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Abstract. The consensus protocol underlying Bitcoin (the blockchain)
works remarkably well in practice. However proving its security in a
formal setting has been an elusive goal. A recent analytical result by
Pass, Seeman and shelat indicates that an idealized blockchain is indeed
secure against attacks in an asynchronous network where messages are
maliciously delayed by at most ∆ � 1/np, with n being the number
of miners and p the mining hardness. This paper improves upon the
result by showing that if appropriate inconsistency tolerance is allowed
the blockchain can withstand even more powerful external attacks in the
honest miner setting. Specifically we prove that the blockchain is secure
against long delay attacks with ∆ ≥ 1/np in an asynchronous network.
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1 Introduction

Bitcoin introduced by Nakamoto [19] is the first cryptocurrency that allows a
ledger to be maintained by the public in a decentralized manner. It has a number
of attractive properties including decentralization and pseudonymity. At the core
of Bitcoin is a consensus protocol, called the blockchain. The blockchain is a
chain-structured ledger maintained by all the participants (or miners), where
records (or blocks) can only be added by the miners to the end of the chain.

A key idea of Nakamoto’s blockchain protocol to achieve consensus among
distributed miners is the use of proof of work (POW), which requires the miners
to solve a “cryptographic puzzle”. Advantages of POW are two folds. First, the
“cryptographic puzzle” makes it more difficult for an adversary to modify the
block. Second, POW helps distributed miners to synchronize in a permissionless
setting. While having low efficiency and high power consumption, the blockchain
protocol based on POW is still the most successful one that gains peoples accep-
tance wildly in practice. The main concern over the blockchain protocol based on
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POW is security, which has not been proven formally until Garay, Kiayias, and
Leonardas [10] provide a rigorous analysis of the blockchain protocol. They mod-
el the execution of the blockchain protocol by allowing the adversary to control
a concrete percentage of computing power and also to interfere with commu-
nication among miners, whereby proving that two basic properties, which are
common prefix and chain quality, hold for a blockchain built on POW. Consid-
ering the effect of delay, Pass, Seeman and shelat [22] prove the security of the
blockchain protocol in an asynchronous network with a-priori bounded delay ∆,
where the adversary can delay any message with at most ∆ rounds. The security
analysis in [22] holds for a relatively small delay only. Specifically the delay ∆
should be significantly smaller than 1/np, that is ∆ � 1/np, where n and p
denote the number of miners and the mining hardness, respectively.

Networks delay is considered to be one of the most important threats to the
security of a blockchain. As shown in [6], long delays lead to increased proba-
bilities for forking, which may break the common prefix property. Pass, Seeman
and shelat demonstrate a simple attack in a fully asynchronous setting where
the adversary is allowed to schedule message delivery with a long delay relative
to the mining hardness. What is worse, such attacks could be deployed even
when all miners are honest, which means that the adversary does not need any
hashing power [10].

In the real world, however, long delays, say ∆ ≥ 1/np, could be caused not
only by message propagation over a “bad” asynchronous network but also by
malicious attacks. Instead of attempting to corrupt a sizable fraction of miners,
it would be much easier for the adversary to disrupt communications among
miners. Furthermore, it is also unpractical to require all the miners’ chains to
be consistent with the “main chain” due to the long delay.

In practice the adversary cannot delay messages successfully all the time.
Consider the eclipse attack [14] that allow an adversary to control 32 IP ad-
dresses to monopolize all connections to and from a target bitcoin node with
85% probability. If the attack fails or the adversary loses the ability to intercept
messages, blocks will be diffused to other miners at an exponentially fast rate.
This naturally brings up a interesting question, that is

Is the blockchain protocol based on POW still secure in a real world asyn-
chronous network, where long delay relative to the mining hardness, say ∆ ≥
1/np, is allowed?

Our contribution. In this paper, we focus on the effect of long delay, espe-
cially ∆ ≥ 1/np, and give results that support a positive answer to the above
question. Specifically, we propose a simplified model for the blockchain protocol
based on POW, which captures an adversary’s ability to deliver messages mali-
ciously in the real world. We extend the definitions of chain growth and common
prefix [10][22][11] to allow fractions of miners’ chains to be inconsistent with the
main chain. By analyzing the evolution of the main chain in a more subtle way,
we prove that the common prefix property and the chain growth property still
hold in our model. In addition, to illustrate the threat of long delay attack in
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our model, we present a concrete attack in which an adversary without any hash
power may threaten the common prefix property of a blockchain protocol with
certain parameters.

There are a number of subtle differences between our model and previous
research in [10][22][11]. A detailed discussion follows.

– Long delay attack: In our model, the upper bound of delay can be large,
say ∆ ≥ 1/np, and the adversary can delay a message with probability α ∈
(0, 1], meaning that the adversary may not always disrupt communications
successfully in practice. Previous works consider ∆� 1/np or ∆ = 1 and the
adversary can always delay any message. Hence, our model is more general
in capturing the adversary’s ability to deliver messages maliciously.

– Common prefix for majority: We relax the requirements of common prefix
and chain growth so that certain fractions of miners’ chains are allowed to
be inconsistent with the common prefix of the main chain. Previous defini-
tions of common prefix require all the miners’ chains be consistent with the
common prefix of the main chain, which is a special case of our definition.
We emphasize that such inconsistency tolerance is not only crucial to our
proof but also necessary for the blockchain protocol to work in practice.

– Honest miners: Since we only focus on the effect of delay, we assume all the
miners are honest. That is, all the miners follow the protocol honestly and
the adversary neither corrupts any miners nor possesses any hash power.
Hence, we only need to consider the common prefix property and the chain
growth property. Previous works consider adversaries which can collect a
fraction of the total hash power by means of corrupting miners and thus
analyze chain quality. Additionally we impose restrictions on the miners’
behavior: two consecutive blocks cannot be mined by the same miner. This
restriction is reasonable in our honest miner setting, as in practice is unlikely
that two consecutive blocks are mined by the same miner3, especially when
n is large whereas p is small.

In a large-scale blockchain protocol, it is hard for the adversary to collect
enough computational power to mount an effective attack, where at least 1/3
computational power of all miners is usually required. Therefore, we ignore the
influence of the hash power of an adversary and instead focus on attacks by
disrupting communications.

Main techniques. Informally, the common prefix property states that, in ad-
dition to the last T blocks, all the miners’ chains should have the same prefix.
In order to prove the common prefix property, [22] shows that there are enough
“convergence opportunities” for the miners to synchronize the same chain, where
the “convergence opportunities” depend on consecutive ∆ rounds of “silence”.
Here, ∆ rounds of “silence” means no honest miners mines a block during these
∆ rounds. If ∆ � 1/np, it is likely that no block is mined during ∆ rounds.
However, the challenge is that, if ∆ ≥ 1/np, at least one block is expected to

3 not the same mining pool
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be mined during those rounds, which will ruin the “convergence opportunities”.
So previous proof techniques cannot be applied when ∆ ≥ 1/np. To solve this
problem, we introduce an inconsistency tolerance parameter λ, which is inspired
by the fact that the common prefix property in the real world holds only for the
majority miners. Therefore, we redefine the properties of chain growth rate and
common prefix using λ ∈ ( 1

2 , 1], which captures to what extent the common pre-
fix property holds. Our definitions are more general and allow us to exclude the
“bad” miners during ∆ rounds of silence. Furthermore, we introduce a powerful
tool called TreeMC to record the state of the main chains. Unlike the Ftree oracle
in [22] which stores all the chains during the execution of the blockchain protocol,
our TreeMC only records the state of the main chain at the current round, which
can capture the evolution of main chains in a subtle manner. Then, we show the
relation between TreeMC and the view of the real execution of blockchain proto-
col. Due to the good properties of TreeMC, we only need to focus on the analysis
of TreeMC instead of the original block chain protocol, which greatly simplified
the analysis and security proof.

Related Work. Since the introduction of Bitcoin, a number of cryptocurren-
cy, e.g., Litecoin, Zerocash [2] and Ethereum, have appeared, most of which are
based on the idea of Bitcoin. Meanwhile, a series of works [26][6][8][31][29][9][3][28]
[27][30][21][12][15][23] analyze the security of Bitcoin under different attack s-
cenarios and investigate the conditions under which Bitcoin achieves a game-
theoretic equilibrium. Eyal and Sirer [8] propose an attack strategy called “selfish
mining”, where the adversary only requires about 1/3 of the total mining power.
Miller and LaViola [18] show the connection between bitcoin and probabilistic
Byzantine agreement protocols. Heilman et al. [14] present eclipse attacks which
allow an adversary controlling a sufficient number of IP addresses to “eclipse” a
bitcoin node. As mentioned in [14], the attacker can eclipse a fraction of miners
and launch N -confirmation double spending attacks without any mining power.
In fact, such attacks can be extended to attacks on common prefix. For instance,
the attacker can eclipse a fraction of miners in advance and launch the long delay
attacks described in section 7. Notice that the target block which the attacker
intends to delay may be not mined by the eclipsed miners. In other words, a
block can be delayed with some probability, which is the scenario captured by
our model. Sompolinsky and Zohar [29] show that the bitcoin protocol with high
throughput is more susceptible to double-spend attacks. In order to solve the
above problem, [29] presents an algorithm called GHOST, which chooses the
main chain by the heaviest subtree instead of the longest branch. Then, Natoli
and Gramoli [20] propose the balance attack against POW blockchain systems,
where the common prefix property can be broken by disrupting communications
between subgroups of similar mining power.

Rigorous cryptographic analysis on blockchain protocol are initiated by Garay,
Kiayias and Leonardas [10] and Pass, Seeman and shelat [22]. [10] abstracts the
backbone protocol of Bitcoin and proves its security under the proposed model.
Furthermore, [22] extends the model to an asynchronous network and shows the
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security of blockchain protocol with a bounded delay ∆ � 1/np. Kiayias and
Panagiotakos [16] investigate the tradeoff between provable security and trans-
action processing speed. Then, Garay, Kiayias and Leonardas [11] analyze the
security of blockchain protocol with variable difficulty. Pass and Shi [24] consider
the sleepy model, where players can be either online or offline. Notice that it is
difficult for the adversary to control large fractions of the total mining power
in practice, and no such attacks has been observed to date. Hence, Badertscher
et al. [1] investigates the reason why we can assume the majority of the mining
power is honest or why the miners need to follow the protocol honestly. In order
to overcome the problems induced by POW, such as large energy demands, an-
other line of research focuses on the blockchain protocol based on proof of stake
(POS), where the miner to issue the next block is decided by randomly selecting
one of the miners proportionally to their stakes. For instance, Algorand [13],
Snow White [4], Ouroboros/Ouroboros Praos [17][5], and Thunderella [25].

2 Preliminaries

In this section, we recall the blockchain protocol, following the notations of
[10][22].

2.1 Notation

Let B denote a block. A blockchain C =
−→
B consists of a sequence of ordered Bs

and the length |C| means the number of blocks in C. Let m denote the message

contained in B. −→m denotes the messages in
−→
B correspondingly. We denote by

Cri the chain of miner i at round r. Cbk denotes the chain C that removes the
last k blocks, where k is a nonnegative integer. If k ≥ |C|, Cbk = ε. Let C1 � C2

denotes that C1 is a prefix of C2. B(n, k) denotes the binomial distribution with
n trials and success probability k. H : {0, 1}∗ → {0, 1}κ is a cryptographic hash
function.

2.2 Blockchain protocol

A blockchain protocol consists of two algorithms, which are ΠV and C. ΠV is a
stateful algorithm, receiving security parameter κ and maintaining a blockchain
C. C is a sequence of block B, where B = (h−1,m, r, h). h−1 is a pointer to the
previous block. m is the message from the environment. r is a nonce. h is the
pointer to the current block such that h = H(h−1,m, r). The cryptographic hash
function H(·) is modeled by a random oracle H(·), which on inputs x outputs
H(x). Let H.ver(·, ·) be an oracle which takes (x, y) as inputs and outputs 1
if H(x) = y and 0 otherwise. The first block of a chain is called the genesis
block B0 = (0,⊥, 0, H(0||⊥||0)). The algorithm C takes C as input and outputs
the corresponding sequence of messages −→m of C. That is, C(C) = −→m. V is an
algorithm which checks the validity of −→m. If −→m is valid, V (C(C)) outputs 1. In
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the bitcoin protocol, m contains the transaction information and V is used to
check the validity of transactions.

A block B = (h−1,m, r, h) is valid with respect to a predecessor block B−1 =
(h′−1,m

′, r′, h′) only if following conditions hold:

– h−1 = h′,
– h = H(h−1,m, r) < Dp, where Dp is the difficulty parameter.

If all blocks in C are valid and V (C(C)) = 1, we say C is valid, where the
corresponding validity check algorithm is called “chain-check” algorithm.

Suppose there are n miners, where n = n(κ) is a polynomial function with κ.
At each round, a miner receives a message m from the environment Z and runs
ΠV to maintain a chain C as follows:

– If V (C(C)||m) 6= 1, proceed to the next step. Otherwise, pick r ← {0, 1}κ
randomly and compute h by querying H with (h−1,m, r), where h−1 is
the pointer of the last block of C. If h < Dp, set C = CB, where B =
(h−1,m, r, h), and we say the miner succeeds in mining a new block B. The
miner can query H at most q times before he succeeds. Then, broadcast the
new chain C. In order to capture the attack that the adversary can disturb
the communication among miners, C is considered as being delivered by the
adversary.

– On receiving the chains delivered by the adversary, choose the longest and
valid one, say C ′, where the validity of blocks is checked by querying H.ver.
If |C ′| > |C|, replace C by C ′. Otherwise, go to the next round.

Note that under the random oracle model H(·) is modeled by a random oracle
H(·) and a miner is allowed to query H for at most q times at each round, but can
query H.ver for arbitrary times. p denotes the probability that a miner succeeds

in mining a block at a round, where p = 1 − (1− Dp
2κ )

q
≈ qDp

2κ . We use p to
describe the difficulty of mining in the following parts.

2.3 Ftree model

In this section we recall the simplified blockchain protocol with access to Ftree
oracle introduced by [22]. The Ftree oracle maintains a tree which contains mes-
sages of all valid chains and can answer two kinds of queries, Tree.extend and
Tree.ver. When receiving query Tree.extend((B0, ..., Bl−1), B), it checks whether
(B0, ..., Bl−1) is a path of the tree, where the root of the tree is the genesis block
B0. If so, with probability p it extends this path with B and returns 1; Otherwise,
return 0. When receiving Tree.ver(B0, ..., Bl), it returns 1 if (B0, ..., Bl) is a path
of the tree; Otherwise, return 0. Here, a block B only contains message m, i.e.,
B = (m). Then the random oracle in blockchain protocol is replaced with Ftree
and the resulting protocol is called (Πtree, Ctree). The main differences between
(Πtree, Ctree) and (Π, C) are described as follows.

The protocol (Πtree, Ctree) is also directed by an environment Z(1κ). The
environment activates n miners and sends each miner a message at each round.
A miner receives a message m from the environment Z and runs Πtree below:
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– If Vtree(Ctree(C)||m) 6= 1, proceed to the next step. Otherwise, query Ftree
with Tree.extend(C,m). If the oracle answers 1, a new block B = (m) is
mined. Set C = CB and broadcast C.

– When receiving the chains delivered by the adversary, choose the longest
and valid one, say C ′, where the validity of C ′ can be checked by querying
Tree.ver(C ′). If the oracle Tree.ver(C ′) returns 1, we say the chain is valid.
If |C ′| > |C|, set C = C ′. Otherwise, go to the next round.

Under the Ftree model, a miner is allowed to query Tree.extend only once
at each round, but can query Tree.ver for arbitrary times. Note that the miners
described in section 2.3 can query H at most q times at a round and the prob-
ability of successful mining at a round is p. Therefore those queries to H at a
round are considered as one query to Tree.extend.

[22] shows that the security properties in (Πtree, Ctree) still hold in original
protocol, while the analysis is much simpler in the Ftree model. For simplicity,
we misuse (Π, C) to denote the basic blockchain protocol in the Ftree model.
Besides, the algorithm Vtree or V depends on the functionality of the concrete
protocol. To simplify the description, we consider V which outputs 1 for all
inputs. Hence, V is omitted in following parts.

3 Blockchain Model with Long Delays

Nakamoto’s blockchain protocol is proved to be secure [22], where chains broad-
casted by miners may suffer at most ∆-bounded delays such that ∆� 1/np. As
discussed in Section 1, on one hand, it is much easier for the adversary to disturb
the communications rather than collect large computational power. On the other
hand, if the adversary fails to delay the target chain, the chain will be diffused
to other miners immediately. To capture such scenario, our modifications for the
behavior of the adversary are as below:

Execution of adversary at round r:

– Recieving. On receiving the chains from miners, the adversary chooses
which valid chains he wants to delay. But only with probability α the chosen
one can be delayed. Those delayed chains are marked as “delayable” . The
other undelayed chains are marked as “undelayable”. Then all the chains the
adversary received together with their marks and the round r are saved in
a list T .

– Distribution. The adversary chooses which chains in T to be distributed
and these chains will be received by all the miners at the next round. But
the following two kinds of chains have to be distributed at the current round.
• The chains marked as undelayable;
• The chains having been marked as delayable for ∆ rounds.

Note that if the adversary distributes more than one chains at a round, the
adversary can adjust the order of these chains. For instance, the adversary can
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broadcast chains C1 and C2 in a way that (C1, C2) to miner i but (C2, C1) to
miner j, where |C1| = |C2|. If C1 and C2 are longer than i and j’s chains, then i
accepts C1 as his main chain while j accepts C2. We emphasize that our model
is in honest miner setting where the adversary does not corrupt any miners.

Remark. In practice, it is possible that some miners receive a block earlier
than others due to the propagation delay in the bitcoin network. As shown in
[DW13], the broadcast of a block follows an exponential behavior. Hence, once a
block has been broadcasted to its neighbors, most miners will receive the block
immediately and it is difficult for the adversary to delay anymore. It takes about
10 seconds for a broadcasted block to be known by almost all the miners [D-
W13][PSS17]. In our model, if the adversary broadcasts a block, all the miners
will receive it in the next round, where the time span of a round can be 10
seconds. Such time span is enough for the adversary to influence the miners’ be-
havior. To capture the possible attacks, e.g., attacks on miner i and j described
above, we allow the adversary can adjust the order of these chains, which is
equivalent to the case that miner i received C1 only.

Modification to blockchain protocol. We make additional restrictions on
the miners’ behavior in the blockchain protocol. That is, the miner cannot mine
in a chain, the last block of which was mined by himself. In other words, the
miner who has already mined a block will not execute the mining step of Π
until he receives a new chain mined by other miners. The reason why we prevent
consecutive blocks mined by the same miner is that such consecutive blocks may
cause possible forks even in the honest miner setting. In addition, it is not likely
that a miner (not the mining pool) can mine two consecutive blocks in practice
due to the large number of miners n and the small difficulty parameter p. Hence,
such a restriction is reasonable in our honest miner setting.

We emphasize that our restriction only applies to a single miner which is
an independent communication node of the network and has a unit computa-
tional power. Hence, such a modification would lead to a slightly decline of the
total mining power and we ignore such a mild change in the following proof for
simplicity.

In our protocol, we say a miner is “being delayed” if his chain is being delayed
by the adversary. Obviously, a miner being delayed will not mine a block untill
he accepts a new chain mined by others.

4 Properties of Our Blockchain Model

In this section we redefine the chain growth property and the common prefix
property in our blockchain model.

4.1 Chain growth

Previous definition of chain growth [22] considers the minimum increase of the
length of all miners’ chains during T rounds. In our model, we consider the
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length increase of the majority of miners’ chains instead. Informally speaking,
if the majority of chains, say, with fraction λ > 1

2 , grows by t blocks during
consecutive rounds, we say the blockchain view grows by t blocks during these
rounds with majority λ. In fact, the definition of chain growth in [22] is a special
case of ours when λ = 1. It is, however, difficult to have λ = 1 in practice. Hence,
our definition is more flexible in capturing the real scenario.

Let view(Π, C, A, Z, κ) and |view(Π, C, A, Z, κ)| denote the joint view of all
miners and the number of rounds during the execution of (Π, C), respectively.

Definition 1. Given view(Π, C, A, Z, κ), we say the blockchain grows by at least
t blocks with majority λ ∈ ( 1

2 , 1] from round r1 to r2, if

Pr
i,j

[|Cr2j | − |C
r1
i | ≥ t] ≥ λ, (1)

where the probability is taken over all the choice of i, j ∈ [n].

Define chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) as the maximum value of t satisfying

(1). That is,

chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) = max{t|Pr

i,j
[|Cr2j | − |C

r1
i | ≥ t] ≥ λ}.

Definition 2. The blockchain protocol (Π, C) has the chain growth rate g ∈ R
with majority λ ∈ ( 1

2 , 1], if there exists some constant c and negligible functions
ε1, ε2 such that for every κ ∈ N, T ≥ c log(κ) and every r ≤ |view(Π,C,A,Z, κ)|−
T , the following holds:

Pr[chain-increase
(Π,C)
A,Z,κ(r, r + T, λ) ≥ gT ] ≥ 1− ε1(κ)− ε2(T ), (2)

where the probability is taken over the randomness of the protocol.

4.2 Common prefix

Similarly, we can define common prefix as follows.

Definition 3. common-prefix
(Π,C)
A,Z,κ(r, k, λ) = 1 with majority λ ∈ ( 1

2 , 1] if the
following holds:

Pr
i,j

[(Cri
bk � Crj ) ∧ (Crj

bk � Cri )] ≥ λ, (3)

where the probability is taken over all the choice of i, j ∈ [n].

Definition 4. A blockchain protocol (Π, C) satisfies the common prefix prop-
erty with parameter λ ∈ ( 1

2 , 1], if there exists some constant c and negligi-
ble function ε1 and ε2 such that for every κ ∈ N, T ≥ c log(κ) and every
r ≤ |view(Π,C,A,Z, κ)| , the following holds:

Pr[common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1− ε1(κ)− ε2(T ), (4)

where the probability is taken over the randomness of the protocol.
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5 State of the Main Chain

In this section, we introduce a special tree to capture the evolution of the main
chains.

5.1 Record the state of the main chain

During the execution of Π, miners will “reach agreement” on some chains at each
round and those chains are called the main chains. Although the main chains
may not be unique at each round, only one of those chains will be the prefix of
the main chain after enough rounds. Since the evolution of the main chains is
closely related to chain growth and common prefix, we introduce a special tree,
denoted by TreeMC, to record the state of the main chains, where a node of the
tree is a block of a chain. TreeMC is initialized to the root B0. Next, we show
how to add and delete blocks at a round in TreeMC.

– AddBlock: When the adversary broadcasts a chain C = (B0, B1, ..., Bl),
and there exist a branch (or paths from root to leaves) C ′ in TreeMC such
that C ′ = Cbk with the smallest k, extend C ′ with the last k ordered blocks
of C. Note that the adversary is allowed to send more than one chain at
a round. That means the same leaf node of TreeMC may be extended with
different branches simultaneously.

– DeleteBlock: At the end of a round (after the adversary finishes Distribu-
tion), suppose TreeMC has the depth, say d. Delete “useless” blocks or forks
so that only the branches Cs satisfying the following conditions remain.
• |C| = d,
• For any C ′ with depth d, the last block of C was added to TreeMC no

later than the last block of C ′.

Once the adversary broadcast the chains, each miner will update his chain with
the longer one, and no one will withhold the shorter chains or attempt to extend
them. Hence, TreeMC only records all the main chains of the undelayed miners
at current round. But if a miner has a chain longer than the main chain but is
delayed by the adversary, this delayed chain is not recorded in TreeMC.

5.2 Properties of TreeMC

Obviously, all of the branches on TreeMC at the end of a round are of equal depth
and the depth of TreeMC never decreases. Other interesting properties of TreeMC

are shown below.

Lemma 1. Properties of TreeMC.

1. If new blocks are successfully added to TreeMC at the end of a round, then
the depth of TreeMC increases.

2. The depth of TreeMC increases by at most 1 at each round.
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3. If only one block is added to TreeMC at the end of a round, then TreeMC has
only one branch and the depth increases by 1.

Proof. 1. Suppose there are new blocks added to the TreeMC while the depth
remains unchanged. So those added blocks are useless and will be deleted at
once due to DeleteBlock.

2. Without loss of generality, suppose the depth of TreeMC at round r − 1 and
r are d and d + 2, respectively. If the (d + 2)th block is mined by miner i,
then (d + 1)th block must be mined by a different miner, say miner j, due
to the restriction that the same miner cannot mine two consecutive blocks.
Hence, miner i received miner j’s chain of length d + 1 from the adversary.
That means there exists a round r′ such that r′ < r and the depth of TreeMC

is d + 1 at round r′, which contradicts the fact that the depth of TreeMC is
d at round r − 1.

3. Suppose the depth of TreeMC is d at round r and only one block, say B,
is successfully added at round r + 1. Due to the first property, the depth
increases to d + 1. And the length of branches without B is still d. After
DeleteBlock, the useless blocks of these branches will be deleted from the
tree and only the branch with depth d+ 1 will remain.

5.3 Relation with the view of (Π, C)

TreeMC records the main chains known by all the miners at current round. But
there are some chains at current round which are not recorded in TreeMC due to
the adversarial delay. Hence, the actual view of the main chains of (Π, C) may
be different from TreeMC. Fortunately, such difference in terms of chain growth
and common prefix is negligible. Therefore, we can prove these properties of
(Π, C) by analyzing TreeMC. The relations between TreeMC and the view of (Π, C)
are proven by the following lemmas. (Note that the following lemmas are all
discussed after TreeMC finishes the step of DeleteBlock.)

Lemma 2. Assume 1/2 < λ ≤ 1 − 8αp∆. Let mr
delay be the number of being

delayed miners at round r. There exists a polynomial function poly such that

Pr[mr
delay >

(1− λ)n

4
] < e−poly(κ). (5)

Proof. Consider the case that r ≥ ∆. If a miner i is being delayed at round r,
that means i succeeded in mining a delayable block from round r−∆+1 to round
r. During these ∆ rounds, there are n∆ independent events of mining, each of
which is delayable with probability αp. So mr

delay ∼ B(n∆,αp). According to
the Chernoff bound, for any ε ≥ 1, we have

Pr[mr
delay > (1 + ε)αnp∆] < e

−εαnp∆
3 . (6)

Let (1+ε)αnp∆ = (1−λ)n
4 and 1/2 < λ ≤ 1−8αp∆. We have ε = 1−λ

4αp∆−1 ≥ 1.
Therefore,
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Pr[mr
delay >

(1− λ)n

4
] < e

−ε(1−λ)n
12(1+ε) ≤ e

−(1−λ)n
24 , (7)

where the last inequality follows from ε
1+ε ≥

1
2 . Since n = n(κ) is a polynomial

function with κ, let poly(κ) = (1−λ)n(κ)
24 . That completes the proof of Lemma 2.

We denote the event that mr
delay >

(1−λ)n
4 as Over-delay in the following

parts.

Lemma 3. Assume 1/2 < λ ≤ 1 − 8αp∆. Let drtree be the depth of TreeMC at
round r. We have

Pr[chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) ≥ dr2tree − d

r1
tree] ≥ 1− 2e−poly(κ). (8)

Proof. If |Cri | < drtree which means there exists at least one chain of length drtree
distributed by the adversary and known to all the miners, miner i at the end of
round r should have updated his state with the chain of length drtree. That is,
|Cri | = drtree. So the event that |Cri | < drtree cannot happen.

If |Cri | > drtree, which means Cri is being delayed by the adversary. Assuming
that Over-delay doesn’t happen at round r1 and r2 (with probability at least
1− 2e−poly(κ) due to Lemma 2), we have

Pr
i

[|Cri | 6= drtree] =
mr
delay

n
≤ 1− λ

4
. (9)

Therefore,

Pr
i,j

[|Cr2j | − |C
r1
i | ≥ d

r2
tree − d

r1
tree]

≥ Pr
i,j

[|Cr2j | − |C
r1
i | = dr2tree − d

r1
tree]

≥ 1− Pr
i

[|Cr1i | 6= dr1tree]− Pr
j

[|Cr2j | 6= dr2tree]

≥ 1− 1− λ
4
− 1− λ

4
> λ.

That means chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) ≥ dr2tree−d

r1
tree, which completes the

proof of the Lemma 3.

Lemma 4. Assume 1/2 < λ ≤ 1 − 8αp∆. Let d be the depth of TreeMC. If all
the branches of TreeMC at round r have a common prefix with length d − T , we
have

Pr[common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1− 2e−poly(κ). (10)

Proof. Suppose all the branches of TreeMC at round r have a common prefix
with length d − T . For any two branches of TreeMC at round r, say Crtree.1 and

Crtree.2, we have (Crtree.1
bT � Crtree.2)∧ (Crtree.2

bT � Crtree.1). However, not every
miner’s view match with TreeMC. Suppose Cri is not a branch of TreeMC at round
r, which is denoted by Cri 6⊂ TreerMC. Consider the following two cases:
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– Case 1: Cir is being delayed by the adversary at round r. Assume that Over-
delay doesn’t happen at round r. As is discussed in the proof of lemma 3,
the probability of this case is at most 1−λ

4 .
– Case 2: Cri is not being delayed by adversary at round r. Then |Cri | = drtree.

Suppose Cri 6⊂ TreerMC. That is, Cri has been distributed by the adversary,
which means the last block of Cri was added to TreeMC due to AddBlock

but then deleted due to DeleteBlock at round r′ ≤ r. Since dr
′

tree ≥ |Cri |
and dr

′

tree ≤ drtree due to Lemma 1, we have dr
′

tree = |Cri | = drtree. Hence,
there exists another branch C∗ such that |C∗tree| = drtree and C∗tree is added
to TreeMC earlier than Cri . Let r∗ denote the round at which C∗tree is added.
Since C∗tree is distributed by the adversary at round r∗ but the miner i didn’t
update his state with C∗tree, C

r∗

i must be no shorter than C∗tree. Therefore,
|Cr∗i | = |Cri | = drtree and Cr

∗

i = Cri . We thus conclude that Cri was created
no later than r∗ but was distributed at round r′ > r∗. That means, miner i
was being delayed at round r∗.
Assuming that Over-delay doesn’t happen at round r∗, the probability that
miner i was being delayed at round r∗ is at most 1−λ

4 due to the proof of

Lemma 3. So the probability of Cri 6⊂ TreerMC in this case is at most 1−λ
4 .

To sum up, on condition that Over-delay doesn’t happen at round r∗ and r
(with probability at least 1− 2epoly(κ)), the probability that Cri is not a branch
of TreeMC at round r is

Pr
i

[Cri 6⊂ TreerMC]

= Pr
i

[Cri 6⊂ TreerMC ∧ Case 1] + Pr
i

[Cri 6⊂ TreerMC ∧ Case 2]

≤
mr
delay

n
+
mr∗

delay

n

≤ 1− λ
4

+
1− λ

4
=

1− λ
2

Therefore,

Pr
i,j

[(Cri
bT � Crj ) ∧ (Crj

bT � Cri )]

≥ Pr
i,j

[Cri ⊂ TreerMC ∧ Crj ⊂ TreerMC]

≥ 1− Pr
i

[Cri 6⊂ TreerMC]− Pr
j

[Crj 6⊂ TreerMC]

≥ 1− 1− λ
2
− 1− λ

2
= λ,

which completes the proof of Lemma 4.

6 Proofs of Security

In this section we analyze the chain growth property and the common prefix
property of (Π, C) using TreeMC.
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6.1 Chain Growth

Theorem 1. (Chain growth). Assume 1/2 < λ ≤ 1 − 8αp∆. The blockchain

protocol (Π, C) has the chain growth rate g = (1−δ)f
1+fE[Ridelay ]

with majority λ, where

f = 1− (1− p)n, E[Ridelay] = α−αω∆−1[ω+∆(1−ω2)]
1−ω and ω = 1− (1− α)f .

Proof. The aim of the adversary is to decrease the chain growth rate by delaying
or scheduling the chain delivery. Due to Lemma 3, which shows the relation
between the chain growth of (Π,C) and that of TreeMC, we only need to focus
on the chain growth of TreeMC.

It seems that the adversary can use forks to distract the hashing power of
miners in order to slow the chain growth rate. However, the forks does not help
in breaking the chain growth property of TreeMC. More precisely, consider the
rounds at which two consecutive blocks are added to TreeMC. Once a miner
successfully mined a block B1, which corresponds to chain C1, the adversary
can delay it with probability α for at most ∆ rounds, and waits for the next
block B′1. If B1 is delayable and the next block B′1 corresponding to C ′1 is mined
within ∆ rounds, the adversary can generate a fork by broadcasting both chain
C1 and C ′1 simultaneously. Then B1 and B′1 can be added to TreeMC such that
B1 is the neighbour of B′1, and depth of TreeMC grows by 1. Specifically, the
adversary can broadcast C1 to a set of miners, say S1, and C ′1 to the remaining
miners, say S′1. Then miners in S1 will accept chain C1, while miners in S′1 will
accept C ′1. Let r1 be the round at which B1 and B′1 are added to TreeMC and
r2 be the round at which the next block B2 is mined. Notice that r2 − r1 is
not influenced by the number of forks which the adversary generated at round
r1, and only the number of the rounds of delays affect the chain growth rate of
TreeMC.

Fig. 1. The rounds during which t consecutive blocks are added to TreeMC

Consider t consecutive blocks in TreeMC as shown in Figure 1. Block B0 is
added to the tree at round r0 and Bt is added at round rt. We divide those rounds
from r0 to rt into t periods, and each period consists of the rounds during which
the depth of TreeMC increases by 1.

Each period i consists of mining phase and delay phase. For each i, let Bi be
the first block that mined in period i. The round at which block Bi is mined is
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the end of mining phase. Let Rimine and Ridelay denotes the number of rounds of

mining phase and delay phase of period i, respectively. Let Rmine = Σt
i=1R

i
mine

and Rdelay = Σt
i=1R

i
delay. So Rmine +Rdelay = rt − r0.

Next, we show how to compute Rmine and Rdelay. Let f = 1−(1− p)n be the
probability that some miner succeeds in mining a block in a round. Since Rimines
are independent geometrically distributed variables such that Pr[Rimine = k] =
(1 − f)k−1f , the sum Rmine follows a negative binomial distribution NB(t, f).
Due to Lemma 5 in Appendix A, we have

Pr[Rmine ≤
(1 + δ1)t

f
] ≥ 1− e−poly(δ

2
1t), (11)

where 0 < δ1 < 1/2.
In delay phase, if Bi is undelayable, it has to be added to TreeMC at the

current round and Ridelay = 0. Otherwise, the adversary can delay the chain

for at most ∆ rounds, Ridelay ≤ ∆. It is obvious that Rdelay ≤ t∆. To get a
lower upper bound, we need to consider the event that a undelayable block is
mined during each delay phase. Indeed, if an undelayable block is mined within
∆ rounds since the beginning of a delay phase, the adversary has to add such
block to TreeMC and the delay phase is ended. Hence, the probability distribution
of Ridelay is defined as follows:

Pr[Ridelay = k] =


1− α, if k = 0,

α(1− (1− α)f)k−1(1− α)f, if 0 < k < ∆,

α(1− (1− α)f)k, if k = ∆,

0, otherwise.

(12)

So we have

E[Ridelay] = α(1− (1− α)f)∆∆+

∆−1∑
k=1

kα(1− (1− α)f)k−1(1− α)f

=
α− αω∆−1[ω +∆(1− ω2)]

1− ω
,

where ω = 1− (1− α)f .
Since Ridelays are independent random variables with the same distribution,

the expectation E[Rdelay] =
∑t
i=1E[Ridelay] = tE[Ridelay]. Using the Chernoff

bound, we get

Pr[Rdelay < (1 + δ2)tE[Ridelay]] > 1− e−
δ22tE[Ridelay ]

3 , for 0 ≤ δ2 ≤ 1. (13)

So on the condition that (11) and (13) hold, the chain growth rate of TreeMC is

g >
t

Rmine +Rdelay
=

t
(1+δ1)t

f + (1 + δ2)tE[Ridelay]
=

(1− δ)f
1 + fE[Ridelay]

, (14)
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where δ is decided by picking sufficiently small δ1 and δ2.
Due to Lemma 3, the view of (Π, C) has chain growth g with majority λ

with probability at least 1 − 2e−poly(κ) conditioned on that (11) and (13) hold.
Therefore, given the view of (Π, C), we have

Pr[chain-increase
(Π,C)
A,Z,κ(r, r + T, λ) ≥ gT ]

≥ 1− 2e−poly(κ) − e−poly(δ
2
1T ) − e−

δ22TE[Ridelay ]

3 ,

which completes the proof of Theorem 1.

Remark. If α = 1, then E[Ridelay] = ∆ and the chain growth rate is (1−δ)f
1+f∆ ,

which is the same as that of [22].

6.2 Common prefix

Theorem 2. (Common prefix). Assume 0 < α < 1 − np and 1/2 < λ ≤ 1 −
8αp∆. The blockchain protocol (Π, C) satisfies the common prefix property with
parameter λ.

Proof. Due to Lemma 4, it remains to prove that TreeMC have the common prefix
property. Suppose the adversary’s goal is to break the common prefix of TreeMC

with depth d+T . That is, the adversary aims to make the length of the common
prefix of all branches in TreeMC at most d− 1.

Note that the depth of TreeMC can increase by 1 at most at each round due
to Lemma 1. Therefore, in order to generate a fork in TreeMC, the adversary has
to broadcast more than one blocks in a round. If only one block is broadcasted,
there will be only one branch in TreeMC according to Lemma 1 and the adversary
fails to generate a fork.

In order to capture the attack for common prefix, we introduce the following
game ExperimentCOMM

A,(Π,C), where the adversary generates a fork and tries to keep
the branches of the fork as long as possible.

ExperimentCOMM
A,(Π,C): Run (Π, C). Suppose that at current round r the depth of

TreeMC is d − 1 and there is no blocks being delayed and no forks in TreeMC.
Then the adversary A tries to generate a fork and extend the length of forks as
follows.

1. Wait for new blocks to be mined. If the new block or blocks are mined at
some round r′ such that r′ > r.
– If more than one block are mined in the same round r′, A broadcasts the

corresponding chains and goes to step 3. That means a fork is generated
and recorded in TreeMC.

– If only one block, say B, is mined,
• If B is delayable, A delays the corresponding chain, say C1, and goes

to step 2;
• Otherwise, go to step 1.
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2. A tries to delay C1 as long as possible. During these rounds of delays, A tries
to generate a fork by “collecting” new blocks. If no block have been mined
during these rounds, A fails to generate a fork and goes to step 1. Otherwise,
go to step 3.

3. A tries to keep the fork of TreeMC as long as possible. If at least two branch-
es of the fork are extended with T blocks, we say the adversary wins the
common prefix game.

Since the adversary can always keep waiting and trying until a fork is created
(in step 1 and step 2), the common prefix property is measured by the success
probability of A in step 3.

Next, we consider a special event called converge which results in the failure
of A. Suppose the depth of TreeMC increases to l at round r. Let B∗ be the first
block mined after round r and let r∗ denote the round at which B∗ is mined.
The event converge satisfies the following conditions.

1. Only one miner succeeds in mining at round r∗.
2. The chain C∗ which B∗ lies in is undelayable, or C∗ is delayable while there

is no new block mined in following ∆ rounds.

Note that if the event converge happens in step 3, then the depth of TreeMC

increases by 1, e.g., from l to l + 1.
When the depth of TreeMC increases to l at round r, the chains of all the

miners are of length l. (Notice that the (l + 1)th block can be mined only if
a chain of length l is distributed). Then, if only one miner succeeds in r∗ and
generates an undelayable chain C∗, C∗ will be the unique chain in TreeMC and
A fails to extend the fork. If C∗ is undelayable and there is no new block mined
in following ∆ rounds, A fails too.

Conditioned on that there exists some miner succeeding at round r∗, the
probability of condition 1 is

np(1− p)n−1

1− (1− p)n
>
np(1− p)n−1

np
= (1− p)n−1 > 1− np (15)

The probability of condition 2 is

1− α+ α(1− p)n∆ > 1− α+ α(1− np∆) = 1− αnp∆ (16)

Therefore,

Pr[converge] > (1− np)(1− αnp∆) > 1− np(1 + α∆) (17)

The adversary can keep the fork for consecutive T blocks only if converge
does not happen for consecutive T times, the probability of which is at most
(np(1 +α∆))T . So the probability that TreeMC has a common prefix with depth
d− T is at least 1− (np(1 + α∆))T .

If ∆ ≤ 1/np, considering the assumption α < 1− np, we have

np(1 + α∆) < np(1 +
1− np
np

) = 1 (18)
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If∆ > 1/np, the equality (16) can be replaced with 1−α+α(1− p)n∆ > 1−α,
and the probability that TreeMC has a common prefix with depth d−T is at least
1− (α+ np)

T
, where α+ np < 1.

To sum up, the probability that TreeMC has a common prefix path with depth
d−T is at least 1−negl(T ), where negl is a negligible function. Due to Lemma

4, the view of (Π, C) satisfies common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1 with probability

at least 1− 2e−poly(κ). Therefore, given the view of (Π, C), we have

Pr[common-prefix
(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1− 2e−poly(κ) − negl(T ),

which completes the proof of Theorem 2.

7 Long Delay Attack on Common Prefix

7.1 Long delay attack

Note that Theorem 2 is an asymptotic result, which means the common prefix
property can hold when T is large enough. To illustrate the threat of long delay
attack comprehensively, we present a concrete attack on the common prefix of
TreeMC when ∆ and α are “too” large relative to a fixed T .

Fig. 2. For α = 0.8 and T = 6, the success probability increases as ∆ gets larger. In
particular, the success probability grows much faster when ∆ > 60 (10 minutes). When
∆ > 120 (20 minutes), the success probability can reach about 1%.
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Fig. 3. For ∆ = 60 (10 minutes, the expected time of mining a block) and T = 6, the
success probability increases as the probability of delay α get larger. As shown in the
figure, the success probability increases much faster when α > 0.7.

Fig. 4. For ∆ = 60 (10 minutes) and α = 0.8, the success probability decreases as
T gets larger. In particular, when T ≥ 6, the success probability becomes extremely
small.
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Suppose that TreeMC has a fork with two branches4of depth 1, which lies
in two chains, say chain A and chain B, respectively, and half of the miners
accepted chain A and the other half accepted chain B. Then the adversary aims
to increase the length of the two branches by T . Note that once the adversary
need to broadcast two chains, he distributes in a way that the number of miners
which accept one chain equals to that of miners which accepts the other chain.
More details of the attack and related analysis are described in Appendix B.
The success probability of such attack is

(
f

4
+ (α+

f(1− 2α)

4
)
f(1− p∆next)
2− 2pnext

)

T

(19)

where pnext ≈ (2−f(1−α))(2−f)
4 .

For an experimental interpretation of the success probability of the attack,
the parameters are set as follows: The time span of a round for full interaction
is set to 10s. Since the expected time to mine a block is about 10 minutes, the
probability of all the miners succeeding in mining per round is about f = 1/60.
Considering n = 105 miners in the network, we have p ≈ f/n ≈ 1.67×10−7. Let
λ = 99.8%, which satisfies the assumption 1/2 < λ ≤ 1− 8αp∆ if ∆ < 1.5× 103

(about 4.2 hours). In this case, the common prefix of TreeMC is the same as that
of (Π, C) with probability at least 99.95% due to Lemma 4.

Given the above parameters, Figure 2,3 and 4 reflect the success probability
of long delay attack when ∆, α and T varies. As shown in those figures, the
adversary without any hash power may threaten the common prefix property of
blockchain protocol especially when ∆ and α are too large relative to the fixed
T .

7.2 Balance attack

Our attack is reminiscent of the balance attacks introduced by [20], since both
attacks can create or maintain forks by splitting honest miners into subgroups
of similar mining power. Main differences between the original balance attack in
[20] and ours are as follows.

– The goal of the original balance attack is to make the target branch selected
as the main chain, while the goal of ours is to maintain the forks for as long
as possible.

– The attacker in the original balance attack requires a fraction, say 20%, of
mining power to launch attack, while our attack as well as N -confirmation
double spending attack in [14] does not require any mining power.

– The original balance attack disrupts the communication between subgroups
by delaying messages and those isolated subgroups mine their own blockchain-
s independently. Our attack delays the new block (or blockchain) as soon as
it is successfully mined, e.g., the attacker “eclipses” the miner which mines

4 Here the branch starts from the block where the fork begins and ends with the last
block.
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a new block. Then the attacker delivers different blockchains to different
subgroups once he obtains enough blockchains.

According to Theorem 5 of [20], we can evaluate the effectiveness of balance
attack on bitcoin protocol. Table 1 shows the time of delays (in minutes) required
by the original balance attack and ours, where we only consider the ideal case
for the attacker of balance attack. More precisely, we assume that all the blocks
mined in balance attack can be added to the main chain. For more details of
balance attack, we refer to [20].

Table 1. Delays for balance attack and our long delay attack (minutes). f = 1/60
and T = 6. ε denotes the success probability of the attack. ρ denotes the fraction of
mining power owned by the adversary in balance attack. α denotes the probability of
delay in our attack. “-” denotes that the corresponding success probability cannot be
achieved. For example, the maximum success probability of our attack is about 0.55
when α = 0.95 and hence cannot reach 0.9.

Types of attack
Success probability

ε = 0.1 ε = 0.5 ε = 0.9

Balance attack

ρ = 0.1 8055 11230 11920

ρ = 0.2 1790 2495 4426

ρ = 0.3 696 970 1724

Our attack

α = 0.85 43.6 - -

α = 0.95 26.6 78.4 -

α = 1 22.9 44.2 80.8

Although Table 1 shows that the balance attack requires longer delays than
ours, we emphasize that it is not fair to say which attack is better. First, the
goals are different. Second, the balance attack only considers the case that the
attacker can always delay the message successfully, while our attack considers
different probability of delay. Besides, the success probability estimation of bal-
ance attack on bitcoin, which is obtained by applying the result on GHOST [20]
directly, is not tight and can be further improved.
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A Chernoff bound for negative binomial distribution

Lemma 5. Let X1, X2, ..., Xk be independent random variables, such that for
all i ∈ [k] and integer m ≥ 1, Pr[Xi = m] = (1− p)m−1p. Let X = Σk

i=1Xi,
the variable X is said to have a negative binomial distribution NB(k, p), and for
δ ∈ (0, 12 )

Pr[X ≤ (1− δ)k
p

] < e−poly(δ
2k) (20)

Pr[X ≥ (1 + δ)
k

p
] < e−poly(δ

2k) (21)
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Proof. Let t = (1−δ)k
p and ε = 1

1−δ − 1 ∈ (0, 1). Here, k = pt
1−δ = (1 + ε)pt.

Let Y1, Y2, ..., Ybtc be independent random boolean variables, such that for all

i ∈ {1, . . . , btc}, Pr[Yi = 1] = p. Y = Σ
btc
i=1Yi. Due to the Chernoff bound [7], we

have

Pr[Y ≥ k] ≤ Pr[Y ≥ (1 + ε)pbtc] < e−
ε2pbtc

3 (22)

Since
pbtc = pt− p(t− btc) > pt− p = (1− δ)k − p (23)

we have

Pr[Y ≥ k] < e−
ε2

3 ((1−δ)k−p) < e−
δ2k

3(1+δ)
+ ε2p

3 < e−
δ2k
3 + p

3 (24)

Consider the event Y ≥ k. If it happens, there are at least k successes in btc
Bernoulli trials. In other words, it takes us at most btc experiments to achieve
the kth successes. Xi is considered as the number of Bernoulli trials needed to
get one success. So the event Y ≥ k is equivalent to the event X ≤ btc. Hence,

Pr[X ≤ t] = Pr[X ≤ btc] = Pr[Y ≥ k] < e−
δ2k
3 + p

3 (25)

That completes the proof of inequality (20). Similarly, inequality (21) can be

proved if t = (1+δ)k
p and ε = 1− 1

1+δ .

B Long Delay Attack on Common Prefix

Suppose chain A and chain B are in TreeMC, such that chain A is similar to chain
B except that only the last blocks are different. For convenience, let GA and GB
denote the set of miners which accept chain A and chain B, respectively. The
number of miners in group A equals to that of group B, i.e., |GA| = |GB | = n/2.
Note that GA or GB is not fixed and will be changed due to the adversary
delivery. Then the adversary waits for a new block. We say round r is successful
if there is a new block mined at round r. Let γ(n, p) = 1− (1− p)n. If p is small,
we have γ(n, p) ≈ np. Obviously, the probability that a round is successful is
f = γ(n, p). When a successful round appears, consider the following cases:

1. There is at least one block mined in each of the two branches. That means,
chain A and chain B are extended at the same round. The adversary dis-
tributes the two chains in a way that the number of miners accepting chain
A and the number of miners accepting chain B are equal. As a result, the
adversary succeeds in extending the length of the fork by 1. Since the prob-
ability of mining a block in one chain is γ(n2 , p), the probability that this
case happens is

γ(n2 , p) · γ(n2 , p)

γ(n, p)
≈

1
4n

2p2

np
=
np

4
(26)

2. There is at least one undelayable block mined in only one of the branches
(without loss of generality, chain A) while no block mined in the another
chain (chain B). In this case, the new chain A is broadcasted by the adversary,
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while the length of chain B remains the same. So the useless blocks in chain
B is deleted due to DeleteBlock and the adversary fails to extend the fork.
The probability of this case is

2γ(n2 , (1− α)p)(1− γ(n2 , p))

γ(n, p)
≈

(1− α)np(1− np
2 )

np
=

(1− α)(2− np)
2

(27)
3. Otherwise, all the blocks mined at this round are delayable and in only

one branch (without loss of generality, chain A). That means, the adversary
neither succeeds nor fails at this round. The adversary can delay the new
chain A and keep waiting for a new block in chain B in the following ∆
rounds. Due to equations (26)(27), the probability that the adversary needs
to delay the chain is

1− np

4
− (1− α)(2− np)

2
= α+

np(1− 2α)

4
(28)

Then, the adversary keeps the chain A delayed and waits for a new block to
be mined in chain B. At each of the following rounds, there are three cases
to be discussed:
(a) If GB succeeds in mining a block, the chain B can be extended and

adversary distributes the delayed chain A and the new chain B in a
way that |GA| = |GB |. As a result, the adversary succeeds in extending
the length of chain A and chain B by 1. The probability of this case is
γ(n2 , p) ≈

np
2 .

(b) If GB does not succeed in mining a block while GA mines an undelayable
block. Then, the new chain A should be distributed, which means only
chain A in TreeMC is extended. So the adversary fails.

(c) If GA does not mine an undelayable block while GB does not succeed
in mining a block. The adversary checks whether the number of rounds
for A being delayed exceeds ∆. If it exceeds ∆, the adversary has to
broadcast chain A and fails. Otherwise, the adversary keeps chain A
delayed and goes to the next round, where the probability of this event
is

pnext = (1− γ(
n

2
, (1− α)p)) · (1− γ(

n

2
, p)) ≈ (2− np(1− α))(2− np)

4
.

(29)
In a word, in case 3, the adversary can succeed with probability np

2 per round,
or can go to the next round with probability pnext. Conditioned on case 3
happens at round r, the probability for the adversary succeeding at round
r+1 is np

2 and the probability of success at round r+2 is pnext · np2 . Similarly,
conditioned on case 3 happens at round r, the probability of success at round
r + i is pnext

i−1 · np2 . Since the adversary only has ∆ rounds for trying, the
probability for adversary to succeed during those ∆ rounds in case 3 is

∆∑
i=1

pnext
i−1 · np

2
=
np(1− p∆next)

2− 2pnext
. (30)
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Considering case 1, 2 and 3, the probability of the adversary succeeding in
increasing the length of branches by 1 for a successful round is

np

4
+ (α+

np(1− 2α)

4
)
np(1− p∆next)

2− 2pnext
. (31)

Then the adversary waits for another successful round and executes as described
above.

We say the adversary’s long delay attack is successful, if the adversary suc-
ceeds in increasing the length of the fork by 1 for consecutive T times. Therefore,
the success probability of our long delay attack is

(
f

4
+ (α+

f(1− 2α)

4
)
f(1− p∆next)
2− 2pnext

)

T

. (32)

where np ≈ f .


