tj).

Collision resistance of F1 implies that ti = tj and that k
(1)
Si and k

(1)
Sj were

both derived from the same master secret key. Moreover, ti ∈ Si ∩Sj 6= ∅ which
implies that Si ⊂ Sj or Sj ⊂ Si. Let us assume that Sj ⊂ Si. We then distinguish
the two following cases.

– Case 1: Sj ( Si, which implies that SD(Sj) ⊂ Si. From k
(1)
Si , one can then

compute T∗ ← H ′(F1.CKey(k
(1)
Si ,SD(Sj))) and thus recover upk = TSj/(T

∗)Ri .

– Case 2: Sj = Si. In such a case, k
(2)
Si = k

(2)
Sj if and only if both elements have

been generated using the same public key upk. Therefore, one aborts if this

equality does not hold. Else, one computes upk← (T
Rj

Si /T
Ri

Sj )1/(Rj−Ri).

16 The requirements placed on these functions are specified in the full version [13].
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4.3 Discussion

To our knowledge, all anonymous divisible e-cash systems can be associated
with one of these frameworks. The main difference is that existing constructions
require less PRFs but, as we explain in Section 1.2, this leads to a problem
that has been overlooked in the proofs. Although some of them can be patched
without adding new PRFs, we note that this patch is very specific to some
constructions and so cannot be applied to our generic frameworks.

Starting from the seminal work of Canard and Gouget [16], several schemes
[2, 18, 33]) implicitly followed the second framework17 and so constructed (or
re-used) delegatable PRFs satisfying the properties listed above. Unfortunately,
the resulting PRFs do not interact nicely with NIZK, leading to quite complex
constructions.

Recently, a series of papers [20,21,36] followed a different approach that ac-
tually matches our first framework. It is then possible to extract from these pa-
pers constrained key homomorphic PRFs that achieve key pseudo-randomness.
Moreover, these PRFs interact smoothly with NIZK, even in the standard model,
leading to very efficient constructions.

However, in practice, efficiency does not only depend on the compatibility
with NIZK proofs. Divisible e-cash indeed achieves its ultimate goal when it
allows the user to spend efficiently the V coins associated with a transaction of
amount V . This means that the family of subsets {Si} supported by the PRF
must be as rich and as diverse as possible. For decades, the constructions have
only been compatible with intervals of the form [1 + j · 2k, (j + 1)2k] due to the
use of binary trees. It is only recently that Pointcheval, Sanders and Traoré [36]
proposed a construction supporting any interval [a, b] ⊆ [1, N ]. This led to the
first constant-size divisible e-cash systems.

5 Our Framework

We now elaborate on the solutions sketched in the previous section to construct
a full divisible e-cash system. We only consider here constructions based on key
homomorphic constrained PRFs but describe those based on delegatable PRF
in the full version [13].

5.1 Building Blocks

Our framework makes use of three standard cryptographic primitives, namely
digital signature, commitment scheme and non-interactive zero-knowledge (NIZK)
proofs that we recall below, along with their respective security properties.

17 We nevertheless note that the cut-and-choose technique used during withdrawal in [2]
is very specific to this work and does not fit our framework.
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Expeuf−cmaA (1λ) – EUF-CMA security Game

1. (sk, pk)← Keygen(1λ)
2. (m∗, σ∗)← AOSign(pk)
3. If Verify(pk,m∗, σ∗) = 0 or OSign queried on m∗, then return 0
4. Return 1

Fig. 4. Security Game for Digital Signature

Digital Signature. A digital signature schemeΣ is defined by three algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a pair
of signing and verification keys (sk, pk);

– Sign(sk,m): on input the signing key sk and a message m, this algorithm
outputs a signature σ;

– Verify(pk,m, σ): on input the verification key pk, a message m and its
alleged signature σ, this algorithm outputs 1 if σ is a valid signature on m
under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability
under chosen message attacks (EUF-CMA) [29]: it means that it is hard, even
given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the signing oracle. The formal definition is provided in Fig-
ure 4 and makes use of an oracle OSign that, on input a message m, returns
Sign(sk,m). A signature scheme is EUF-CMA secure if Pr[Expeuf−cmaA (1λ) = 1]
is negligible for any A.

Commitment Scheme. A commitment scheme Γ is defined by the following
two algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a com-
mitment key ck that specifies a message space M, a randomizer space R
along with a commitment space C;

– Commit(ck,m, r) : on input ck, an element r ∈ R and a message m ∈ M,
this algorithm returns a commitment c ∈ C.

Informally, a commitment should be binded to the committed message, but
still hiding the latter. This is formally defined by the games ExpbindA (1λ) and
Exphid−bA (1λ) of Figure 5. A commitment scheme is binding if Pr[ExpbindA (1λ) = 1]
is negligible, while it is hiding if Pr[Exphid−1A (1λ) = 1]− Pr[Exphid−0A (1λ) = 1] is
negligible.

NIZK Proofs. LetR be an efficiently computable relation with triples (crs, φ, w),
where crs is called the common reference string and w is said to be a witness to
the instance φ. A NIZK proof system is defined by the following three algorithms:
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Hiding Security Game
Exphid−bA (1λ)

1. (ck)← Keygen(1λ)
2. m← A(ck)

3. r
$←R, c0 ← Commit(ck,m, r)

4. c1
$← C

5. b∗ ← AOSign(ck, cb)
6. Return (b = b∗)

Binding Security Game
ExpbindA (1λ)

1. (ck)← Keygen(1λ)
2. (m0,m1, r0, r1)← A(ck)
3. If Commit(ck,m0, r0) 6= Commit(ck,m1, r1)

or m0 = m1, then return 0
4. Return 1

Fig. 5. Security Game for Commitment Schemes

– Setup(1λ): on input a security parameter λ, this algorithm outputs the com-
mon reference string crs.

– Prove(crs, w, φ): on input a triple (crs, w, φ) ∈ R, this algorithm outputs a
proof π.

– Verify(crs, φ, π): on input crs, a proof π and an instance φ this algorithm
outputs either 1 (accept) or 0 reject.

A NIZK proof is correct if the probability that Verify(crs, φ, Prove(crs, w, φ))
returns 0 is negligible for all (crs, w, φ) ∈ R. We will additionally require the
properties of zero-knowledge and extractability. Both of them are defined in Fig-
ure 6. Extractability requires the existence of an extractor XA that takes as
input the transcript transA of the adversary A. Zero-knowledge requires the
existence of a simulator consisting of the algorithms SimSetup and SimProve

that share state with each other. In the security experiment Expzk−bA (1λ), the
adversary has access to the following oracle:

– OProve-b(w, φ): on input (w, φ), this algorithm returns ⊥ if (crsb, w, φ) /∈ R.
Else, it returns Prove(crsb, w, φ) if b = 0 and SimProve(crsb, φ) otherwise.

A NIZK proof is zero-knowledge if Pr[Expzk−1A (1λ)]−Pr[Expzk−0A (1λ)] is negligible.
It is extractable if Pr[ExpextA (1λ)] is negligible.

Zero-Knowledge Game
Expzk−bA (1λ)

1. crs0 ← Setup(1λ)
2. crs1 ← SimSetup(1λ)
3. b∗ ← AOProve−b(crsb)
4. Return (b = b∗)

Extractability Game
ExpextA (1λ)

1. crs← Setup(1λ)
2. (φ, π)← A(crs)
3. w ← XA(transA)
4. If Verify(crs, φ, π) = 0 or (crs, w, φ) /∈ R,

then return 0
5. Return 1

Fig. 6. Security Game for NIZK Proofs
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5.2 Construction

Our construction makes use of a digital signature scheme Σ, a commitment
scheme Γ and a NIZK proof system Π as described above. The difficulty here
is to provide the description of a framework that encompasses very different
settings such as cyclic groups or lattices. For example, the element IDR of Section
4 that was involved in double-spending tags does not make sense in a lattice
setting and would in practice be replaced by R · ID where R is a matrix and
ID is a vector. To remain as generic as possible, we will then introduce several
functions that will abstract the properties we need. In our example, we need that
IDR+R′ = IDR ·IDR′ and that (R+R′) ·ID = R ·ID+R′ ·ID and so will represent
IDR and R · ID by G(ID, R) where G is a bilinear map (see remark 5 for more
details). Such functions make the description of our framework rather complex
but we stress that they are actually very easy to instantiate. In particular, we
emphasize that the following framework essentially formalises the high-level ideas
described in Section 4 and does not significantly increase the practical complexity
of our construction.

– Setup(1λ, N): To generate the public parameters pp, the algorithm first com-
putes crs← Π.Setup(1λ). It then selects four constrained PRFs F1, F2, F3

and F4 with the same master key space K and that support the same subsets
S1, . . . ,Sn with Si ⊂ [1, N ] ∀i ∈ [1, n]. For sake of simplicity, we assume that
KSi = KSj = KS for all i, j ∈ [1, n]. F2, F3 and F4 must additionally be key
homomorphic. Finally, it selects a hash function H : {0, 1}∗ → G for some
group G, two functions G1 : {0, 1}∗ → K, G2 : {0, 1}∗ → KS along with a
non degenerate bilinear map G3 : KS ×G→ KS (see remark 5). The public
parameters pp are then set as crs, F1, F2, F3, F4, H,G1, G2, G3.

– BKeygen(): The bank generates a commitment key ck ← Γ.Keygen(1λ) and
a key pair (skB , pkB) ← Σ.Keygen(1λ). It then sets bsk as skB and bpk as
(ck, pkB).

– Keygen() : The user (resp. the merchant) generates a signature key pair
(usk, upk) (resp. (msk,mpk)) using Σ.Keygen.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user
first generates s ← F1.Keygen(1λ, {Si}ni=1) and a random element r from
the randomizer space R of Γ . It then sends c ← Γ.Commit(ck, [s, upk], r) to
the bank along with a signature τc ← Σ.Sign(usk, c).
If τc is valid, the bank returns a signature σc ← Σ.Sign(skB , c) to the user.
The latter can then set its coin C as (c, s, r, σc).

– Spend(U(usk, C, bpk, V ),M(msk, bpk, info, V )): During a spending of amount
V , the merchant first selects a string info that he never used before18 and
sends it to the user along with his public key mpk.
The user then selects a subset Si with |Si| = V such that SNj has never

been revealed for all j ∈ Si, and computes k
(1)
Si ← F1.CKey(s,Si), k(2)Si ←

18 This string can simply be a counter incremented by the merchant after each trans-
action, or include information that uniquely identifies the transaction such as the
date and the hour.

24



F2.CKey(s·G1(upk),Si) and TSi ← (G3(G2(upk), H(mpk||info))·k(3)Si , G2(upk)·
k
(4)
Si ) where k

(3)
Si = F3.CKey(s,Si) and k

(4)
Si = F4.CKey(s,Si).

Finally, it generates a signature τ ← Σ.Sign(usk, (mpk, V, info, k
(1)
Si , k

(2)
Si , TSi))

along with a NIZK proof π of (upk, s, c, r, σc,Si, τ) such that:

1. ∃i∗ ∈ [1, n] : Si = Si∗ ∧ |Si| = V
2. c = Γ.Commit(ck, [s, upk], r)
3. 1 = Σ.Verify(pkB , c, σc)

4. k
(1)
Si = F1.CKey(s,Si)

5. k
(2)
Si = F2.CKey(s ·G1(upk),Si)

6. TSi = (G3(G2(upk), H(mpk||info))·F3.CKey(s,Si), G2(upk)·F4.CKey(s,Si))
7. 1 = Σ.Verify(upk, (mpk, V, info, k

(1)
Si , k

(2)
Si , TSi), τ)

The elements (k
(1)
Si , k

(2)
Si , TSi , π) are then sent to the merchant who accepts

them as a payment if π is valid.

– Deposit(M(msk, bpk, (V, info, k
(1)
Si , k

(2)
Si , TSi , π)),B(bsk, L,mpk)): To deposit

a transaction, the merchant sends its transcript Tr← (V, info, k
(1)
Si , k

(2)
Si , TSi , π)

along with a signature µ ← Σ.Sign(msk,Tr). The bank then checks that
(1) the proof π is valid, (2) π proves knowledge of a signature on a tuple
whose first coordinate is mpk, (3) Σ.Verify(mpk,Tr, µ) = 1 and (4) that
this merchant has not previously deposited a transaction associated with
info. If one of the first three conditions is not satisfied, then the bank re-
turns ⊥. If the last condition is not satisfied then the bank knows another
transcript (V ′, info, k

(1)
Sj , k

(2)
Sj , TSj , π

′) along with a signature µ′. All these el-

ements, along with [Tr, µ] constitute a proof of double-deposit.
Else, the bank recovers, for all j ∈ Si (see remark 6 below), the serial num-

bers SNj ← F1.CEvalSi(k
(1)
Si , j)||F2.CEvalSi(k

(2)
Si , j). It then distinguishes the

following two cases:

• ∃j∗ ∈ Si such that SNj∗ already belongs to L. In such a case, the bank

recovers the first transcript (V ′, info′,mpk′, k
(1)
Si′ , k

(2)
Si′ , TSi′ , π

′) that yields
this serial number and returns it along with Tr.

• SNj /∈ L ∀j ∈ Si, in which case the bank simply adds these serial numbers
to L

– Identify((V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), (V ′, info′,mpk′, k

(1)
Sj , k

(2)
Sj , TSj , π

′), bpk) :

Given two transcripts, this algorithm first checks that (1) mpk||info 6= mpk′||info′
and (2) both proofs π and π′ are valid. If one of these conditions is not satis-
fied, then it returns 0. Else, it checks that there is a collision between the se-
rial numbers derived from these transcripts, i.e. there are x ∈ Si and x′ ∈ Sj
such that F1.CEvalSi(k

(1)
Si , x)||F2.CEvalSi(k

(2)
Si , x) = F1.CEvalSj (k

(1)
Sj , x

′)||
F2.CEvalSj (k

(2)
Sj , x

′). If there is no collision, it outputs 0.

Else, it proceeds as in Section 4.1 to identify the defrauder. If TSi [2] = TSj [2],
it computes R = H(mpk||info), R′ = H(mpk′||info′) along with

F3.CEvalSi(TSi [1], x)/F3.CEvalSj (TSj [1], x′)
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and F3.CEvalSi(G3(G2(upk), R), x)/F3.CEvalSj (G3(G2(upk), R′), x) for all
upk until it gets a match. It then returns the corresponding public key upk∗

(or ⊥ if the exhaustive search fails).
Else, TSi [2] 6= TSj [2] and it computes

F4.CEvalSi(TSi [2]/G2(upk), x)/F4.CEvalSj (TSi2 [2]/G2(upk), x′)

for all public keys upk until it gets 1Y . It then returns the corresponding
public key upk∗ (or ⊥ if the exhaustive search fails).

– CheckDeposit([(V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), µ], bpk) : this algorithm checks

that π is valid and that 1 = Σ.Verify(mpk, (V, info, k
(1)
Si , k

(2)
Si , TSi , π), µ) in

which case it outputs 1. Else, it returns 0.

Remark 4. An example of instantiation of our full construction, in the standard
model, is provided in the full version [13] to assess the practical complexity
of our framework. Nevertheless, we note that a spending essentially consists
in generating 4 constrained keys along with a zero-knowledge proof that they
have been correctly computed from a certified master key. In bilinear groups,
such proofs can easily be produced in the random oracle model or by using
Groth-Sahai proofs [30] if one selects an appropriate digital signature scheme
for Σ, as illustrated in our full version where we show that the complexity of
our framework is very similar to the one of (unsecure) schemes from the state-
of-the-art. The case of lattices is more complex but we note that the proofs and
the signature scheme required here are similar to those described in [32].

Remark 5. The only purpose of the functions G1, G2 and G3 is to project the
different elements of our system on the appropriate spaces, which ensures com-
patibility with most PRFs. As we illustrate on concrete examples in the full
version [13], these functions are in practice very simple (for example G2 is usu-
ally the identity function) and nicely interact with zero-knowledge proofs. In
particular, our bilinear map G3 can easily be instantiated in most settings. For
example, when KS is a cyclic group of order p, we will simply have G = Zp
and G3(x, y) = xy. Similarly, when KS = Fnq , we will have G ⊂ Mm,n and
G3(x,A) = A · x.

We will also manage to make G1 and G2 injective in practice which means
that the collision resistance will be trivially satisfied. We recall that the bilinear
map G3 is non degenerate if G3(x, y) = 1KS implies x = 1KS or y = 1G.

Remark 6. Note that, even if the bank does not know the subset Si, it is always
able to recover all the serial numbers SNj ← CEvalSi(kSi , j), for j ∈ Si. Indeed,
it can generates the list L containing SNk ← CEvalS(kSi , k), for all S containing
V elements and k ∈ S. Such a list contains the valid serial numbers (those for
which S = Si) and so can still be used to detect double-spendings. Moreover, due
to the properties of PRF, the “invalid” serial numbers (those for which S 6= Sj)
are random elements and so are unlikely to create false positives (collisions in
the list L that are not due to double-spendings).
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However, we stress that this is only a generic solution that works for any
instantiation of our construction. In practice, it leads to quite complex deposits
and so should be avoided, if possible. Actually, to our knowledge, it is only used
in [20]. All other divisible e-cash systems manage to construct PRFs that can
be evaluated on the elements of Si without knowing Si. More specifically, theses
PRFs are compatible with an algorithm CEval that takes as input a constrained
key and the size of the corresponding subset and that outputs CEval(kSi , |Si|) =
{CEvalSi(kSi , x),∀x ∈ Si}.

The security of our construction is stated by the following theorem, proven
in the full version [13].

Theorem 7. Our divisible e-cash system is

– traceable if F1 and F2 achieve collision resistance-1, Γ is computationally
binding, Σ is EUF-CMA secure, Π is extractable, and G1 is collision resis-
tant.

– exculpable if Σ is EUF-CMA secure, Π is extractable, F1 and F2 achieve
collision resistance-1, F3 achieves collision resistance-2, F4 achieves collision
resistance-3 and H, G1 and G2 are collision resistant.

– clearable if Σ is EUF-CMA secure.
– anonymous if (F1, F2, F3, F4) achieves combined key pseudo-randomness, Γ

is computationally hiding and Π is zero-knowledge.

Remark 8. Most existing constructions require a collaborative generation of the
coin secret values. Our framework can easily support this feature if Γ is homo-
morphic. In such a case, traceability no longer requires collision resistance for
F1 and F2 because the randomness added by the bank (which is honest in this
game) will make collisions very unlikely. Unfortunately, the collaborative gener-
ation has no effect on exculpability since both parties (the user and the bank)
can be corrupted in this game. We therefore choose to simplify our withdrawal
protocol by removing this step since we need collision resistance of F1 and F2

anyway.

6 Conclusion

Decades after their introduction, divisible e-cash systems are still remarkably
hard to design, and even to analyse. Existing schemes are based on intricate
mechanisms, tailored to very specific settings, and so can hardly be reproduced
in different contexts. Moreover, such mechanisms often rely on ad-hoc computa-
tional problems whose intractability is hard to assess.

In this paper we introduce the first frameworks for divisible e-cash systems
that only use constrained PRFs and very standard cryptographic primitives. We
prove the security of our global constructions assuming that each of the building
blocks achieve some properties that we identify.

Our work thus presents this complex primitive in a new light, highlighting its
strong relations with constrained PRFs. More specifically, it shows that the bulk
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of the design of a divisible e-cash system is the construction of a constrained PRF
with some specific features. We therefore hope that our results will encourage
designers of constrained PRFs to add these features to their constructions, so as
to implicitly define a new divisible e-cash scheme. We in particular believe that
it is an important step towards a post-quantum divisible e-cash system.
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17. Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In
Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti Yung, edi-
tors, ACNS 08, volume 5037 of LNCS, pages 207–223. Springer, Heidelberg, June
2008.
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achieve constant complexity in divisible E-cash. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 61–90. Springer, Heidelberg, March 2017.

37. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163
of LNCS, pages 252–265. Springer, Heidelberg, November 1996.

38. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

30


	Divisible E-Cash from Constrained Pseudo-Random Functions
	Florian Bourse, David Pointcheval and Olivier Sanders

