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Abstract. Recently, Lyubashevsky & Seiler (Eurocrypt 2018) showed
that small polynomials in the cyclotomic ring Zq [X ]/(Xn +1), where n is a
power of two, are invertible under special congruence conditions on prime
modulus q. This result has been used to prove certain security properties
of lattice-based constructions against unbounded adversaries. Unfortu-
nately, due to the special conditions, working over the corresponding
cyclotomic ring does not allow for efficient use of the Number Theoretic
Transform (NTT) algorithm for fast multiplication of polynomials and
hence, the schemes become less practical.

In this paper, we present how to overcome this limitation by analysing
zeroes in the Chinese Remainder (or NTT) representation of small poly-
nomials. As a result, we provide upper bounds on the probabilities related
to the (non)-existence of a short vector in a random module lattice with
no assumptions on the prime modulus. We apply our results, along with
the generic framework by Kiltz et al. (Eurocrypt 2018), to a number of
lattice-based Fiat-Shamir signatures so they can both enjoy tight security
in the quantum random oracle model and support fast multiplication
algorithms (at the cost of slightly larger public keys and signatures), such
as the Bai-Galbraith signature scheme (CT-RSA 2014), Dilithium-QROM
(Kiltz et al., Eurocrypt 2018) and qTESLA (Alkim et al., PQCrypto 2017).
Our techniques can also be applied to prove that recent commitment
schemes by Baum et al. (SCN 2018) are statistically binding with no
additional assumptions on q.

Keywords: Lattice-based cryptography, Fiat-Shamir signatures, module
lattices, lossy identification schemes, provable security.

1 Introduction

Cryptography based on the hardness of lattice problems, such as Module-SIS or
Module-LWE [21, 16, 18], seems to be a very likely replacement for traditional
cryptography after the eventual arrival of quantum computers. With the ongoing
NIST PQC Standardization Process, we are closer to using quantum-resistant
encryption schemes and digital signatures in real life. For additional efficiency,
many practical lattice-based constructions work over fully-splitting polynomial



rings Rq := Zq[X ]/(f (X)) where f (X) = Xn + 1 is a cyclotomic polynomial, n is
a power of two and the prime q is selected so that f (X) splits completely into
n linear factors modulo q. With such a choice of parameters, multiplication in
the polynomial ring can be performed very quickly using the Number Theoretic
Transform (NTT), e.g. [10, 3, 24, 15]. Indeed, one obtains a speed-up of about a
factor of 5 by working over rings where Xn + 1 splits completely versus just 2
factors (for primes of size between 220 and 229 [19]). Moreover, the structure of
fully-splitting rings allows us to perform various operations in parallel as well
as conveniently cache and sample polynomials which also significantly improves
efficiency of the schemes.

Unfortunately, it is sometimes difficult to prove security of lattice-based
constructions when working over fully-splitting polynomial rings [11, 8, 5]. Usually,
the reason is that these security proofs rely on the assumption that polynomials
of small norm are invertible. Recently, Lyubashevsky and Seiler [19] (generalising
[17]) showed that when n is a power of two and under certain conditions on prime
modulus q, small elements of Rq are indeed invertible. The result, however, is
meaningful only when Xn + 1 does not split into many factors modulo q (e.g.
at most 32 for n = 512). Consequently, we cannot apply the standard NTT
algorithm in such polynomial rings unless we drop the invertibility assumption 3.

In this paper, we present techniques to avoid the invertibility assumption in
security proofs. This allows us to construct lattice-based primitives without any
conditions on prime modulus q and consequently, we can work over fully-splitting
rings and at the same time, use the NTT algorithm for fast multiplication of poly-
nomials. We apply our results to the second-round candidates of the NIST PQC
Standardization Process. Namely, we improve the efficiency of Dilithium-QROM
[11] (which is the modified version of Dilithium [15] secure in the quantum random
oracle model) as well as qTESLA [8]. We also briefly explain how our techniques
can be applied to recent lattice-based commitment schemes [5].

1.1 Our Contribution

Main results. Our main technical result is an upper bound on the probability of
existence of a short vector in a random module lattice (see Theorem 1.1, formally
Corollary 3.9) and other related probabilities (Theorem 3.8 and Theorem 3.10).
Informally, it states that the probability, over the uniformly random matrix A,
that there exists a pair of vectors (z1, z2), which consists of small polynomials
in Rq and z1 6= 0, such that Az1 + z2 = 0 is small (for a suitable choice of
parameters). In the context of Fiat-Shamir identification and signature schemes,
A represents a public key matrix and z1 (and sometimes z2 as well) represents
a difference of two signatures/responses. Our upper bound depends on the tail
function T . For readability, we hide the concrete formula for T here and we refer
to the formal statement in Corollary 3.9.

3 Lyubashevsky and Seiler [19] showed, however, how to combine the FFT algorithm
and Karatsuba multiplication in order to multiply in partially-splitting rings faster.
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We recall that a similar result was presented by Kiltz et al. (e.g. Lemma 4.6
in [11]) but they only consider the case when q ≡ 5 (mod 8) so that invertibility
properties can be applied [17, 19]. Here, we generalise their result on how to
bound that probability without any assumptions on the prime modulus q.

Theorem 1.1 (Informal). Denote Sα := {y ∈ Rq : ||y||∞ ≤ α} and let
`, k, α1, α2 ∈ N. Then

Pr
A←Rk×`

q

[∃(z1, z2) ∈ S`α1
\{0} × Sk

α2
: Az1 + z2 = 0] ≤

|Sα1 |` · |Sα2 |k

qnk + T (q, `, k, α1, α2),

(1)

where T (q, `, k, α1, α2) is a function defined in Corollary 3.9.

Figure 1 shows values of the tail function T for different prime moduli q. We
observe that the more f (x) = Xn + 1 splits modulo q then the larger the value of
T . When f (x) only splits into two factors, our upper bound is essentially equal to

|Sα1 |` · |Sα2 |k

qnk .

Indeed, in this case the value of T is negligible and hence, we obtain an upper
bound identical to Kiltz et al. On the other hand, if we want to work over fully-
splitting polynomial rings in order to apply the Number Theoretic Transform
algorithm, we would have to increase q as well as the dimensions (k, `) of the
matrix A so that T (q, `, k, α1, α2) stays small. Unfortunately, this implies larger
public key and signature size.
Key techniques. We provide an overview of the proof of Theorem 1.1. Let d
be the divisor of n such that

Xn + 1 ≡
d∏

i=1
fi(X) (mod q)

for distinct polynomials fi(X) of degree n/d that are irreducible in Zq[X ]. In
other words, Xn + 1 splits into d irreducible polynomials modulo q. The proof
sketch goes as follows.
Step 1: We apply the union bound:

Pr
A←Rk×`

q

[∃(z1, z2) ∈ S`α1
\{0} × Sk

α2
: Az1 + z2 = 0]

≤
∑

(z1,z2)∈S`α1\{0}×Sk
α2

Pr
A←Rk×`

q

[Az1 + z2 = 0]. (2)

Step 2: We identify the subset Z of S`α1
\{0} × Sk

α2
which satisfies:

(z1, z2) ∈ Z ⇐⇒ Pr
A←Rk×`

q

[Az1 + z2 = 0] > 0.
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Fig. 1. Let (n, q, `, k, α1, α2) = (512,≈ 245, 4, 4, 1.8 · 106, 3.6 · 106). The graph presents
values of log(T (q, `, k, α1, α2)) depending on the number of irreducible polynomials
d that Xn + 1 splits into modulo q. One notes that for prime moduli q ≈ 245 such
that d ∈ {2, 4}, the value of T is sufficiently small, hence so is the right-hand side
of Equation (1). On the other hand, values of T rocket for d ≥ 8 and therefore q or
dimensions (k, `) of the matrix A must be increased in order to keep the upper bound
in (1) small enough.

Hence, the probability in Equation (1) can be bounded by∑
(z1,z2)∈Z

Pr
A←Rk×`

q

[Az1 + z2 = 0].

Step 3: Next, we propose a partitioning of the set Z into subsets Z0,Z1, ...,Zd ,
i.e. Z =

⋃d
i=0 Zi . Then, we show that for each (z1, z2) ∈ Zi , the probability

pi := Pr
A←Rk×`

q

[Az1 + z2 = 0]

is the same and we compute it. Thus, the probability in Equation (1) can now
be bounded by:

d∑
i=0

∑
(z1,z2)∈Zi

pi =
d∑

i=1
|Zi | · pi

Step 4: We find an upper bound on |Zi |.
Zero function. In this paper, we will consider zeroes in the “Chinese Remainder
representation” 4 of polynomials in Rq

5. Formally, we define the following Zero
4 Alternatively, we call it “FFT/NTT representation” in the fully-splitting case.
5 This technique has already been investigated in the literature for e.g. constructing
provably secure variants of NTRUEncrypt [25].
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function:

Zero(y) := {i : y ≡ 0 (mod (fi(X), q))} and Zero(y) :=
k⋂

j=1
Zero(yj),

where y ∈ Rq and y = (y1, ..., yk) ∈ Rk
q . Note that if y is invertible then

|Zero(y)| = 0. Lyubashevsky and Seiler [19] proved that whenever a non-zero y
has small Euclidean norm then |Zero(y)| = 0. Here, we extend it and provide a
relationship between the Euclidean norm of y and the size of set Zero(y) (see
Lemma 3.2). In particular, the result implies that relatively small elements of Rq
have only a few zeroes in the Chinese Remainder representation. This observation
will be crucial for Steps 3 and 4.
Zero rows. Consider the equation Az1 + z2 = 0 and let j ∈ Zero(z1). If we
look at this equation modulo (fj(X), q) then we just end up with z2 = 0, i.e.
j ∈ Zero(z2) and thus j ∈ Zero(z1||z2) where || denotes usual concatenation of
vectors. Consequently, Zero(z1) ⊆ Zero(z1||z2). Clearly, we have Zero(z1||z2) ⊆
Zero(z1) and therefore these two sets are equal. This implies that the subset Z
introduced in Step 2 can be identified as:

Z = {(z1, z2) : Zero(z1) = Zero(z1||z2)}.

Define Zi = {(z1, z2) : Zero(z1) = Zero(z1||z2) ∧ |Zero(z1)| = i} ⊆ Z (Step 3).
Informally, we say that (z1, z2) ∈ Zi has i zero rows, since if we write down the
components of z1 and z2 in the Chinese Remainder representation, in columns,
then we get exactly i rows filled with zeroes.

For fixed (z1, z2) ∈ Zi , we compute the probability pi defined in Step 3 by
counting the number of possible A which satisfy Az1 + z2 = 0. This could be
done by considering the equation modulo (fj(X), q) for all j 6∈ Zero(z1). Indeed,
for such j there is a simple way to count all A ∈ (Zq[X ]/(fj(x)))k×` which satisfy
Az1 + z2 = 0 modulo fj(X). Concretely, one of the components of z1, say zu, is
going to be invertible modulo fj(X) and therefore all entries of A not related
to zu can be chosen arbitrarily. The rest, however, will be adjusted so that the
equation holds. On the other hand, if j ∈ Zero(z1) = Zero(z1||z2) then Az1 + z2
is simply equal to 0 modulo (fj(X), q) for any A. By applying Chinese Remainder
Theorem, we obtain the total number of possible A ∈ Rk×`

q which satisfy the
equation above.

The only thing left is to provide an upper bound on |Zi | (Step 4). Firstly,
we observe that if (z1, z2) ∈ Zi then clearly |Zero(zj)| ≥ i for j = 1, ..., ` where
z1 = (z1, ..., z`). Since each component of z1 ∈ S`α1

\{0} has infinity norm at most
α1, and assuming this value is relatively small, we get that each component of
z1 has only a few zeroes in the Chinese Remainder representation (Lemma 3.2).
Hence, for some larger values of i, we simply get Zi = ∅. The second observation
is that if (z1, z2) ∈ Zi and y1,y2 are vectors of some “small” polynomials then
(z1 + y1, z2 + y2) is likely not to have exactly i zero rows. For example, suppose
that

Zero(z1 + y1, z2 + y2) = Zero(z1 + y′1, z2 + y′2)
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for some other small y′1,y′2. This implies that (y1 − y′1,y2 − y′2) has at least i
zero rows. In particular, each component of y1−y′1, say ŷj , has at least i zeroes in
the Chinese Remainder representation. However, we know that ŷj is a polynomial
of small norm by the choice of y1 and y′1. Therefore, ŷj has only a few zeroes
(by the observation above or Lemma 3.2). By picking sufficiently small y1 and
y′1 we can make sure that each component ŷj of y1 − y′1 has less than i zeroes.
This would lead to a contradiction. In conclusion, our approach for bounding
|Zi | is to, for each (z1, z2) ∈ Zi , generate all pairs of form (z1 + y1, z2 + y2) 6∈ Zi ,
for vectors of sufficiently small polynomials y1,y2, and applying the pigeonhole
principle along with other simple counting arguments.

1.2 Applications

Digital signatures. Kiltz et al. [11] presented a generic framework for con-
structing secure Fiat-Shamir signatures in the quantum random oracle model
(QROM). As a concrete instantiation, they introduced a new signature scheme
Dilithium-QROM, which is a modification of the original Dilithium scheme [15],
and is tightly based on the hardness of Module-LWE problem in the QROM.
However, in order to obtain security of Dilithium-QROM, Kiltz et al. choose the
prime modulus q to be congruent to 5 modulo 8. This assumption assures that
the underlying polynomial ring Zq[X ]/(Xn + 1) splits into two subrings modulo
q and invertibility results can be applied [17, 19]. Unfortunately, polynomial
multiplication algorithms in such rings are not efficient. We show how to apply
our probability results to the security of Dilithium-QROM 6 so that one can avoid
such special assumptions on q (in particular, one could choose q so that Rq splits
completely and NTT along with other optimisations can be applied). The only
disadvantage is that, in order to keep the probabilities small, one should slightly
increase the size of q and dimensions (k, `). Unfortunately, this results in having
both considerably larger public keys and signatures.

General results by Kiltz et al. can also be applied to obtain a security proof
in the QROM for a number of existing Fiat-Shamir signature schemes similar
to Dilithium such as the Bai-Galbraith scheme [4] (see Section 4) or qTESLA
[8]. So far, security of the latter scheme in the quantum random oracle model
is proven assuming a certain non-standard conjecture. However, one can also
obtain it by applying the framework by Kiltz et al. and using our probability
upper bounds. Consequently, one gets a tightly secure version of qTESLA in the
QROM without any non-standard conjecture. We recall that our results allow
this signature scheme to work over fully-splitting rings so that the use of NTT for
polynomial multiplication is possible. However, as in the case of Dilithium-QROM,
we would end up with larger public key and signature size compared to the
original qTESLA (see Table 2).
Commitment schemes. Recently, Baum et al. [5] presented efficient commitment
schemes from Module-SIS and Module-LWE. However, both their new statistically
6 We present it in the full version of this paper [20].

6



binding commitment scheme and their improved construction from [7] rely on
the general invertibility result from [19], i.e. special congruence conditions on
the prime modulus q. Our probability upper bounds can be applied to prove the
statistically binding property of these constructions, and consequently, one could
now consider working in fully-splitting rings. As before, we observe that choosing
primes q such that Xn + 1 splits into many factors modulo q results in having
both larger commitment and proof size.

1.3 Related Works

The first asymptotically-efficient lattice-based signature scheme using the “Fiat-
Shamir with Aborts” paradigm was presented in [13] which is based on the
Ring-SIS problem. Later on, Lyubashevsky [14] improved the scheme by basing
it on the combination of Ring-SIS and Ring-LWE. Since then, many substantial
improvements have been proposed [10, 4, 15, 8]. In the meantime, lossy identifi-
cation schemes were introduced and used to construct secure digital signatures
in the quantum random oracle model [1, 27, 2, 11].

Invertibility of “small” polynomials 7 is an important property in the context
of (approximate) zero-knowledge proofs based on lattices. For example, one
usually needs the difference set C − C to contain only invertible polynomials
for extraction purposes [26, 7] where C is a challenge set. Lyubashevsky and
Neven [17] proved that if q is congruent to 5 modulo 8 then the polynomial ring
Rq = Zq[X ]/(Xn + 1) splits into two subrings and elements of small infinity norm
are indeed invertible. This result was generalised by Lyubashevsky and Seiler
[19]. Concretely, they showed that if q ≡ 2k + 1 (mod 4k) for some k then Xn + 1
splits into k irreducible polynomials modulo q and also small elements in Rq are
invertible. These results have been recently applied in the context of computing
probabilities related to the security of lattice-based signatures and commitment
schemes, e.g. [11, 5].

2 Preliminaries

For n ∈ N, let [n] := {1, . . . ,n}. For a set S , |S | is the cardinality of S , P(S)
is the power set of S and Pi(S) is the set of all subsets of S of size i. If S is
finite, we denote the sampling of a uniform random element x by x ← S , while
we denote the sampling according to some distribution D by x ← D. By JBK we
denote the bit that is 1 if the Boolean statement B is true, and 0 otherwise.
Algorithms. Unless stated otherwise, we assume all our algorithms to be
probabilistic. We denote by y ← A(x) the probabilistic computation of algorithm
A on input x. If A is deterministic, we write y := A(x). The notation y ∈ A(x)
is used to indicate all possible outcomes y of the probabilistic algorithm A on
input x . We can make any probabilistic A deterministic by running it with fixed
7 What we mean by “small” is that the polynomial has small infinity or Euclidean
norm.
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randomness. We write y := A(x; r) to indicate that A is run on input x with
randomness r . The notation A(x) ⇒ y denotes the event that A on input x
returns y. Eventually, we write Time(A) to denote the running time of A.

2.1 Cyclotomic Rings
Let n be a power of two. Denote R and Rq respectively to be the rings Z[X ]/(Xn +
1) and Zq[X ]/(Xn + 1), for a prime q. We also set d to be the divisor of n such
that

Xn + 1 ≡
d∏

i=1
fi(X) (mod q)

for distinct polynomials fi(X) of degree n/d that are irreducible in Zq[X ]. Alter-
natively, we say that Xn + 1 splits into d polynomials modulo q. If d = n then
Xn + 1 fully splits. By default, all the equalities and congruences between ring
elements in this paper are modulo q.

Regular font letters denote elements in R or Rq and bold lower-case letters
represent column vectors with coefficients in R or Rq. Bold upper-case letters
denote matrices. By default, all vectors are column vectors.
Modular reductions. For an even (resp. odd) positive integer α, we define
r ′ = r mod± α to be the unique element r ′ in the range −α2 < r ′ ≤ α

2 (resp.
−α−1

2 ≤ r ′ ≤ α−1
2 ) such that r ′ = r mod α. For any positive integer α, we define

r ′ = r mod+α to be the unique element r ′ in the range 0 ≤ r ′ < α such that
r ′ = r mod α. When the exact representation is not important, we simply write
r mod α.
Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|.
Define the `∞ and `2 norms for w = w0 + w1X + . . .+ wn−1Xn−1 ∈ R as follows:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2

∞ + . . .+ ‖wn−1‖2
∞.

Similarly, for w = (w1, . . . ,wk) ∈ Rk , we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

For a finite set S ⊆ Rk , however, we set

‖S‖∞ = max
w∈S
‖w‖∞, ‖S‖ = max

w∈S
‖w‖.

We write Sη to denote all elements w ∈ R such that ‖w‖∞ ≤ η.
Extracting high-order and low-order bits. To reduce the size of the
public key, we need some algorithms that extract “higher-order” and “lower-order”
bits of elements in Zq. The goal is that when given an arbitrary element r ∈ Zq
and another small element z ∈ Zq, we would like to be able to recover the higher
order bits of r + z without needing to store z. The algorithms are exactly as in
[9, 11], and we repeat them for completeness in Figure 2. They are described as
working on integers modulo q, but one can extend it to polynomials in Rq by
simply being applied individually to each coefficient.
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Power2Roundq(r , δ)
01 r := r mod+ q
02 r0 := r mod± 2δ
03 return (r − r0)/2δ

UseHintq(h, r , α)
04 m := (q − 1)/α
05 (r1, r0) := Decomposeq(r , α)
06 if h = 1 and r0 > 0 return (r1 + 1) mod+ m
07 if h = 1 and r0 ≤ 0 return (r1 − 1) mod+ m
08 return r1

MakeHintq(z, r , α)
09 r1 := HighBitsq(r , α)
10 v1 := HighBitsq(r + z, α)
11 return Jr1 6= v1K

Decomposeq(r , α)
12 r := r mod+ q
13 r0 := r mod± α
14 if r − r0 = q − 1
15 then r1 := 0; r0 := r0 − 1
16 else r1 := (r − r0)/α
17 return (r1, r0)

HighBitsq(r , α)
18 (r1, r0) := Decomposeq(r , α)
19 return r1

LowBitsq(r , α)
20 (r1, r0) := Decomposeq(r , α)
21 return r0

Fig. 2. Supporting algorithms for Dilithium and Dilithium-QROM [11].

Lemma 2.1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1
(mod α) and α even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤ α/2,
and let h,h′ be vectors of bits. Then the HighBitsq, MakeHintq, and UseHintq
algorithms satisfy the following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
2. Let v1 = UseHintq(h, r, α). Then ‖r− v1 · α‖∞ ≤ α+ 1.
3. For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 2.2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2− β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

Ideal lattices. An integer lattice of dimension n is an additive subgroup of Zn .
For simplicity, we only consider full-rank lattices. The determinant of a full-rank
lattice Λ of dimension n is equal to the size of the quotient group Zn/Λ. We
denote λ1(Λ) = min‖w‖∈Λ ‖w‖. We say that Λ is an ideal lattice in R if Λ is an
ideal of R. There exists a lower bound on λ1(Λ) if Λ is an ideal lattice [19, 22].
Assuming that n is a power of two, we get a simplified bound.
Lemma 2.3 ([19], Lemma 2.7). If Λ is an ideal lattice in R, then λ1(Λ) ≥
det(Λ)1/n.

The MLWE Assumption. For integers m, k, and a probability distribution
D : Rq → [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWEm,k,D problem over the ring Rq is

AdvMLWE
m,k,D :=

∣∣Pr[A(A, t)⇒ 1 | A← Rm×k
q ; t← Rm

q ]
− Pr[A(A,As1 + s2)⇒ 1 | A← Rm×k

q ; s1 ← Dk ; s2 ← Dm]
∣∣ .
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The MLWE assumption states that the above advantage is negligible for all
polynomial-time algorithms A. It was introduced in [12], and is a generalization
of the LWE assumption from [23]. The Ring-LWE assumption [18] is a special
case of MLWE where k = 1. Analogously to LWE and Ring-LWE, it was shown in
[12] that solving the MLWE problem for certain parameters is as hard as solving
certain worst-case problems in certain algebraic lattices.

3 Zeroes in the Chinese Remainder Representation

In this section, we present general results about existence of solutions (A, t) ∈
Rk×`

q ×Rk to the equation Az1 + z2 = ct (and other similar ones), for some z1 ∈
R`q, z2 ∈ Rk

q , c ∈ Rq\{0}, and compute the probability of satisfying such equations
for uniformly random A and t. The results are crucial for security analysis of Fiat-
Shamir signature schemes. For instance, security of Dilithium-QROM [11] relies
heavily on the assumption that c is invertible in Rq or z1 contains an invertible
component. In such a case, the probability can be calculated straightforwardly.
Hence, q is chosen so that q ≡ 5 (mod 8) because then, polynomials in Rq of small
(infinity) norm are proved to be invertible [19, 17]. We avoid such assumptions
and analyse “zeroes in the Chinese Remainder Representation” of z1, z2 and c in
order to provide general upper bounds on the probabilities.

3.1 Zero Rows

We start by introducing the Zero function.

Definition 3.1. Let y ∈ Rq. We define a set

Zero(y) := {i ∈ [d] : y ≡ 0 (mod fi(X))}.

For a vector y = (y1, ..., yk) ∈ Rk
q , we set Zero(y) :=

⋂k
j=1 Zero(yj) and similarly

for multiple vectors y1, ...,y` over Rq, Zero(y1, ...,y`) :=
⋂`

j=1 Zero(yj).

Informally, we say that y has i zeroes in the Chinese Remainder Representation
if |Zero(y)| = i. One observes that Zero(y) = ∅ if and only if y is invertible, by
the Chinese Remainder Theorem. Also, Zero(y) = [d] ⇐⇒ y = 0.

Lyubashevsky and Seiler [19] showed that if ‖y‖ < q1/d then y is invertible.
Obviously, it is not very interesting if d is large (e.g. d = n). Here, we extend the
result to consider the number of zeroes in the Chinese Remainder Representation.

Lemma 3.2. Let y ∈ Rq such that 0 < ||y|| < qm/d for some m ∈ [d]. Then,
|Zero(y)| < m.

Proof. Suppose that |Zero(y)| ≥ m and pick any i1, ..., im ∈ Zero(y). Define the
following set:

Λ = {z ∈ R : ∀j ∈ [m], z ≡ 0 (mod fij (X))}.
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Firstly, note that Λ is an additive group and y ∈ Λ. Moreover, for any z ∈ Λ, we
have z · X ∈ Λ since each fij (X) is a factor of Xn + 1 modulo q. Therefore, Λ
is an ideal of R, and hence an ideal lattice in the ring R. Consider the Chinese
Remainder representation modulo q of all the elements in Λ. Note that they
have 0 in the coefficients corresponding to fij (X) for j ∈ {1, ...,m} and arbitrary
values everywhere else. This implies that det(Λ) = |Zn/Λ| = qnm/d. Hence, by
Lemma 2.3 we have λ1(Λ) ≥ qm/d. However, we know that ||y|| > 0, thus y
is non-zero. Eventually, we obtain ||y|| < qm/d ≤ λ1(Λ) ≤ ||y|| which leads to
contradiction. ut
The lemma above implies that if a polynomial y ∈ Rq is short enough, then
it has only a few zeroes in the Chinese Remainder Representation (but is not
necessarily invertible).

We now introduce the notion of ZeroRows which will be crucial in proving
the main theorem.

Definition 3.3. Let k ∈ N and A ⊆ Rk
q be a non-empty set. Then, we write

ZeroRowsi(A) to denote

ZeroRowsi(A) := {a ∈ A : |Zero(a)| = i}.

We say that a ∈ ZeroRowsi(A) has i zero rows.

Name ZeroRows comes from the fact that if a = (a1, ..., ak) ∈ ZeroRowsi(A) and
if we write down the Chinese Remainder Representation of a1, ..., ak as column
vectors 8 then we get exactly i rows filled only with zeroes.

The next result gives an upper bound on ZeroRowsi(Sk
α) for fixed i > 0, k

and α. The key idea of the proof is as follows. For simplicity, consider z ′ :=
z + X j , z ′′ := z + X ` for some distinct j, ` ∈ [2n] and z ∈ Rq. To begin with, note
that Zero(z ′)∩ Zero(z ′′) = ∅. Indeed, if there exists some u ∈ Zero(z ′)∩ Zero(z ′′)
then

z + X ` ≡ z ′′ ≡ 0 ≡ z ′ ≡ z + X j (mod fu(X)).

Hence, we get a contradiction, since X j −X ` is invertible [6]. Therefore,

|{z + X j ∈ ZeroRowsi(Sα) : j ∈ [2n]}| ≤ bd/ic .

This is because if size of the set is strictly larger than d/i then, by definition
of ZeroRowsi(Sα) and the pigeonhole principle, we would have Zero(z + X j) ∩
Zero(z + X `) 6= ∅ for some distinct j, `. Thus, we end up with:

|{z + X j 6∈ ZeroRowsi(Sα) : j ∈ [2n]}| ≥ 2n − bd/ic .

Our main strategy is that for each z ∈ ZeroRowsi(Sk
α), we count all z′ of form

z + y (where y is a somewhat small polynomial) such that z′ 6∈ ZeroRowsi(Sk
α)

similarly as above, and eventually, obtain an upper bound on |ZeroRowsi(Sk
α)|.

The bound depends on the size of a set Wi ⊆ Rq, which satisfies the following
8 Namely, for each ai we define a corresponding column vector (a′i,1, ..., a′i,d), where

a′i,j is the element of Zq[X ]/(fj(X)), such that ai ≡ a′i,j (mod fj(X)), for j ∈ [d].
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property: for any two distinct u, v ∈Wi , |Zero(u − v)| < i 9. Later on, we show
how to use our previous result, i.e. Lemma 3.2, to construct such sets.

Lemma 3.4. Let k, α ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials in Rq
such that for any two distinct u, v ∈Wi, |Zero(u − v)| < i. Then,

|ZeroRowsi(Sk
α)| ≤

(d
i
)
· |Sα+‖Wi‖∞ |k

|Wi |k
.

Proof. Firstly, take any z = (z1, ..., zk) ∈ Sk
α and define

Bad(z1, ..., zk) := {(z1 + y1, ..., zk + yk) ∈ ZeroRowsi(Sk
α) : y1, ..., yk ∈Wi}.

We claim that |Bad(z1, ..., zk)| ≤
(d

i
)
. Indeed, suppose |Bad(z1, ..., zk)| >

(d
i
)
and

define the function

F : Bad(z1, ..., zk)→ Pi([d]), (z ′1, ..., z ′k) 7−→ Zero(z ′1, ..., z ′k).

Note that F is well-defined by definition of Bad. Also, |Bad(z1, ..., zk)| >
(d

i
)

=
|Pi([d])| implies that F is not injective. Hence,

F(z1 + y1, ..., zk + yk) = I = F(z1 + y′1, ..., zk + y′k)

for some set I ∈ Pi([d]), y1, ..., yk , y′1, ..., y′k ∈ Wi and yj 6= y′j for some index
j. Take any u ∈ I . Then, zj + yj ≡ 0 ≡ zj + y′j (mod fu(X)) and consequently,
yj − y′j ≡ 0 (mod fu(X)). Since we picked arbitrary u ∈ I , we proved that
|Zero(yj − y′j)| ≥ i. However, this leads to a contradiction by the definition of the
set Wi .

Now, define a set

Good(z1, ..., zk) := {(z1 + y1, ..., zk + yk) 6∈ ZeroRowsi(Sk
α) : y1, ..., yk ∈Wi}.

Clearly, |Good(z1, ..., zk)| = |Wi |k − |Bad(z1, ..., zk)| ≥ |Wi |k −
(d

i
)
. Consider the

following set
S =

⋃
(z1,...,zk)∈ZeroRowsi(Sk

α)

Good(z1, ..., zk).

One observes that S ⊆ Sk
α+‖Wi‖∞\ZeroRowsi(Sk

α) by definition of Good, which
gives us an upper bound on |S |. We are now interested in finding a lower bound
for |S |. Let (ẑ1, ..., ẑk) be an element of S and denote

COUNT(ẑ1, ..., ẑk) := {(z1, ..., zk) ∈ ZeroRowsi(Sk
α) : (ẑ1, ..., ẑk) ∈ Good(z1, ..., zk)}.

We claim that |COUNT(ẑ1, ..., ẑk)| ≤
(d

i
)
. Informally, this means that (ẑ1, ..., ẑk)

belongs to at most
(d

i
)
“good” sets (out of |ZeroRowsi(Sk

α)|). Just like before,
assume that |COUNT(ẑ1, ..., ẑk)| >

(d
i
)
and define a function

F : COUNT(ẑ1, ..., ẑk)→ Pi([d]), (z1, ..., zk) 7−→ Zero(z1, ..., zk).
9 In the example above, W1 is represented by the set {X j : j ∈ [2n]}. Indeed, |Zero(X j−

Xk)| < 1 for all distinct j, k.
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Then,
F(z1, ..., zk) = I = F(z ′1, ..., z ′k)

for some set I ∈ Pi([d]) and z1, ..., zk , z ′1, ..., z ′k ∈ Sα such that there exists an
index j which satisfies zj 6= z ′j . Since (ẑ1, ..., ẑk) ∈ Good(z1, ..., zk) and (ẑ1, ..., ẑk) ∈
Good(z ′1, ..., z ′k), we have that zj + yj = ẑj = z ′j + y′j for some distinct yj , y′j ∈Wi .
Take any u ∈ I and note that zj ≡ 0 ≡ z ′j (mod fu(X)). Therefore,

yj ≡ ẑj − zj ≡ ẑj ≡ ẑj − z ′j ≡ y′j (mod fu(X)).

Hence, |Zero(yj − y′j)| ≥ i. Similarly as before, we observe that this leads to
a contradiction by the definition of Wi . Thus, |COUNT(ẑ1, ..., ẑk)| ≤

(d
i
)
. This

implies:

|S | ≥
∑

z∈ZeroRowsi(Sk
α) |Good(z)|(d

i
) ≥

∑
z∈ZeroRowsi(Sk

α) |Wi |k −
(d

i
)(d

i
)

Combining the lower bound as well as the upper bound for |S | we get:

|Sα+‖Wi‖∞ |
k − |ZeroRowsi(Sk

α)| ≥ |S |

≥ 1(d
i
) |ZeroRowsi(Sk

α)| · |Wi |k − |ZeroRowsi(Sk
α)|.

(3)

Therefore, |ZeroRowsi(Sk
α)| ≤ (d

i)·|Sα+‖Wi‖∞ |
k

|Wi |k . ut
We point out that the proof does not work for i = 0. In this case, we can use the
obvious upper bound: ZeroRows0(Sk

α) ≤ |Sk
α|.

Consider again the equation Az1 + z2 = ct, where A and t are variables,
and denote A = (ai,j) and t = (t1, ..., tk). Clearly, we have Zero(z1, c, z2) ⊆
Zero(z1, c). Suppose that Zero(z1, c, z2) 6= Zero(z1, c). If we write z1 = (z1, ..., z`)
and z2 = (z ′1, ..., z ′k), then there exist some i, j such that i ∈ Zero(z1, c) and
i 6∈ Zero(z1, c, z ′j). Note that

Az1 + z2 = ct =⇒ aj,1z1 + ...+ aj,`z` + z ′j = ctj .

However,

0 6≡ z ′j ≡ aj,1z1 + ...+ aj,`z` + z ′j ≡ ctj ≡ 0 (mod fi(X)),

which leads to a contradiction. Therefore, if Zero(z1, c, z2) 6= Zero(z1, c) then we
end up with no solutions. This motivates us to extend the ZeroRows function as
follows.
Definition 3.5. Let k ∈ N and A ⊆ Rk

q ,B ⊆ R`q be non-empty sets. Then, we
define ZeroRowsi(A;B) to be

ZeroRowsi(A;B) := {(a, b) ∈ A× B : Zero(a, b) = Zero(a) ∧ |Zero(a)| = i}.

Sometimes, we write ZeroRowsi(A1,A2;B) to denote ZeroRowsi(Ā;B), where
Ā = A1 ×A2.

13



Using the same techniques as before, one can prove a similar result to Lemma
3.4 which is related to the modified ZeroRows function.

Lemma 3.6. Let k, `, α1, α2 ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials
in Rq such that for any two distinct u, v ∈Wi, |Zero(u − v)| < i. Take any set
D ⊆ Rq\{0} and define e to be the largest integer which satisfies ‖D‖ ≥ qe/d.
Then,

|ZeroRowsi(S`α1
,D;Sk

α2
)| ≤

(e
i
)
· |Sα1+‖Wi‖∞ |` · |Sα2+‖Wi‖∞ |k · |D|

|Wi |`+k .

Proof. Since we follow the same strategy as in the proof of Lemma 3.4, we only
provide a proof sketch. To begin with, take any z1 = (z1, ..., z`) ∈ S`α1

, c ∈ D, z2 =
(z ′1, ..., z ′k) ∈ Sk

α2
and define

Bad(z1, c, z2) := {(z1+y, c, z2+y′) ∈ ZeroRowsi(S`α1
,D;Sk

α2
) : y ∈W `

i ,y′ ∈W k
i }.

We point out that c stays still. Using the same technique as before, one can prove
that |Bad(z1, c, z2)| ≤

(e
i
)
. Informally, this is because we only consider all subsets

of Zero(c) (instead of [d] like last time) of size i and c has at most e zeroes in
the Chinese Remainder Representation (Lemma 3.2).

Now, we define a set

Good(z1, c, z2) := {(z1+y, c, z2+y′) 6∈ ZeroRowsi(S`α1
,D;Sk

α2
) : y ∈W `

i ,y′ ∈W k
i }.

As before, we have |Good(z1, c, z2)| = |Wi |`+k − |Bad(z1, c, z2)| ≥ |Wi |`+k −
(e

i
)
.

Consider the following set

S =
⋃

(z1,c,z2)∈ZeroRowsi(S`α1 ,D;Sk
α2 )

Good(z1, c, z2).

We have that

S ⊆ S`α1+‖Wi‖∞ ×D × Sk
α2+‖Wi‖∞\ZeroRowsi(Sk

α)

by definition of Good. Let (z′1, c, z′2) be an element of S and denote

COUNT(z′1, c, z′2) := {(z1, c, z2) ∈ ZeroRowsi(Sk
α) : (z′1, c, z′2) ∈ Good(z1, c, z2)}.

Similarly as before, we can show that |COUNT(ẑ1, ..., ẑk)| ≤
(e

i
)
. Hence, we get:

|S | ≥

∑
(z1,c,z2)∈ZeroRowsi(S`α1 ,D;Sk

α2 ) |Good(z1, c, z2)|(e
i
)

≥

∑
(z1,c,z2)∈ZeroRowsi(S`α1 ,D;Sk

α2 ) |Wi |`+k −
(e

i
)(e

i
) (4)

Combining the lower bound as well as upper bound for |S | we get:

|Sα1+‖Wi‖∞ |
` · |D| · |Sα2+‖Wi‖∞ |

k − |ZeroRowsi(S`α1
,D;Sk

α2
)| ≥ |S |,
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and

|S | ≥ 1(e
i
) |ZeroRowsi(S`α1

,D;Sk
α2

)| · |Wi |`+k − |ZeroRowsi(S`α1
,D;Sk

α2
)|.

Therefore, |ZeroRowsi(S`α1
,D;Sk

α2
)| ≤ (e

i)·|Sα1+‖Wi‖∞ |
`·|Sα2+‖Wi‖∞ |

k ·|D|
|Wi |`+k . ut

Again, we note that the lemma does not hold for i = 0. In this case, we use a
simple bound: |ZeroRows0(S`α1

,D;Sk
α2

)| ≤ |Sα1 |` · |Sα2 |k · |D|.
In Lemma 3.6 we have an additional condition 0 6∈ D. This is because otherwise

we cannot define the integer e. Recall that e represents the maximal number of
zeroes in the Chinese Remainder Representation that an element in D can have.
Hence, in case D = {0}, we can simply set e = d and follow the strategy as in
Lemma 3.6. Thus, we end up with the following corollary.

Corollary 3.7. Let k, `, α1, α2 ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials
in Rq such that for any two distinct u, v ∈Wi, |Zero(u − v)| < i. Then,

|ZeroRowsi(S`α1
;Sk
α2

)| ≤
(d

i
)
· |Sα1+‖Wi‖∞ |` · |Sα2+‖Wi‖∞ |k

|Wi |`+k .

3.2 Computing Probabilities

We state and prove the main results of our paper. The first one provides an
upper bound on the probability (over A and t) of existence of (z1, z2, c) which
satisfy Az1 + z2 = ct. This can be applied to the security analysis of the Bai-
Galbraith scheme [4] or qTESLA [2, 8]. The second one, however, considers a
slightly different equation: Az1 + z2 = ct1 · 2δ where t1 = Power2Roundq(t, δ)
for some δ, and can be applied to the security analysis of Dilithium-QROM [11].

Theorem 3.8. Let α1, α2 ∈ N and D ⊆ Rq\{0}. Also, for i = 1, ..., d, define
Wi ⊆ Rq to be a set of polynomials such that for any two distinct u, v ∈ Wi,
|Zero(u − v)| < i. Then

Pr
A←Rk×`

q ,t←Rk
q

[∃(z1, z2, c) ∈ S`α1
× Sk

α2
×D : Az1 + z2 = ct] ≤

|Sα1 |` · |Sα2 |k · |D|
qnk +

e∑
i=1

(e
i
)
· |Sα1+‖Wi‖∞ |` · |Sα2+‖Wi‖∞ |k · |D|

|Wi |`+k · qnk(1−i/d)

(5)

where e is the largest integer such that ||D|| ≥ qe/d.

Proof. Fix z1 = (z1, ..., z`), z2 = (z ′1, ..., z ′k) and c. We first prove that

Zero(z1, c) 6= Zero(z1, c, z2) =⇒ Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct] = 0.

Suppose that Zero(z1, c) 6= Zero(z1, c, z2). Then, there exists some i ∈ [d] such
that i ∈ Zero(z1, c) and i 6∈ Zero(z1, c, z2). This implies that there is some j ∈ [k]
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so that i 6∈ Zero(z1, c, z ′j) (otherwise i ∈ Zero(z1, c, z2)). In particular, we have
z ′j 6≡ 0 (mod fi(X)). Denote A = (ai,j) and t = (t1, ..., tk) and note that

Az1 + z2 = ct =⇒ aj,1z1 + ...+ aj,`z` + z ′j = ctj .

However,

0 6≡ z ′j ≡ aj,1z1 + ...+ aj,`z` + z ′j ≡ ctj ≡ 0 (mod fi(X)),

contradiction.
Hence, there are no A, t which satisfy Az1 + z2 = ct. Thus, we only con-

sider (z1, c, z2) such that Zero(z1, c) = Zero(z1, c, z2), alternatively (z1, c, z2) ∈
ZeroRowsi(S`α1

,D;Sk
α2

) for some i ≤ e. We claim that

Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct] = 1/qnk(1−i/d).

Note that we can write:

Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct] =
k∏

i=1
Pr

ai,1,...,ai,`,ti←Rq
[ai,1z1 + ...+ ai,`z` + z ′i = c · ti ].

Let us fix an index i and define

A = {(a1, ..., a`, t) ∈ R`+1
q :

∑̀
j=1

ajzj + z ′i = c · t}.

We want to show that |A| = qn(`+i/d). Take any u ∈ [d] and consider the set

Au = {(a1, ..., a`, t) ∈ (Zq[X ]/(fu(X)))`+1 : a1z1+...+a`z`+z ′i ≡ c·t (mod fu(X))}.

If u ∈ Zero(z1, c, z2) then any a1, ..., a`, t satisfy the equation, because

z1 ≡ ... ≡ z` ≡ z ′i ≡ c ≡ 0 (mod fu(X)).

Hence, |Au| = q(l+1)·n/d . If u 6∈ Zero(z1, c, z2) then one of z1, ..., z`, c is invertible
modulo (fu(X), q), without loss of generality say zj . Then, a1, ...., aj−1, aj+1, ..., a`, c
can be chosen arbitrarily and aj is picked such that the equation is satisfied.
Therefore, |Au| = q`·n/d . Now, by the Chinese Remainder Theorem we have that

|A| =
d∏

u=1
|Au| = qi·(`+1)·n/d+(d−i)·`·n/d = qn(`+i/d).

Hence,

Pr
ai,1,...,ai,`,ti←Rq

[ai,1z1 + ...+ ai,`z` + z ′i = c · ti ] = |A|
q(`+1)·n = 1/qn(1−i/d).

Eventually, we obtain PrA←Rk×`,t←Rk
q
[Az1 + z2 = ct] = 1/qnk(1−i/d).
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Now, we combine the observations above and Lemma 3.6. For clarity, set
Zi = ZeroRowsi(S`α1

,D;Sk
α2

). Then,

Pr
A←Rk×`,t←Rk

q

[∃(z1, z2, c) ∈ S`α1
× Sk

α2
×D : Az1 + z2 = ct]

≤
∑

z1∈S`α1 ,c∈D,z2∈Sk
α2

Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct]

≤
e∑

i=0

∑
(z1,c,z2)∈Zi

Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct]

≤
e∑

i=0

∑
(z1,c,z2)∈Zi

1/qnk(1−i/d)

≤
e∑

i=0
|Zi |/qnk(1−i/d)

≤ |Sα1 |` · |Sα2 |k · |D|
qnk +

e∑
i=1

(e
i
)
· |Sα1+‖Wi‖∞ |` · |Sα2+‖Wi‖∞ |k · |D|

|Wi |`+k · qnk(1−i/d) .

(6)

ut
We can obtain a very similar result for D = {0} using Corollary 3.7. We just
need to pick e to be the integer, such that any non-zero (z1, z2) ∈ S`α1

× Sk
α2

has
at most e zero rows. Since each component of z1 has norm at most α1

√
n, we

could choose the maximal e so that α1
√
n ≥ qe/d . We omit the proof since it is

very similar to the one for Theorem 3.8.

Corollary 3.9. Let α1, α2 ∈ N. Also, for i = 1, ..., d, define Wi ⊆ Rq to be a set
of polynomials such that for any two distinct u, v ∈Wi, |Zero(u − v)| < i. Then

Pr
A←Rk×`

q

[∃(z1, z2) ∈ S`α1
\{0} × Sk

α2
: Az1 + z2 = 0] ≤

|Sα1 |` · |Sα2 |k

qnk +
e∑

i=1

(d
i
)
· |Sα1+‖Wi‖∞ |` · |Sα2+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d) ,

(7)

where e is the largest integer such that α1
√
n ≥ qe/d.

The next theorem considers a modified equation Az1 + z2 = ct1 · 2δ where
t1 = Power2Roundq(t, δ) for some δ ∈ N. However, we need to take a slightly
different approach in order to provide a reasonable upper bound for the probability
due to the appearance of Power2Roundq function.

Theorem 3.10. Let α1, α2, δ ∈ N and D ⊆ Rq\{0}. Also, for i = 1, ..., d, define
Wi ⊆ Rq to be a set of polynomials such that for any two distinct u, v ∈ Wi,
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|Zero(u − v)| < i. Then

Pr
A←Rk×`

q ,t←Rk
q

[∃(z1, z2, c) ∈ S`α1
× Sk

α2
×D : Az1 + z2 = ct1 · 2δ] ≤

≤ |D| · |Sα2 |k · ((
2δ

q(1−e1/d) )nk + |Sα1 |`

qnk +
e2∑

i=1

(d
i
)
· |Sα1+‖Wi‖∞ |`

|Wi |` · qnk(1−i/d) )

(8)

where t1 = Power2Roundq(t, δ) and e1 (resp. e2) is the largest integer such that
||D|| ≥ qe1/d (resp. α1

√
N ≥ qe2/d).

Proof. Case 1. suppose that z1 = 0. Then, the probability becomes:

Pr
t←Rk

q

[∃(z2, c) ∈ Sk
α2
×D : z2 = ct1 · 2δ].

Fix z2 = (z1, ..., zk), c and denote t = (t1, ..., tk). Consider the following probabil-
ity:

Pr
t←Rk

q

[z2 = ct] =
k∏

j=1
Pr[zj = ctj ].

By definition of e1, we have |Zero(c)| ≤ e1 by Lemma 3.2. Take arbitrary j ∈ [k].
We compute the maximal number of polynomials tj satisfying zj = ctj . Define a
set

Tu = {t ∈ Zq[X ]/(fu(X)) : zj ≡ ct (mod fu(X))}.

Clearly, |Tu| ≤ qn/d. Let u 6∈ Zero(c). Then, c is invertible modulo (fu(X), q).
Therefore, |Tu| = 1. By the Chinese Remainder Theorem, the number of polyno-
mials tj satisfying zj = ctj is at most

k∏
u=1
|Tu| ≤ q|Zero(c)|·n/d ≤ qe1·n/d .

Hence, we end up with

Pr[zj = ctj ] ≤
qe1·n/d

qn = 1
qn(1−e1/d) .

Thus:

Pr
t←Rk

q

[z2 = ct] =
k∏

j=1
Pr[zj = ctj ] ≤

1
qnk(1−e1/d) .

For t ∈ Rk
q , the most frequent value of each coefficient of t1 occurs at most 2δ

times. Hence,

Pr
t←Rk

q

[z2 = ct1 · 2δ] ≤ ( 2δ

q(1−e1/d) )nk .
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Eventually, by the union bound we obtain:

Pr
t←Rk

q

[∃(z2, c) ∈ Sk
α2
×D : z2 = ct1 · 2δ] ≤

∑
z2∈Sk

α2 ,c∈D

( 2δ

q(1−e1/d) )nk ,

and the sum is equal to |D| · |Sα2 |k · ( 2δ
q(1−e1/d) )nk .

Case 2. Suppose that z = (z1, ..., z`) 6= 0 and fix z2 = (z ′1, ..., z ′k) and c. Also,
denote A = (ai,j), t = (t1, ..., tk) and t′i = Power2Roundq(ti , δ) for i ∈ [k]. Then,

Pr
A←Rk×`,t←Rk

q

[Az1 + z2 = ct1 · 2δ] =
k∏

i=1
Pr

ai,1,...,ai,`,ti←Rq
[
∑̀
j=1

ai,jzj + z ′i = c · t′i · 2δ].

Let us fix an index i and consider the set

At = {(a1, ..., a`) ∈ R`q :
∑̀
j=1

ajzj + z ′i = c · t′ · 2δ},

where t′ = Power2Roundq(t). We want to prove that |At | ≤ qn(`−1+m/d), where
m = |Zero(z1, ..., z`)|. Define

Au
t = {(a1, ..., a`) ∈ (Zq[X ]/(fu(X)))` :

∑̀
j=1

ajzj ≡ c · t′ · 2δ − z ′i (mod fu(X))}.

Clearly, we have |Au
t | ≤ q`·n/d . Consider u 6∈ Zero(z1, ..., z`). This means that

zw is invertible modulo (fu(X), q) for some w ∈ [`]. Hence, we can pick any
possible values for a1, ..., aw−1, aw+1, ..., a` and then adjust aw so that it satisfies
the equation. Note that for fixed a1, ..., aw−1, aw+1, ..., a`, there is exactly one
such aw. Thus, |Au

t | = q(`−1)·n/d . By the Chinese Remainder Theorem, we get

|At | =
d∏

u=1
|Au

t | ≤ qm·n`/d · q(d−m)·(`−1)n/d = qn(`−1+m/d).

Since we consider uniform distribution for ai,1, ..., ai,`, ti , we can conclude that:

Pr
ai,1,...,ai,`,ti←Rq

[
∑̀
j=1

ai,jzj+z ′i = c·t′i ·2δ] =
∑

ti∈Rq
Ati

q`·n · qn ≤ qn(`−1+m/d)

q`·n = 1/qn(1−m/d).

Therefore, PrA←Rk×`,t←Rk
q
[Az1 + z2 = ct1 · 2δ] ≤ 1/qnk(1−m/d).

Now we can apply the union bound. First of all, note that if i > e2 then
ZeroRowsi(S`α1

\{0}) = ∅ by Lemma 3.2. Hence,

S`α1
\{0} =

d⋃
i=0

ZeroRowsi(S`α1
\{0}) =

e2⋃
i=0

ZeroRowsi(S`α1
\{0}).
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For simplicity, denote Zi = ZeroRowsi(S`α1
\{0}). Then,

Pr[∃(z1, z2, c) ∈ S`α1
× Sk

α2
×D : Az1 + z2 = ct1 · 2δ]

≤
∑

z1∈S`α1 \{0},z2∈Sk
α2 ,c∈D

Pr[Az1 + z2 = ct1 · 2δ]

≤
∑

z2∈Sk
α2 ,c∈D

e2∑
i=0

∑
z1∈Zi

Pr[Az1 + z2 = ct1 · 2δ]

≤
∑

z2∈Sk
α2 ,c∈D

e2∑
i=0

∑
z1∈Zi

1/qnk(1−i/d)

≤
∑

z2∈Sk
α2 ,c∈D

e2∑
i=0
|Zi |/qnk(1−i/d).

(9)

By Lemma 3.4, |Zi | ≤
(d

i)·|Sα1+||Wi ||∞ |
`

|Wi |` . Also, we have |Z0| ≤ |Sα1 |`. Therefore,
we can bound the probability above by:

|D| · |Sα2 |k · (|Sα1 |`/qnk +
e2∑

i=1

(d
i
)
· |Sα1+‖Wi‖∞ |`

|Wi |` · qnk(1−i/d) ). (10)

The theorem now follows from combining the two cases. ut

3.3 Constructing Wi

All the probability results presented in the previous subsection depend on the
sizes of sets Wi . Recall that a set Wi satisfies a condition that for any two distinct
u, v ∈Wi , we have |Zero(u − v)| < i. Based on the upper bounds obtained above,
we would like to construct large sets Wi but with small infinity norm ||Wi ||∞.

Let us start by constructing W1. We choose

W1 := {X i : i ∈ [2n]}.

Clearly, X i −X j ∈ Rq is invertible, for i 6= j, so |Zero(X i −X j)| = 0 < 1. Also,
|W1| = 2n and ||W1||∞ = 1.

Now, let us fix i ≥ 2. The main idea is to set Wi to be a subset of S = {u ∈
Rq : ||u|| < 1

2q
i/d}, i.e ||Wi || < 1

2q
i/d . Note that if we pick two distinct u, v ∈ S ,

then 0 < ||u − v|| < qi/d by the triangle inequality. Hence, by Lemma 3.2 we get
that |Zero(u − v)| < i. Therefore, any subset of S will satisfy the condition for
Wi

10.
If t :=

⌊
qi/d

2

⌋
is smaller than

√
n then we set

Wi := {
t2∑

j=1
εj ·Xαj ∈ Rq : ε1, ..., εt2 ∈ {−1, 0, 1}, {α1, ..., αt2} ∈ Pt2([n])}.

10 Note that this technique can also be used for W1 as long as q1/d is large enough.
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Then, ||Wi ||∞ = 1, ||Wi || = t < 1
2q

i/d and

|Wi | =
t2∑

j=0

(
n
j

)
· 2j .

Suppose that t ≥
√
n. In this case, we provide two constructions of Wi and

in the experiments we choose the one that minimises the overall probability.

1. Set Wi := S . Then, ||Wi ||∞ =
⌊ 1

2q
i/d⌋ and |Wi | ≥ Vn( 1

2q
i/d −

√
n) 11 where

VN (r) is the volume of an n-dimensional ball of radius r .
2. Set Wi := Sbt/√nc. Clearly, we have the following properties: Wi ⊆ S ,
||Wi ||∞ = bt/

√
nc and |Wi | = (2 bt/

√
nc+ 1)n.

4 Applications to the Bai-Galbraith Scheme

We present a slightly modified version of Bai-Galbraith scheme [4] whose security
is based on MLWE in the quantum random oracle model. First, we construct the
corresponding lossy identification protocol 12. Results from the previous section
will be used to prove security properties of this ID scheme. Then, using the main
result of [11], we obtain the secure signature scheme in the QROM. Note that
identical techniques can be applied to other closely related signature schemes,
such as qTESLA [2, 8] or the original scheme [4]. We focus on the modified
scheme because it is actually a simpler version of Dilithium-QROM. Since the
highly-optimised version of Dilithium-QROM can be somewhat overwhelming to
readers who are not already comfortable with such constructions, we consider its
simplified version here.

4.1 The Identification Protocol

The algorithms for identification protocol ID = (IGen,P1,P2,V) are described in
Figure 3 with the concrete parameters par = (q, d,n, k, `, γ, γ′, η, β) given later
in Table 1 and Table 2.

We want the challenge space in these ID and signature schemes to be a subset
of the ring R, have size a little larger than 2256, and consist of polynomials with
small norms. In this paper, we set the dimension n of the ring R to be equal to
512. Hence, let us define the following challenge set:

ChSet := {c ∈ R | ‖c‖∞ = 1 and ‖c‖ =
√

46}. (11)

Hence, ChSet consists of elements in R with −1/0/1 coefficients that have exactly
46 non-zero coefficients. The size of this set is

( n
46
)
· 246, which for n = 512 is

greater than 2265.
11 This can be proven similarly as in [5] by putting a box of side-length 1 centered on

every integer point and checking that the ball is completely covered by these boxes.
12 For readers not familiar with definitions of lossy and canonical identification schemes,

we provide all necessary background in [20].
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Key Generation. The key generation starts with choosing a random 256-bit
seed ρ and expanding into a matrix A ∈ Rk×`

q by an extendable output function
Sam, i.e. a function on bit strings in which the output can be extended to any
desired length, modeled as a random oracle. The secret keys (s1, s2) ∈ S`η × Sk

η

have uniformly random coefficients between −η and η (inclusively). The value
t = As1 + s2 is then computed. The public key needed for verification is (ρ, t)
and the secret key is (ρ, s1, s2).
Protocol Execution. The prover starts the identification protocol by re-
constructing A from the random seed ρ. The next step has the prover sample
y← S`γ′−1 and then compute w = Ay. He then writes w = 2γ ·w1 + w0, with
w0 between −γ and γ (inclusively), and then sends w1 to the verifier.

The set ChSet is defined as in Equation (11), and ZSet = S`γ′−β−1 × {0, 1}k .
The set of commitments WSet is defined as WSet = {w1 : ∃y ∈ S`γ′−1 s.t. w1 =
HighBitsq(Ay, 2γ)}.

The verifier generates a random challenge c ← ChSet and sends it to the
prover. The prover computes z = y + cs. If z /∈ S`γ′−β−1, then the prover sets
his response to ⊥. He also replies with ⊥ if LowBitsq(w − cs2, 2γ) /∈ Sk

γ−β−1.
Eventually, the verifier checks whether ‖z‖∞ < γ′ − β and that Az− ct.

4.2 Security Analysis

We omit proofs of correctness and non-abort honest verifier zero-knowledge
properties since they have already been analysed in the previous works [4, 9, 11, 2].
Instead, we focus on lossyness, min entropy and computational unique response.
We recall that sets Wi are introduced in Section 3.3.

Lemma 4.1. If β ≥ maxs∈Sη,c∈ChSet ||cs||∞, then ID is perfectly naHVZK and
has correctness error ν ≈ 1− exp(−βn · (k/γ + `/γ′)).

IGen(par)
01 ρ← {0, 1}256

02 A← Rk×`
q := Sam(ρ)

03 (s1, s2)← S`η × Sk
η

04 t := As1 + s2
05 pk = (ρ, t)
06 sk = (ρ, s1, s2)
07 return (pk, sk)

P1(sk)
08 A← Rk×`

q := Sam(ρ)
09 y← S`γ′−1
10 w := Ay
11 w1 := HighBitsq(w, 2γ)
12 return (W = w1,St = (w,y))

P2(sk,W = w1, c,St = (w,y))
13 z := y + cs1
14 if ‖z‖∞ ≥ γ′−β or ‖LowBitsq(w−cs2, 2γ)‖∞ ≥ γ−β
15 then z := ⊥
16 else return Z = z

V(pk,W = w1, c,Z = z)
17 return J‖z‖∞ < γ′ − βK and Jw1 = HighBitsq(Az− ct, 2γ)K

Fig. 3. Modified Bai-Galbraith identification protocol.
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Lossyness. Let us consider the scheme in which the public key is generated
uniformly at random (Figure 4), rather than as in IGen of Figure 3. It is enough
to show that even if the prover is computationally unbounded, he only has
approximately a 1/|ChSet| probability of making the verifier accept during each
run of the identification scheme.

LossyIGen(par)
01 ρ← {0, 1}256; A← Rk×`

q := Sam(ρ)
02 t← Rk

q
03 return pk = (ρ, t)

Fig. 4. The lossy instance generator LossyIGen.

Since the output of LossyIGen is uniformly random over Rk×`
q ×Rk

q and the
output of IGen in Figure 3 is (A,As1+s2) where A← Rk×`

q and (s1, s2)← S`η×Sk
η ,

we get that

AdvLOSS
ID (A) = AdvMLWE

k,`,D (A),

where D is the uniform distribution over Sη.

Lemma 4.2. Let e` be the largest integer which satisfies qe`/d ≤ 2
√

46. Then,
ID has εls-lossy soundness, where

εls ≤
1

|ChSet| +
|S2(γ′−β−1)|` · |S4γ+2|k · |ChSet|2

qnk

+
e∑̀

i=1

(e`
i
)
· |S2(γ′−β−1)+‖Wi‖∞ |` · |S4γ+2+‖Wi‖∞ |k · |ChSet|2

|Wi |`+k · qnk(1−i/d) .

(12)

Proof. Consider an unbounded adversary C that is executed in game LOSSY-IMP
of Figure 5.

GAME LOSSY-IMP:
01 pk ls := (ρ, t)← LossyIGen(par)
02 (w1,St)← C(pk ls)
03 c ← ChSet
04 z← C(St, c)
05 return Jw1 = HighBitsq(Az− ct, 2γ)K and J‖z‖∞ < γ′ − βK

Fig. 5. The lossy impersonation game LOSSY-IMP.
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Assume that for some w1, there exist two c 6= c′ ∈ ChSet and two z, z′ that
lead to C winning, i.e. ‖z‖∞, ‖z′‖∞ < γ′ − β and

w1 = HighBitsq(Az− tc, 2γ),
w1 = HighBitsq(Az′ − tc′, 2γ).

By Lemma 2.1, we know that this implies

‖Az− tc −w1 · 2γ‖∞ ≤ 2γ + 1,
‖Az′ − tc′ −w1 · 2γ‖∞ ≤ 2γ + 1.

By the triangle inequality, we have that

‖A(z− z′)− t · (c − c′)‖∞ ≤ 4γ + 2 ,

which can be rewritten as

A(z− z′) + u = t · (c − c′) (13)

for some u such that ‖u‖∞ ≤ 4γ + 2 (and ‖z− z′‖∞ ≤ 2(γ′ − β − 1)).
If A← Rk×`

q and t← Rk
q , then, by Theorem 3.8, we have that Equation (13)

is satisfied with probability less than

|S2(γ′−β−1)|` · |S4γ+2|k · |D|
qnk +

e∑̀
i=1

(e`
i
)
· |S2(γ′−β−1)+‖Wi‖∞ |` · |S4γ+2+‖Wi‖∞ |k · |D|

|Wi |`+k · qnk(1−i/d) ,

where D := {c − c′ : c, c′ ∈ ChSet}\{0} and sets Wi ’s are defined in Section 3.3.
Thus, except with the above probability, for every w1, there is at most one

possible c that allows C to win. In other words, except with the above probability,
C has at most a 1/|ChSet| chance of winning. ut
Note that we do not make any assumptions on the prime q. However, small d (e.g.
d = 2 for q ≡ 3 or 5 (mod 8)) implies small e`. As a consequence, the smaller d
we choose, then the probability above also decreases.
Min-entropy. Now, we prove that the w1 sent by the honest prover in the first
step is extremely likely to be distinct for every run of the protocol.

Lemma 4.3. Let em be the largest integer which satisfies qem/d ≤ 2γ′
√
n. Then

the identification scheme ID in Figure 3 has

α > log
(

min
{

1
M , (2γ′ − 1)n`

})
bits of min-entropy, where

M := |S2γ′ |` · |S2γ |k

qnk +
em∑
i=1

(d
i
)
· |S2γ′+‖Wi‖∞ |` · |S2γ+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d) .
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Proof. We claim that

Pr
A←Rk×`

q

[∃y 6= y′ ∈ S`γ′−1 s.t. HighBitsq(Ay, 2γ) = HighBitsq(Ay′, 2γ)]

≤ |S2γ′ |` · |S2γ |k

qnk +
em∑
i=1

(d
i
)
· |S2γ′+‖Wi‖∞ |` · |S2γ+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d) . (14)

Indeed, if we write

Decomposeq(Ay, 2γ) = (w1,w0) and Decomposeq(Ay′, 2γ) = (w′1,w′0),

then HighBitsq(Ay, 2γ) = HighBitsq(Ay′, 2γ) implies that Ay = w1 ·2γ+ w0 and
Ay′ = w′1 · 2γ + w′0 with w1 = w′1 and ‖w0‖∞, ‖w′0‖∞ ≤ γ. Hence,

A(y− y′)− (w0 −w′0) = 0 (15)

where
‖y− y′‖∞ < 2γ′, ‖w0 −w′0‖∞ ≤ 2γ.

Corollary 3.9 shows that the probability over the choice of A← Rk×`
q , that

there exist two non-zero elements of norm less than 2γ and 2γ′, respectively,
which satisfy Equation (15) is at most

|S2γ′ |` · |S2γ |k

qnk +
em∑
i=1

(d
i
)
· |S2γ′+‖Wi‖∞ |` · |S2γ+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d) = M .

This proves Equation (14).
Now, we know that with probability at least 1−M over the choice of A← Rk×`

q ,
each W = HighBitsq(Ay, 2γ) has exactly a 1∣∣S`

γ′−1

∣∣ = (2γ′ − 1)−n` probability of

being output. Thus, the claim in the lemma follows directly from the definition.
ut

Computational Unique Response. Here, we show the Computational Unique
Response (CUR) property required for strong-unforgeability of the signature
scheme.

Lemma 4.4. Let ec be the largest integer such that qec/d ≤ 2(γ′ − β)
√
n. Then

AdvCUR
ID (A) ≤

|S2(γ′−β)|` · |S4γ+2|k

qnk +
ec∑

i=1

(d
i
)
· |S2(γ′−β)+‖Wi‖∞ |` · |S4γ+2+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d)

for all (even unbounded) adversaries A.

Proof. Let (W , c,Z) = (w1, c, z) be any valid transcript and suppose A is able
to generate a valid Z ′ = z′ 6= Z such that V(pk = (A, t),w1, c, z′) = 1. Thus, we
have

w1 = UseHintq(h,Az− ct, 2γ) and w1 = UseHintq(h′,Az′ − ct, 2γ).
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q d γ

244 − 17043 2 592493
244 − 8583 4 593431
244 − 13743 8 305156
244 − 7583 16 282832
244 − 1599 32 285978
245 − 36991 64 364254
245 − 58111 128 353952
245 − 511 256 360620

245 − 23551 512 359769

Table 1. Prime moduli q for each possible value of d. We used the main result of [19]
for finding q. For each case, we also provide values γ such that 2γ|q − 1. Just like in
[11], we set γ′ = γ.

The above two equations imply (by Lemma 2.1) that

‖Az− ct−w1 · 2γ‖∞ ≤ 2γ + 1 and ‖Az′ − ct−w1 · 2γ‖∞ ≤ 2γ + 1.

By the triangle inequality, we have

A(z− z′) + u = 0

for some u such that ‖u‖ ≤ 4γ+2 and ‖z−z′‖ < 2(γ′−β). Hence, by Corollary 3.9,
the probability over the choice of A← Rk×`

q , that there exist such v,u is at most

|S2(γ′−β)|` · |S4γ+2|k

qnk +
ec∑

i=1

(d
i
)
· |S2(γ′−β)+‖Wi‖∞ |` · |S4γ+2+‖Wi‖∞ |k

|Wi |`+k · qnk(1−i/d) .

ut

4.3 Concrete Parameteres

In this subsection, we instantiate the modified Bai-Galbraith mBG signature
scheme obtained by the Fiat-Shamir transformation from ID with concrete
parameters (Table 1 and Table 2). We consider nine different instantiations of
mBG for all possible d ∈ {2i : i ∈ [9]}.

For each value of d, we have selected parameters (e.g. prime modulus q and γ)
such that the ID scheme satisfies the following security properties: (i) εzk = 0, (ii)
the scheme has more than 2845 bits of min-entropy, i.e. α > 2845, (iii) εls ≤ 2−264,
(iv) AdvCUR

ID (C) ≤ 2−288. Following the steps in [11], one can prove security of the
modified Bai-Galbraith scheme in the quantum random oracle model (see [20]).

We compare the nine different instantiations of the modified Bai-Galbraith
scheme (Table 2) with respect to recommended parameters in Table 2. Firstly,
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d 2 4 8 16 32 64 128 256 512

n 512 512 512 512 512 512 512 512 512

(k, `) (dimensions of A) (4, 4) (4, 4) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5)

# of ±1′s
in c ∈ ChSet 46 46 46 46 46 46 46 46 46

η (max. coeff. of s1, s2) 5 5 2 2 2 2 2 2 2

β(= η · (#of 1’s in c)) 230 230 92 92 92 92 92 92 92

e` (lossyness) 0 0 0 1 2 5 10 21 42
ec (CUR) 1 2 4 8 17 34 68 136 272

em (min-entropy) 1 2 4 8 17 34 68 136 272

log(εls) −264 −264 −264 −264 −264 −264 −264 −264 −264
log(AdvCUR

ID (A)) −1326 −1317 −592 −924 −288 −799 −986 −766 −677
α 3373 3363 3149 3481 2845 3356 3543 3324 3235

pk size (kilobytes) 11.29 11.29 14.11 14.11 14.11 14.43 14.43 14.43 14.43
sig size (kilobytes) 5.69 5.69 6.76 6.76 6.76 6.76 6.76 6.76 6.76
Exp. Repeats 1

1−ν 4.94 4.93 4.68 5.29 5.19 3.64 3.78 3.69 3.70

BKZ block-size
to break LWE 480 480 600 600 600 585 585 585 585

Best known
classical bit-cost 140 140 175 175 175 171 171 171 171

Best known
quantum bit-cost 127 127 159 159 159 155 155 155 155

Table 2. Parameters for the modified Bai-Galbraith scheme. Recall that ν is the
maximum coefficient of secret keys s1, s2 and β = ν · (# of ± 1’s in c ∈ ChSet). On
the other hand, variables e`, ec, em , α, εls,AdvCUR

ID (A), ν are defined in Section 4.2.

observe that for d ≤ 4, we pick q ≈ 244. In this case, we end up with public key
and signature size 11.29kB and 5.69kB respectively.

The situation changes for d = 8. Interestingly, if one keeps the same parameters
as for d = 4 then one still gets εls ≤ 2−264, hence the lossyness property is still
preserved. The problem is, however, that the advantage AdvCUR

ID (A) gets extremely
big. Concretely, for parameters above we have log(AdvCUR

ID (A)) ≈ 3483. We found
out that one of the compounds in the sum is actually dominating (see Lemma 4.4).
Namely, we get:

log(
(8

1
)
· |S2(γ′−β)+‖W1‖∞ |` · |S4γ+2+‖W1‖∞ |k

|W1|`+k · qnk(1−1/8) ) ≈ 3483.
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We believe the reason for it being so large is because for d = 8, i = 1 and q ≈ 244

we have t :=
⌊

qi/d

2
√

n

⌋
= 1 (introduced in Section 3.3). Hence, W1 has only 3512

elements. As a consequence, the value above is still big. Thus, a natural way to
solve this issue would be to increase q. Unfortunately, in order to keep the MLWE
problem hard, this would imply increasing the size of secret keys, i.e. η. Hence, β
would also get bigger, so in order to keep the repetition rate 1/(1− ν) small, we
would have to increase the value of γ (and γ′). In this case, probabilities related
to the security of ID, e.g. εls, log(AdvCUR

ID (A)), would get considerably bigger, so
one would need to consider larger q again and eventually, we would end up in
a vicious circle. We avoid that by increasing dimensions (k, `) = (5, 5) of the
matrix A. Unfortunately, this comes at a price of larger public key (14.11kB)
and signature (6.76kB) sizes. In order to minimise such costs, we decrease the
size of secret keys η = 2 and thus, we select smaller values for γ. As before, we
choose q ≈ 244. We pick almost identical parameters for d = 16 and d = 32.

Next, we consider d ≥ 64. If we choose the parameters as for d = 32 then the
lossyness probability εls is no longer small and therefore, we need to increase the
q ≈ 245. We observe that the new parameters still provide much more than 128
bits of security for MLWE. The public key gets slightly larger (14.43kB) and the
signature size stays the same as before.

In order to maintain security of the Bai-Galbraith scheme in the quantum
random oracle model for bigger d (i.e. d ≥ 256), we need to increase both
dimensions (k, `) of the matrix A as well as the prime modulus q. This results
in having 3.13kB larger public key and 1.07kB signature sizes than for d = 2.
We remark that security parameters were chosen such that the expected number
of repetitions of the protocol 1/(1− ν) is at most six. Indeed, admitting small
repetition rate as well as supporting the use of the Number Theoretic Transform,
efficient caching and polynomial sampling assures us that the protocol can be
performed very efficiently.
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