
Leakage-Resilient Cryptography from
Puncturable Primitives and Obfuscation

Yu Chen1,2,3, Yuyu Wang4,5,6
⋆
, and Hong-Sheng Zhou7

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Security, University of Chinese Academy of Sciences

chenyu@iie.ac.cn
4 Tokyo Institute of Technology, Tokyo, Japan

5 IOHK, Hong Kong, China
6 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

wang.y.ar@m.titech.ac.jp
7 Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Abstract. In this work, we develop a framework for building leakage-
resilient cryptosystems in the bounded leakage model from puncturable
primitives and indistinguishability obfuscation (iO). The major insight
of our work is that various types of puncturable pseudorandom functions
(PRFs) can achieve leakage resilience on an obfuscated street.

First, we build leakage-resilient weak PRFs from weak puncturable
PRFs and iO, which readily imply leakage-resilient secret-key encryp-
tion. Then, we build leakage-resilient publicly evaluable PRFs (PEPRFs)
from puncturable PEPRFs and iO, which readily imply leakage-resilient
key encapsulation mechanism and thus public-key encryption. As a build-
ing block of independent interest, we realize puncturable PEPRFs from
either newly introduced puncturable objects such as puncturable trap-
door functions and puncturable extractable hash proof systems or exist-
ing puncturable PRFs with iO. Finally, we construct the first leakage-
resilient public-coin signature from selective puncturable PRFs, leakage-
resilient one-way functions and iO. This settles the open problem posed
by Boyle, Segev, and Wichs (Eurocrypt 2011).

By further assuming the existence of lossy functions, all the above
constructions achieve optimal leakage rate of 1 − o(1). Such a leakage
rate is not known to be achievable for weak PRFs, PEPRFs and public-
coin signatures before. This also resolves the open problem posed by
Dachman-Soled, Gordon, Liu, O’Neill, and Zhou (PKC 2016, JOC 2018).

1 Introduction

A main line in cryptography is to design cryptosystems in security models that
capture a wide range of possible attacks. Based on the idealized assumption that
software/hardware implementations of cryptosystems perfectly hide the internal
secrets, traditional security models (following the seminal work of Goldwasser

⋆ Corresponding author

and Micali [GM84]) only give an adversary “black-box” access to cryptosystems.
However, advancements of cryptanalysis indicate that such an idealized assump-
tion is false in real world: an adversary can launch a variety of key leakage
attacks (such as [Koc96, BDL97, BS97, KJJ99, HSH+08]) to get some partial
information about secret keys.

To thwart key leakage attacks in a systematic manner, the research commu-
nity has paid extensive efforts on the design of provably secure leakage-resilient
cryptosystems in the last decade, spreading from basic primitives (including
one-way functions, pseudorandom functions, message authentication codes, en-
cryptions, and signatures) to advanced protocols (including identifications, au-
thenticated key agreements, and zero-knowledge proof systems).

Leakage models. Briefly speaking, leakage models are defined by strengthening
standard models with a leakage oracle Oleak(·), from which an adversary can
(adaptively) specify a series of leakage functions fi : {0, 1}∗ → {0, 1}ℓi and learn
the result of fi applied to the internal secret state. Over the years, several leakage
models have been proposed in the literature, differing in the specifications of fi.
In this work we focus on a simple yet general model called bounded leakage model,
introduced by Akavia et al. [AGV09]. In the bounded leakage model, all secrets
in memory are subject to leakage, i.e., the input of fi could be entire secret key
sk, while fi could be arbitrary subjected to the natural restriction that

∑
i ℓi

is bounded by some parameter ℓ, called the leakage bound. The leakage rate is
defined as the ratio of ℓ to the secret key size |sk|, i.e., ℓ/|sk|. Obviously, the
optimal leakage rate is 1− o(1) since otherwise the adversary can trivially learn
the entire secret via querying Oleak(·).

To date, the bounded leakage model has been widely adopted in many works
[NS09, KV09, CDRW10, BG10, GKPV10, HL11, BK12, BCH12]. The results
from the bounded leakage model are usually used as building blocks for leakage-
resilient schemes in more complex leakage models.

Approach towards leakage resilience. From the perspective of provable se-
curity, the main technical hurdle to achieve leakage-resilience is that the reduc-
tion must be able to handle leakage queries w.r.t. arbitrary functions chosen
from L, where L is the ensemble of admissible leakage functions. This seemingly
stipulates that the reduction should know the secret key while typically this is
not the case because the underlying intractable problems is usually embedded
in the secret key. This intuition has been formalized as “useless attacker para-
dox” in [Wic13]. Prior works overcome this paradox by taking the following two
approaches.

One approach is directly resorting to leakage-resilient assumptions (which
might be well packed as advanced assumptions). Following this approach, the
reduction can easily handle leakage queries by simply forwarding them to its
own challenger. Goldwasser et al. [GKPV10] proved that the LWE assumption
itself is leakage-resilient and then built a leakage-resilient secret-key encryp-
tion from it. Akavia et al. [AGV09] proved that meaningful and meaningless
public keys are computationally indistinguishable even in the presence of se-

2

cret key leakage based on the LWE assumption, and then utilized this leakage-
resilient “assumption” to show that Regev’s PKE [Reg05] is actually leakage-
resilient. Katz and Vaikuntanathan [KV09] built a leakage-resilient signature
from universal one-way hash functions (UOWHFs)8 together with PKE and
simulation-sound non-interactive zero knowledge (NIZK) proof system, where
the UOWHFs are actually used as leakage-resilient one-way functions. Simi-
lar strategy is also adopted for constructing other leakage-resilient signature
schemes [DHLW10, BSW11, MTVY11].

Another approach is combining key detached strategy and leakage-resilient
facts/assumptions, which is mainly used in the constructions of leakage-resilient
PKE. Informally, the key detached strategy means the underlying intractable
problems are not embedded to the secret keys, but to the ciphertexts. Fol-
lowing this approach, the reduction can easily handle key leakage queries by
either owning the secret key or relying on leakage-resilient assumptions. Naor
and Segev [NS09] utilized hash proof system (HPS) as a powerful tool to con-
struct leakage-resilient PKE. In the security proof, valid ciphertexts are first
switched to invalid ones (such switching is computationally indistinguishable
even given the whole secret key because the underlying subset membership prob-
lem and secret keys are detached) to ensure that the hash proof π has high
min-entropy, then the leftover hash lemma is used to prove the session key of
the form ext(π, s) is random even in the presence of bounded key leakage.9 Sub-
sequently, Alwen et al. [ADN+10] and Hazay et al. [HLWW13] extended HPS
to the identity-based and symmetric-key setting respectively, and used them to
construct leakage-resilient identity-based encryption and secret-key encryption.
Dodis et al. [DGK+10] constructed leakage-resilient PKE in the auxiliary input
model via a similar method. In the security proof, valid ciphertexts are also first
switched to invalid ones, then the generalized Goldreich-Levin theorem is used
to argue that the session key of the form hc(sk) is pseudorandom even given
auxiliary-input of the secret key sk.10

1.1 Motivation

So far, a broad range of leakage-resilient cryptographic schemes under various
leakage models have been proposed in the literature. Nevertheless, several in-
teresting problems are still left open around lower-level, “workhorse” primitives
like SKE, PKE, and signature under the basic bounded leakage model.

For leakage-resilient SKE, the task can be reduced to constructing leakage-
resilient weak PRFs (wPRFs) in the bounded leakage model. However, the lit-

8 This is sometimes called second pre-image resistant functions.
9 Leftover hash lemma could be interpreted as a leakage-resilient fact, which stipulates
ext(x, s) is close to uniform even given a correlated value z, as long as s is a random
seed chosen independently and x still has high min-entropy given leakage z.

10 Goldreich-Levin theorem can be interpreted as a leakage-resilient assumption, which
states that if h is one-way then hc(x) is pseudorandom even in the presence of h(x).
Here hc serves as a computational randomness extractor and h(x) could be viewed
as leakage on x.

3

erature on this topic is sparse. [Pie09, DY13] showed that any wPRF is al-
ready leakage-resilient for a logarithmic leakage bound ℓ = O(log λ). Hazay
et al. [HLWW13] built leakage-resilient wPRF from any one-way functions.
Their construction only requires minimal assumption, but its leakage rate is
O(log(λ)/|sk|), which is rather poor. To date, essentially nothing better was
known for generic construction of leakage-resilient SKE with optimal leakage
rate, beyond simply using leakage-resilient PKE in the symmetric-key setting.

For leakage-resilient PKE, existing constructions [AGV09, BG10, DGK+10,
NS09, ADN+10] are based on either specific assumptions such as LWE, DDH,
DCR, QR, or somewhat more generally the hash proof systems11. It is in-
triguing to know if there is a generic construction. In particular, whether the
generic constructions of PKE based on trapdoor functions/relations [PW08,
RS09, KMO10, Wee10] can be made leakage-resilient is still unclear. On the
other hand, semantic security against chosen-ciphertext attacks (CCA) is the
strongest notion for PKE in the traditional security model [GM84]. Several
previous works [NS09, LWZ13, QL13, QL14, CQX18] studied how to achieve
leakage-resilience and CCA security simultaneously via dedicated composition
of separate techniques. Nevertheless, no prior work considered the orthogonal
problem: whether we can acquire leakage-resilience from CCA security. We ob-
serve that in the CCA security experiment, responses to decryption queries can
be viewed as a certain form of key leakage (the leakage function f is tied to
decryption algorithm but with unbounded output length). It is interesting to
know whether there is a general connection between the two important security
notions for PKE.

For leakage-resilient signature, achieving fully leakage-resilience is of partic-
ular interest since it better captures real attacks [KV09]. This notion requires
a signature to remain existentially unforgeable under chosen-message attacks
even when an adversary obtains bounded leakage information on all intermediate
states, including the secret keys and internal random coins. Clearly, if the signing
procedure is deterministic or public-coin12, standard leakage resilience automati-
cally implies fully leakage resilience. To date, all the known fully leakage-resilient
signature schemes [BSW11, MTVY11, LLW11, GJS11] in the standard model
are randomized and secret-coin. The existence of leakage-resilient deterministic
or public-coin signature is unclear and was left as an open problem by Boyle et
al. [BSW11]. Earlier, the leakage-resilient signature scheme by Katz and Vaikun-
tanathan [KV09] is deterministic but only “one-time” secure. Recently, Wang et
al. [WMHT16] proposed a leakage-resilient public-coin signature scheme. How-
ever, their construction is only secure against selective leakage attacks, i.e., an

11 Following current conventions, we do not regard hash proof systems [CS02] as a
general assumption.

12 A signature is secret-coin if its security breaks down when the randomness used in
the signing procedure is revealed. On the contrary, a signature is public-coin if it
stays secure even when the random coins used in the signing procedure are revealed
(i.e., provided in-the-clear by the signature). In other words, public-coin signature
is secure even when the entire random coins used for signing are leaked.

4

adversary has to declare the leakage function before seeing the verification key.
Besides, their construction requires differing-input obfuscation [BGI+12], whose
existence is seriously cast in doubt [GGHW14, BSW16]. From this perspective,
the problem posed by Boyle et al. [BSW11] is still largely open.

1.2 Our Contributions

With the preceding discussion in mind, in this work we focus on generic con-
structions of leakage-resilient encryption and signature in the bounded leakage
model. The major insight of our work is that various kinds of puncturable PRFs
can achieve leakage-resilience on an obfuscated street. We summarize our main
results (depicted in Figure 1) as below.

Leakage-resilient SKE. As shown in [HLWW13], the classic construction of
CPA-secure SKE from wPRF is leakage-resilience-preserving. So, we restrict our
attention to constructing leakage-resilient wPRFs. Towards this goal, in Sec-
tion 3.2 we first put forward a new notion called weak puncturable PRFs (wP-
PRFs), which could be thought of as the puncturable version of wPRFs. We
then show wPPRFs and selective puncturable PRFs (sPPRFs) [SW14] imply
each other, while the latter is implied by the GGM-tree based PRFs [GGM86].
Finally, in Section 3.3 we build leakage-resilient wPRFs from wPPRFs and iO.

Leakage-resilient KEM. The KEM-DEM paradigm (here KEM stands for key
encapsulation mechanism, DEM stands for data encapsulation mechanism) is a
modular and efficient approach for building PKE. In the leakage setting, one
can build a leakage-resilient PKE by combining a leakage-resilient KEM with
a standard DEM. In the rest of this work, we only focus on the construction
of leakage-resilient KEM. Chen and Zhang [CZ14] put forward the notion of
publicly evaluable PRFs (PEPRFs), which encompasses almost all the known
constructions of KEM. We observe that leakage-resilient PEPRFs naturally im-
ply leakage-resilient KEM. So, the task is reduced to acquiring leakage resilience
for PEPRFs.

To this end, in Section 4.2 we first put forward the notion of puncturable
PEPRFs, then build leakage-resilient PEPRFs from puncturable PEPRFs and
iO in Section 4.3. Moreover, we instantiate puncturable PEPRFs from either
newly introduced primitives such as puncturable trapdoor functions and punc-
turable extractable hash proof systems, or existing puncturable PRFs with iO.

This result provides a unified framework for constructing leakage-resilient
KEM, which not only clarifies and encompasses the construction by Dachman-
Soled et al. [DGL+16, Section 5.1], but also indicates that the PKE construc-
tions based on “puncturable” trapdoor functions/relations (which in turn im-
plied by correlated-product trapdoor functions [RS09] or extractable hash proof
systems [Wee10] with puncturable property) can be made leakage resilient! Re-
cently, Matsuda and Hanaoka [MH15] introduced a new primitive called punc-
turable KEM (PKEM), which captures a common pattern towards CCA security
underlying many constructions of CCA-secure PKE. We remark that PPEPRFs

5

imply PKEM with perfect strong punctured decapsulation soundness. This result
establishes a somewhat surprising connection between CCA security and leak-
age resilience, that is, CCA security obtained along the puncturable road can be
converted to leakage-resilience in a non-black-box manner via obfuscation.

Leakage-resilient signature. In Section 5, we show how to build leakage-
resilient signature from selective puncturable PRFs, iO, and leakage-resilient
one-way functions. Our basic scheme is deterministic but only achieves selec-
tive security13. To attain adaptive security, several bootstrapping techniques
can be used without compromising leakage resilience. More precisely, one can
either use the magic method enabled by extremely lossy function [Zha16], ob-
taining the first deterministic leakage-resilient signature scheme, or apply the
“prefix-guessing technique” [HW09, RW14], yielding the first public-coin leakage-
resilient signature scheme. We postpone the details to the full version [CWZ18].

We highlight that in our construction the signature size is exactly the output
size of a puncturable PRF14, which is very close to the leakage bound. Clearly,
signature size cannot be shorter than leakage bound, since otherwise an ad-
versary can directly obtain a forged signature from leakage. In this sense, our
constructions also enjoy the almost optimal signature size.

All the basic constructions described above can tolerate L bits of leakage for
any polynomial L of security parameter λ. However, the leakage rate is low due
to the fact that secret keys are obfuscated programs, which could be very huge.
By further assuming the existence of lossy functions [PW08], we can remarkably
shrink the size of secret keys and achieve optimal leakage rate 1 − o(1). Such
a leakage rate is not known to be achievable for weak PRFs, PEPRFs and
deterministic/public-coin signatures before.

1.3 Overview of Our Techniques

As we summarized before, a common theme of the two main approaches towards
leakage resilience in the literature is that the reduction always try to simulate
leakage oracle perfectly, i.e., answering leakage queries with real leakage. To do
so, we have to either rely on leakage-resilient assumptions or resort to sophisti-
cated design with specific structure. It is interesting to investigate the possibility
of simulating leakage oracle computationally, namely answering leakage queries
with simulated leakage, as long as it is computationally indistinguishable from
real leakage. This would possibly lend new techniques to address the unsolved
problems in leakage-resilient cryptography.

Very recently, Dachman-Soled et al. [DGL+16] discovered powerful applica-
tions of iO to leakage-resilient cryptography. In the continual leakage model,
they presented an iO-based compiler that transforms any public-key encryption

13 In selective security model, the adversary must declare the message m∗ on which it
will make a forgery before seeing the verification key, but then can adaptively make
signing queries on messages distinct from m∗.

14 In the case of our adaptively secure construction, a signature additionally contains
a public coin of size λc for any constant c < 1.

6

wPPRF

LR-wPRF

LR-SKE

Sec.3.3 iO

sPPRF+LR-OWF

LR-SIG

Sec.5 iO

Sec.3.2

PPEPRF

LR-PEPRF

LR-PKE

Sec.4.3 iO

PTDF

CP-TDF

PEHPS

DEHPS

wPPRF+PRG+iO

Fig. 1. The bold lines and rectangles denote our contributions (the thin lines denote
those that are straightforward or follow readily from previous work).

or signature scheme with consecutive continual leakage-resilience to continual
leakage resilience allowing leakage on key updates. In the bounded leakage model,
they showed how to modify the Sahai-Waters PKE to be leakage-resilient. We
observe that their work essentially embodies the idea of simulating leakage oracle
computationally.

Simulate leakage via obfuscation. At the heart of our leakage-resilient en-
cryptions and signatures is a general approach of simulating leakages enabled by
puncturable primitives and obfuscation, which is largely inspired by the leakage-
resilient variant of Sahai-Waters PKE due to Dachman-Soled et al. [DGL+16].
Next, we first distill and extend the idea underlying the work of [DGL+16], then
carry out a systematic study of its applicability to leakage-resilient cryptography.

Recall that the common technical hurdle towards leakage resilience is to
handle leakage queries. As opposed to the naive strategy of answering leakage
queries with real secret keys, another promising strategy is simulating leakage
with “faked” secret keys. By the composition lemma, as long as the faked secret
keys are indistinguishable from the real ones, the simulated leakages are also in-
distinguishable from the real leakages because all leakage functions are efficiently
computable.

Our approach adopts the second strategy. First, a secret key sk of any cryp-
tographic scheme can always be expressed as a program Eval with sk hardwired.
If a cryptographic scheme is puncturable (e.g., puncturable PRFs), then the re-
duction may build a functional-equivalent program Eval′ with skx∗ and y∗ hard-
wired, where skx∗ is the punctured secret key at input x∗ and y∗ = Eval(x∗).
Secondly, note that indistinguishability obfuscation preserves functionality and
guarantees that the obfuscations of any two functional-equivalent programs are
computationally indistinguishable. Therefore, by setting the new secret key as
iO(Eval), the reduction is able to simulate leakage queries with iO(Eval′). This

7

approach abstracts the high-level idea of how to acquire leakage-resilience when
puncturable primitives meet iO.

Obfuscate key and extract randomness. Our leakage-resilient encryptions
exactly follow this approach. In a nutshell, we use iO to compile weak (resp.
publicly evaluable) puncturable PRFs into leakage-resilient weak (resp. pub-
licly evaluable) PRFs, which immediately yield leakage-resilient secret-key (resp.
public-key) encryption.

To best illustrate our approach, we focus here on the secret-key setting, as
it already emphasizes the main ideas underlying our approach. Starting from a
weak puncturable PRF F : K × X → {0, 1}n, we use iO to compile it into a
leakage-resilient weak PRF with a randomness extractor ext : {0, 1}n × S → Z.
The construction is instructive: (1) generate a secret key k for F , then create a
program Eval with k hardwired, which on input x and s outputs ext(Fk(x), s);
(2) set the secret key as iO(Eval). This defines a weak PRF F̂ : {0, 1}n×S → Z.
To establish security, the hybrid argument starts with the real game for leakage-
resilient wPRF, where leakage and evaluation queries are handled with real secret
key iO(Eval). In the next game, the challenger picks the challenge input x∗ and
s∗ at the very beginning, create a program Eval′ with the same input-output
behavior as Eval, where kx∗ is the punctured key for k w.r.t. x∗ and y∗ =
Fk(x

∗). The leakage and evaluation queries are thus handled with iO(Eval′).
Such modifications are undetectable by the security of iO. In the final game,
the challenger switches y∗ from Fk(x

∗) to a random value. This transition is
undetectable by the weak pseudorandomness of the starting puncturable PRF.
An important fact is that the responses to evaluation queries are determined
by kx∗ , and thus do not leak any information about y∗. Now, we can argue the
desired security in purely information-theoretic way. By appropriate parameter
choice, y∗ still retains high min-entropy in the presence of leakage, and thus the
value ext(y∗, s∗) is statistically close to uniform distribution.

In the public-key setting, our construction essentially follows the same ap-
proach. We use iO to compile puncturable PEPRF into leakage-resilient PEPRF,
which readily yield leakage-resilient CPA-secure KEM. The main technical nov-
elty lies in realizing puncturable PEPRFs from a variety of puncturable prim-
itives. More precisely, we build puncturable PEPRFs from: (1) newly intro-
duced notion of puncturable TDFs, which is in turn implied by correlated-
product TDFs [RS09]; (2) newly introduced notion of puncturable EHPS, which
is implied by EHPS [Wee10] satisfying derivable property; (3) selective punc-
turable PRFs, pseudorandom generator, and iO (adapted from the Sahai-Waters
PKE [SW14]). This provides us a unified method to build leakage-resilient KEM
from various puncturable primitives and iO.

Obfuscate key and translate leakage. Along our approach towards leakage
resilience, we investigate the possibility of building leakage-resilient signature
from puncturable primitives and iO. We choose the short “hash-and-sign” selec-
tively secure signature by Sahai and Waters [SW14] as our starting point, since
it inherits the puncturable property from its underlying selective puncturable

8

PRFs. To best illustrate the idea of our adaption, we first briefly review the
Sahai-Waters signature scheme.

The Sahai-Waters signature is essentially a PRF-based MAC with public ver-
ifiability. The signing key sk is simply a secret key of selective puncturable PRF
(sPPRF), and the signature on m is σ ← Fk(m). The verification key vk is set
as iO(Vefy) where Vefy is a program that can check the MAC publicly. To excise
out the information about Fk(m

∗) (here m∗ denotes the target message), Vefy
computes g(Fk(m)) and compares the result for equality to g(σ), where g is a
one-way function and σ is the claimed signature on m. To establish security, the
hybrid argument starts with the real game for selective signature. The interme-
diate hybrid game builds an equivalent verification program using a punctured
key km∗ and y∗ ← g(σ∗) where σ∗ = Fk(m

∗). The final hybrid game replaces σ∗

with a random value. The first transition is undetectable by the security of iO,
while the second transition is undetectable by the pseudorandomness of sPPRF.
In the final game, no PPT adversary is able to output a valid forgery (find the
preimage σ∗) with non-negligible advantage by the one-wayness of g.

Following the new approach of simulating leakage, a tempting idea to make
the Sahai-Waters signature leakage-resilient is setting the signing key as iO(Sign),
where Sign is a program that on input m outputs Fk(m). Among the transi-
tions of hybrid games, Sign is replaced by Sign′ (with km∗ and σ∗ hardwired).
In this way, leakage and signing queries can be handled with “faked” signing
key. However, we are unable to reduce the leakage-resilient unforgeability to the
one-wayness of g. This is because in addition to y∗ = g(σ∗) revealed in vk,
the information of σ∗ may also be leaked via leakage queries on signing key
iO(Sign′). Therefore, the security proof breaks down in the final game, i.e., the
reduction has to build Sign′ while σ∗ is unknown.15 We overcome this obsta-
cle by using leakage-resilient OWF to replace standard OWF. Briefly, OWF is
leakage-resilient if one-wayness remains in the presence of certain leakage on
the preimage. Also observe that a leakage function f about the signing key
iO(Sign′) can be efficiently translated to leakage about σ∗, since both f and
iO are efficiently computable. With such enhancement, in the final game the
reduction can handle signing queries using km∗ and handle leakage queries on
signing key iO(Sign′) by translating them to leakage queries on preimage σ∗ to
the underlying leakage-resilient OWF. See Section 5 for technical details.

Improving leakage rate via lossy functions. Applying the above approach
in a straightforward manner will incur poor leakage rate, because the secret keys
are obfuscated programs, which could be very large.

In [DGL+16], the authors showed how to modify their basic leakage-resilient
PKE construction to achieve optimal leakage rate. Next, we briefly revisit their
technique in the context of our construction of leakage-resilient wPRF. Now,
the key generation algorithm works as follows: (1) pick a random key ke for a
SKE scheme and generate a dummy ciphertext ct ← Enc(ke, 0

n) as the secret

15 Note that this dilemma does not occur in the case of encryption, since the argument
in the final game is information-theoretic.

9

key sk; (2) pick a collision-resistant hash h and compute η∗ ← h(ct); (3) pick
a random key k for the underlying weak PRF, obfuscate a program Eval and
store the obfuscated result Ceval into public parameters. Here, the program Eval
is hardwired with k and t∗, which on input sk and (x, s) outputs ext(Fk(x), s) if
and only if h(sk) = η∗. Intuitively, ct acts as a trigger of Ceval, which only works
when h(ct) matches η∗. In this way, the size of secret key is greatly reduced.

In the security proof, the first game is the real game. In the next game, ct is
switched to an encryption of the PRF value y∗ ← Fk(x

∗). This modification is
undetectable by the semantic security of SKE. Then, Ceval is switched to C ′

eval,
which is an obfuscation of program Eval′. With ke and a punctured PRF key
kx∗ hardwired, Eval′ works if and only if the hash value of its input ct matches
η∗. When h(ct) = t∗, it evaluates with kx∗ if x ̸= x∗, otherwise it evaluates after
decrypting ct to y∗. In the final game, y∗ is switched to a uniformly random value.
The rest security analysis is routine. A subtle problem arised is that now Eval
and Eval′ have differing inputs, because h is compressing and thus a collision
ct′ (i.e., h(ct′) = η∗ = h(ct)) that encrypts a value y′ ̸= y∗ is likely to exist.
Therefore, they have to rely on public-coin differing-input obfuscation [IPS15],
which is stronger than indistinguishability obfuscation.

As analyzed above, the usage of CRHF leads to the reliance on differing-
input obfuscation, while the choice of CRHF seems necessary to ensure that η∗

only leaks partial information about y∗ (encrypted in ct), which is crucial to
achieve high leakage rate. Can we achieve higher leakage rate without resorting
to differing-input obfuscation? The answer is affirmative. Our idea is to replace
CRHFs with lossy functions [PW08]. In the real construction, h is generated as
an injective function. By this choice, η∗ uniquely fixes its preimage ct and thus
the value y∗, With this setting, Eval and Eval′ agree on all inputs, and iO suffices
to guarantee the switching from Eval to Eval′ is undetectable. To argue the high
leakage rate we can attain, in the last game we switches h to a lossy function that
significantly lose the information about y∗. By the security of lossy functions, this
change is undetectable. Clearly, in the last game y∗ still maintains sufficiently
large min-entropy even in the presence of η∗ and leakage. By appropriate choice
of parameter, optimal leakage rate is achievable. The above technique carries
over to the constructions of leakage-resilient PEPRF and signature as well.

We believe that the our technique of improving leakage rate by interplaying
iO with lossy functions will also be instructive for avoiding using differing-input
obfuscation in other places.

1.4 Related Work

Leakage models. Several leakage models have been proposed in the literature.
In the seminal work, Micali and Reyzin [MR04] initiated the formal study of
side-channel attacks by introducing the “only computation leaks information”
model. Unfortunately, it fails to capture many practical leakage attacks, such as
the cold-boot attack of [HSH+08].

To capture more general side-channel attacks known as memory attacks,
Akavia et al. [AGV09] introduced the bounded leakage model, in which the ad-

10

versary can obtain arbitrary length-bounded leakage. The follow-up works con-
sidered various strengthens to accommodate more complex and general leakage
scenarios. Naor and Segev [NS09] generalized the bounded leakage model to noisy
leakage model (also known as entropy leakage model), where length-bounded
leakage is relaxed to entropy-bounded leakage. Alwen et al. [ADW09, ADN+10]
suggested the bounded-retrieval model, which imposes an additional requirement
that the tolerated leakage amount can grow by proportionally expanding the se-
cret key without increasing the size of public key, or computation/bandwidth
efficiency. Dodis et al. [DHLAW10] and Brakerski et al. [BKKV10] introduced
the continual leakage model for public-key schemes, where the secret key can
be periodically self-refreshed while the public key remains the same. This model
allows bounded leakage between any two successive refreshes without a-priori
bound on the overall amount of leakage throughout the lifetime of the system.

The bottomline of the bounded leakage model and its variants interpret the
following restriction on the leakage: it is information-theoretically impossible to
recover the secret key from the leakage. Dodis et al. [DKL09, DGK+10] intro-
duced the auxiliary input model (AIM), in which the total amount of leakage
could be unbounded, as long as the secret key remains hard-to-invert given the
leakage (but even if the secret key is fully determined in an information-theoretic
sense). As noted in [KV09], a drawback of this model is that given some collec-
tion of leakage functions {fi} there is no way to tell, in general, whether they
satisfy the stated requirement or not. Furthermore, existing constructions in this
model require super-polynomial hardness assumptions.

Leakage-resilient cryptosystems. There is a large body of constructions of
leakage-resilient cryptosystems in various models. In the bounded leakage model,
there are OWF [KV09, Kom16], MAC and SKE [HLWW13], PKE [AGV09,
NS09, LWZ13, QL13, QL14, CQX18], IBE [AGV09, ADN+10, CDRW10], signa-
ture [KV09, ADW09], AKE [ADW09], and zero-knowledge proofs [GJS11]. In the
continual leakage model, there are PKE [DHLAW10, BKKV10], IBE [LRW11,
YCZY12, YXZ+15], and signature [BSW11, MTVY11, LLW11]. In the auxiliary
input model, there are SKE [DKL09], PKE [DGK+10], and signature [WMHT16].

2 Preliminaries

Notation. For a distribution or random variable X, we write x
R←− X to denote

the operation of sampling a random x according to X. For a set X, we use

x
R←− X to denote the operation of sampling x uniformly at random from X,

and use |X| to denote its size. We use UX to denote the uniform distribution
over X. For a positive integer n, we use [n] to denote the set {1, . . . , n}. Unless
described otherwise, all quantities are implicitly functions of a security parameter
denoted λ. We say that a quantity is negligible, written negl(λ), if it vanishes
faster than the inverse of any polynomial in λ. A probabilistic polynomial time
(PPT) algorithm is a randomized algorithm that runs in time poly(λ). If A is a
randomized algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A outputs

11

z on inputs (x1, . . . , xn) and random coins r. For notational clarity we usually
omit r and write z ← A(x1, . . . , xn).

Due to space limitations, we postpone the background of randomness extrac-
tion, definitions of lossy functions, leakage-resilient one-way functions/symmetric
encryption/key encapsulation mechanism/signature to the full version [CWZ18].

2.1 Puncturable Pseudorandom Functions

Puncturable PRFs (PPRFs) is the simplest type of constrained PRFs [KPTZ13,
BW13, BGI14]. In a PPRF, the constrained key is associated with an element
x∗ ∈ X, which allows evaluation on all elements x ̸= x∗. Next, we recall the
definition and security notion of PPRFs from [SW14] as below.

Definition 1 (PPRFs). A PPRF F : K ×X → Y consists of four polynomial
time algorithms:

– Gen(λ): on input λ, output public parameter pp and a secret key k
R←− K. pp

will be used as an implicit input of PrivEval, Puncture and PuncEval.

– PrivEval(k, x): on input a secret key k and x ∈ X, output F (k, x).

– Puncture(k, x∗): on input a secret key k and x∗ ∈ X, output a punctured key
k({x∗}).16

– PuncEval(kx∗ , x): on input a punctured key kx∗ and an element x ∈ X, output
F (k, x) if x ̸= x∗ and a special reject symbol ⊥ otherwise.

For ease of notation, we write kx∗ to represent k({x∗}), write Fk(x) and F (k, x)
interchangeably and write Fkx∗ (x) or F (kx∗ , x) to represent PuncEval(kx∗ , x).

Sahai and Waters [SW14] defined selective pseudorandomness for PPRFs,
which is weaker than full pseudorandomness in that the adversary must commit
to the target input x∗ even before seeing the public parameter.

Selective pseudorandomness. Let A = (A1,A2) be an adversary against
PPRFs and define its advantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

(state, x∗)← A1(λ);
(pp, k)← Gen(λ);
kx∗ ← Puncture(k, x∗);

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A2(state, pp, kx∗ , y∗β);

−
1

2
.

A PPRF is said to be selectively pseudorandom if for any PPT adversaryA its
advantage defined as above is negligible in λ. For simplicity, we refer to selectively
pseudorandom PPRFs as sPPRFs. sPPRFs with fixed-length domain are easily
obtained from the GGM tree-based PRFs [GGM86], as observed in [BW13,
BGI14, KPTZ13]. Ramchen and Waters [RW14] also showed the existence of
sPPRFs with variable-length domain.
16 Without loss of generality, we assume that k({x∗}) includes the information of x∗

in plain.

12

2.2 Indistinguishability Obfuscation for Circuits

We recall the definition and security notion of indistinguishability obfuscator
from [GGH+13] as below.

Definition 2 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if the
following conditions are satisfied:

– (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ,
and for all inputs x ∈ {0, 1}∗, we have:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– (Indistinguishability of Obfuscation) For any PPT adversaries (S,D), there
exists a negligible function α such that the following holds: if Pr[∀x,C0(x) =
C1(x) : (C0, C1, aux)← S(λ)] ≥ 1− α(λ), then we have:

|Pr[D(aux, iO(λ,C0)) = 1]− Pr[D(aux, iO(λ,C1)) = 1]| ≤ α(λ)

3 Leakage-Resilient SKE

We begin this section by recalling the notion of leakage-resilient wPRFs and
their application in building leakage-resilient CPA-secure SKE from [HLWW13].
We then introduce a new notion called weak puncturable PRFs (weak PPRFs),
and show how to compile weak PPRFs to leakage-resilient wPRFs via iO.

3.1 Leakage-Resilient Weak PRFs

Standard PRFs require full pseudorandomness: given polynomially many ar-
bitrarily inputs x1, . . . , xq, the outputs Fk(x1), . . . , Fk(xq) look pseudorandom.
Sometimes, the full power of PRFs is not needed and it is sufficient to have weak
PRFs which only claim weak pseudorandomness, where pseudorandomness holds
for uniformly random choice of inputs {xi}. The corresponding leakage-resilient
notion requires that weak pseudorandomness holds even if the adversary can
learn some leakage about the secret key k. Now, we recall the formal definition
of leakage-resilient weak pseudorandomness from [HLWW13].

Leakage-resilient weak pseudorandomness. Let A = (A1,A2) be a PPT
adversary against PRFs and define its advantage in the following experiment.

AdvA(λ) = Pr


β = β′ :

(pp, k)← Gen(λ);

state← AOleak(·),Oeval($)
1 (pp);

x∗
R←− X;

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← AOeval($)
2 (state, x∗, y∗β);


− 1

2
.

13

Here Oleak(·) is a leakage oracle that on input leakage function f : K →
{0, 1}∗ returns f(k), subjected to the restriction that the sum of its output
lengths is at most ℓ. Oeval($) is an evaluation oracle that does not take any input
and on each invocation, chooses a freshly random x ∈ X and outputs (x, Fk(x)).
A PRF is ℓ-leakage-resilient weakly pseudorandom if no PPT adversary has
non-negligible advantage in the above experiment.

Remark 1. As pointed out in [HLWW13], since the adversary can always learn
a few bits of Fk(x) for some x of its choice (via leakage query), we cannot hope
to achieve full pseudorandomness in the presence of leakage, and hence setting
for weak pseudorandomness is a natural choice.

Leakage-resilient SKE. The construction of LR CPA-secure SKE from LR
wPRF is obvious. We sketch the construction from [HLWW13] for complete-
ness. Assume F : K × X → Y is a leakage-resilient wPRF, whose range Y
is an additive group (e.g., bit-strings under XOR). The secret key is exactly
the key of the underlying wPRF. To encrypt a message m ∈ Y , one samples

x
R←− X and outputs the ciphertext (x, Fk(x) + m). The decryption process is

obvious. The desired LR CPA security of SKE follows readily from the LR weak
pseudorandomness of the wPRF.

3.2 Weak Puncturable PRFs

Towards the construction of leakage-resilient wPRFs, we put forward a new
notion called weak PPRFs by introducing weak pseudorandomness for PPRFs.
We show that weak PPRFs and selective PPRFs imply each other, while the
latter is directly implied by the GGM-tree based PRFs [GGM86].

Next, we formally introduce weak pseudorandomness for PPRFs, which dif-
fers from selective pseudorandomness (cf. definition in Section 2.1) in that the
target input x∗ is uniformly chosen by the challenger, rather than being arbi-
trarily chosen by the adversary before seeing the public parameter.

Weak pseudorandomness. Let A = (A1,A2) be an adversary against PPRFs
and define its advantage in the following experiment:

AdvA(λ) = Pr


β = β′ :

(pp, k)← Gen(λ);

x∗
R←− X;

kx∗ ← Puncture(k, x∗);

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pp, x∗, kx∗ , y∗β);


− 1

2
.

A PPRF is weakly pseudorandom if no PPT adversary has non-negligible
advantage in the above experiment. For simplicity, we refer to weakly pseudo-
random PPRFs as wPPRFs.

Interestingly, we show that wPPRFs and sPPRFs imply each other.

14

Theorem 1. wPPRFs and sPPRFs imply each other.

Proof. We first show that “wPPRFs imply sPPRFs” by building sPPRFs from
wPPRFs. Let F : K×X → Y be a wPPRF, we build a sPPRF F̂ : K×X → Y
from F as below.

– Gen(λ): run (pp, k)← F.Gen(λ), pick r∗
R←− X, set p̂p = (pp, r∗) and k as the

secret key.

– PrivEval(k, x): on input k and x, output ŷ ← Fk(x + r∗) via computing
F.PrivEval(k, x+ r∗). This algorithm defines F̂k(x) := Fk(x+ r∗).

– Puncture(k, x∗): compute kx∗+r∗ ← F.Puncture(k, x∗ + r∗), output k̂x∗ =
kx∗+r∗ .

– PuncEval(k̂x∗ , x): parse k̂x∗ as kx∗+r∗ , if x ̸= x∗ output y ← Fkx∗+r∗ (x+ r∗)
via computing F.PuncEval(kx∗+r∗ , x+ r∗), else output ⊥.

We now reduce the selective pseudorandomness of the above construction to
the weak pseudorandomness of the underlying wPPRF. Let A be an adversary
against sPPRF with advantage AdvA(λ), we build an adversary B that breaks
wPPRF with the same advantage. B interacts with A in the selective pseudo-
randomness experiment of sPPRF as below:

1. Commit: A submits its target input x̂∗.

2. Setup and Challenge: B invokes its wPPRF challenger and receives back the
wPPRF challenge instance (pp, kx∗ , x∗, y∗β) where x

∗ is randomly chosen from
X, y∗β is either Fk(x

∗) if β = 0 or randomly chosen from Y if β = 1. B then

sets r∗ = x∗ − x̂∗, p̂p = (pp, r∗), k̂x̂∗ = kx∗ , sends (p̂p, k̂x̂∗ , y∗β) to A as the
sPPRF challenge.

3. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly at random over X, thereby so is r∗.
According to the construction, the punctured key k̂x̂∗ at point x̂∗ in sPPRF F̂
equals the punctured key kx̂∗+r∗ = kx∗ at point x∗ in wPPRF F . Therefore, B’s
simulation is perfect and has the same advantage as A. This proves the forward
implication.

The reverse direction that “sPPRFs imply wPPRFs” follows by a simple
reduction of weak pseudorandomness to selective pseudorandomness. Let A be
an adversary against wPPRF with advantage AdvA(λ), we build an adversary
B that breaks sPPRF with the same advantage. B interacts with A in the weak
pseudorandomness experiment of wPPRF as below:

1. Setup and Challenge: B picks x∗
R←− X and submits x∗ to its own sPPRF

challenger. Upon receiving back (pp, kx∗ , y∗β) where yβ is either Fk(x
∗) if

β = 0 or randomly chosen from Y if β = 1, B sends (pp, x∗, kx∗ , y∗β) to A as
the wPPRF challenge.

2. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly over X. Therefore, B’s simulation is
perfect and has the same advantage as A. This proves the inverse implication.

The theorem immediately follows.

15

3.3 Leakage-Resilient wPRFs from wPPRFs and iO

Now, we show how to construct leakage-resilient wPRFs from wPPRFs and iO.
Let F : K ×X → Y be a wPPRF, iO be an indistinguishability obfuscator, and
ext : Y × S → Z be an average-case (n, ϵ)-strong extractor. In what follows, we
build a LR wPRF F̂ : K̂ × X̂ → Z, where X̂ = X × S.

– Gen(λ): run (pp, k) ← F.Gen(λ), output pp and k̂ ← iO(PrivEval), where
PrivEval is the program defined in Figure 2.

– PrivEval(k̂, x̂): on input k̂ and x̂ = (x, s) ∈ X × S, output y ← k̂(x, s). This
algorithm implicitly defines F̂k̂(x̂) := ext(Fk(x), s).

PrivEval

Constants: wPPRF key k
Input: x̂ = (x, s)

1. Output z ← ext(Fk(x), s).

Fig. 2. Program PrivEval. This program is appropriately padded to the maximum of
the size of itself and program PrivEval∗ defined in Figure 3.

PrivEval∗

Constants: wPPRF punctured key kx∗ , x∗, y∗

Input: x̂ = (x, s)

1. If x = x∗, output z ← ext(y∗, s).

2. Else, output z ← ext(Fkx∗ (x), s).

Fig. 3. Program PrivEval∗

Theorem 2. If F is a secure wPPRF, iO is indistinguishably secure, ext is an
average-case (n, ϵ)-strong extractor, the above construction is a ℓ-LR wPRF as
long as ℓ ≤ log |Y | − n.

Proof. We proceed via a sequence of games. Let Si be the event that A wins in
Game i.

Game 0. This game is the standard leakage-resilient weak pseudorandomness
game for wPRFs. CH interacts with A as below:

Setup: CH runs (pp, k) ← F.Gen(λ), creates k̂ ← iO(PrivEval), where the pro-
gram PrivEval is defined in Figure 2. CH then sends pp to A.
Phase 1: A can make evaluation queries and leakage queries. For each evaluation

query, CH chooses x
R←− X and s

R←− S and returns (x, s, k̂(x, s)). For each leakage

query ⟨f⟩, CH responds with f(k̂).

16

Challenge: CH chooses x∗
R←− X, s∗

R←− S and computes y∗ ← Fk(x
∗), then

computes z∗0 ← ext(y∗, s∗), picks z∗1
R←− Z and β

R←− {0, 1}, sends z∗β to A.
Phase 2: A continues to make evaluation queries. CH responds the same way as
in Phase 1.

Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH chooses x∗
R←− X, s∗

R←− S and
computes y∗ ← Fk(x

∗) in the Setup stage. This change is only conceptual and
thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH directly aborts when handling eval-
uation queries for x = x∗.

Let E be the event that there exists one random sample x that equals x∗

when CH emulates evaluation oracle. Clearly, if E never happens, then Game
1 and Game 2 are identical. Suppose A makes at most qe evaluation queries.
Since A is a PPT adversary, qe is bounded by a polynomial in λ. Therefore,
Pr[E] ≤ qe/|X| ≤ negl(λ), we have:

|Pr[S2]− Pr[S1]| ≤ Pr[E] ≤ negl(λ)

Game 3. Same as Game 2 except that CH computes kx∗ ← F.Puncture(k, x∗),

y∗ ← Fk(x
∗), and creates k̂ ← iO(PrivEval∗) in the Setup stage. Here, the

program PrivEval∗ (defined in Figure 3) is built from constants kx∗ , x∗, y∗.
By the correctness of wPPRFs, the two programs PrivEval and PrivEval∗

agree on all inputs. By the security of iO, we have:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that CH picks y∗
R←− Y rather than setting

y∗ ← Fk(x
∗) in the Setup stage.

By a simple reduction to the weak pseudorandomness of wPPRFs, this mod-
ification is undetectable for all PPT adversaries. Thus, we have:

|Pr[S4]− Pr[S3]| ≤ AdvwPPRF
A

Game 5. Same as Game 4 except that CH picks z∗0
R←− Z rather than setting

z∗0 ← ext(y∗, s∗) in the Challenge stage.
We denote by V the set of public parameter pp, (x∗, s∗), the responses to all

evaluation queries (determined by kx∗), z∗1 and β. In both Game 4 and Game
5, y∗ is uniformly chosen from Y (independent of V), thus H∞(y∗|V) = log |Y |.
Observe that A also obtains at most ℓ bits leakage on k̂ (denote by leak) which is
correlated to y∗, it follows by the chain rule that H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V)−

17

ℓ = log |Y | − ℓ. Since ext is an average-case (n, ϵ)-strong extractor, we conclude

that ext(y∗, s∗) is ϵ-close to a uniformly random z∗0
R←− Z, even given V and

leakage. Note that A’s view in Game 4 and Game 5 is fully determined by z∗0 ,
V and leak, while V and leak are distributed identically in Game 4 and Game
5. Thereby, A’s view in Game 4 and Game 5 are ϵ/2-close. Thus, we have:

|Pr[S5]− Pr[S4]| ≤ ϵ/2 ≤ negl(λ)

In Game 5, both z∗0 and z∗1 are randomly chosen from Z. Therefore, we have:

Pr[S5] = 1/2

Putting all the above together, the theorem immediately follows. ⊓⊔

We have sketched how to achieve optimal leakage rate in Section 1.3. To
avoid repetition, we omit the details here.

Comparison with prior constructions. [Pie09, DY13] showed that any wPRF
is already leakage-resilient for a logarithmic leakage bound ℓ = O(log λ). Hazay
et al. [HLWW13] showed a black-box construction of LR wPRF from any wPRF
F : K×X → Y . Their construction takes two steps: (1) construct symmetric-key
weak HPS from wPRF; (2) build LR wPRF by parallel repetition of symmetric-
key weak HPS. The consequence is that it is not flexible and efficient. To make
the output size larger than n log |Y |, they have to invoke n independent copies
of the basic wPRF, and the domain size must be larger than n(|X| + log |Y |).
Besides, its leakage rate is rather poor, say, O(log(λ)/|k|). In contrast, our con-
struction enjoys flexible parameter choice and optimal leakage rate, which is
benefited from the non-black-box use of underlying wPPRF via iO.

4 Leakage-Resilient KEM

We begin this section by formally defining leakage-resilient PEPRFs. We then
show that leakage-resilient PEPRFs naturally yield leakage-resilient KEM. To-
wards achieving leakage-resilience for PEPRFs, we first introduce a new no-
tion called puncturable PEPRFs, and construct them from various puncturable
primitives, which we believe is of independent interest. Finally, we show how to
compile puncturable PEPRFs to leakage-resilient PEPRFs via iO.

4.1 Leakage-Resilient PEPRFs

Chen and Zhang [CZ14] put forwarded the notion of PEPRFs, which is best
viewed as a counterpart of weak PRFs in the public-key setting. In PEPRFs,
each secret key is associated with a public key, and there is a collection of NP
languages (indexed by public key) defined over domain. For any element in the
language, in addition to evaluating its PRF value using secret key, one can also
evaluate it publicly with public key and the associated witness.

18

PEPRFs neatly capture the essence of KEM, and they can be instanti-
ated from either specific assumptions or more general assumptions such as (ex-
tractable) hash proof systems and trapdoor functions. In what follows, we recall
the standard definition of PEPRFs from [CZ14] and proceed to introduce leakage
resilience for them.

Definition 3 (PEPRFs). Let L = {Lpk}pk∈PK be a collection of NP lan-
guages defined over X. A PEPRF F : SK×X → Y ∪⊥17 for L consists of three
polynomial time algorithms as below:

– Gen(λ): on input λ, output a public key pk and a secret key sk.

– PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
– PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output
y ← Fsk(x) ∈ Y .

To be applicable, L is required to be efficiently samplable, i.e., for each pk ∈ PK,
there exists an efficient sampling algorithm SampRel that on input pk outputs a
random element x ∈ Lpk together with a witness w.

Leakage-resilient weak pseudorandomness. Let A be an adversary against
PEPRFs and define its advantage as below:

AdvA(λ) = Pr

β
′ = β :

(pk, sk)← Gen(λ);
state← AOleak(·)(pk);
(x∗, w∗)← SampRel(pk);

y∗0 ← Fsk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, x∗, y∗β);

−
1

2
.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns
f(sk), subjected to the restriction that the sum of its output lengths is at most
ℓ. A PEPRF is ℓ-leakage-resilient weakly pseudorandom if no PPT adversary
has non-negligible advantage in the above experiment. As pointed out in [CZ14],
full pseudorandomness is impossible due to the publicly evaluable property.

Leakage-Resilient KEM. [CZ14] showed that weakly pseudorandom PEPRF
naturally imply CPA-secure KEM. We observe that this implication applies in
the leakage setting as well. We sketch the construction here for completeness.
Assume F : SK × X → Y is a leakage-resilient PEPRF for L = {Lpk}pk∈PK ,
where the range Y is an additive group. The key pair is exactly the key pair of

the underlying PEPRF. To encrypt a message m ∈ Y , one picks x
R←− Lpk with

a witness w, computes k ← PubEval(pk, x, w) and outputs ciphertext (x, k+m).
The decryption process re-computes k via PrivEval(k, x). The LR CPA security
of KEM readily follows from the LR weak pseudorandomness of the underlying
PEPRF. The resulting LR CPA-secure KEM can be boosted to LR CPA-secure
PKE by combining data encapsulation mechanism (DEM) with appropriate se-
curity properties [CS02].
17 In a PEPRF, when the input x is not in Lpk, its PRF value Fsk(x) may not be well

defined and will be denoted by a distinguished symbol ⊥.

19

4.2 Puncturable PEPRFs

To construct leakage-resilient PEPRFs, we first introduce the puncturable ver-
sion of PEPRFs, called puncturable PEPRFs (PPEPRFs), which could also be
viewed as an extension of PPRFs in the public-key setting. We formally define
PPEPRFs as below and postpone their realizations to the full version [CWZ18].

Definition 4 (PPEPRFs). Let L = {Lpk} be a collection of NP languages
defined over X. A PPEPRF F : SK×X → Y ∪⊥ for L consists of the following
polynomial time algorithms:

– Gen(λ): on input λ, output a public key pk and a secret key sk.

– PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
– Puncture(sk, x∗): on input sk and x∗ ∈ Lpk, output a punctured key skx∗ .

– PuncEval(skx∗ , x): on input a punctured key skx∗ and x ̸= x∗, output y ←
Fsk(x) ∈ Y ∪ ⊥.

– PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output
y ← Fsk(x) ∈ Y .

For security, we require that weak pseudorandomness remains even when the
adversary is given a punctured secret key.

Weak pseudorandomness. Let A be an adversary against PPEPRFs and
define its advantage as below:

AdvA(λ) = Pr

β
′ = β :

(pk, sk)← Gen(λ);
(x∗, w∗)← SampRel(pk);
skx∗ ← Puncture(sk, x∗);

y∗0 ← Fsk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, skx∗ , x∗, y∗β);

−
1

2
.

A PPEPRF is weakly pseudorandom if for any PPT adversary A its advan-
tage in the above experiment is negligible in λ.

4.3 Leakage-Resilient PEPRFs from PPEPRFs and iO

Let F : SK × X → Y ∪ ⊥ be a PPEPRF for L = {Lpk}pk∈PK , iO be an
indistinguishability obfuscation, and ext : Y × S → Z be an average-case (n, ϵ)-
strong extractor. Without loss of generality, we assume that Y = {0, 1}ρ. In
what follows, we build a leakage-resilient PEPRF F̂ : ˆSK × X̂ → Z ∪ ⊥ for
L̂ = {L̂pk}pk∈PK , where X̂ = X × S and L̂pk = {x̂ = (x, s) : x ∈ Lpk ∧ s ∈ S}.
According to the definition of L̂, a witness w for x ∈ Lpk is also a witness for

x̂ = (x, s) ∈ L̂pk, where s could be any seed from S.

– Gen(λ): run F.Gen(λ) to obtain (pk, sk), create ŝk ← iO(PrivEval), where
the program PrivEval is defined in Figure 4; output (pk, ŝk).

20

– PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← ŝk(x̂). This
actually defines F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

– PubEval(pk, x̂, w): on input pk, x̂ = (x, s) ∈ L̂pk and a witness w for x̂,
compute y ← Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

PrivEval

Constants: PPEPRF secret key sk
Input: x̂ = (x, s)

1. Output ext(Fsk(x), s).

Fig. 4. Program PrivEval. The program is appropriately padded to the maximum of
the size of itself and program PrivEval∗ described in Figure 5.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , x∗ and y∗

Input: x̂ = (x, s)

1. If x = x∗, output ext(y∗, s).

2. Else, output ext(Fskx∗ (x), s).

Fig. 5. Program PrivEval∗

Theorem 3. If F is a secure PPEPRF, iO is indistinguishably secure, and ext
is an average-case (n, ϵ)-strong extractor, the above PEPRF construction is ℓ-
leakage-resilient weakly pseudorandom as long as ℓ ≤ ρ− n.

The security proof is somewhat similar to that in Section 3. We postpone the
details to the full version [CWZ18].

4.4 Construction with Improved Leakage Rate

The leakage rate of the above basic construction is low. Next, we show how to
modify it to achieve optimal leakage rate. We need two extra primitives: (1) an
IND-CPA secure SKE with message space {0, 1}ρ and ciphertext space {0, 1}v;
(2) a family of (v, τ)-lossy functions. The construction is as below.

– Gen(λ): run (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), ke ← SKE.Gen(λ),

generate a dummy ciphertext ct ← SKE.Enc(ke, 0
ρ) as ŝk, compute η∗ ←

h(ct), create Ceval ← iO(PrivEval) (here the program PrivEval is defined in

Figure 6 and η∗ acts as its trigger), set p̂k = (pk, Ceval), output (p̂k, ŝk).

21

– PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← Ceval(ŝk, x̂).
This actually defines F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

– PubEval(p̂k, x̂, w): on input p̂k = (pk, Ceval, t), x̂ = (x, s) ∈ L̂pk and a witness
w for x̂, compute y ← Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

PrivEval

Constants: PPEPRF secret key sk, η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) ̸= η∗, output ⊥.
2. Else, output ext(Fsk(x), s).

Fig. 6. Program PrivEval. This program is appropriately padded to the maximum of
the size of itself and the program PrivEval∗ described in Figure 7.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , ke, x
∗ and η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) ̸= η∗, output ⊥.
2. If x = x∗, set y∗ ← SKE.Dec(ke, ŝk), output ext(y

∗, s).

3. Else, output ext(Fskx∗ (x), s).

Fig. 7. Program PuncEval

Theorem 4. If F is a secure PPEPRF, iO is indistinguishably secure, SKE is
an IND-CPA secure secret-key encryption, LF is a family of (v, τ)-lossy func-
tions, ext is an average-case (n, ϵ)-strong extractor. the above PEPRF construc-
tion is ℓ-leakage-resilient weakly pseudorandom as long as ℓ ≤ ρ− n− τ .

Proof. By appropriate parameter choice (e.g. setting v = ρ + o(ρ), n = o(ρ),

τ = o(v)), we have |ŝk| = v = ρ + o(ρ) and ℓ = ρ − o(ρ) and thus the leakage
rate is optimal.

We proceed via a sequence of games. Let Si be the event that A succeeds in
Game i.

Game 0. This is the standard leakage-resilient weak pseudorandomness game
for PEPRFs. CH interacts with A as below.

1. Setup: CH runs (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), samples ke ←
SKE.Gen(λ), generates a dummy ciphertext ct ← SKE.Enc(ke, 0

ρ) as ŝk,

22

computes η∗ ← h(ct), creates Ceval ← iO(PrivEval). CH sets p̂k = (pk, Ceval)
and sends it to A.

2. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(ŝk)
as long as the total leakage is less than ℓ.

3. Challenge: CH samples (x∗, w∗) ← SampRel(pk), picks s∗
R←− S, computes

y∗ ← Fsk(x
∗) via F.PubEval(pk, x∗, w∗), z∗0 ← ext(y∗, s∗), samples z∗1

R←− Z,

β
R←− {0, 1}. Finally, CH sends x̂∗ = (x∗, s∗) and z∗β to A.

4. Guess: A outputs a guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH samples x∗, w∗ and computes y∗ ←
Fsk(x

∗) in the Setup stage. This change is purely conceptual and thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH computes ct ← SKE.Enc(ke, y
∗)

rather than ct ← SKE.Enc(ke, 0
ρ) in the Setup stage. By a direct reduction to

the IND-CPA security of SKE, we have:

|Pr[S2]− Pr[S1]| ≤ AdvSKE
A

Game 3. Same as Game 2 except that CH computes skx∗ ← F.Puncture(sk, x∗)
and creates Ceval ← iO(PrivEval) in the Setup stage. Here, the program PrivEval∗

(defined in Figure 7) is built from constants (skx∗ , x∗, y∗).
By the injectivity of h and the correctness of SKE and PPEPRF, the two

programs PrivEval and PuncPriv agree on all inputs. By a direct reduction to
the security of iO, we conclude that:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that in the Setup stage CH picks y∗
R←− Y

rather than setting y∗ ← Fsk(x
∗).

Assuming the weak pseudorandomness of the underlying PPEPRF, this mod-
ification is undetectable by all PPT adversaries. Thus, we have:

|Pr[S4]− Pr[S3]| ≤ AdvPPEPRF
A

Game 5. Same as Game 4 except that CH samples a lossy function h via
LF.GenLossy(λ) rather than sampling an injective function in the Setup stage.
By a direct reduction to the security of lossy functions, we conclude that:

|Pr[S5]− Pr[S4]| ≤ AdvLFA

Game 6. Same as Game 5 except that CH picks z∗0
R←− Z rather than setting

z∗0 ← ext(y∗, s∗) in the Challenge stage.

23

We denote by V the set of public key p̂k = (pk, Ceval), x
∗ and s∗. In both

Game 5 and Game 6, y∗ is uniformly chosen from Y (independent of skx∗ ,
x∗ and s∗) and but is correlated to η∗ which has at most 2τ values, we have
H∞(y∗|V) ≥ ρ− τ by the chain rule. Observe that A also obtains at most ℓ bits

leakage on ŝk (denote by leak) which is correlated to y∗, it follows by the chain
rule that H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V)− ℓ = ρ− τ − ℓ, which is greater than n
by the parameter choice. Since ext is an average-case (n, ϵ)-strong extractor, we
conclude that ext(y∗, s∗) is ϵ-close to a uniformly random z∗0 ∈ Z, even given V
and leakage. Observe that A’s view in Game 5 and Game 6 are fully determined
by z∗0 , z

∗
1 , β

∗, V and leak, while z∗1 , β
∗, V and leak are distributed identically in

Game 5 and Game 6. Thereby, A’s view in Game 5 and Game 6 are ϵ/2-close.
Thus, we have:

|Pr[S6]− Pr[S5]| ≤ ϵ/2 ≤ negl(λ)

In Game 6, both z∗0 and z∗1 are randomly chosen from Z. Therefore, we have:

Pr[S6] = 1/2

Putting all the above together, the theorem immediately follows. ⊓⊔

5 Leakage-Resilient Signature

To best illustrate our idea, in the section we only present the construction with
selective security. We postpone the constructions with adaptive security and
optimal leakage rate to the full version [CWZ18].

5.1 Selective Construction from sPPRFs, Leakage-Resilient OWFs
and iO

Let F : K×M → {0, 1}n be a sPPRF, iO be an indistinguishability obfuscator,
g : {0, 1}n → {0, 1}µ be a leakage-resilient OWF. We build a leakage-resilient
signature as below.

– Gen(λ): run (pp, k)← F.Gen(λ), create sk ← iO(Sign) and vk ← iO(Verify).
The programs Sign and Verify are defined in Figure 8 and Figure 10 respec-
tively.

– Sign(sk,m): output σ ← sk(m).

– Verify(vk,m, σ): output vk(m,σ).

Theorem 5. If F is a secure sPPRF, iO is indistinguishably secure, g is ℓ-
leakage-resilient one-way, the above construction is ℓ-leakage-resilient EUF-CMA
in the selective sense.

Proof. We proceed via a sequence of games. Let Si be the probability that A
wins in Game i.

24

Sign

Constants: sPPRF key k
Input: message m

1. Compute σ ← F (k,m).

Fig. 8. Program Sign. This program is appropriately padded to the maximum of the
size of itself and program Sign∗ defined in Figure 9.

Sign∗

Constants: sPPRF punctured key km∗ , m∗, σ∗

Input: message m

1. If m = m∗, output σ∗.

2. Else, output σ ← F (km∗ ,m).

Fig. 9. Program Sign∗

Verify

Constants: sPPRF key k
Input: message m and signature σ

1. Test if g(σ) = g(F (k,m)), output 1 if true and 0 if false.

Fig. 10. Program Verify. This program is appropriately padded to the maximum of
the size of itself and the program Verify∗ defined in Figure 11.

Verify∗

Constants: sPPRF punctured key km∗ , m∗ and y∗

Input: message m and signature σ

1. If m = m∗, test whether g(σ) = y∗. Output 1 if true and 0 if false.

2. Else, test if g(σ) = g(F (km∗ ,m)). Output 1 if true and 0 if false.

Fig. 11. Program Verify∗

Game 0. This is the standard leakage-resilient selective EUF-CMA game for
signature. CH interacts with A as follows:

1. Commit: A submits the target message m∗ to CH.
2. Setup: CH runs (pp, k)← F.Gen(λ), creates sk ← iO(Sign), vk ← iO(Verify).
CH sends vk to A.

3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, CH responds with
σ ← sk(m).

4. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(sk).

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

25

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

Game 1. Same as Game 0 except that in the Setup stage CH computes σ∗ ←
F (k,m∗), y∗ ← g(σ∗), and km∗ ← F.Puncture(k,m∗), creates vk ← iO(Verify∗),
where the program Verify∗ is defined in Figure 11.

It is easy to check that the programs Verify and Verify∗ agree on all inputs.
By the security of iO, we have:

|Pr[S1]− Pr[S0]| ≤ AdviOA

Game 2. Same as Game 1 except that CH uses km∗ to handle signing queries,
i.e., returning σ ← F (km∗ ,m) for m ̸= m∗.

By the correctness of sPPRF, Game 1 and Game 2 are identical in A’s view.
Thus, we have:

Pr[S2] = Pr[S1]

Game 3. Same as Game 2 except that CH creates sk ← iO(Sign∗) in the Setup
stage. Here the program Sign∗ (defined in Figure 9) is built from constants km∗ ,
m∗ and σ∗.

It is easy to check that the two programs Sign and Sign∗ agree on all inputs.
By the security of iO, we have:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that in Setup stage CH picks σ∗ R←− {0, 1}n
rather than setting σ∗ ← F (k,m∗).

By the selective pseudorandomness of sPPRF, we have:

|Pr[S4]− Pr[S3]| ≤ AdvsPPRF
A (1)

It remains to analyze Pr[S4]. We have the following claim.

Claim. If g is an ℓ-leakage-resilient OWF, then the advantage of any PPT ad-
versary in Game 4 is negligible in λ.

Proof. Let A be a PPT adversary wins Game 4 with advantage AdvA(λ). We
construct an adversary B that breaks the assumed leakage-resilient one-wayness
of g with the same advantage, implying that Pr[S4] must be negligible.

Given (g, y∗) where y∗ ← g(σ∗) for some σ∗ R←− {0, 1}n, B interacts with A
in Game 4 with the aim to output σ′ such that g(σ′) = y∗.

1. Commit: A submits the target message m∗ to CH.
2. Setup: B runs (pp, k)← F.Gen(λ), computes km∗ ← F.Puncture(k,m∗), cre-

ates vk ← iO(Verify∗), and sends vk to A. B also picks random coins r used
for obfuscating the program Sign∗ (with constants km∗ ,m∗, σ∗ hardwired)
for later simulation. Note that the constant σ∗ is unknown to B.

26

3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, B responds with
σ ← F (km∗ ,m) using km∗ .

4. Leakage Query: Note that the signing key sk ← iO(Sign∗km∗ ,m∗,σ∗ ; r) could
be viewed as the value of some function ψ(·) at point σ∗, where ψ(·) on
input σ outputs iO(Sign∗km∗ ,m∗,σ; r). Since iO is efficiently computable, so is
ψ(·). Based on this observation, B can transform any leakage queries on sk
to leakage queries on σ∗. Upon receiving leakage query ⟨f⟩, B makes leakage
query ⟨f ◦ ψ⟩ to its own challenger and forwards the reply to A.

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

Finally, B forwards σ′ to its challenger. It is straightforward to verify that
B’s simulation for Game 4 is perfect. If A succeeds, according to the definition
of algorithm Verify in Game 4, σ′ is indeed a preimage of y∗ under g, thus B also
succeeds. This proves the claim.

Putting all the above together, the theorem immediately follows. ⊓⊔

Acknowledgments. We thank the anonymous reviewers of Asiacrypt 2018 for
their helpful comments. The first author is supported by National Natural Sci-
ence Foundation of China (Grant No. 61772522), Youth Innovation Promotion
Association CAS, Key Research Program of Frontier Sciences, CAS (Grant No.
QYZDB-SSW-SYS035). The second author is partially supported by Nomura
Research Institute, JST CREST JPMJCR14D6, JST OPERA. The third au-
thor is partially supported by NSF grant 1801470.

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs. Public-key encryption in the bounded-retrieval model. In
EUROCRYPT, pages 113–134, 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-
key cryptography in the bounded-retrieval model. In CRYPTO, pages
36–54, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In TCC, pages
474–495, 2009.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive
protocols. In TCC, pages 266–284, 2012.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults. In EUROCRYPT,
pages 37–51, 1997.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage re-
silient public-key encryption under subgroup indistinguishability - (or:
Quadratic residuosity strikes back). In CRYPTO, pages 1–20, 2010.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs. J. ACM, 59(2):6, 2012.

27

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In PKC, pages 501–519, 2014.

[BK12] Zvika Brakerski and Yael Tauman Kalai. A parallel repetition theorem
for leakage resilience. In TCC, pages 248–265, 2012.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Overcoming the hole in the bucket: Public-key cryptography
resilient to continual memory leakage. In FOCS, pages 501–510, 2010.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In CRYPTO, pages 513–525, 1997.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signa-
tures. In EUROCRYPT, pages 89–108, 2011.

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results
on differing-inputs obfuscation. In EUROCRYPT, pages 792–821, 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT, pages 280–300, 2013.

[CDRW10] Sherman S. M. Chow, Yevgeniy Dodis, Yannis Rouselakis, and Brent
Waters. Practical leakage-resilient identity-based encryption from simple
assumptions. In ACM CCS, pages 152–161, 2010.

[CQX18] Yu Chen, Baodong Qin, and Haiyang Xue. Regularly lossy functions and
their applications. In CT-RSA, 2018.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In EURO-
CRYPT, pages 45–64, 2002.

[CWZ18] Yu Chen, Yuyu Wang, and Hong-Sheng Zhou. Leakage-resilient cryp-
tography from puncturable primitives and obfuscation, 2018. http:

//eprint.iacr.org/2018/781.

[CZ14] Yu Chen and Zongyang Zhang. Publicly evaluable pseudorandom func-
tions and their applications. In SCN, pages 115–134, 2014.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary
inputs. In TCC, pages 361–381, 2010.

[DGL+16] Dana Dachman-Soled, S. Dov Gordon, Feng-Hao Liu, Adam O’Neill, and
Hong-Sheng Zhou. Leakage-resilient public-key encryption from obfusca-
tion. In PKC, pages 101–128, 2016.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Cryptography against continuous memory attacks. In FOCS,
pages 511–520, 2010.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage.
In ASIACRYPT, pages 613–631, 2010.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptog-
raphy with auxiliary input. In STOC, pages 621–630, 2009.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In TCC,
pages 1–22, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and

28

http://eprint.iacr.org/2018/781
http://eprint.iacr.org/2018/781

functional encryption for all circuits. In FOCS, pages 40–49, 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the
implausibility of differing-inputs obfuscation and extractable witness en-
cryption with auxiliary input. In CRYPTO, pages 518–535, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero
knowledge. In CRYPTO, pages 297–315, 2011.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In ICS,
pages 230–240, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[HL11] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryp-
tion. In TCC, pages 107–124, 2011.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs.
Leakage-resilient cryptography from minimal assumptions. In EURO-
CRYPT, pages 160–176, 2013.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appel-
baum, and Edward W. Felten. Lest we remember: Cold boot attacks on
encryption keys. In USENIX Security Symposium, pages 45–60, 2008.

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures
from the RSA assumption. In CRYPTO, pages 654–670, 2009.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-
inputs obfuscation and its applications. In TCC, pages 668–697, 2015.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In CRYPTO, pages 388–397, 1999.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor
functions and chosen-ciphertext security. In EUROCRYPT, pages 673–
692, 2010.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, pages 104–113, 1996.

[Kom16] Ilan Komargodski. Leakage resilient one-way functions: The auxiliary-
input setting. In TCC, pages 139–158, 2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applica-
tions. In ACM CCS, pages 669–684, 2013.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with
bounded leakage resilience. In ASIACRYPT, pages 703–720, 2009.

[LLW11] Allison B. Lewko, Mark Lewko, and Brent Waters. How to leak on key
updates. In STOC, pages 725–734, 2011.

[LRW11] Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving leak-
age resilience through dual system encryption. In TCC, pages 70–88,
2011.

29

[LWZ13] Shengli Liu, Jian Weng, and Yunlei Zhao. Efficient public key cryptosys-
tem resilient to key leakage chosen ciphertext attacks. In CT-RSA, pages
84–100, 2013.

[MH15] Takahiro Matsuda and Goichiro Hanaoka. Constructing and understand-
ing chosen ciphertext security via puncturable key encapsulation mecha-
nisms. In TCC, pages 561–590, 2015.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography
(extended abstract). In TCC, pages 278–296, 2004.

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures
resilient to continual leakage on memory and computation. In TCC, pages
89–106, 2011.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leak-
age. In CRYPTO, pages 18–35, 2009.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Advances
in Cryptology - EUROCRYPT 2009, pages 462–482, 2009.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In STOC, pages 187–196, 2008.

[QL13] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure
public-key encryption from hash proof system and one-time lossy filter.
In ASIACRYPT, pages 381–400, 2013.

[QL14] Baodong Qin and Shengli Liu. Leakage-flexible cca-secure public-key
encryption: Simple construction and free of pairing. In PKC, pages 19–
36, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated
products. In TCC, pages 419–436, 2009.

[RW14] Kim Ramchen and Brent Waters. Fully secure and fast signing from
obfuscation. In ACM CCS, pages 659–673, 2014.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: deniable encryption, and more. In STOC, pages 475–484, 2014.

[Wee10] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash
proofs. In CRYPTO, pages 314–332, 2010.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky
sources. In Innovations in Theoretical Computer Science, ITCS, pages
111–126, 2013.

[WMHT16] Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka.
Signatures resilient to uninvertible leakage. In SCN, pages 372–390, 2016.

[YCZY12] Tsz Hon Yuen, Sherman S. M. Chow, Ye Zhang, and Siu-Ming Yiu.
Identity-based encryption resilient to continual auxiliary leakage. In EU-
ROCRYPT, pages 117–134, 2012.

[YXZ+15] Rupeng Yang, Qiuliang Xu, Yongbin Zhou, Rui Zhang, Chengyu Hu,
and Zuoxia Yu. Updatable hash proof system and its applications. In
ESORICS, pages 266–285, 2015.

[Zha16] Mark Zhandry. The Magic of ELFs. In CRYPTO, pages 479–508, 2016.

30

	Lecture Notes in Computer Science

