
More is Less: Perfectly Secure Oblivious
Algorithms in the Multi-Server Setting?

T-H. Hubert Chan1, Jonathan Katz2, Kartik Nayak2,3, Antigoni
Polychroniadou4, and Elaine Shi5

1 The University of Hong Kong, hubert@cs.hku.hk
2 University of Maryland, College Park, jkatz@cs.umd.edu

3 VMware Research, nkartik@vmware.com
4 Cornell Tech, antigoni@cornell.edu

5 Cornell University, runting@gmail.com

Abstract. The problem of Oblivious RAM (ORAM) has traditionally
been studied in the single-server setting, but more recently the multi-
server setting has also been considered. Yet it is still unclear whether
the multi-server setting has any inherent advantages, e.g., whether the
multi-server setting can be used to achieve stronger security goals or
provably better efficiency than is possible in the single-server case.

In this work, we construct a perfectly secure 3-server ORAM scheme
that outperforms the best known single-server scheme by a logarithmic
factor. In the process we also show, for the first time, that there exist
specific algorithms for which multiple servers can overcome known lower
bounds in the single-server setting.

Keywords: Oblivious RAM, perfect security

1 Introduction

Oblivious RAM (ORAM) protocols [12] allow a client to outsource storage of
its data such that the client can continue to read/write its data while hiding
both the data itself as well as the client’s access pattern. ORAM was historically
considered in the single-server setting, but has recently been considered in the
multi-server setting [1, 16, 17, 19, 21, 25] where the client can store its data on
multiple, non-colluding servers. Current constructions of multi-server ORAM
are more efficient than known protocols in the single-server setting; in particular,
the best known protocols in the latter setting (when server-side computation is
not allowed) require bandwidth O(log2N/ log logN) [3, 7, 15, 18] for storing an
array of length N , whereas multi-server ORAM schemes achieve logarithmic
bandwidth6 [21].

? An online full version of our paper [5] is available at http://arxiv.org/abs/1809.

00825.
6 Although Lu and Ostrovsky [21] describe their multi-server scheme using server-

side computation, it is not difficult to see that it can be replaced with client-side
computation instead.

http://arxiv.org/abs/1809.00825
http://arxiv.org/abs/1809.00825

Nevertheless, there are several unanswered questions about the multi-server
setting. First, all work thus far in the multi-server setting achieves either com-
putational or statistical security, but not perfect security where correctness is
required to hold with probability 1 and security must hold even against com-
putationally unbounded attackers. Second, although (as noted above) we have
examples of multi-server schemes that beat existing single-server constructions,
it is unclear whether this reflects a limitation of existing single-server schemes
or whether there are inherent advantages to the multi-server setting.

We address the above questions in this work. (Unless otherwise noted, our
results hold for arbitrary block size B as long as it is large enough to store
an address, i.e., B = Ω(logN).) We construct a perfectly secure, multi-server
ORAM scheme that improves upon the overhead of the best known construction
in the single-server setting. Specifically, we show the following — henceforth if a
multi-server ORAM scheme incurs, on average, X(N) bandwidth (measured in
terms of number of blocks transmitted) per logical memory access on a logical
memory of length N , we say that the scheme has X(N) bandwidth blowup.

Theorem 1. There exists a 3-server ORAM scheme that is perfectly secure
for any single semi-honest server corruption, and achieves O(log2N) bandwidth
blowup. Further, our scheme does not rely on server-side computation or server-
to-server communication.

As a point of comparison, the best known single-server, perfectly secure ORAM
schemes require O(log3N) bandwidth [6, 9]. While Theorem 1 holds for any
block size B = Ω(logN), we show that for block sizes B = Ω(log2N) our
scheme achieves bandwidth blowup as small as O(logN).

As part of our construction, we introduce new building blocks that are of
independent theoretical interest. Specifically, we show:

Theorem 2. There exists a 3-server protocol for stable compaction that is per-
fectly secure for any single semi-honest server corruption, and achieves O(n)
bandwidth to compact an array of length n (that is secret-shared among the
servers). The same result holds for merging two sorted arrays of length n.

In the single-server setting, Lin, Shi, and Xie [20] recently proved a lower
bound showing that any oblivious algorithm for stable compaction or merg-
ing in the balls-and-bins model must incur at least Ω(n log n) bandwidth. The
balls-and-bins model characterizes a wide class of natural algorithms where each
element is treated as an atomic “ball” with a numeric label; the algorithm may
perform arbitrary boolean computation on the labels, but is only allowed to
move the balls around and not compute on their values. Our scheme works
in the balls-and-bins model, and thus shows for the first time that the multi-
server setting can overcome known lower bounds in the single-server setting for
oblivious algorithms. Furthermore, for stable compaction and merging no previ-
ous multi-server scheme was known that is asymptotically faster than existing
single-server algorithms, even in the weaker setting of computational security.
We note finally that our protocols are asymptotically optimal since clearly any
correct algorithm has to read the entire array.

2

1.1 Technical Roadmap

Oblivious sorting is an essential building block in hierarchical ORAM schemes.
At a high level, our key idea is to replace oblivious sorting, which costs O(n log n)
time on an array of length n, with cheaper, linear-time operations. Indeed, this
was also the idea of Lu and Ostrovsky [21], but they apply it to a computationally
secure hierarchical ORAM. Prior single-server ORAM schemes are built from
logarithmically many cuckoo hash tables of doubling size. Every time a memory
request has been served, one needs to merge multiple stale cuckoo hash tables
into a newly constructed cuckoo hash table — this was previously accomplished
by oblivious sorting [3, 15, 18]. Lu and Ostrovsky show how to avoid cuckoo
hashing, by having one permutation server permute the data in linear time,
and by having a separate storage server, that is unaware of the permutation,
construct a cuckoo hash table from the permuted array in linear time (with the
client’s help). Unfortunately, Lu and Ostrovsky’s technique fails for the perfect
security context due to its intimate reliance on pseudorandom functions (PRFs)
and cuckoo hashing — the former introduces computational assumptions and
the latter leads to statistical failures (albeit with negligible probability).

We are, however, inspired by Lu and Ostrovsky’s permutation-storage-separation
paradigm (and a similar approach that was described independently by Stefanov
and Shi [25]). The key concept here is to have one permutation-server that per-
mutes the data; and have operations and accesses be performed by a separate
storage server that is unaware of the permutation applied. One natural question
is whether we can apply this technique to directly construct a linear-time multi-
server oblivious sorting algorithm — unfortunately we are not aware of any way
to achieve this. Chan et al. [4] and Tople et al. [27] show that assuming the
data is already randomly permuted (where the permutation is hidden), one can
simply apply any comparison-based sorting algorithm and it would retain obliv-
iousness. Unfortunately, it is well-known that comparison-based sorting must
incur Ω(n log n) time, and this observation does not extend to non-comparison-
based sorting techniques since in general RAM computations (on numeric keys)
can leak information through access patterns.

New techniques at a glance. We propose two novel techniques that allow us
to achieve the stated results, both of which rely on the permutation-storage-
separation paradigm:

– Despite known lower bounds in the single-server setting [20], we show that
with multiple servers, we can indeed achieve linear-time oblivious stable com-
paction and merging. As prior works [3, 4, 7, 14] observe, merging and com-
paction are important building blocks in designing oblivious algorithms —
we thus believe that our new building blocks are of independent interest.

– We use the linear-time oblivious stable compaction and merging algorithms
to design a three-server ORAM. We adapt the single-server perfect ORAM
scheme by Chan et al. [6] into a new multiserver variant to save a logarithmic
factor. Specifically, in Chan et al. [6], the reshuffling operation was realized
with oblivious sorting. This operation can now be expressed entirely with

3

linear-time merging and stable compaction operations without relying on
oblivious sorting.

Stable Compaction and Merging. We first explain the intuition behind our
stable compaction algorithm. For simplicity, for the time being we will consider
only 2 servers and assume perfectly secure encryption for free (this assumption
can later be removed by using secret-sharing and by introducing one additional
server). Imagine that we start out with an array of length n that is encrypted
and resides on one server. The elements in the array are either real or dummy,
and we would like to move all dummy elements to the end of the array while
preserving the order of the real elements as they appear in the original array.
For security, we would like that any single server’s view in the protocol leaks no
information about the array’s contents.

Strawman scheme. An extremely simple strawman scheme is the following: the
client makes a scan of the input array on one server; whenever it encounters
a real element, it re-encrypts the element and writes it to the other server by
appending it to the end of the output array (initially the output array is empty).
When the entire input array has been consumed, the client pads the output array
with an appropriate number of (encrypted) dummy elements.

At first sight, this algorithm seems to preserve security: each server basically
observes a linear scan of either the input or the output array; and the perfectly-
secure encryption hides array contents. However, upon careful examination, the
second server can observe the time steps in which a write has happened to
the output array — this leaks which elements are real in the original array.
Correspondingly, in our formal modeling (Section 2), each server can not only
observe each message sent and received by itself, but also the time steps in which
these events occurred.

A second try. For simplicity we will describe our approach with server compu-
tation and server-to-server communication — but it is not hard to modify the
scheme such that servers are completely passive. Roughly speaking, the idea is
for the first server (called the permutation server) to randomly permute all el-
ements and store the permuted array on the second server (called the storage
server), such that the permutation is hidden from the storage server. Moreover,
in this permuted array, we would like the elements to be tagged with pointers to
form two linked lists: a real linked list and a dummy linked list. In both linked
lists, the ordering of elements respects the ordering in the original array. If such
a permuted array encoding two linked lists can be constructed, the client can
simply traverse the real linked list first from the storage server, and then traverse
the dummy linked list — writing down each element it encounters on the first
server (we always assume re-encryption upon writes). Since the storage server
does not know the random permutation and since every element is accessed ex-
actly once, it observes a completely random access pattern; and thus it cannot
gain any secret information.

4

The challenge remains as to how to tag each real (resp. dummy) element with
the position of the next real (resp. dummy) element in the permuted array. This
can be achieved in the following manner: the permutation server first creates a
random permutation in linear time (e.g., by employing Fisher-Yates [11]), such
that each element in the input array is now tagged with where it wants to be in
the permuted array (henceforth called the position label). Now, the client makes
a reverse scan of this input array. During this process, it remembers the position
labels of the last real element seen and of the last dummy element seen so far
— this takes O(1) client-side storage. Whenever a real element is encountered,
the client tags it with the position label of the last real seen. Similarly, whenever
a dummy is encountered, the client tags it with the position label of the last
dummy seen. Now, the permutation server can permute the array based on the
predetermined permutation (which can also be done in linear time). At this
moment, it sends the permuted, re-encrypted array to the storage server and the
linked list can now be traversed from the storage server to read real elements
followed by dummy elements.

It is not difficult to see that assuming that the encryption scheme is perfectly
secure and every write involves re-encrypting the data, then the above scheme
achieves perfect security against any single semi-honest corrupt server, and com-
pletes in linear time. Later we will replace the perfectly secure encryption with
secret-sharing and this requires the introduction of one additional server.

Extending the idea for merging. We can extend the above idea to allow linear-
time oblivious merging of two sorted arrays. The idea is to prepare both arrays
such that they are in permuted form on the storage server and in a linked
list format; and now the client can traverse the two linked lists on the storage
server, merging them in the process. In each step of the merging, only one array
is being consumed — since the storage server does not know the permutation,
it sees random accesses and cannot tell which array is being consumed.

3-Server Perfectly Secure ORAM. We now explain the techniques for con-
structing a 3-server perfectly secure ORAM. A client, with O(1) blocks of local
cache, stores N blocks of data (secret-shared) on the 3 servers, one of which
might be semi-honest corrupt. In every iteration, the client receives a memory
request of the form (read, addr) or (write, addr, data), and it completes this request
by interacting with the servers. We would like to achieve O(log2N) amortized
bandwidth blowup per logical memory request.

Background on single-server perfect ORAM. We start out from a state-of-the-art

single-server perfectly secure scheme by Chan et al. [6] that achieves O(log3N)
amortized bandwidth per memory request. Their scheme extends from the orig-
inal hierarchical ORAM framework of Goldreich and Ostrovsky [12, 13] where
data blocks are stored in levels of geometrically increasing sizes. Recall that Gol-
dreich and Ostrovsky [12,13] achieve only computational security due to the use
of a PRF; and thus one of the key ideas of Chan et al. [6] is how to remove the
need for a PRF. More concretely, each level in Goldreich and Ostrovsky’s hier-

5

archical ORAM is an oblivious hash table capable of supporting non-recurrent
requests (henceforth called one-time memory). Within each level, the position of
a data block is determined by applying a PRF to the block’s logical address. To
achieve perfect security, the key requirement is to eliminate the use the PRF.
Therefore, in Chan et al. [6], blocks within a level are secretly and randomly
permuted using an oblivious sort. To access a block within a level, the client
must first figure out the block’s correct location within the level. To achieve
this, a trivial method is for the client to locally store the entire mapping of
the correct locations (henceforth called position labels), but this would consume
linear client space. Instead Chan et al. recursively store the position labels in
a smaller hierarchical ORAM, inspired by a standard recursion technique com-
monly adopted by tree-based ORAMs [24] (but Chan et al. show how to adapt it
to the hierarchical ORAM setting). Thus, in Chan et al.’s construction, there are
logarithmically many hierarchical ORAMs (also called position-based ORAMs),
where the ORAM at depth d (called the parent depth) stores position labels for
the ORAM at depth d + 1 (called the child depth); and finally, the ORAM at
the maximum depth D = O(logN) stores the real data blocks.

Our multi-server perfect ORAM. We now explain how to build on top of Chan
et al. [6]’s idea and obtain a multi-server ORAM that saves a logarithmic factor
in bandwidth. The key to enabling this is a method for passing information
between adjacent recursion depths, without oblivious sort. Below, we first explain
how Chan et al. [6] passes information between adjacent recursion depths using
oblivious sort, and then we explain our novel techniques to accomplish the same,
but now relying only on merging and compaction in the multi-server setting.

As Chan et al. [6] point out, whenever a data block’s location is updated at
depth d through a shuffle operation, the position label at depth d−1 needs to be
updated to reflect the new location. This information passing between an ORAM
at depth d to its parent ORAM at depth d−1 is performed by using a coordinated
shuffle between the logarithmically many ORAMs upon every memory request.
This turns out to be the most intricate part of their scheme. During this shuffle,
suppose that the parent and the child each has an array of logical addresses and
a position label for each address. It is guaranteed by the ORAM construction
that all addresses the child has must appear in the parent’s array. Moreover, if
some address appears in both the parent and child, then the child’s version is
fresher. We would like to combine the information held by the parent and the
child by retaining the freshest copy of position label for every address. Chan et
al. relied on oblivious sorting to achieve this goal: if some address is held by
both the parent and child, they will appear adjacent to each other in the sorted
array; and thus in a single linear scan one can easily cross out all stale copies.

To save a logarithmic factor, we must solve the above problem using only
merging and compaction and not sorting. Notice that if both the parent’s and
the child’s arrays are already sorted according to the addresses, then the afore-
mentioned information propagation from child to parent can be accomplished
through merging rather than sorting (in the full scheme we would also need sta-
ble compaction to remove dummy blocks in a timely fashion to avoid blowup of

6

array sizes over time). But how can we make sure that these arrays are sorted
in the first place without oblivious sorting? In particular, these arrays actually
correspond to levels in a hierarchical ORAM in Chan et al. [6]’s scheme, and all
blocks in a level must appear in randomly permuted order to allow safe (one-
time) accesses — this seems to contradict our desire for sortedness. Fortunately,
here we can rely again on the permutation-storage-separation paradigm — for
simplicity again we describe our approach for 2 servers assuming perfectly se-
cure (re-)encryption upon every write. The idea is the following: although the
storage server is holding each array (i.e., level) in a randomly permuted order,
the permutation server will remember an inverse permutation such that when
this permutation is applied to the storage server’s copy, sortedness is restored.
Thus whenever shuffling is needed, the permutation server would first apply the
inverse permutation to the storage server’s copy to restore sortedness, and then
we could rely on merging (and compaction) to propagate information between
adjacent depths rather than sorting.

Outline. In Section 3, we explain our protocol for permuting and unpermuting
a list of blocks under the permutation-storage-separation paradigm and build
upon it to describe a protocol for oblivious stable compaction and merge. In
Section 4, we show the protocol for a three-server oblivious one-time memory;
this corresponds to a single level in position-based ORAM in Chan et al. [6]. In
Section 5, we first show how a three-server position-based ORAM can be built
using the one-time memory (Section 5.1), and then construct our final ORAM
scheme consisting of logarithmic number of position-based ORAMs (Section 5.2).

1.2 Related Work

The notion of Oblivious RAM (ORAM) was introduced by the seminal work of
Goldreich and Ostrovsky around three decades ago [12, 13]. Their construction
used a hierarchy of buffers of exponentially increasing size, which was later known
as the hierarchical ORAM framework. Their construction achieved an amor-
tized bandwidth blowup of O(log3N) and was secure against a computationally
bounded adversary. Subsequently, several works have improved the bandwidth
blowup from O(log3N) to O(log2N/ log logN) [3,7,15,18] under the same adver-
sarial model. Ajtai [2] was the first to consider the notion of a statistically secure
oblivious RAM that achieves O(log3N) bandwidth blowup. This was followed
by the statistically secure ORAM construction by Shi et al. [24], who introduced
the tree-based paradigm. ORAM constructions in the tree-based paradigm have
improved the bandwidth blowup from O(log3N) to O(log2N) [8, 23, 24, 26, 28].
Though the computational assumptions have been removed, the statistically se-
cure ORAMs still fail with a failure probability that is negligibly small in the
number of data blocks stored in the ORAM.

Perfectly secure ORAMs. Perfectly secure ORAM was first studied by Damg̊ard
et al. [9]. Perfect security requires that a computationally unbounded server does
not learn anything other than the number of requests with probability 1. This im-
plies that the oblivious program’s memory access patterns should be identically

7

distributed regardless of the inputs to the program; and thus with probability 1,
no information can be leaked about the secret inputs to the program. Damg̊ard
et al. [9] achieve an expected O(log3N) simulation overhead and O(logN) space
blowup relative to the original RAM program. Raskin et al. [22] and Demertzis et
al. [10] achieve a worst-case bandwidth blowup of O(

√
N logN

log logN) and O(N1/3),

respectively. Chan et al. [6] improve upon Damg̊ard et al.’s result [9] by avoiding
the O(logN) blowup in space, and by showing a construction that is conceptually
simpler. Our construction builds upon Chan et al. and improves the bandwidth
blowup to worst-case O(log2N) while assuming three non-colluding servers.

We note that since both Damg̊ard et al. [9] and Chan et al. [6] employ
perfectly oblivious random permutations, their schemes are Las Vegas algorithms
and there is a negligibly small failure probability that the algorithm exceeds the
stated runtime (however, perfect security is maintained nonetheless). Our multi-
server ORAM avoids the need for oblivious random permutation and thus the
algorithm’s runtime is deterministic.

Multi-server ORAMs. ORAMs in this category assume multiple non-colluding
servers to improve bandwidth blowup [1,16,17,19,21]. A comparison of the rel-
evant schemes is presented in Table 1. Among these, the work that is closely
related to ours is by Lu and Ostrovsky [21] which achieves a bandwidth blowup
of O(logN) assuming two non-colluding servers. In their scheme, each server
performs permutations for data that is stored by the other server. While their
construction is computationally secure, we achieve perfect security for access
patterns as well as the data itself. Moreover, our techniques can be used to per-
form an oblivious tight stable compaction and an oblivious merge operation in
linear time; how to perform these operations in linear time were not known even
for the computationally secure setting. On the other hand, our scheme achieves
an O(log2N) bandwidth blowup and uses three servers. We remark that if we
assume a perfectly secure encryption scheme, our construction can achieve per-
fectly secure access patterns using two servers. Abraham et al. [1], Gordon et
al. [16] and Kushilevitz and Mour [19] construct multi-server ORAMs using PIR.
Each of these constructions require the server to perform computation for using
PIR operations. While Abraham et al. [1] achieve statistical security for access
patterns, other work [16, 19] is only computationally secure. While the work of
Gordon et al. achieves a bandwidth blowup of O(logN), they require linear-
time server computation. Abraham et al. and Kushilevitz and Mour, on the
other hand, are poly-logarithmic and logarithmic respectively, both in compu-
tation and bandwidth blowup. In comparison, our construction achieves perfect
security and requires a passive server (i.e., a server that does not perform any
computation) at a bandwidth blowup of O(log2N).

2 Definitions

In this section, we revisit how to define multi-server ORAM schemes for the case
of semi-honest corruptions. Our definitions require that the adversary, control-
ling a subset of semi-honest corrupt servers, learns no secret information during

8

Table 1: Comparison with existing multi-server Oblivious RAM
schemes for block size Ω(logN). All of the other schemes (including the
statistically-secure schemes [1]) require two servers but assume the existence of
an unconditionally secure encryption scheme. With a similar assumption, our
work would indeed need only two servers too.

Construction
Bandwidth Server

Security
Blowup Computation

Lu-Ostrovsky [21] O(logN) - Computational
Gordon et al. [16] O(logN) O(N) Computational

Kushilevitz et al. [19] O(logN · ω(1)) O(logN · ω(1)) Computational
Abraham et al. [1] O(log2 N · ω(1)) O(log2 N · ω(1)) Statistical

Our work O(log2 N) - Perfect

the execution of the ORAM protocol. Specifically our adversary can observe all
messages transmitted to and from corrupt servers, the rounds in which they were
transmitted, as well as communication patterns between honest parties (includ-
ing the client and honest servers). Our definition generalizes existing works [1]
where they assume free encryption of data contents (even when statistical secu-
rity is desired).

2.1 Execution Model

Protocol as a system of Interactive RAMs. We consider a protocol between
multiple parties including a client, henceforth denoted by C, and k servers,
denoted by S0, . . . ,Sk−1, respectively. The client and all servers are Random
Access Machines (RAMs) that interact with each other. Specifically, the client
or each server has a CPU capable of computation and a memory that supports
reads and writes; the CPU interacts with the memory to perform computation.
The atomic unit of operation for memory is called a block. We assume that all
RAMs can be probabilistic, i.e., they can read a random tape supplying a stream
of random bits.

Communication and timing. We assume pairwise channels between all parties.
There are two notions of time in our execution model, CPU cycles and commu-
nication rounds. Without loss of generality, henceforth we assume that it takes
the same amount of time to compute each CPU instruction and to transmit each
memory block over the network to another party (since we can always take the
maximum of the two). Henceforth in this paper we often use the word round to
denote the time that has elapsed since the beginning of the protocol.

Although we define RAMs on the servers as being capable of performing any
arbitrary computation, all of our protocols require the servers to be passive, i.e.,
the server RAMs only perform read/write operations from the memory stored
by it.

9

2.2 Perfect Security under a Semi-Honest Adversary

We consider the client to be trusted. The adversary can corrupt a subset of
the servers (but it cannot corrupt the client) — although our constructions are
secure against any individual corrupt server, we present definitions for the more
general case, i.e., when the adversary can control more than one corrupt server.

We consider a semi-honest adversary, i.e., the corrupt servers still honestly
follow the protocol; however, we would like to ensure that no undesired infor-
mation will leak. To formally define security, we need to first define what the
adversary can observe in a protocol’s execution.

View of adversary viewA. Suppose that the adversary A controls a subset of
the servers — we abuse notation and use A ⊂ [k] to denote the set of corrupt
servers. The view of the adversary, denoted by viewA in a random run of the
protocol consists of the following:

1. Corrupt parties’ views: These views include 1) corrupt parties’ inputs, 2)
all randomness consumed by corrupt parties, and 3) an ordered sequence of
all messages received by corrupt parties, including which party the message
is received from, as well as the round in which each message is received.
We assume that these messages are ordered by the round in which they are
received, and then by the party from which it is received.

2. Honest communication pattern: when honest parties (including the client)
exchange messages, the adversary observes their communication pattern, in-
cluding which pairs of honest nodes exchange messages in which round.

We stress that in our model only one block can be exchanged between every
pair in a round — thus the above viewA definition effectively allows A to see the
total length of messages exchanged between honest parties.

Remark 1. We remark that this definition captures a notion of timing patterns
along with access patterns. For instance, suppose two servers store two sorted
lists that needs to be merged. The client performs a regular merge operation to
read from the two lists, reading the heads of the lists in each round. In such a
scenario, depending on the rounds in which blocks are read from a server, an
adversary that corrupts that server can compute the relative ordering of blocks
between the two lists.

Defining security in the ideal-real paradigm. Consider an ideal functionality F :
upon receiving the input I0 from the client and inputs I1, . . . , Ik from each of the
k servers, respectively, and a random string ρ sampled from some distribution,
F computes

(O0,O1, . . . ,Ok) := F(I0, I1, . . . , Ik; ρ)

where O0 is the client’s output, and O1, . . . ,Ok denote the k servers’ outputs,
respectively.

10

Definition 1 (Perfect security in the presence of a semi-honest adver-
sary). We say that “a protocol Π perfectly securely realizes an ideal functionality
F in the presence of a semi-honest adversary corrupting t servers” if and only if
for every adversary A that controls up to t corrupt servers, there exists a simu-
lator Sim such that for every input vector (I0, I1, . . . , Ik), the following real- and
ideal-world experiments output identical distributions:

– Ideal-world experiment. Sample ρ at random and compute (O0,O1, . . . ,Ok) :=
F(I0, I1, . . . , Ik, ρ). Output the following tuple where we abuse notation and
use i ∈ A to denote the fact that i is corrupt:

Sim({Ii,Oi}i∈A), O0, {Oi}i 6∈A

– Real-world experiment. Execute the (possibly randomized) real-world protocol,
and let O0,O1, . . . ,Ok be the outcome of the client and each of the k servers,
respectively. Let viewA denote the view of the adversary A in this run. Now,
output the following:

viewA, O0, {Oi}i 6∈A

Note that throughout the paper, we will define various building blocks that
realize different ideal functionalities. The security of all building blocks can be
defined in a unified approach with this paradigm. When we compose these build-
ing blocks to construct our full protocol, we can prove perfect security of the
full protocol in a composable manner. By modularly proving the security of each
building block, we can now think of each building block as interacting with an
ideal functionality. This enables us to prove the security of the full protocol in
the ideal world assuming the existence of these ideal functionalities.

We note that while the definitions in this paper apply to both active-server
protocols (where the server can perform arbitrary computation) as well as passive
server protocols (where the server performs no computation), our scheme does
not require server computation.

2.3 Definition of k-Server Oblivious RAM

Ideal logical memory. The ideal logical memory is defined in the most natural
way. There is a memory array consisting ofN blocks where each block isΩ(logN)
bits long, and each block is identified by its unique address which takes value in
the range {0, 1, . . . , N − 1}.

Initially all blocks are set to 0. Upon receiving (read, addr), the value of the
block residing at address addr is returned. Upon receiving (write, addr, data),
the block at address addr is overwritten with the data value data, and its old
value (before being rewritten) is returned.

k-server ORAM. A k-server Oblivious RAM (ORAM) is a protocol between a
client C and k servers S1, . . . ,Sk which realizes an ideal logical memory. The
execution of this protocol proceeds in a sequence of iterations: in each interac-
tion, the client C receives a logical memory request of the form (read, addr) or

11

(write, addr, data). It then engages in some (possibly randomized) protocol with
the servers, at the end of which it produces some output thus completing the
current iteration.

We require perfect correctness and perfect security as defined below. We refer
to a sequence of logical memory requests as a request sequence for short.

– Perfect correctness. For any request sequence, with probability 1, all of the
client’s outputs must be correct. In other words, we require that with proba-
bility 1, all of the client’s outputs must match what an ideal logical memory
would have output for the same request sequence.

– Perfect security under a semi-honest adversary. We say that a k-server ORAM
scheme satisfies perfect security w.r.t. a semi-honest adversary corrupting t
servers, if and only if for every A that controls up to t servers, and for every
two request sequences R0 and R1 of equal length, the views viewA(R0) and
viewA(R1) are identically distributed, where viewA(R) denotes the view of
A (as defined earlier in Section 2.2) under the request sequence R.

Since we require perfect security (and is based on information-theoretic secret-
sharing), our notion resists adaptive corruptions and is composable.

2.4 Resource Assumptions and Cost Metrics

We assume that the client can store O(1) blocks while the servers can store O(N)
blocks. We will use the metric bandwidth blowup to characterize the performance
of our protocols. Bandwidth blowup is the (amortized) number of blocks queried
in the ORAM simulation to query a single virtual block. We also note that since
the servers do not perform any computation, and the client always performs
an O(1) computation on its O(1) storage, an O(X) bandwidth blowup also
corresponds to an O(X) runtime for our protocol.

3 Core Building Blocks: Definitions and Constructions

Imagine that there are three servers denoted S0, S1, and S2, and a client denoted
C. We use Sb, b ∈ Z3 to refer to a specific server. Arithmetic performed on the
subscript b is done modulo 3.

3.1 Useful Definitions

Let T denote a list of blocks where each block is either a real block containing
a payload string and a logical address; or a dummy block denoted ⊥. We define
sorted and semi-sorted as follows:

– Sorted: T is said to be sorted iff all real blocks appear before dummy ones;
and all the real blocks appear in increasing order of their logical addresses.
If multiple blocks have the same logical address, their relative order can be
arbitrary.

– Semi-sorted: T is said to be semi-sorted iff all the real blocks appear in
increasing order of their logical addresses, and ties may be broken arbitrarily.
However, the real blocks are allowed to be interspersed by dummy blocks.

12

Array Notation. We assume each location of an array T stores a block which is
a bit-string of length B. Given two arrays T1 and T2, we use T1 ⊕T2 to denote
the resulting array after performing bitwise-XOR on the corresponding elements
at each index of the two arrays; if the two arrays are of different lengths, we
assume the shorter array is appended with a sufficient number of zero elements.

Permutation Notation. When a permutation π : [n]→ [n] is applied to an array
T indexed by [n] to produce π(T), we mean the element currently at location i
will be moved to location π(i). When we compose permutations, π ◦ σ means
that π is applied before σ. We use e to denote the identity permutation.

Layout. A layout is a way to store some data T on three servers such that the
data can be recovered by combining information on the three servers. Recall that
the client has only O(1) blocks of space, and our protocol does not require that
the client stores any persistent data.

Whenever some data T is stored on a server, informally speaking, we need
to ensure two things: 1) The server does not learn the data T itself, and 2) The
server does not learn which index i of the data is accessed. In order to ensure the
prior, we XOR secret-share the data T := T0 ⊕ T1 ⊕ T2 between three servers
Sb, b ∈ Z3 such that Sb stores Tb. For a server to not learn which index i in
T is accessed, we ensure that the data is permuted, and the access happens to
the permuted data. If the data is accessed on the same server that permutes the
data, then the index i will still be revealed. Thus, for each share Tb, we ensure
that one server permutes it and we access it from another server, i.e., we have
two types of servers:

– Each server Sb acts as a storage server for the b-th share, and thus it knows
Tb.

– Each server Sb also acts as the permutation server for the (b + 1)-th share,
and thus it also knows Tb+1 as well as πb+1.

Throughout the paper, a layout is of the following form

3-server layout : {πb,Tb}b∈Z3

where Tb and (πb+1,Tb+1) are stored by server Sb. As mentioned, Sb not only
knows its own share (Tb) but also the permutation and share of the next server
(πb+1,Tb+1).

Specifically, T0,T1,T2 denote lists of blocks of equal length: we denote n =
|T0| = |T1| = |T2|. Further, πb+1 : [n]→ [n] is a permutation stored by server Sb

for the list Tb+1. Unless there is ambiguity, we use ⊕b to mean applying ⊕b∈Z3

to three underlying arrays.
The above layout is supposed to store the array that can be recovered by:

⊕bπ
−1
b (Tb).

Henceforth, given a layout {πb,Tb}b∈Z3
, we say that the layout is sorted (or

semi-sorted) iff ⊕bπ
−1
b (Tb) is sorted (or semi-sorted).

13

Special Case. Sometimes the blocks secret-shared among S0, S1, S2 may be
unpermuted, i.e., for each b ∈ Z3, πb is the identity permutation e. In this case,
the layout is

Unpermuted layout : {e,Tb}b∈Z3

For brevity, the unpermuted layout {e,Tb}b∈Z3
is also denoted by the abstract

array T.

Definition 2 (Secret Write). An abstract array T corresponds to some un-
permuted layout {e,Tb}b∈Z3

. We say that the client secretly writes a value B to
the array T at index i, when it does the following:

– Sample random values B0 and B1 independently, and compute B2 := B ⊕
B0 ⊕ B1.

– For each b ∈ Z3, the client writes Tb[i] := Bb on server Sb (and Sb−1).

Definition 3 (Reconstruct). Given some layout {πb,Tb}b∈Z3
, the client re-

constructs a value from using tuple (i0, i1, i2) of indices, when it does the follow-
ing:

– For each b ∈ Z3, the client reads Tb[ib] from server Sb. (It is important that
the client reads Tb from Sb, even though Tb is stored in both Sb and Sb−1.)

– The reconstructed value is ⊕bTb[ib].

Protocol Notation. All protocols are denoted as out ← Prot(sin, cin). Here, sin
and cin are respectively server and client inputs to the protocol Prot. Except for
in an ORAM Lookup, all the outputs out are sent to the server.

3.2 Permute and Unpermute

Non-oblivious random permutation. Fisher and Yates [11] show how to
generate a uniformly random permutation π : [n] → [n] in O(n) time steps.
This implies that the client can write a random permutation on a server with
O(n) bandwidth. The permutation is non-oblivious, i.e., the server does learn
the permutation generated.

Definition of Permute. Permute is a protocol that realizes an ideal functional-
ity Fperm as defined below. Intuitively, this functionality takes some unpermuted
input layout (i.e., unpermuted secret-shared inputs) and three additional permu-
tations πb+1 from the three permutation servers Sb. The functionality produces
an output such that the three shares are secret-shared again, and the share re-
ceived by storage server Sb+1 is permuted using πb+1. Secret-sharing the data
again before applying the new permutations ensures that a storage server Sb+1

does not learn the permutation πb+1 applied to its share.

– {πb,T′b}b∈Z3
← Permute

(
({e,Tb}b∈Z3 , {πb}b∈Z3),⊥

)
:

14

• Input: Let {e,Tb}b∈Z3
be the unpermuted layout provided as input. (Recall

that Tb and Tb+1 are stored in server Sb.)
Moreover, for each b ∈ Z3, Sb has an additional permutation πb+1 as input
(which could be generated by the client for instance).
The arrays have the same length |T0| = |T1| = |T2| = n, for some n. The
client obtains ⊥ as the input.

• Ideal functionality Fperm:

Sample independently and uniformly random T̂0, T̂1 of length n.
Now, define T̂2 := T̂0 ⊕ T̂1 ⊕ (⊕bTb), i.e., ⊕bT̂b = ⊕bTb.

For each b ∈ Z3, define T′b := πb(T̂b).
The output layout is {πb,T′b}b∈Z3 , and the client’s output is ⊥.

Protocol Permute. The implementation of Fperm proceeds as follows:

1. Mask shares. For each data block, the client first generates block “masks” that
sum up to zero, and then applies mask to Tb+1 on server Sb. Specifically, the
client does the following, for each i ∈ [n]:
– Generate block “masks” that sum up to zero, i.e., sample independent

random blocks Bi
0 and Bi

1, and compute Bi
2 := Bi

0 ⊕ Bi
1.

– Apply mask Bi
b+1 to Tb+1[i] stored on server Sb, i.e., for each i ∈ [b], the

client writes T̂b+1[i]← Tb+1[i]⊕ Bi
b+1 on server Sb.

2. Permute share of Sb+1 and send result to Sb+1. The client uses πb+1 to per-
mute a share on the permutation server and then sends this permuted share
to the storage server, i.e., for each b ∈ Z3, the client computes computes
T′b+1 := πb+1(T̂b+1) on server Sb, and sends the result T′b+1 to Sb+1. Each
server Sb stores T′b and (πb+1,T

′
b+1); hence, the new layout {πb,T′b}b∈Z3

is
achieved.

Theorem 3. The Permute protocol perfectly securely realizes the ideal function-
ality Fperm (as per Definition 1) in the presence of a semi-honest adversary
corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

Definition of Unpermute and Protocol Description. Similar to Permute,
we also need a complementary Unpermute protocol. Its definition and protocol
are described in the full version [5].

3.3 Stable Compaction

Definition of StableCompact. StableCompact is a protocol that realizes an
ideal functionality Fcompact, as defined below:

– {e,T′b}b∈Z3 ← StableCompact({e,Tb}b∈Z3 ,⊥):
• Input layout: A semi-sorted, unpermuted layout denoted {e,Tb}b∈Z3 .

15

• Ideal functionality Fcompact: Fcompact computes T∗ := T0 ⊕ T1 ⊕ T2; it
then moves all dummy blocks in T∗ to the end of the array, while keeping
the relative order of real blocks unchanged.
Now, Fcompact randomly samples T′0,T

′
1 of appropriate length and com-

putes T′2 such that T∗ = T′0 ⊕ T′1 ⊕ T′2. The output layout is a sorted,
unpermuted layout {e,T′b}b∈Z3

.

StableCompact Protocol. The input is a semi-sorted, unpermuted layout, and
we would like to turn it into a sorted, unpermuted layout obliviously. The key
idea is to permute each share of the list (stored on the 3 servers respectively),
such that the storage server for each share does not know the permutation.
Now, the client accesses all real elements in a sorted order, and then accesses all
dummy elements, writing down the elements in a secret-shared manner as the
accesses are made. We can achieve this if each real or dummy element is tagged
with a pointer to its next element, and the pointer is in fact a 3-tuple that is also
secret-shared on the 3 servers — each element in the 3-tuple indicates where the
next element is in one of the 3 permutations.

Therefore, the crux of the algorithm is to tag each (secret-shared) element
with a (secret-shared) position tuple, indicating where its next element is — this
will effectively create two linked list structures (one for real and one for dummy):
each element in the linked lists is secret-shared in to 3 shares, and each share
resides on its storage server at an independent random location.

The detailed protocol is as follows:

1. First, each server Sb acts as the permutation server for Sb+1. Thus, the client
generates a random permutation πb+1 on the permutation server Sb using
the Fisher-Yates algorithm described in Section 3.2. Basically, for each index
i of the original list the client writes down, on each Sb, that its (b + 1)-th
share (out of 3 shares), wants to be in position πb+1(i).

2. Next, the client makes a reverse scan of (T0, π0), (T1, π1), (T2, π2) for i = n
down to 1. The client can access (Tb+1[i], πb+1(i)) by talking to Sb. In this
reverse scan, the client always locally remembers the position tuple of the
last real element encountered (henceforth denoted preal) and the position
tuple of the last dummy element encountered (henceforth denoted pdummy).
Thus, if T[kreal] is the last seen real element, then the client remembers
preal = (πb(kreal) : b ∈ Z3). pdummy is updated analogously. Initially, preal and
pdummy are set to ⊥.
During this scan, whenever a real element T[i] is encountered, the client
secretly writes the link L[i] := preal, i.e., L[i] represents secret-shares of the
next pointers for the real element and L itself represents an abstract linked
list of real elements. The links for dummy elements are updated analogously
using pdummy.
At the end of this reverse scan, the client remembers the position tuple for
the first real of the linked list denoted p1real and position tuple for the first
dummy denoted p1dummy.

16

3. Next, we call Permute inputting 1) the original layout — but importantly, now
each element is tagged with a position tuple (that is also secret-shared); and
2) the three permutations chosen by each Sb (acting as the permutation server
for Sb+1). Thus, Permute is applied to the combined layout {e, (Tb, Lb)}b∈Z3

,
where Sb has input permutation πb+1. Let the output of Permute be denoted
by {πb, (T′b, L

′
b)}b∈Z3

.
4. Finally, the client traverses first the real linked list (whose start position tuple

is p1real) and then the dummy linked list (whose start position tuple is p1dummy).
During this traversal, the client secretly writes each element encountered to
produce the sorted and unpermuted output layout.
More precisely, the client secretly writes an abstract array T′′ element by
element. Start with k ← 0 and p← p1real.
The client reconstructs element B := ⊕T′b[pb] and the next pointer of the
linked list next := ⊕L′b[pb]; the client secretly writes to the abstract array
T′′[k] := B.
Then, it updates k ← k+1 and p← next, and continues to the next element;
if the end of the real list is reached, then it sets p← p1dummy. This continues
until the whole (abstract) T′′ is secretly written to the three servers.

5. The new layout {e,T′′b }b∈Z3
is constructed.

Theorem 4. The StableCompact protocol perfectly securely realizes the ideal
functionality Fcompact (as per Definition 1) in the presence of a semi-honest
adversary corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

3.4 Merging

Definition of Merge. Merge is a protocol that realizes an ideal functionality
Fmerge as defined below:

– {e,U′′b }b∈Z3 ← Merge
(
{e, (Tb,T

′
b)}b∈Z3 ,⊥

)
:

• Input layout: Two semi-sorted, unpermuted layouts denoted {e,Tb}b∈Z3

and {e,T′b}b∈Z3 denoting abstract lists T and T′, where all the arrays
have the same length n.
• Ideal functionality Fmerge: First, Fmerge merges the two lists T0⊕T1⊕T2

and T′0 ⊕T′1 ⊕T′2, such that the resulting array is sorted with all dummy
blocks at the end. Let U′′ be this merged result. Now, Fmerge randomly
samples U′′0 and U′′1 independently of appropriate length and computes U′′2
such that U′′ = U′′0 ⊕U′′1 ⊕U′′2 . The output layout is a sorted, unpermuted
layout {e,U′′b }b∈Z3

.

Merge Protocol. The protocol receives as input, two semi-sorted, unpermuted
layouts and produces a merged, sorted, unpermuted layout as the output. The
key idea is to permute the concatenation of the two semi-sorted inputs such that
the storage servers do not know the permutation. Now, the client accesses real

17

elements in both lists in the sorted order using the storage servers to produce
a merged output. Given that a concatenation of the lists is permuted together,
elements from which list is accessed is not revealed during the merge operation,
thereby allowing us to merge the two lists obliviously. In order to access the
two lists in a sorted order, the client creates a linked list of real and dummy
elements using the permutation servers, similar to the StableCompact protocol
in Section 3.3.

The detailed protocol works as follows:

1. First, the client concatenates the two abstract lists T and T′ to obtain an
abstract list U of size 2n, i.e., we interpret Ub as the concatenation of Tb and
T′b for each b ∈ Z3. Specifically, Ub[0, n−1] corresponds to Tb and Ub[n, 2n−1]
corresponds to T′b.

2. Now, each server Sb acts as the permutation server for Sb+1. The client
generates a random permutation πb+1 : [2n] → [2n] on server Sb+1 using
the Fisher-Yates algorithm described in Section 3.2. πb+1(i) represents the
position of the (b+ 1)-th share and is stored on server Sb.

3. The client now performs a reverse scan of (U0, π0), (U1, π1), (U2, π2) for i = n
down to 1. During this reverse scan, the client always locally remembers the
position tuples of the last real element and last dummy element encountered
for both the lists. Let them be denoted by preal, p

′
real, pdummy, and p′dummy.

Thus, if U[kreal] is the last seen real element from the first list, the client
remembers preal = (πb(kreal) : b ∈ Z3). The other position tuples are updated
analogously. Each of these tuples are initially set to ⊥.
During the reverse scan, the client maintains an abstract linked list L in the
following manner. When U[i] is processed, if it is a real element from the
first list, then the client secretly writes the link L[i] := preal. L[i] represents
secret-shares of the next pointers for a real element from the first list. The
cases for p′real, pdummy, and p′dummy are analogous.
At the end of this reverse scan, the client remembers the position tuple for
the first real and first dummy elements of both linked lists. They are denoted
by p1real, p

′1
real, p

1
dummy, and p′1dummy.

4. We next call Permute to the combined layout {e, (Ub, Lb)}b∈Z3 , where each
server Sb has input πb+1, to produce {πb, (U′b, L

′
b)}b∈Z3

as output.
5. The linked lists can now be accessed using the four position tuples p1real, p

′1
real,

p1dummy, and p′1dummy. The client first starts accessing real elements in the two

lists using p1real and p′1real to merge them. When a real list ends, it starts
accessing the corresponding dummy list.
More precisely, the client secretly writes the merged result to the abstract
output array U′′.
Start with k ← 0, p1 ← p1real, p

2 ← p2real.
For each s ∈ {1, 2}, the client reconstructs Bs := ⊕bU′b[p

s
b] and nexts :=

⊕bL′b[p
s
b] at most once, i.e., if Bs and nexts have already been reconstructed

once with the tuple (ppb : b ∈ Z3), then they will not be reconstructed again.
If B1 should appear before B2, then the client secretly writes U′′[k] ← B1

and updates k ← k + 1, p1 ← next1; if the end of the real list is reached,

18

then it updates p1 ← p1dummy. The case when B2 should appear before B1 is
analogous.
The next element is processed until the client has secretly constructed the
whole abstract array U′′.

6. The new merged layout {e,U′′b }b∈Z3 is produced.

Theorem 5. The Merge protocol perfectly securely realizes the ideal function-
ality Fmerge (as per Definition 1) in the presence of a semi-honest adversary
corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

4 Three-Server One-Time Oblivious Memory

We construct an abstract datatype to process non-recurrent memory lookup
requests, i.e., between rebuilds of the data structure, each distinct address is
requested at most once. Our abstraction is similar to the perfectly secure one-
time oblivious memory by Chan et al. [6]. However, while Chan et al. only
consider perfect security with respect to access pattern, our three-server one
time memory in addition information-theoretically encrypts the data itself. Thus,
in [6], since the algorithm does not provide guarantees for the data itself, it can
modify the data structure while performing operations. In contrast, our one-
time oblivious memory is a read-only data structure. In this data structure, we
assume every request is tagged with a position label indicating which memory
location to lookup in each of the servers. In this section, we assume that such
a position is magically available during lookup; but in subsequent sections we
show how this data structure can be maintained and provided during a lookup.

4.1 Definition: Three-server One-Time Oblivious Memory

Our (three-server) one-time oblivious memory supports three operations: 1)
Build, 2) Lookup, and 3) Getall. Build is called once upfront to create the data
structure: it takes in a set of data blocks (tagged with its logical address), per-
mutes shares of the data blocks at each of the servers to create a data structure
that facilitates subsequent lookup from the servers. Once the data structure is
built, lookup operations can be performed on it. Each lookup request consists
of a logical address to lookup and a position label for each of the three servers,
thereby enabling them to perform the lookup operation. The lookup can be
performed for a real logical address, in which case the logical address and the
position labels for each of the three servers are provided; or it can be a dummy
request, in which case ⊥ is provided. Finally, a Getall operation is called to
obtain a list U of all the blocks that were provided during the Build operation.
Later, in our ORAM scheme, the elements in the list U will be combined with
those in other lists to construct a potentially larger one-time oblivious memory.

Our three-server one-time oblivious memory maintains obliviousness as long
as 1) for each real block in the one-time memory, a lookup is performed at

19

most once, 2) at most n total lookups (all of which could potentially be dummy
lookups) are performed, and 3) no two servers collude with each other to learn
the shares of the other server.

Formal Definition. Our three-server one-time oblivious memory scheme OTM[n]
is parameterized by n, the number of memory lookup requests supported by the
data structure. It is comprised of the following randomized, stateful algorithms:

–
(
U,
({
πb, (T̂b, L̂b)

}
b∈Z3

, dpos
))
← Build(T,⊥):

• Input: A sorted, unpermuted layout denoted {e,Tb}b∈Z3 representing an
abstract sorted list T. T[i] represents a key-value pair (keyi, vi) which are
either real and contains a real address keyi and value vi, or dummy and
contains a ⊥. The list T is sorted by the key keyi. The client’s input is ⊥.

• Functionality: The Build algorithm creates a layout {πb, (T̂b, L̂b)}b∈Z3 of
size 2n that will facilitate subsequent lookup requests; intuitively, n extra
dummy elements are added, and the L̂b’s maintain a singly-linked list for
these n dummy elements. Moreover, the tuple of head positions is secret-
shared ⊕bdposb among the three servers.
It also outputs a sorted list U of n key-value pairs (key, pos) sorted by key
where each pos := (pos0, pos1, pos2); the invariant is that if key 6= ⊥, then

the data for key is ⊕bT̂b[posb].
The output list U is stored as a sorted, unpermuted layout {e, Ub}b∈Z3

.
Every real key from T appears exactly once in U and the remaining entries
of U are ⊥’s. The client’s output is ⊥.
Later in our scheme, U will be propagated back to the corresponding data
structure with preceding recursion depth during a coordinated rebuild.
Hence, U does not need to carry the value vi’s.

– v ← Lookup
(({

πb, (T̂b, L̂b)
}
b∈Z3

, dpos
)
,
(
key, pos

))
:

• Input: The client provides a key key and a position label tuple pos :=

(pos0, pos1, pos2). The servers input the data structure {πb, (T̂b, L̂b)}b∈Z3

and dpos created during Build.

• Functionality: If key 6= ⊥, return ⊕bT̂b[posb] else, return ⊥.

– R← Getall
({
πb, (T̂b, L̂b)

}
b∈Z3

,⊥
)

:

• Input: The servers input the data structure {πb, (T̂b, L̂b)}b∈Z3
created dur-

ing Build.
• Functionality: the Getall algorithm returns a sorted, unpermuted layout
{e, Rb}b∈Z3 of length n. This layout represents an abstract sorted list R
of key-value pairs where each entry is either real and of the form (key, v)
or dummy and of the form (⊥,⊥). The list R contains all real elements
inserted during Build including those that have been looked up, padded
with (⊥,⊥) to a length of n.7

7 The Getall function returns as output the unpermuted layout that was input to Build.
It primarily exists for ease of exposition.

20

Valid request sequence. Our three-server one-time oblivious memory ensures
obliviousness only if lookups are non-recurrent (i.e., the same real key is never
looked up more than once); and the number of lookups is upper bounded by
n, the size of the input list provided to Build. More formally, a sequence of
operations is valid, iff the following holds:

– The sequence begins with a single call to Build, followed by a sequence of at
most n Lookup calls, and finally the sequence ends with a call to Getall.

– All real keys in the input provided to Build have distinct keys.
– For every Lookup concerning a real element with client’s input (key, pos :=

(pos0, pos1, pos2)), the key should have existed in the input to Build. More-
over, the position label tuple (pos0, pos1, pos2) must be the correct position
labels for each of the three servers.

– No two Lookup requests should request the same real key.

Correctness. Correctness requires that:

1. For any valid request sequence, with probability 1, every Lookup request
must return the correct value v associated with key key that was supplied in
the Build operation.

2. For any valid request sequence, with probability 1, Getall must return an
array R containing every (key, v) pair that was supplied to Build, padded
with dummies to have n entries.

Perfect obliviousness. Suppose the following sequence of operations are executed:
the initial Build, followed by a valid request sequence of ` Lookup’s, and the final
Getall. Perfect obliviousness requires that for each b ∈ Z3, the joint distribution
of the communication pattern (between the client and the servers) and the viewb

of Sb is fully determined by the parameters n and `.

4.2 Construction

Intuition. The intuition is to store shares of the input list on storage servers
such that each share is independently permuted and each server storing a share
does not know its permutation (but some other server does). In order to lookup a
real element, if a position label for all three shares are provided, then the client
can directly access the shares. Since the shares are permuted and the server
storing a share does not know the permutation, each lookup corresponds to ac-
cessing a completely random location and is thus perfectly oblivious. This is true
so far as each element is accessed exactly once and the position label provided
is correct; both of these constraints are satisfied by a valid request sequence.
However, in an actual request sequence, some of the requests may be dummy
and these requests do not carry a position label with them. To accommodate
dummy requests, before permuting the shares, we first append shares of dummy
elements to shares of the unpermuted input list. We add enough dummy ele-
ments to support all lookup requests before the one time memory is destroyed.

21

Then we create a linked list of dummy elements so that a dummy element stores
the position label of the location where the next dummy element is destined to
be after permutation. The client maintains the head of this linked list, updating
it every time a dummy request is made. To ensure obliviousness, the links (posi-
tion labels) in the dummy linked list are also stored secret-shared and permuted
along with the input list.

Protocol Build. Our oblivious Build algorithm proceeds as follows. Note that
the input list T is stored as an unpermuted layout {e,Tb}b∈Z3

on the three
servers.

1. Initialize to add dummies. Construct an extended abstract T′[0..2n − 1] of
length 2n such that the first n entries are key-value pairs copied from the
input T (some of which may be dummies).
The last n entries of T′ contain special dummy keys. For each i ∈ [1..n],
the special dummy key i is stored in T′[n− 1 + i], and the entry has a key-
value pair denoted by ⊥i. For each i ∈ [1..n], the client secretly writes ⊥i to
T′[n− 1 + i].

2. Generate permutations for OTM. Each server Sb acts as the permutation
server for Sb+1. For each b ∈ Z3, the client generates a random permutation
πb+1 : [2n]→ [2n] on permutation server Sb.

3. Construct a dummy linked list. Using the newly generated permutation πb+1

on server Sb, the client constructs a linked list of dummy blocks. This is to
enable accessing the dummy blocks linearly, i.e., for each i ∈ [1..n− 1], after
accessing dummy block ⊥i, the client should be able to access ⊥i+1.
The client simply leverages πb+1(n..2n − 1) stored on server Sb to achieve
this. Specifically, for i from n − 1 down to 1, to create a link between i-th
and (i+1)-st dummy, the client reads πb+1(n+i) from server Sb and secretly
writes the tuple (πb+1(n+ i) : b ∈ Z3) to the abstract link L[n+ i− 1].
There are no links between real elements, i.e., for j ∈ [0..n − 1], the client
secretly writes (⊥,⊥,⊥) to (abstract) L[j].
Observe that these links are secret-shared and stored as an unpermuted
layout {e, Lb}b∈Sb

.
Finally, the client records the positions of the head of the lists and secretly
writes the tuple across the three servers, i.e., ⊕bdposb := (πb(n) : b ∈ Z3),
where dposb is stored on server Sb.

4. Construct the key-position map U . The client can construct the (abstract)
key-position map U [0..n− 1] sorted by the key from the first n entries of T′

and the πb’s. Specifically, for each i ∈ [0..n − 1], the client secretly writes
(keyi, (πb(i) : b ∈ Z3)) to U [i].
Recall that U is stored as a sorted, unpermuted layout {e, Ub}b∈Z3

.
5. Permute the lists along with the links. Invoke Permute with input {e, (T′b, Lb)}b∈Z3

,
and permutation πb+1 as the input for Sb. The Permute protocol returns a

permuted output layout {πb, (T̂b, L̂b)}b∈Z3
.

6. As the data structure, each server Sb stores (T̂b, L̂b), (πb+1, (T̂b+1, L̂b+1)), and
dposb+1. The algorithm returns key-position map list U as output, which is

22

stored as an unpermuted layout {e, Ub}b∈Z3
. This list will later be passed to

the preceding recursion depth in the ORAM scheme during a coordinated
rebuild operation.

Fact 6 The Build algorithm for building an OTM supporting n lookups requires
an O(n) bandwidth.

Protocol Lookup. Our oblivious Lookup
(({

πb, (T̂b, L̂b)
}
b∈Z3

, dpos
)
,
(
key, (pos0, pos1, pos2)

))
algorithm proceeds as follows:

1. The client reconstructs (pos′0, pos′1, pos′2)← ⊕bdposb.
2. Decide position to fetch from. If key 6= ⊥, set pos ← (pos0, pos1, pos2), i.e.,

we want to use the position map supplied from the input; if key = ⊥, set
pos← (pos′0, pos′1, pos′2), i.e., the dummy list will be used.

3. Reconstruct data block. Reconstruct v ← ⊕T̂b[posb] and (p̂os0, p̂os1, p̂os2)←
⊕L̂b[posb].

4. Update head of the dummy linked list. If key 6= ⊥, the client re-shares the
secrets ⊕bdposb ← (pos′0, pos′1, pos′2) with the same head; if key = ⊥, the
client secretly shares the updated head ⊕bdposb ← (p̂os0, p̂os1, p̂os2).

5. Read value and return. Return v.

Fact 7 The OTM Lookup algorithm requires O(1) bandwidth.

Protocol Getall. For Getall, the client simply invokes the Unpermute protocol

on input layout {πb, (T̂b, L̂b)}b∈Z3 and returns the first n entries of the sorted,
unpermuted layout (and ignores the links created). This output is also stored
as a sorted, unpermuted layout {e,Tb}b∈Z3

. The data structure created on the
servers during Build can now be destroyed.

Fact 8 The OTM Getall algorithm requires an O(n) bandwidth.

Lemma 1. The subroutines Build, Lookup and Getall are correct and perfectly
oblivious in the presence of a semi-honest adversary corrupting a single server.

Due to lack of space, the proofs for these statements are described in the full
version of the paper [5].

5 3-Server ORAM with O(log2 N) Simulation Overhead

Recall that Section 4 provided a construction for a three-server one-time mem-
ory that allows non-recurrent lookups so far as its position label is provided.
In this section, we first extend this construction to create a hierarchy of one-
time memories called position-based ORAM (similar to [6]) where each level
acts as a “cache” for larger levels. We will first assume that position-labels are
magically available in this position-based ORAM (Section 5.1). If a PRF could
be used, the position labels could have been obtained using the PRF and this

23

would indeed be an ORAM construction. However, to achieve perfect security,
we instead maintain the position labels by recursively storing them in smaller
hierarchies (Section 5.2).

Our ORAM scheme will consist of logarithmically many position-based ORAMs
of geometrically increasing sizes, henceforth denoted ORAM0, ORAM1, . . ., ORAMD

whereD := log2N . Specifically, ORAMd storesΘ(2d) blocks where d ∈ {0, 1, . . . , D}.
The actual data blocks are stored in ORAMD whereas all other ORAMd, d < D
recursively store position labels for the next depth d+ 1.

5.1 Position-Based ORAM

In this subsection, we focus on describing ORAMd assuming the position labels
are magically available. In the next subsection, we will describe how position
labels are maintained across different depths.

Data Structure. For 0 ≤ d ≤ D each ORAMd consists of d + 1 levels of
three-server one-time oblivious memory that are geometrically increasing in size.
We denote these one-time oblivious memories as (OTMj : j = 0, . . . , d) where
OTMj := OTM[2j] stores at most 2j real blocks.

Every level j is marked as either empty (when the corresponding OTMj has
not been built) or full (when OTMj is ready and in operation). Initially, all levels
are empty.

Position label. To access a block stored in ORAMd, its position label specifies
1) the level l ∈ [0..d] such that the block resides in OTM`; and 2) the tuple
pos := (pos0, pos1, pos2) to reconstruct the block from OTM`.

Operations Each position-based ORAM supports two operations, Lookup and
Shuffle.
Protocol Lookup:

– Input: The client provides
(
key, pos := (l, (pos0, pos1, pos2))

)
as input, where

key is the logical address for the lookup request, l represents the level such
that the block is stored in OTMl, and (pos0, pos1, pos2) is used as an argu-
ment for OTMl.Lookup.

The servers store OTMj for 0 ≤ j ≤ d where OTM stores layout
{
πb, (T̂b, L̂b)

}
b∈Z3

and dpos for the level. Moreover, some of the OTMs may be empty.
– Algorithm: The lookup operation proceeds as follows:

1. For each non-empty level j = 0, . . . , d, perform the following:
• The position label specifies that the block is stored at level OTMl.

For level j = l, set key′ := key and pos′ := (pos0, pos1, pos2). For all
other levels, set key′ := ⊥, pos′ := ⊥.

• vj ← OTMj .Lookup
(({

πb, (T̂b, L̂b)
}
b∈Z3

, dpos
)
, (key′, pos′)

)
.

2. Return vl.

24

Fact 9 For ORAMd, Lookup requires an O(d) bandwidth.

Protocol Shuffle. The shuffle operation is used in hierarchical ORAMs to shuf-
fle data blocks in consecutive smaller levels and place them in the first empty
level (or the largest level). Our shuffle operation, in addition, accepts another
input U that is used to update the contents of data blocks stored in the posi-
tion based ORAM. In the final ORAM scheme, the list U passed as an input
to ORAMd will contain the (new) position labels of blocks in ORAMd+1. Simi-
larly, the shuffle operation returns an output U ′ that will be passed as input to
ORAMd−1. More formally, our shuffle operation can be specified as follows:

(U ′, T̂)← Shuffled
(
(OTM0, . . . ,OTMl, U), l

)
:

– Input: The shuffle operation for ORAMd accepts as input from the client a
level l in order to build OTMl from data blocks currently in levels 0, . . . , l. In
addition, ORAMd consists of an extra OTM, denoted by OTM′0, containing
only a single element. Jumping ahead, this single element represents a freshly
fetched block.
The inputs of the servers consist of OTMs for levels up to level l, each of
which is stored as a permuted layout {πb, (T̂b, L̂b)}b∈Z3 and an array of key-
value pairs U , stored as a sorted, unpermuted layout {e, Ub}b∈Z3

. The array
U is used to update the blocks during the shuffle operation.
Throughout the shuffle operation we maintain the following invariant:
• For every ORAMd, l ≤ d. Moreover, either level l is the smallest empty

level of ORAMd or l is the largest level, i.e., l = d.
• Each logical address appears at most once in U .
• The input U contains a subset of logical addresses that appear in levels

0, . . . , l of the ORAMd (or OTM′0).
Specifically, given a key-value pair (key, v), the corresponding block (key, v′)
should already appear in some level in [0..l] or OTM′0. An update rule will
determine how v and v′ are combined to produce a new value v̂ for key.

– The Shuffle algorithm proceeds as follows:

1. Retrieve key-value pairs from (OTM0, . . . ,OTMl). The client first re-
trieves the key-value pairs of real blocks from (OTM0, . . . ,OTMl) and re-
store each array to its unpermuted form. More specifically, the client con-
structs the unpermuted sorted Tj ← OTMj .Getall({πb, (T̂b, L̂b)}b∈Z3

,⊥),

for 0 ≤ j ≤ l, and T0 ← OTM′0.Getall({πb, (T̂b, L̂b)}b∈Z3
,⊥)8 Now, the old

OTM0, . . . ,OTMl instances can be destroyed.
2. Create a list for level l. The client then creates a level l list of keys from

(OTM0, . . . ,OTMl).

• Merge lists from consecutive levels to form level l list. The merge procedure
proceeds as follows:

For j = 0, . . . , l − 1 do:
T̂j+1 ← Merge((T̂j ,Tj),⊥) where Tj and T̂j are of size 2j

8 The layout inputs to the Getall operation are restricted to the ones stored in OTMj

for 0 ≤ j ≤ l, respectively.

25

Moreover, the lists are individually sorted but may contain blocks that
have already been accessed. In the Merge protocol, for two elements with
the same key and belonging to different OTM levels, we prefer the one at
the smaller level first. For the case where l = d, perform another merge
T̂d ← Merge((T̂d,Td),⊥) to produce an array of size 2d+1; Jumping
ahead, the size will be reduced back to 2d in subsequent steps.

At the end of this step, we obtain a merged sorted list T̂l, stored as
T̂l := {e, T̂l

b}b∈Z3
, containing duplicate keys that are stored multiple times

(with potentially different values).
• Mark duplicate keys as dummy. From the stored duplicate keys, we only

need the value of the one that corresponds to the latest access. All other
duplicate entries can be marked as dummies. At a high level, this can be
performed in a single pass by the client by scanning consecutive elements
of the unpermuted sorted layout T̂l. The client keeps the most recent
version, i.e., the version that appears first (and has come from the smallest
OTM), and marks other versions as dummies. To maintain obliviousness,
the secret-shares need to be re-distributed for each scanned entry.
More specifically, suppose that there are λ duplicate keys. Then, the client
scans through the unpermuted layout T̂l := {e, T̂l

b}b∈Z3 . For consecutive
λ elements, j, . . . , j + λ − 1 with the same key, the client re-distributes
the secret for T̂l[j] for position j, and secretly writes ⊥ for positions
j + 1, . . . , j + λ− 1.
After this step, the resulting (abstract) T̂l is semi-sorted.

• Compaction to remove dummies. The client invokes the StableCompact
protocol with input T̂l := {e, T̂l

b}b∈Z3
, i.e., T̂l ← StableCompact(T̂l,⊥) to

obtain a sorted, unpermuted layout (where the dummies are at the end).
We keep the first 2l entries.

3. Update T̂l with values from U . The client updates T̂l so that it contains
updated position values from U . Looking ahead, in our final scheme, U will
contain the new position labels from an ORAM at a larger depth. Given
that ORAMD is the largest depth and does not store position values, this
step is skipped for ORAMD.
We do this as follows:
• Merge T̂l with U . The client performs A← Merge((T̂l, U),⊥) to obtain a

sorted, unpermuted layout. Ties on the same key break by choosing the
blocks in T̂l.

• Scan and Update A. In a single pass through the sorted, unpermuted
layout A, it can operate on every adjacent pair of entries. If they share
the same key, the following update rule is used to update both the values
(the precise update rule is provided in the Convert subroutine in Section
5.2). In particular, in the final ORAM scheme, the keys in A correspond
to logical addresses. Each address in a position-based ORAM at depth-d
stores position labels for two children addresses at depth-(d + 1). The

entries in A that come from T̂l contain the old position labels for both
children. For the entries from U , if children position labels exist, they
correspond to the new labels. For each of the child addresses, if U contains

26

a new position label, the update function chooses the new one; otherwise,
it chooses the old label from T̂l.

• Compaction to remove dummies. The client invokes the StableCompact
protocol A ← StableCompact(A,⊥) to obtain an updated sorted, unper-
muted layout A. We keep the first 2l entries.

4. Build OTMl. The client invokes U ′ ← Build(A,⊥) to generate a data
structure OTMl and U ′. Mark OTMl as full and OTMi, for i < l, as empty.

We prove that the above position-based ORAM is correct and satisfies perfect
obliviousness in the presence of a semi-honest adversary corrupting a single server
in the full version of the paper [5].

5.2 ORAM Construction from Position-Based ORAM

Our ORAM scheme consists of D+1 position-based ORAMs denoted as ORAM0,
. . ., ORAMD where D = log2N . ORAMD stores data blocks whereas ORAMd

for d < D stores a position map for ORAMd+1. The previous section specified
the construction of a position-based ORAM. However, it assumed that position
labels are magically available at some ORAMd. In this section, we show a full
ORAM scheme and specify 1) how these position labels for ORAMd are obtained
from ORAMd−1, and 2) after a level of ORAMd is built, how the position labels
of blocks from the new level are updated at ORAMd−1.

Format of block address at depth d. Suppose that a block’s logical address is a
log2N -bit string denoted by addr〈D〉 := addr[1..(log2N)] (expressed in binary
format), where addr[1] is the most significant bit. In general, at depth d, an

address addr〈d〉 is the length-d prefix of the full address addr〈D〉. Henceforth, we
refer to addr〈d〉 as a depth-d address (or the depth-d truncation of addr).

When we look up a data block, we would look up the full address addr〈D〉 in
recursion depth D; we look up addr〈D−1〉 at depth D − 1, addr〈D−2〉 at depth
D − 2, and so on. Finally at depth 0, only one block is stored at ORAM0.

A block with the address addr〈d〉 in ORAMd stores the position labels for two
blocks in ORAMd+1, at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Hence-

forth, we say that the two addresses addr〈d〉||0 and addr〈d〉||1 are siblings to each

other; addr〈d〉||0 is called the left sibling and addr〈d〉||1 is called the right sibling.

We say that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right child

of addr〈d〉.

An ORAM Lookup An ORAM lookup request is denoted as (op, addr, data)
where op ∈ {read,write}. If op = read then data := ⊥. Here, addr denotes the
address to lookup from the ORAM. The inputs are all provided by the client
whereas the servers store position-based ORAM0, . . . ,ORAMD as discussed in
the previous section. We perform the following operations:

1. Fetch. For d := 0 to D, perform the following:

27

– Let addr〈d〉 denote the depth-d truncation of addr〈D〉.
– Call ORAMd.Lookup to lookup addr〈d〉. Recall that the position labels for the

block will be obtained from the lookup of ORAMd−1. For ORAM0, no position
label is needed.

– The block returned from Lookup is placed in a special OTM′0 in ORAMd.
Jumping ahead, this will be merged with the rest of the data structure in the
maintain phase.

– If d < D, each lookup will return two positions for addresses addr〈d〉||0 and

addr〈d〉||1. One of these will correspond to the position of addr〈d+1〉 which will
be required in the lookup for ORAMd+1.

– If d = D, the outcome of Lookup will contain the data block fetched.
2. Maintain. We first consider depth D. Set depth-D’s update array UD := ∅.

Suppose lD is the smallest empty level in ORAMD. We have the invariant that
for all 0 ≤ d < D, if lD < d, then lD is also the smallest empty level in ORAMd.
For d := D to 0, perform the following:

(a) If d < lD, set l := d; otherwise, set l := lD.
(b) Call U ← ORAMd.Shuffle((OTMd

0, . . . ,OTMd
l , U

d), l).
Recall that to complete the description of Shuffle, we need to specify the
update rule that determines how to combine the values of the same address
that appears in both the current ORAMd and Ud.
For d < D, in Ud and ORAMd, each depth-d logical address addr〈d〉 stores the
position labels for both children addresses addr〈d〉||0 and addr〈d〉||1 (in depth
d + 1). For each of the child addresses, if Ud contains a new position label,
choose the new one; otherwise, choose the old label previously in ORAMd−1.

(c) If d ≥ 1, we need to send the updated positions involved in U to depth d− 1.
We use the Convert subroutine (detailed description below) to convert U into
an update array for depth-(d− 1) addresses, where each entry may pack the
position labels for up to two sibling depth-d addresses.
Set Ud−1 ← Convert(U, d), which will be used in the next iteration for recur-
sion depth d− 1 to perform its shuffle.

The Convert subroutine. U is a sorted, unpermuted layout representing the

abstract array {(addr
〈d〉
i , posi) : i ∈ [|U |]}. The subroutine Convert(U, d) proceeds

as follows.
For i := 0 to |U |, the client reconstructs (addr

〈d〉
i−1, posi−1), (addr

〈d〉
i , posi) and

(addr
〈d〉
i+1, posi+1), computes u′i using the rules below and secretly writes u′i to

Ud−1.

– If addr
〈d〉
i = addr||0 and addr

〈d〉
i+1 = addr||1 for some addr, i.e., if my right

neighbor is my sibling, then write down u′i := (addr, (posi, posi+1)), i.e., both
siblings’ positions need to be updated.

– If addr
〈d〉
i−1 = addr||0 and addr

〈d〉
i = addr||1 for some addr, i.e., if my left

neighbor is my sibling, then write down u′i := ⊥.

– Else if i does not have a neighboring sibling, parse addr
〈d〉
i = addr||b for some

b ∈ {0, 1}, then write down u′i := (addr, (posi, ∗)) if b = 0 or write down

28

u′i := (addr, (∗, posi)) if b = 1. In these cases, only the position of one of the
siblings needs to be updated in ORAMd−1.

– Let Ud−1 := {u′i : i ∈ [|U |]}. Note here that each entry of Ud−1 contains a
depth-(d− 1) address of the form addr, as well as the update instructions for
two position labels of the depth-d addresses addr||0 and addr||1 respectively.
We emphasize that when ∗ appears, this means that the position of the
corresponding depth-d address does not need to be updated in ORAMd−1.

– Output Ud−1.

Lemma 2. The above ORAM scheme is perfectly oblivious in the presence of a
semi-honest adversary corrupting a single server.

Fact 10 Each ORAM access takes an amortized bandwidth blowup of O(log2N).

Due to lack of space, the proofs are in the full version of the paper [5].
Summarizing the above, we arrive at the following main theorem:

Theorem 11 (Perfectly secure 3-server ORAM). There exists a 3-server
ORAM scheme that satisfies perfect correctness and perfect security (as per Sec-
tion 2.3) against any single semi-honest server corruption with O(log2N) amor-
tized bandwidth blowup (where N denotes the total number of logical blocks).

Finally, similar to existing works that rely on the recursion technique [24,26],
we can achieve better bandwidth blowup with larger block sizes: suppose each
data block is at least Ω(log2N) in size, and we still set the position map blocks
to be O(logN) bits long, then our scheme achieves O(logN) bandwidth blowup.

Acknowledgments

T-H. Hubert Chan was supported in part by the Hong Kong RGC under grant 17200418.
Jonathan Katz was supported in part by NSF award #1563722. Kartik Nayak
was supported by a Google Ph.D. fellowship. Antigoni Polychroniadou was sup-
ported by the Junior Simons Fellowship awarded by the Simons Society of Fel-
lows. Elaine Shi was supported in part by NSF award CNS-1601879, a Packard
Fellowship, and a DARPA Safeware grant (subcontractor under IBM).

References

1. I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren. Asymptotically
tight bounds for composing ORAM with PIR. In PKC, 2017.

2. M. Ajtai. Oblivious RAMs without cryptographic assumptions. In STOC, 2010.
3. T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi. Oblivious hashing revisited, and

applications to asymptotically efficient ORAM and OPRAM. In Asiacrypt, 2017.
4. T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi. Cache-oblivious and data-oblivious

sorting and applications. In SODA, 2018.
5. T.-H. H. Chan, J. Katz, K. Nayak, A. Polychroniadou, and E. Shi. More is

less: Perfectly secure oblivious algorithms in the multi-server setting. CoRR,
abs/1809.00825, 2018.

29

6. T.-H. H. Chan, K. Nayak, and E. Shi. Perfectly secure oblivious parallel RAM. In
TCC, 2018.

7. T.-H. H. Chan and E. Shi. Circuit OPRAM: A unifying framework for computa-
tionally and statistically secure ORAMs and OPRAMs. In TCC, 2017.

8. K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure ORAM with Õ(log2 n)
overhead. In Asiacrypt, 2014.

9. I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious RAM
without random oracles. In TCC, pages 144–163, 2011.

10. I. Demertzis, D. Papadopoulos, and C. Papamanthou. Searchable encryption with
optimal locality: Achieving sublogarithmic read efficiency. In CRYPTO, 2018.

11. K. Donald et al. The art of computer programming, volume 2: Semi numerical
algorithms, 1998.

12. O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC, 1987.

13. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 1996.

14. M. T. Goodrich. Data-oblivious external-memory algorithms for the compaction,
selection, and sorting of outsourced data. In SPAA, 2011.

15. M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In ICALP, pages 576–587, 2011.

16. D. Gordon, J. Katz, and X. Wang. Simple and efficient two-server ORAM. In
Asiacrypt, 2018.

17. T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen. S3ORAM:
A computation-efficient and constant client bandwidth blowup ORAM with shamir
secret sharing. In CCS, 2017.

18. E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In SODA, 2012.

19. E. Kushilevitz and T. Mour. Sub-logarithmic distributed oblivious RAM with
small block size. CoRR, abs/1802.05145, 2018.

20. W.-K. Lin, E. Shi, and T. Xie. Can we overcome the n logn barrier for oblivious
sorting? Cryptology ePrint Archive, Report 2018/227, 2018.

21. S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure two-party compu-
tation. In Theory of Cryptography Conference (TCC), pages 377–396, 2013.

22. M. Raskin and M. Simkin. Oblivious RAM with small storage overhead. Cryptol-
ogy ePrint Archive, Report 2018/268, 2018. https://eprint.iacr.org/2018/268.

23. L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, and S. Devadas.
Constants count: Practical improvements to oblivious RAM. In USENIX Security
Symposium, pages 415–430, 2015.

24. E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3)
worst-case cost. In ASIACRYPT, pages 197–214, 2011.

25. E. Stefanov and E. Shi. Multi-cloud oblivious storage. In CCS, 2013.
26. E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path

ORAM – an extremely simple oblivious RAM protocol. In CCS, 2013.
27. S. Tople, H. Dang, P. Saxena, and E.-C. Chang. Permuteram: Optimizing oblivious

computation for efficiency. Cryptology ePrint Archive, Report 2017/885, 2017.
28. X. S. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On Tightness of the

Goldreich-Ostrovsky Lower Bound. In ACM CCS, 2015.

30

https://eprint.iacr.org/2018/268

	More is Less: Perfectly Secure Oblivious Algorithms in the Multi-Server Setting

