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Abstract. There have been tremendous advances in reducing interaction,
communication and verification time in zero-knowledge proofs but it
remains an important challenge to make the prover efficient. We construct
the first zero-knowledge proof of knowledge for the correct execution of
a program on public and private inputs where the prover computation
is nearly linear time. This saves a polylogarithmic factor in asymptotic
performance compared to current state of the art proof systems.
We use the TinyRAM model to capture general purpose processor com-
putation. An instance consists of a TinyRAM program and public inputs.
The witness consists of additional private inputs to the program. The
prover can use our proof system to convince the verifier that the program
terminates with the intended answer within given time and memory
bounds. Our proof system has perfect completeness, statistical special
honest verifier zero-knowledge, and computational knowledge soundness
assuming linear-time computable collision-resistant hash functions exist.
The main advantage of our new proof system is asymptotically efficient
prover computation. The prover’s running time is only a superconstant
factor larger than the program’s running time in an apples-to-apples
comparison where the prover uses the same TinyRAM model. Our proof
system is also efficient on the other performance parameters; the verifier’s
running time time and the communication are sublinear in the execution
time of the program and we only use a log-logarithmic number of rounds.

Keywords. Zero-knowledge proofs, succinct arguments of knowledge,
TinyRAM, ideal linear commitments, post-quantum security.

1 Introduction

A zero-knowledge proof system [GMR85] enables a prover to convince a verifier
that a statement is true without revealing anything else. We are interested in
proving statements of the form u ∈ L, where L is a language in NP. A zero-
knowledge proof is an interactive protocol between a prover and a verifier, where
both hold the same instance u, and the prover also holds a witness w to u ∈ L.
The protocol should satisfy three properties:
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Completeness: A prover holding a witness to u ∈ L can convince the verifier.
Soundness: A cheating prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction only shows the statement u ∈ L is true. It

reveals nothing else, in particular it does not disclose anything of the witness.

Zero-knowledge proofs have numerous applications and are for instance used
in constructions of public-key encryption schemes secure against chosen ciphertext
attack, digital signatures, voting systems, auction systems, e-cash, secure multi-
party computation, and verifiable outsourced computation. The zero-knowledge
proofs impact the performance of all these applications, and it is therefore
important for them to be as efficient as possible.

There are many zero-knowledge proofs for dealing with arithmetic or boolean
circuit satisfiability. However, in applications usually the type of statements we
want to prove is that a protocol participant is following the protocol honestly;
whatever that protocol may be. This means we want to express statements
relating to program execution such as “running program P specified by the
protocol on public input x and private input y returns the output z.” In principle
such a statement can be reduced to circuit satisfiability but the cost of the
NP-reduction incurs a prohibitive cost. In this paper, we therefore focus on
the important question of getting zero-knowledge proofs for statements relating
directly to program execution.

Performance can be measured on a number of parameters including the
prover’s running time, the verifier’s running time, the number of transmitted
bits and the number of rounds the prover and verifier interact. Current state of
the art zero-knowledge proofs get very good performance on verification time,
communication and round complexity, which makes the prover’s running time
the crucial bottleneck. Indeed, since the other costs are so low, we would happily
increase them for even modest savings on the proving time since this is the barrier
that make some applications such as verifiable outsourced computation currently
unviable. The research challenge we focus on is therefore to get prover-efficient
zero-knowledge proofs for correct program execution.

1.1 Our Contribution

We use the TinyRAM model [BCG+13, BSCG+13] for computation. TinyRAM
specifies a random access machine with a small instruction set working on
W -bit words and addresses. The specification of TinyRAM considers a Harvard-
architecture processor, which means that the program being executed is stored
separately from the data being processed and does not change during execution.1

Experimental results [BCG+13] show that programs written in C can be compiled
efficiently into TinyRAM programs and only have a modest constant overhead
compared to optimized compilation to machine code on a modern processor.

1 TinyRAM can with minor changes also be adapted to a von Neumann architecture
where program instructions are fetched from memory [BCTV14b]. The performance
of our proof systems adapted to a von Neumann architecture would remain the same
up to a constant factor.
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In our proof system, an instance consists of a TinyRAM program and public
data given to the program, and a witness is private data given as input to the
program. The statement is the claim that the TinyRAM program P running on
given public and private data will terminate with answer 0 within specific time
and memory bounds. When measuring performance we think of the prover and
verifier as being TinyRAM programs with the same word size2.

Our main contribution is an interactive proof system for correct TinyRAM
computation, which has perfect completeness, statistical zero-knowledge, and
computational knowledge soundness based on collision-resistant hash functions.
Knowledge soundness means that not only do we have soundness and it is
infeasible to prove a false statement, but it is also a proof of knowledge such that
given access to a successful prover it is possible to extract a witness. For maximal
asymptotic efficiency we may use linear-time computable hash functions, which
yields the performance given in Fig. 1.

Our proof system is highly efficient for computationally intensive programs
where the execution time dominates other parameters (see Section 6 for a detailed
discussion of parameter choices). For a statement about the execution of a
TinyRAM program of length L, running with time bound T and memory bound
M , the prover runs in O(αT ) steps3 for an arbitrarily small superconstant
function α(λ) = ω(1). The proof system is also efficient on other performance
parameters: the verifier running time and the communication grows roughly
with the square-root of the execution time4 and we have log-logarithmic round
complexity. Figure 1 gives an efficiency comparison with a state of the art
zk-SNARK [BCTV14b] for verifying correct program execution on TinyRAM.
Further discussion of other proof systems that can verify correct TinyRAM or
other types of program execution can be found in Section 1.3. The best of these
achieve similar asymptotic prover efficiency as [BCTV14b].

Remarks. Our proof system assumes some public parameters to be set up that
include a description of a finite field, an error-correcting code, and a collision-
resistant hash function. The size of the public parameters is just poly(λ)(L +
M +

√
T ) bits which can be computed from a small uniformly random string

in poly(λ)(L + M +
√
T ) TinyRAM steps. This means the public parameters

have little effect on the overall efficiency of the proof system. Moreover, there are

2 We stress the choice of comparing the prover and verifier to program execution on
the same platform. We do this to get an apples-to-apples comparison; there are many
zero-knowledge proofs that are ”linear time” because they use different metrics for
statement evaluation and the prover time, for instance that the cost of validating
the statement given the witness is measured in field multiplications and the prover
computation is measured in exponentiations.

3 The big-O notation hides big constants and we do not recommend implementing
the proof system as it is; our contribution is to make significant asymptotic gains
compared to state-of-the-art zero-knowledge proofs by demonstrating that the prover’s
computation can be nearly linear.

4 Disregarding the SHVZK property for a moment, this is also the first proof system
for general purpose computation that has both nearly linear computation for the
prover and sublinear communication.
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Work Prover Verifier Communication Rounds Assumption

[BCTV14b] Ω(T log2 T ) ω(L+ |v|) ω(1) 1 KoE

This work O(αT ) poly(λ)(
√
T + L+ |v|) poly(λ)(

√
T + L) O(log log T ) LT-CRHF

Fig. 1: Efficiency comparisons between our arguments and the most efficient
zero-knowledge argument for the correct execution of TinyRAM programs, both
at security level 2−ω(log λ). Computation is measured in TinyRAM steps and
communication in words of length W = Θ(log λ) with λ the security parameter.
KoE stands for knowledge of exponent type assumption in pairing-based groups
and LT-CRHF stands for linear-time collision resistant hash function. It is worth
noting KoE assumptions do not resist quantum computers while a LT-CRHF
may be quantum resistant.

variants of the parameters where it is efficiently verifiable the public parameters
have the correct structure. This means the prover does not need to trust the
parameters to get special honest verifier zero-knowledge, so they can be chosen
by the verifier making our proof systems work in the plain model without setup.
We let the public parameter be generated by a separate setup though because
they are independent of the instance and can be used over many separate proofs.

We did not optimize communication and verification time to go below
√
T

but if needed it is possible to compose our proof system with a verifier-efficient
proof system and get verification time that grows logarithmically in T . This is
done by letting the prover send linear-time computable hashes of her messages to
the verifier instead of the full messages. Since our proof system is public coin the
prover knows after this interaction exactly how the verifier in our proof system
ought to run if given the messages in our proof system. She can therefore give a
verifier-efficient proof of knowledge that she knows pre-images to the hashes that
would make the verifier in our proof system accept. We outline this procedure in
the full paper [BCG+18].

1.2 New techniques

Ben-Sasson et al. [BCG+13, BCTV14b] offer proof systems for correct TinyRAM
program execution where the prover commits to a time-sorted execution trace
as well as an address-sorted memory trace. They embed words, addresses and
flags that describe the TinyRAM state at a given time into field elements. The
correct transition in the execution trace between the state at time t and the
state at time t + 1 can then be checked by an arithmetic circuit, the correct
writing and reading of memory at a particular address in the memory trace can
be checked by another arithmetic circuit, and finally the consistency of memory
values in the two traces can be checked by a third arithmetic circuit that embeds
a permutation network. Importantly, in these proofs the state transitions can be
proved with the same arithmetic circuits in each step so many of the proofs can
be batched together at low average cost.

Combining their approach with the recent linear-time proofs for arithmetic
circuit satisfiability by Bootle et al. [BCG+17] it would be possible to get a zero-
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knowledge proof system with sublinear communication and efficient verification.
The prover time, however, would incur at least a logarithmic overhead compared to
the time to execute the TinyRAM program. First, the use of an arithmetic circuit
that embeds a permutation network to check consistency between execution and
memory traces requires a logarithmic number of linear-size layers to describe
an arbitrary permutation which translates into a logarithmic overhead when
generating the proof. Second, TinyRAM allows both arithmetic operations such
as addition and multiplication of words, and logical operations such as bit-wise
XOR, AND and OR. To verify logical operations they decompose words into
single bits that are handled individually. Bit-decomposition makes it easy to
implement the logical operations, but causes an overhead when embedding bits
into full size field elements. From a technical perspective our main contribution
is to overcome these two obstacles.

To reduce the time required to prove the execution trace is consistent with the
memory usage we do not embed a permutation network into an arithmetic circuit.
Instead we relate memory consistency to the existence of a permutation that
maps one memory access in the execution trace to the next access of the same
memory address in the execution trace. Neff [Nef01] proposed permutation proofs
in the context of shuffle proofs used in mix-nets. Follow-up works [Gro10b, GI08]
have improved efficiency of such proofs with Bayer and Groth [BG12] giving
a shuffle argument in the discrete logarithm setting where the prover uses a
linear number of exponentiations and communication is sublinear. These shuffle
proofs are proposed for the discrete logarithm setting and we do not want to
pay the cost of computing exponentiations. The core of the shuffle proofs can be
formulated abstractly using homomorphic commitments to vectors though. Since
the proofs by Bootle et al. [BCG+17] also rely on an idealization of homomorphic
commitments to vectors the ideas are compatible and we get permutation proofs
that cost a linear number of field operations.

To remove the overhead of bit-decomposition we invent a less costly de-
composition. While additions and multiplications are manageable using a nat-
ural embedding of words into field elements, such a representation is not well
suited to logical operations though. However, instead of decomposing words
into individual bits, we decompose them into interleaved odd-position bits and
even-position bits. A nibble (a3, a2, a1, a0) can for instance be decomposed into
(a3, 0, a1, 0)+(0, a2, 0, a0). The key point of this idea is that adding two interleaved
even bit nibbles yields (0, a2, 0, a0)+(0, b2, 0, b0) = (a2∧b2, a2⊕b2, a0∧b0, a0⊕b0).
So using another decomposition into odd-position and even-position bits we can
now extract the XORs and the ANDs. Using this core idea, it is possible to
represent all logical operations using field additions together with decomposition
into odd and even-position bits. This reduces the verification of logical operations
to verifying correct decomposition into odd and even bits. This decomposition
and its use are described in the full paper [BCG+18].

To enable decomposition proofs into odd and even-position bits, we develop a
new lookup proof that makes it possible to check that a field element belongs
to a table of permitted values. By creating a lookup table of all words with
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even-position bits, we make it possible to verify such decompositions. Lookup
proofs not only enable decomposition into odd and even-position bits but also
turn out to have many other uses such as demonstrating that a field element
represents a correct program instruction, or that a field element represents a
valid word within the range {0, . . . , 2W − 1}.

Combining arithmetic circuits, permutations and table lookups we get a set
of conditions for a TinyRAM execution being correct. The program execution
of T steps on the TinyRAM machine can in our system be encoded as O(T )
field elements that satisfy the conditions. Using prime order fields of size 2O(W )

would make it possible to represent these field elements as O(1) words each.
However, the soundness of our proof systems depends on the field size and to get
negligible soundness error we choose a larger field to get a superconstant ratio

e = log |F|
W . This factors into the efficiency of our proof system giving a prover

runtime of O(αT ) TinyRAM steps for an instance requiring time T , where α is
a superconstant function which specifies how many steps it takes to compute a
field operation, i.e., α = O(e2).

Having the inner core of conditions in place: arithmetic circuits for instruc-
tion executions, permutations for memory consistency, and look-ups for word
decompositions we now deploy the framework of Bootle et al. [BCG+17] to get a
zero-knowlegde proof system. They use error-correcting codes and linear-time
collision-resistant hash functions to give proof systems for arithmetic circuit
satisfiability, while we will use their techniques to prove our conditions on the
execution trace are satisfied. Their proof system for arithmetic circuit satisfiability
requires the prover to use a linear number of field multiplications and the verifier
to use a linear number of field additions. However, we can actually get sublinear
verification when the program and the input is smaller than the execution time.
Technically, the performance difference stems from the type of permutation proof
that they use for verifying the correct wiring of the circuit and that we use for
memory consistency in the execution trace. In their use, the permutation needs
to be linked to the publicly known wiring of the arithmetic circuit and in order
for the verifier to check the wiring is correct he must read the entire circuit. We
on the other hand do not disclose the memory accesses in the execution trace
to the verifier, indeed to get zero-knowledge it is essential the memory accesses
remain secret. We therefore need a hidden permutation proof and such proofs
can have sublinear verification time.

1.3 Related work

Interaction. Interaction is measured by the number of rounds the prover and
verifier exchange messages. Feige and Shamir [FS90] showed that constant round
argument systems exist, and Blum, Feldman and Micali [BFM88] showed that if
the prover and verifier have access to an honestly generated common reference
string it is possible to have non-interactive zero-knowledge proofs where the
prover sends a single message to the verifier.
Communication. A series of works [KR08, IKOS09, Gen09, GGI+15] have
constructed proof systems where the number of transmitted bits is proportional
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to the witness size. It is unlikely that sublinear communication is possible in
proof systems with statistical soundness but Kilian [Kil92] constructed an ar-
gument system, a computationally sound proof system, with polylogarithmic
communication complexity. Kilian’s zero-knowledge argument relies on prob-
ablistically checkable proofs [AS98], which are still complex for practical use,
but the invention of interactive oracle proofs [BCS16] have made this type of
proof system a realistic option. Recent work by Ben-Sasson et al. [BSBTHR18]
presents a new PCP-based argument system, known as STARKs, which also has
polylogarithmic communication costs, and is optimized for better practicality.
Ishai et al. [IKO07] give laconic arguments where the prover’s communication
is minimal. Groth [Gro10a], working in the common reference string model and
using strong assumptions, gave a pairing-based non-interactive zero-knowledge
argument consisting of a constant number of group elements. Follow-up works
on succinct non-interactive arguments of knowledge (SNARKs) have shown that
it is possible to have both a modest size common reference string and proofs as
small as 3 group elements [BCCT12, GGPR13, PHGR16, BCCT13, Gro16].

Verifier computation. In general the verifier has to read the entire instance
since even a single deviating bit may render the statement u ∈ L false. However,
in many cases an instance can be represented more compactly than the witness
and the instance may be small compared to the computational effort it takes
to verify a witness for the instance. In these cases it is possible to get sublinear
verification time compared to the time it takes to check the relation defining
the language L. This is for instance the case for the SNARKs mentioned above,
where the verification time only depends on the size of the instance but not the
complexity of the relation.

Prover computation. Given the success in reducing interaction, communication
and verification time, the important remaining challenge is to get good efficiency
for the prover.

Boolean and arithmetic circuits. Many classic zero-knowedge proofs rely on
cyclic groups and have applications in digital signatures, encryption schemes,
etc. The techniques first suggested by Schnorr [Sch91] can be generalized to
NP-completel languages such as boolean and arithmetic circuit satisfiability [CD,
Gro09, BCC+16]. In these proofs and arguments the prover uses O(N) group
exponentiations, where N is the number of gates in the circuit. For the discrete
logarithm assumption to hold, the groups must have superpolynomial size in the
security parameter though, so exponentiations incur a significant overhead com-
pared to direct evaluation of the witness in the circuit. The SNARKs mentioned
earlier also rely on cyclic groups and likewise require the prover to do O(N)
exponentiations. Recently, Bootle et al. [BCG+17] used the structure of [Gro09] to
give constant overhead zero-knowledge proofs for arithmetic circuit satisfiability,
where the prover uses O(N) field multiplications, relying on error-correcting
codes and efficient collision-resistant hash functions instead of cyclic groups.
STARKs [BSBTHR18] achieve slightly worse, quasilinear prover computation
but have lower asymptotic verification costs.
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An alternative to these techniques is to use the “MPC in the head” paradigm
by Ishai et al. [IKOS09]. Relying on efficient MPC techniques, Damg̊ard, Ishai
and Krøigaard gave zero-knowledge arguments with little communication and a
prover complexity of polylog(λ)N . Instead of focusing on theoretical performance,
ZKBoo [GMO16] and its subsequent optimisation ZKB++ [CDG+17] are practical
implementations of a “3PC in the head” style zero-knowledge proof for boolean
circuit satisfiability. Communication grows linearly in the circuit size in both
proofs, and a superlogarithmic number of repetitions is required to make the
soundness error negligible, but the speed of the symmetric key primitives makes
practical performance good. Ligero [AHIV17] provides another implementiation
using techniques related to [BCG+17]. It has excellent practical performance
but asymptotically it is not as efficienct as [BCG+17] due to the use of more
expensive error-correcting codes. Another alternative also inspired by the MPC
world is to use garbled circuits to construct zero-knowledge arguments for boolean
circuits [BP12, JKO13, FNO15].The proofs grow linearly in the size of the circuit
and there is a polylogarithmic overhead for the prover and verifier due to the
cryptographic operations but implementations are practical [JKO13].

There are several proof systems for efficient verification of outsourced compu-
tation [GKR08, CMT12, Tha13, WHG+16]. While this line of works mostly focus
on verifying deterministic computation and does not require zero-knowledge,
recent works add in cryptographic techniques to obtain zero-knowledge [ZGK+17,
WJB+17, WTas+17]. Hyrax [WTas+17] offers an implementation with good
concrete performance. It has sublinear communication and verification, while the
prover computation is dominated by O(dN +S logS) field operations for a depth
d and width S circuit when the witness is small compared to the circuit size. If
in addition the circuit can be parallelized into many identical sub-computations
the prover cost can be further reduced to O(dN) field operations. The system
vSQL [ZGK+17] is tailored towards verifing database queries and as in this work
it avoids the use of permutation networks using permutation proofs based on
invariance of roots in polynomials as first suggested by Neff [Nef01].

Correct program execution. In practice, most computation does not resemble
circuit evaluation but is instead done by computer programs processing one
instruction at a time. There has been a sustained effort to construct efficient
zero-knowledge proofs that support real-life computation, i.e., proving statements
of the form “when executing program P on public input x and private input y we
get the output z.” In the context of SNARKs there are already several systems
for proving correct execution of programs written in C [PHGR16, BFR+13,
BCG+13, WSR+15]. These system generally involve a front-end which compiles
the program into an arithmetic circuit which is then fed into a cryptographic
back-end. Much work has been dedicated to improving both sides and achieving
different trade-offs between efficiency and expressiveness of the computation.

When we want to reason theoretically about zero-knowledge proofs for correct
program execution, it is useful to abstract program execution as a random-access
machine that in each instruction can address an arbitrary location in memory
and do integer operations on it. For closer resemblance to real-life computation,



9

we can bound the integers to a specific word size and specify a more general
set of operations the random-access machine can execute. TinyRAM [BSCG+13,
BCG+13] is a prominent example of a computational model bridging the gap
between theory and real-word computation. It comes with a compiler from C to
TinyRAM code and underpins several implementations of zero-knowledge proofs
for correct program execution [BCG+13, BCTV14b, BCTV14a, CTV15, BBC+17]
where the prover time is Ω(T log2 λ) for a program execution that takes time
T . Similar efficiency is also achieved, asymptotically, by other proof systems
that can compile (restricted) C programs and prove correct execution such as
Pinocchio [PHGR16], Pantry [BFR+13] and Buffet [WSR+15]. Our work reduces
the prover’s overhead from Ω(log2 λ) to an arbitrary superconstant α = ω(1) and
is therefore an important step towards optimal prover complexity.

Concurrent Work. Zhang et al. [ZGK+18] have concurrently with our work devel-
oped and implemented a scheme for verifying RAM computations. Like us and
[ZGK+17], they avoid the use of permutation networks by using permutation
proofs based on polynomial invariance by Neff [Nef01]. The idea underlying
their technique for proving the correct fetch of an operation is related to the
idea underpinning our look-up proofs. There are significant differences between
the techniques used in our works; e.g. they rely on techniques from [CMT12]
for instantiating proofs where we use techniques based on ideal linear commit-
ments [BCG+17]. The proofs in [ZGK+18] are not zero-knowledge since they
leak the number of times each type of instruction is executed, while our proofs
are zero-knowledge. In terms of prover efficiency, [ZGK+18] focuses on concrete
efficiency and yields impressive concrete performance. Asymptotically speaking,
however, we are a polylogarithmic factor more efficient. This may require some
explanation because they claim linear complexity for the prover. The reason is
that they treat the prover as a TinyRAM machine with logarithmic word size in
their performance measurement. Looking under the hood, we see that they use
bit-decomposition to handle logical operations, which is constant overhead when
you fix a particular word size (e.g. 32 bits) but asymptotically the cost of this is
logarithmic since it is linear in the word size. Also, they base commitments on
cyclic groups and the use of exponentiations incurs a superlogarithmic overhead
for the prover when implemented in TinyRAM.

Setup and Assumptions. Many proof systems, such as SNARKs, require a
large and complex common reference string in order to run. The common ref-
erence string must be generated correctly, or the security of the proof system
is at stake. This leads to concerns over parameter subversion, and efficiency,
since the more complex the common reference string, the more costly it is to
ensure that it was generated correctly. Recently, alternatives have been investi-
gated. Hyrax [WTas+17] relies on the discrete logarithm assumption, and Ligero
[AHIV17] and STARKs [BSBTHR18] rely on collision-resistant hash functions.
Our scheme relies only on collision-resistant hash functions for soundness, and
pseudorandom generators in order to achieve full zero-knowledge, which means
that the setup information required is comparable to existing works, like STARKs,
which focus on transparency.
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Our proof system benefits from simple setup ingredients, nearly linear prover
costs, and sublinear, hence, scalable communication and verification costs, and
therefore enjoys many of the same desirable properties as STARKs [BSBTHR18].

In addition, although we do not know how to prove that our scheme is secure
in any quantum security model, it is based on post-quantum assumptions and
may offer some security against quantum adversaries, since it is not known
how to efficiently attack collision-resistant hash functions and pseudorandom
generators using quantum algorithms. Note that there are general proof systems,
such as ZKB++ [CDG+17], which do have quantum proofs of security, but are
asymptotically less efficient as previously discussed.

2 Preliminaries

2.1 Notation

We write y ← A(x) for an algorithm returning y on input x. When the algorithm is
randomized, we write y ← A(x; r) to explicitly refer to the random coins r picked
by the algorithm. We use a security parameter λ to indicate the desired level of
security. The higher the security parameter, the smaller the risk of an adversary
compromising security should be. For functions f, g : N→ [0, 1], we write f(λ) ≈
g(λ) if |f(λ) − g(λ)| = 1

λω(1) . We say a function f is overwhelming if f(λ) ≈ 1
and that it is negligible if f(λ) ≈ 0. In general we want the adversary’s chance of
breaking our proof systems to be negligible in λ. As a minimum requirement for
an algorithm or adversary to be efficient it has to run in polynomial time in the
security parameter. We abbreviate probabilistic (deterministic) polynomial time
in the security parameter PPT (DPT). For a positive integer n, [n] denotes the
set {1, . . . , n}. We use bold letters such as v for row vectors over a finite field F.

2.2 Proofs of Knowledge

We follow [BCG+17] in defining proofs of knowledge over a communication
channel and their specification of the ideal linear commitment channel and the
standard channel. A proof system is defined by stateful PPT algorithms (K,P,V).
The setup generator K is only run once to provide public parameters pp that will
be used by the prover P and verifier V. We will in our security definitions just
assume K is honest, which is reasonable since in our constructions the public
parameters are publicly verifiable and could even be generated by the verifier.

The prover and verifier communicate with each other through a communication

channel
chan←→. When P and V interact on inputs s and t through a channel

chan←→
we let viewV ← 〈P(s)

chan←→ V(t)〉 be the view of the verifier in the execution,

i.e., all inputs he gets including random coins, and we let transP ← 〈P(s)
chan←→

V(t)〉 denote the transcript of the communication between prover and channel.
The protocol ends with the verifier accepting or rejecting the proof. We write

〈P(s)
chan←→ V(t)〉 = b depending on whether he accepts (b = 1) or rejects (b = 0).



11

In the standard channel ←→, all messages are forwarded between prover and
verifier. As in [BCG+17], we also consider an ideal linear commitment channel,

ILC←→, described in Figure 2. When using the ILC channel, the prover can submit
a commit command to commit to vectors of field elements of some fixed length
k, specified in the public parameters. The vectors remain secretly stored in the
channel, and will not be forwarded to the verifier. Instead, the verifier only learns
how many vectors the prover has committed to. The verifier can submit a send

command to the ILC channel to send a mesage to the prover. In addition, the
verifier can also submit open queries to the ILC channel to obtain openings of
linear combinations of the vectors sent by the prover. We stress that the verifier
can request several linear combinations of stored vectors within a single open

query, as depicted in Figure 2 using matrix notation.

PILC VILC

Fig. 2: Description of the ILC channel.

We say a proof system is public coin if the verifier’s messages to the com-
munication channel are chosen uniformly at random and independently of the
actions of the prover, i.e., the verifier’s messages to the prover correspond to
the verifier’s randomness ρ. All our proof systems will be public coin. In a proof
system over the ILC channel, sequences of commit, send and open queries can
alternate arbitrarily. However, since our proof systems are public coin we can
without loss of generality assume the verifier will only make one big open query
at the end of the protocol and then decide whether to accept or reject.

Let R be an efficiently decidable relation of tuples (pp, u, w). We can define
a matching language L = {(pp, u)|∃w : (pp, u, w) ∈ R}. We refer to u as the
instance and w as the witness to (pp, u) ∈ L. The public parameter pp will specify
the security parameter λ, perhaps implicitly through its length, and may also
contain other parameters used for specifying the relation. Typically, pp will also
contain parameters that do not influence membership of R but may aid the
prover and verifier, for instance the field and vector size in the ILC channel.

The protocol (K,P,V) is called a proof of knowledge over a communication

channel
chan←→ for a relation R if it has perfect completeness and computational

knowledge soundness as defined below.
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Definition 1 (Perfect Completeness). A proof system is perfectly complete
if for all PPT adversaries A

Pr

[
pp← K(1λ); (u,w)← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w)
chan←→ V(pp, u)〉 = 1

]
= 1.

Definition 2 (Knowledge soundness). A public-coin proof system has com-
putational (strong black-box) knowledge soundness if for all DPT P∗ there exists
an expected PPT extractor E such that for all PPT adversaries A

Pr

[
pp← K(1λ); (u, s)← A(pp);w ← E〈P∗(s)

chan←→V(pp,u)〉(pp, u) :
b = 1 ∧ (pp, u, w) /∈ R

]
≈ 0.

Here the oracle 〈P∗(s) chan←→ V(pp, u)〉 runs a full protocol execution and if the
proof is successful it returns the transcript transP of the prover’s communication
with the channel. The extractor E can ask the oracle to rewind the proof to any
point in a previous transcript and execute the proof again from this point on with
fresh public-coin challenges from the verifier. We let b ∈ {0, 1} be the verifier’s
output in the first oracle execution, i.e., whether it accepts or not, and we think of
s as the state of the prover. The definition can then be paraphrased as saying that
if the prover in state s makes a convincing proof, then E can extract a witness.

If the definition holds also for unbounded P∗ and A we say the proof has
statistical knowledge soundness.

If the definition holds for a non-rewinding extractor, i.e., E only requires a
single transcript of the prover’s communication with the channel, we say the proof
system has knowledge soundness with straight-line extraction.

We will construct public-coin proofs of knowledge that have special honest-verifier
zero-knowledge. This means that if the verifier’s challenges are known in advance
then it is possible to simulate the verifier’s view without knowing a witness. In
our definition, the simulator works even for verifiers who may use adversarial
biased coins in choosing their challenges as long as they honestly follow the
specification of the protocol.

Definition 3 (Special Honest-Verifier Zero-Knowledge). A public-coin
proof of knowledge is computationally special honest-verifier zero-knowledge
(SHVZK) if there exists a PPT simulator S such that for all stateful interactive
PPT adversaries A that output randomness ρ for the verifier, and (u,w) such
that (pp, u, w) ∈ R,

Pr

[
pp← K(1λ); (u,w, ρ)← A(pp);

viewV ← 〈P(pp, u, w)
chan←→ V(pp, u; ρ)〉 : A(viewV) = 1

]
≈ Pr

[
pp← K(1λ); (u,w, ρ)← A(pp); viewV ← S(pp, u, ρ) : A(viewV) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against un-
bounded adversaries, and we say the proof is perfectly SHVZK if the probabilities
are exactly equal.
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2.3 TinyRAM

TinyRAM is a random-access machine model operating on W -bit words and
using K registers. We now describe the key features of TinyRAM but refer the
reader to the specification [BSCG+13] for full details. A state of the TinyRAM
machine consists of a program P (list of L instructions), a program counter pc
(word), K registers reg0, . . . , regK−1 (words), a condition flag flag (bit), and M
words of memory with addresses 0, . . . ,M − 1.

The TinyRAM specification includes two read-only tapes to retrieve its inputs
but with little loss of efficiency we may assume the program starts by reading
the tapes into memory5 We will therefore skip the reading phase and assume the
memory is initialized with the inputs (and 0 for the remaining words). Also, we
will assume on initialization that pc, the registers and flag are all set to 0.

The program consists of a sequence of L instructions that include bit-wise
logical operations, arithmetic operations, shifts, comparisons, jumps, and storing
and loading data in memory. The program terminates by using a special command
answer that returns a word. A description of the allowed operations is given in
Table 1. We consider the program to have succeeded if it answers 0, otherwise
we consider the answer to be a failure code.

We write regi and ri when referring to register i and to its content, respectively.
We write A to refer to either a register or an immediate value specified in a
program instruction and write A for the value stored therein. Depending on the
instruction a word a may be interpreted as an unsigned value in {0, . . . , 2W − 1}
or as a signed value in {−2W−1, . . . , 2W−1 − 1}. Signed values are in two’s
complement, so given a word a = (aw−1, . . . , a0) ∈ {0, 1}W the bit aW−1 is the
sign and the signed value is −2W + a if aW−1 = 1 and a if aW−1 = 0. We
distinguish operations over signed values by using subscript s, e.g. a ×s b and
a ≥s b are used to denote product and comparison over the signed values.

Correct Program Execution. It is often important to check that a protocol
participant supposedly running program P on public input x and private input
w provides the correct output z. Without loss of generality, we can formulate
the verification as an extended program that takes public input v = (x, z) and
answers 0 if and only if z is the output of the computation. We therefore formulate
correct program execution as the program just answering 0.

We now give a relation that captures correct TinyRAM program execution.
An instance is of the form u = (P, v, T,M), where P is a TinyRAM program, v
is a list of words given as input to the program, T is a time bound, and M is the
size of the memory. A witness w is another list of words. We assume without loss
of generality that the witness is appended by 0’s, such that |v|+ |w| = M and
the program starts with the memory being initialized to these words.

The statement we want to prove is that the program P terminates in T steps
using M words of memory on the public input v and private input w with the

5 The specification [BSCG+13] calls a program proper if it first reads all inputs into
memory and provides a 7-line TinyRAM program that does this in ∼ 5M steps.
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instruction answer 0. We therefore define

RTinyRAM =


(pp, u, w) = ((W,K, ∗), (P, v, T,M), w)

∣∣
P is a TinyRAM program with W -bit words, K registers,
and M words of addressable memory, which on inputs v and w
terminates in T steps with the instruction answer 0.


Our main interest is to prove correct execution of programs that require heavy
computation so we will throughout the article assume the number of steps
outweigh the other parameters, i.e., T > L + M , where L is the number of
instructions in the program.

3 Arithmetization of Correct Program Execution

As a first step towards the realization of proofs for the correct execution of
TinyRAM programs we translate RTinyRAM into a more amenable relation in-
volving elements in a finite field. Given a TinyRAM machine with word-size W
and a finite field F, we can in a natural way embed words into field elements by
encoding a word a ∈ {0, . . . , 2W − 1} as the field element a · 1F = 1F + · · ·+ 1F
(a times). We will use fields of characteristic p > 22W − 2W−1 because then
sums and products of words are less than p and we avoid overflow in the field
operations we apply to the embedded words.

We will encode the program, memory and states of a TinyRAM program as
tuples of field elements. We then introduce a new relation Rfield

TinyRAM consisting of
a set of arithmetic constraints these encodings should satisfy to guarantee the
correct program execution. The relation will take instances u = (P, v, T,M), and
witnesses w consisting of the encodings as well as a set of auxiliary field elements.

In this section we specify instructions supported by TinyRAM machines and
the structure of the witness w and how the relation of correct program execution
decomposes into simpler sub-relations. It will be the case that the encoding of
the witness can be done alongside an execution of the program in O(L+M + T )
field operations.

Table 1 described the supported operations in TinyRAM. Each line in the
program consists of one of these instructions in and up to three operands, e.g.
add regi regj A. The first operand, regi, usually points to the register storing the
result of the operation, add, computed on the words specified by the next two
operands, regj , A. The last operand A indicates an immediate value that could be
either used directly in the operation or to point to the content of another register.
We refer to the value to be used in the operation generically as A, stressing
that the selection between either the immediate value or a register value can be
handled by using the appropriate selection vector.

Formatting the Witness. Given a correct program execution we encode pro-
gram, memory and states of the TinyRAM machine as field elements and arrange
them in a number of tables as pictured in Table 2. The execution table Exe,
contains the field elements encoding of the states of the TinyRAM machine. It
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Instruction Operands Effect Flag

and regi regj A compute ri as bitwise AND of rj and A result is 0W

or regi regj A compute ri as bitwise OR of rj and A result is 0W

xor regi regj A compute ri as bitwise XOR of rj and A result is 0W

not regi A compute ri as bitwise NOT of A result is 0W

add regi regj A compute ri = rj + A mod 2W overflow: rj + A ≥ 2W

sub regi regj A compute ri = rj − A mod 2W borrow: rj < A
mull regi regj A compute ri = rj × A mod 2W ¬ overflow: rj × A < 2W

umulh regi regj A compute ri as upper W bits of rj × A ¬ overflow: ri = 0
smulh regi regj A compute ri as upper W bits of the signed ¬ over/underflow: ri = 0

2W -bit rj ×s A (mull gives lower word)
udiv regi regj A compute ri as quotient of rj/A division by zero: A = 0
umod regi regj A compute ri as remainder of rj/A division by zero: A = 0
shl regi regj A compute ri as ri shifted left by A bits MSB of rj
shr regi regj A compute ri as ri shifted right by A bits LSB of rj
cmpe regi A compare if equal equal: ri = A
cmpa regi A compare if above above: ri > A
cmpae regi A compare if above or equal above/equal: ri ≥ A
cmpg regi A signed compare if greater greater: ri >s A
cmpge regi A signed compare if greater or equal greater/equal: ri ≥s A
mov regi A set ri = A flag unchanged
cmov regi A if flag = 1 set ri = A flag unchanged
jmp A set pc = A flag unchanged
cjmp A if flag = 1 set pc = A flag unchanged
cnjmp A if flag = 0 set pc = A flag unchanged
store A regi store in memory address A the word ri flag unchanged
load regi A set ri to the word stored at address A flag unchanged
answer A stall or halt returning the word A flag unchanged

Table 1: TinyRAM instruction set, excluding the read command. The flag is set
equal to 1 if the condition is met and 0 otherwise. If the pc exceeds the program
length, i.e., pc ≥ L, or we address a non-existing part of memory, i.e., in a store
or load instruction A ≥M , the TinyRAM machine halts with answer 1.

consists of T rows, where row t describes the state at the beginning of step t.
A row includes field elements that encode the time t, the program counter pct,
the instruction instpct corresponding to pct, an immediate value At, the values
r0,t, . . . , rK−1,t contained in the registers reg0, . . . , regK−1 at time t, and the flag
flagt. The next row contains the resulting state of the TinyRAM machine at time
t+ 1. Each row also includes a memory address addrt, and the value vaddrt stored
at this address after the execution of the step, as well as a constant number of
auxiliary field elements to be specified later that will be used to check correctness
of program execution.

The next table is the program table Prog, which contains the field elements
encoding of the TinyRAM program P . Each row contains the description of one
line of the program, consisting of one instruction, at most three operands, and
possibly an immediate value. Furthermore, we introduce a constant number of
auxiliary field elements in each row. These entries can be efficiently computed
given the program line stored in the same row and will help verifying its execution,
e.g. we encode the position of input and output registers as auxiliary field elements.

The memory table Mem has rows that list the possible memory addresses,
their initial values, and an auxiliary field element usd ∈ {0, 1}. For every pair of
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Time pc Instruction Immediate reg0 . . . regK−1 Flag Address Value auxExe

1 0 inst0 A0 0 . . . 0 0 0 0 . . .
...

t pct instpct At r0,t . . . rK−1,t flagt addrt vaddrt . . .
t+ 1 pct+1 instpct+1

At+1 r0,t+1 . . . rK−1,t+1 flagt+1 addrt+1 vaddrt+1 . . .
...

T pcT answer 0 0 r0,T . . . rK−1,T flagT addrT vaddrT . . .

(a) The execution table Exe.

pc Instruction Immediate auxProg

0 inst0 A0 . . .
...

L− 1 instL−1 AL−1 . . .

(b) The program table Prog.

Address Initial value usd

0 0 0
1 v1 0

...
M − 1 vM−1 0

0 0 1
1 v1 1

...
M − 1 vM−1 1

(c) The memory table Mem.

Values

0
1
4
5
...∑W

2
−1

i=0 22i

(d) The table
EvenBits.

Table 2: The execution table Exe, the program table Prog, the memory table
Mem and the table EvenBits.

address and corresponding initial value, the memory table Mem contains a row
in which usd = 0 and another row in which usd = 1. Recall that the memory is
initialized with input words listed in v, w, i.e., the input words contributing to
the instance and witness of the relation RTinyRAM.

In addition to these, we also consider an auxiliary lookup table EvenBits
containing the encoding of words of length W whose binary expansion has 0 in
all odd positions. The table contains 2

W
2 field elements and will be used as part

of a check that certain field elements encode a word of length W .

3.1 Decomposition of TinyRAM

Let (Exe,Prog,Mem,EvenBits) be the tables of field elements encoding the pro-
gram execution and the auxiliary values. We can now reformulate the correct
execution of a TinyRAM program defined by RTinyRAM as a relation that imposes
a number of constraints the field elements included in tables should satisfy:

Rfield
TinyRAM =


(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)

∣∣
w = (Exe,Prog,Mem,EvenBits, ∗)

(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep


where the relations Rcheck, Rmem,Rstep jointly guarantee the witness w consists
of field elements encoding a correct TinyRAM execution that answers 0 in T
steps using M words of memory, public input v, and additional private inputs.
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Specifically, the relation Rcheck checks the initial values of the memory are
correctly included into Mem, the program is correctly encoded in Prog, EvenBits
contains the correct encodings of the auxiliary lookup table, the initial state of
the TinyRAM machine is correct and that it terminates with answer 0 in step
T . The role of Rmem is to check that memory usage is consistent throughout the
execution of the program. That is, if a memory value is loaded at time t then it
should match the last stored value at the same address. Finally, Rstep checks that
each step of the execution has been performed correctly. In the rest of the section
we describe Rcheck, Rmem and Rstep, gradually decomposing them into smaller
and simpler relations. Ultimately, we specify each of these subrelations in terms of
some building block: equality, lookup, permutation, and range relations. Figure 3
illustrates the decomposition of Rfield

TinyRAM into progressively smaller relations.

Fig. 3: Diagram of the decompositon of TinyRAM into equality, lookup, permu-
tation, and range relations.

Building Blocks. We give a brief description of the building block relations
used in the decomposition of Rfield

TinyRAM.

– An equality relation Req checks that rows Tabi of a table Tab in the witness
encode tuples v1, . . . ,vm of given W -bit words

– A lookup relation checks the membership of a tuple of field elements w in
the set of rows of a table Tab. This differs from the previous relation as both
w and Tab are both in the witness. We extend this relation in the natural
way for checking the membership of multiple tuples w1,w2, . . . in a table.

– A range relation to check that a field element a can be written as a W -bit
word, i.e., a is in the range {0, . . . , 2W − 1}.

– A permutation relation can be used to check that two ordered sets of a given
size are permutations of each other. The permutation is in the witness i.e. it
is unknown to the verifier.

3.2 Checking the Correctness of Values

The role of Rcheck is to check that w consists of the correct number of field
elements that can be partitioned into the appropriate tables and also to check
that specific entries in these tables are correct.
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Rcheck =



(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗),
Exe = {Exet}Tt=1, Prog = {Progi}L−1i=0

Prog0 = (0, inst0,A0, . . .)
(pp, (1, 0, inst0, A0, 0, . . . , 0, . . .) ,Exe1) ∈ Req

(pp, (T,answer, 0, . . .),ExeT ) ∈ Req(
pp,
(

0, 1, 4, 5, . . . ,
∑W

2 −1
i=0 22i

)
,EvenBits

)
∈ Req

(pp, P,Prog) ∈ Req (pp, v,Mem) ∈ Req


.

The relation Rcheck checks that: the first and last row of the execution table
contains the correct initial values; the auxiliary lookup table EvenBits contains
the embeddings of all W -bit words with 0 in all odd positions; the program table
Prog contains the correct field element embedding of the program P as well as the
correct auxiliary entries; the memory table Mem contains the correct embedding
of the input words listed in v.

3.3 Checking Memory Consistency

The relation Rmem checks that the memory is used consistently across different
steps in the execution. For instance, if at step t a value is loaded from memory,
then it should be equal to the last value stored in the same address. If it is the
first time a memory address is accessed, we need to ensure consistency with
the initial values. If two consecutive memory accesses to the same address were
placed into two adjacent rows of Exe it would be easy to check their consistency.
However, this is generally not the case since the Exe table is sorted by execution
time rather than memory access. Therefore, we need to devise a way to check
consistency of memory accesses that could be located in any position of Exe.
Overall the memory consistency relation Rmem decomposes as follows

Rmem =


(pp, u, w) = ((W,K,F, ∗), (T,M),w)

∣∣
w = (Exe,Prog,Mem,EvenBits, π, ∗),

Exe = {Exet}Tt=1 Mem = {Memj}2M−2j=0

(pp, T, (Exe, π)) ∈ Rcycle, (pp, T,Exe) ∈ Rtime

(pp, (T,M), (Exe,Mem)) ∈ Rblookup, (pp, T,Exe) ∈ Rload


To help with checking the memory consistency, we include in each row of the

execution table the following auxiliary entries

auxExe = τlink vlink vinit usd S L · · ·

where τlink contains the previous time-step at which the current address was
accessed, unless this is the first time a location is accessed in which case it is set
equal to the last time-step this location is accessed. Similarly, vlink stores the
value contained in the address after time τlink, unless this is the first time that
location is accessed, in which case it stores the last value stored in that location.
The value vinit is a copy of the initial value assigned to that memory location,
which is also stored in the memory table Mem. The value usd is a flag which is
set equal to 0 if this is the first time we access the current memory address, and 1



19

otherwise. The values S, L are flags set equal to 1 in case the current instruction
is a store or load operation, respectively, and 0 otherwise. The values S, L are
also stored in the auxiliary entries of the program table auxProg = S L · · · .

Memory Accesses Form Cycles. We check memory consistency by specifying
cycles of memory accesses, so that consecutive terms in a cycle correspond to two
consecutive accesses to the same memory location. By using the above auxiliary
entries, we use the relation Rcycle for the memory access pattern in the rows of
Exe being in correspondence with a permutation π defined by such cycles. The
relation Rcycle checks that all memory accesses (i.e. with S + L = 1) relative to
the same address are connected into cycles and that rows not involving memory
operations (S + L = 0) are not included in these cycles. The relation does not
include any explicit checks on whether S + L is equal to 0 or 1. It is sufficient to
check that St + Lt = St′ + Lt′ , t = τlinkt′ , vaddrt = vlinkt′ and addrt = addrt′ for
some t′ = π(t), which ensures that operations which are not memory operations
are not part of cycles including memory operations.

Rcycle =


(pp, u, w) = ((W,K,F, ∗), T, (Exe, π))

∣∣
Exet = (t, . . . , addrt, vlinkt, τlinkt, . . . , St, Lt, . . .) for t ∈ [T ]

at = (t, addrt, vaddrt ,St + Lt) for t ∈ [T ]
bt = (τlinkt, addrt, vlinkt,St + Lt) for t ∈ [T ]

((W,K,F, ∗), T, ({ai, bi}Ti=1, π)) ∈ Rperm


Memory Accesses are in the Correct Order. Consecutive terms in a cycle
should correspond to the consecutive time-steps in which the memory is accessed.
To check that the memory cycles are time-ordered we can simply verify that
t > τlinkt for any given time-step t ∈ [T ]6. Since memory accesses are connected
into cycles, the first time we access a new memory location the τlink entry
stores the last point in time that location is accessed by the program. In this
case (usd = 0), we verify that t ≤ τlinkt. The relation Rtime incorporates these
conditions

Rtime =

 (pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , τlinkt, . . . , usdt, . . .) for t ∈ [T ]
∀ t ∈ [T ] : (usd = 0 ∧ t ≤ τlinkt) ∨ (usd = 1 ∧ t > τlinkt)


Memory Locations are in no more than one Cycle. To ensure that the
cycles correspond to sequences of memory addresses we also require that all the
rows touching the same memory address are included in the same cycle. Since
the cycles are time-ordered, they require one time-step for which usd = 0 in order
to close a cycle. Thus, we can ensure each memory location to be part of at most
on cycle by letting usd to be set equal to 0 at most once for each memory address.
We introduce a bounded lookup relation Rblookup to address this requirement. The
relation checks that for any row in Exe, the tuple (addrt, vinitt, usd) is contained
in one row of the table Mem and that each row (j, vj , 0) of Mem is accessed at
most once by the program.

6 For this to be sufficient we also need the time-steps in the execution table to be
correct but this is ensured by the Rcheck and Rconsistent (appears later) relations.
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Rblookup =


(pp, u, w) = ((W,K,F, ∗), (T,M), (Exe,Mem))

∣∣
Exet = (t, . . . , addrt, . . . , vinitt, usdt, . . .) for t ∈ [T ]

∀ t ∈ [T ] (pp,⊥, ((addrt, vinitt, usdt) ,Mem)) ∈ Rlookup ∧
∀ (j, vj , 0) ∈ Mem : (. . . , j, . . . , vj , 0, . . .) occurs at most once in Exe


Load Instructions are Consistent. Finally, we are only left to check that if
the program executes a load instruction the value vaddrt loaded from memory
is consistent with the value stored at the same address at the previous access.
Similarly, if load is executed on a new memory location, then the value loaded
should match with the initial value vinitt. No additional checks are required for
store instructions. These checks are incorporated in the relation Rload.

Rload =

 (pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , addrt, vaddrt , τlinkt, vlinkt, vinitt, usdt, . . .) for t ∈ [T ]
∀ t ∈ [T ] : Lt(vaddrt − vinitt + usdt(vinitt − vlinkt)) = 0


3.4 Checking Correct Execution of Instructions.

We use the relation Rstep to guarantee that each step of the execution has been
performed correctly. This involves checking for each row Exet of the execution
table that the stored words are in the range {0, . . . , 2W − 1}, the flagt is a bit,
the program counter pct matches the instruction and the immediate value At
in the program, and that instt is correctly executed. An instruction takes some
inputs, e.g., values indicated by the operands regj , A or the flag and as a result
may change the program counter, a register value, a value stored at a memory
address, or the flag. Since we have already checked memory correctness, if the
operation is a load or store we may assume the memory value is correct.

Rstep =



(pp, u, w) = ((W,K,F, ∗),⊥,w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗) ∧ Exe = {Exet}Tt=1

∀t ∈ {1, . . . , T − 1} :
(pp,⊥, (Exet,Exet+1)) ∈ Rmux

(pp,⊥, (Exei,Exei+1,Prog)) ∈ Rconsistent

(pp,⊥, (Exei,Exei+1,EvenBits, ∗)) ∈ Rins


.

To help checking the consistency of the operations the rows of the execution and
program tables include some auxiliary entries. These consist of some temporary
variables, an output vector, and some selection vectors which are also listed in
the program table. The temporary variables are used to store a copy of the inputs
and outputs of an instruction. The advantage of the temporary variables is that
for each addition operation we check, we will always have the inputs and outputs
stored, instead of having to handle multiple registers holding inputs and output
in arbitrary order.
Ensuring Temporary Values are Correct. A multiplexing relation Rmux is
used to check that the temporary variables are consistent with operands contained
in instt. Checking operations on temporary values require us to multiplex the
corresponding register, immediate, and memory values in and out of the temporary
values. We do this using selection vectors that are bit-vectors encoding the



21

operands of an instruction. Each row of the execution table includes multiple
variables that may be selected as an operand. A selection vector will have a bit for
each of these variables indicating whether it is picked or not. More details about
the multiplexing relation are provided in the full version of the paper [BCG+18].
The Execution Table and the Program Table are Consistent. The con-
sistency relation Rconsistent checks that the time is correctly incremented and
that the program counter is in the correct range, i.e. pct+1 ∈ {0, . . . , L− 1} and
is incremented unless a jump-instruction is executed. It also checks that the
instruction, the immediate value and the selection vectors stored in the execution
table are consistent with the program the line indexed pc. Furthermore, it checks
that the entries in the output vector relevant to instt are all equal to zero and that
the contents of the registers do not change, unless specified by the instruction,
e.g. the register storing the result of the computation. Verifying that rows of
the execution table match with states of a TinyRAM machine involves checking
that entries that are not affected by an instruction remain the same in the next
state. For this we use another selector vector with entries equal to 0, positioned
in correspondence of entries that are changed during the execution, and 1 for
entries that do not change in the execution.
Instructions are Executed Correctly. An instruction checker relation Rins

checking that the temporary values are in the range {0, . . . , 2W − 1} and are
consistent with the output vector.We divide the entries of the output vector into 4
groups: logical (AND,XOR,OR), arithmetic (SUM,PROD,SSUM,SPROD,MOD),
shift (SHIFT), and flag (FLAG1,FLAG2,FLAG3,FLAG4). By specifying constraints
to all these entries, we can directly verify all the logical, arithmetic, and shifts
operations after which the variables are named.

The Rins can be decomposed into 3 sub-relations: Rlogic, Rarith, and Rshift. In
the full paper [BCG+18] we show choices of selection vectors which reduce the
verification of any other operation to the ones contained in these 3 categories.
We also describe the decomposition of Rlogic, Rarith, Rshift into our elementary
building blocks.

4 Efficient Bit Decomposition for Logical Relations

In this section we summarise a new decomposition technique which will enable
verification of bitwise AND and XOR operations. This allows us to check all
boolean operations more efficiently. Let a, b be the inputs of the bit-wise AND or
bit-wise XOR operation, and let c be the output. To verify the correctness of
the operation, e.g. a ∧ b = c, consider the decompositions of the inputs into their
odd and even-position bits, namely a = 2ao + ae and b = 2bo + be. Observe that
taking the sum of the integers storing the even-positions of a and b gives

ae + be = (0, aW−2, . . . , 0, a0) + (0, bW−2, . . . , 0, b0)

= (aW−2 ∧ bW−2, aW−2 ⊕ bW−2, . . . , a0 ∧ b0, a0 ⊕ b0)

The above contains the bit-wise AND of the even bits of a and b placed in odd
position and the bit-wise XOR of the even bits of a and b in even position.



22

Therefore we can consider taking again the decomposition of ae + be into its odd
and even-position bits, i.e. ae + be = 2eo + ee so that half of the bits of a ∧ b are
stored in eo and half of the bits of a⊕ b are stored in ee. We can repeat the above
procedure starting from the odd-position bits of a and b getting the following

ao + bo = (0, aW−1, . . . , 0, a1) + (0, bW−1, . . . , 0, b1)
= (aW−1 ∧ bW−1, aW−1 ⊕ bW−1, . . . , a1 ∧ b1, a1 ⊕ b1) = 2oo + oe

where oo stores half of the bits of a∧ b and oe stores and half of the bits of a⊕ b.
Putting everything together, given the decompositions ao, ae, bo, be, oo, oe, eo,
ee ∈ EvenBits such that the following hold

a = 2ao + aegg b = 2bo + begg ao + bo = 2oo + oegg ae + be = 2eo + ee

then the bit-wise AND and XOR of a and b is given by the following

a ∧ b = 2oo + eo a⊕ b = 2oe + ee

it is then sufficient to check c = 2oo + eo for checking a ∧ b = c.

5 Proofs for the Correct Program Execution over the ILC
Channel

In this section we give an overview of our proof system for correct TinyRAM
program execution over the ILC channel by giving a breakdown of it into simpler
proofs, which are detailed in the full paper [BCG+18]. Recall that in the idealised
linear commitment channel ILC the prover can submit commit commands to
commit vectors of field elements of length k. The vectors remain secretly stored in
the channel. The verifier can do two things: it can use a send command to send
a message to the prover; and it can submit open queries to the ILC channel for
obtaining the openings of linear combinations of vectors committed by the prover.
The field F and the vector length k are specified by the public parameter ppILC.
It will later emerge that the best communication and computation complexity for
a TinyRAM program terminating in T is achieved when k is approximately

√
T .

In Section 3 we broke the relation of correct program execution down to a
number of sub-relations defined over a finite field F. Our strategy for proving
that they are all satisfied is to commit the extended witness to the ILC channel
and then give an sub-proofs for each sub-relation. To begin we describe how we
commit to the execution trace to the ILC model and discuss a relation Rformat

for checking that the commitments are well formed. We then take a top down
approach in order to describe how to check in the ILC model that the program has
been executed correctly. In the first layer we describe a proof for correct TinyRAM
execution in the ILC model. This proof decomposes into proofs checking that
Rcheck, Rmem, Rstep, and Rformat all hold. In the second layer we then decompose
proofs for Rformat, Rcheck, Rmem, and Rstep in terms of generic proofs for checking
relations Rconst, Rperm, Rrange, Req, Rblookup and Rlookup. In the third layer we
detail how these proofs decompose into proofs in ILC for elemental relations, such
as sums, products, shifts, entry-products and grand-sums of committed vectors.
Our fourth and final layer will provide proofs in the ILC for these elemental
relations.
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5.1 Commitments to the Tables

In our proof system, the prover first commits to the extended witness w. The
extended witness includes the field elements in the execution table Exe, the
memory table Mem, the program table Prog, the range table EvenBits and the
exponent table Pow. The prover arranges these tables in multiple matrices and
to their rows.

The prover commits to each column of the execution table (such as the T
entries containing the time t, the T entries containing the programt counter pct,
etc.) by arranging it into an ` by k matrix, and making a commitment to each
row of the resulting matrix. Entries of Exe relative to the same TinyRAM state
will be inserted in the same position across the different matrices. Furthermore,
in all these matrices the last entry of each column is duplicated in the first entry
of the next column. As an example, let consider the first column of Exe which
contains field elements representing the time-steps of the execution. Without loss
of generality let T = (`− 1)k + 1, where T is the number of steps executed by
the program and k is the vector length of the ILC. The prover organizes the field
elements representing time in a matrix Et ∈ F`×k

Et =


1 ` 2`− 1 . . .
2 `+ 1 2` . . .
...

. . .

`− 1 2`− 2 3`− 3 . . . (`− 1)k
` 2`− 1 3`− 2 . . . T


Similarly, the prover organizes the rest of the Exe table into matrices Epc,Einst,EA, . . .
one for each column. Let E be the matrix obtained by stacking all matrices on
top of each other and let E = {ei}, for ei ∈ Fk. The prover commits to Exe by
sending the command (commit, {ei}i) to the ILC.

Each column of the program table is also committed to the ILC separately. In
case L ≤ k we can store each column of Prog in one vector, i.e.

P =


Ppc

Pinst

PA
. . .

 =


0 1 . . . L− 1

inst0 inst1 . . . instL−1
A0 A1 . . . AL−1
. . . . . .


otherwise, multiple rows can be used. The prover sends (commit, {Ppc,Pinst, . . .})
to the ILC channel to commit to P.

The memory table Mem, the auxiliary lookup table EvenBits and the exponent
table Pow can be committed in a similar way using matrices M,R and S

M =

(
M0

M1

)
R =


0 1 4 5 . . .

∑W
2 −1
i=0 ki2

2i

. . . ∑W
2 −1
i=0 22i

 S =

(
0 1 2 3 . . . W − 1 W

1 2 4 8
. . . 2W−1 0

)

where
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M0 =

Maddr,0

Mv,0

Musd,0

 =

 0 1 . . . M − 1
v0 v1 . . . vM−1
0 0 . . . 0

 M1 =

Maddr,1

Mv,1

Musd,1

 =

 0 1 . . . M − 1
v0 v1 . . . vM−1
1 1 . . . 1


and (kW

2 −1
, . . . , k0) is the binary expansion of k.

In order to show that the tables are committed to in the above manner the
prover will show that the first row each of the matrices describing [Exe] is a shift
the last row.

Rformat =

{
(pp, u, w) = ((W,K,F, ∗), [E],⊥)

∣∣
for 1 ≤ j ≤ k − 1 : [E]`,j = [E]1,j+1

}
5.2 Proof for Correct TinyRAM Execution in the ILC Model

Given the witness for the correct execution of a TinyRAM program, we now
describe how a prover can use the ILC channel to convince a verifier that the trace
satisfies the relation Rfield

TinyRAM corresponding to the correct program execution.
The prover and verifier are given in Figure 4.

PTinyRAM(ppILC, u, w)

– Parse u = (P, v, T,M).
– Extend w to w and parse it as{

Et,Epc,Einst,EA,Ereg0 , . . . ,EregK -1, . . .
Ppc,Pinst, . . . ,M0,addr,M0,val, . . . ,R

}
as in Sec-

tion 5.1. Commit w in this form to the ILC channel.
– Pcheck(ppILC, u,w)
– Pmem(ppILC, u,w)
– Pstep(ppILC, u,w)
– Pformat(ppILC, u,w)

VTinyRAM(ppILC, u)

– parse u =
{

[E], [P], [M], [R]
}

– Vcheck(ppILC, u)
– Vmem(ppILC, u)
– Vstep(ppILC, u)
– Vformat(ppILC, [E])
– Return 1 if all checks pass

Return 0 otherwise

Fig. 4: Proof of correct TinyRAM execution in the ILC model

Theorem 1. (KILC,PTinyRAM,VTinyRAM) is a proof system for Rfield
TinyRAM over

the ILC channel with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest-verifier zero-knowledge.

Proof. Perfect completeness follows from the perfect completeness of the sub-
proofs. Perfect SHVZK follows from the perfect SHVZK of the sub-proofs. A
simulated transcript is obtained by combining the outputs of the simulators of
all the sub-proofs. Statistical knowledge soundness follows from the knowledge
soundness of the sub-proofs. Since all sub-proofs have knowledge soundness with
straight-line extraction, so does the main proof. ut

The efficiency of our TinyRAM proof in the ILC model is given in Figure 5.
The asymptotic results displayed below are obtained when the parameter k
specified by ppILC is approximately

√
T . The query complexity qc is the number

of linear combinations the verifier queries from the ILC channel in the opening
query. The verifier communication CILC is the number of messages sent from the
verifier to the prover via the ILC channel and in our proof system it is proportional
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to the number of rounds. Let µ be the number of rounds in the ILC proof and
t1, . . . , tµ be the numbers of vectors that the prover sends to the ILC channel in
each round, and let t =

∑µ
i=1 ti.

Prover computation TPILC = O(T ) multiplications in F
Verifier computation TVILC = poly(λ)(L+ |v|+

√
T ) multiplications in F

Query complexity qc = O(1)
Verifier communication CILC = O(log log T ) field elements
Round complexity µ = O(log log T )

Total number of committed vectors t = O
(√

T
)

vectors in Fk

Fig. 5: Efficiency of our TinyRAM proof in the ILC model for (pp, u, w) ∈ RTinyRAM.
Here we are assuming that the number of instructions and words of memory
L,M <

√
T , and that the number of registers K is constant.

6 Proofs for the Correct Program Execution over the
Standard Channel

In the previous section we gave an efficient SHVZK proof of knowledge over
the ILC channel for correct TinyRAM program execution. We now want to give
a SHVZK proof of knowledge for correct TinyRAM program execution in the
standard communication model where messages are exchanged directly between
prover and verifier. To do this, we use the compiler from Bootle et al. [BCG+17]
who use an error-correcting code and a collision-resistant hash function to compile
a zero-knowledge proof over the ILC channel to a zero-knowledge proof over the
standard communication channel. We refer to the full paper [BCG+18] for a
transformation to turn SHVZK proofs into ones achieving full-zero knowledge,
and for a recursive approach for reducing the verification time of our proofs.

From ILC to the Standard Channel. The compiler from Bootle et al. [BCG+17]
uses an hash function to instantiate a non-interactive commitment scheme which
realizes the commitment functionality of the ILC in the standard model. The
compilation relies on a common reference string that specifies an error-correcting
code and the hash function. However, the common reference string is instance-
independent and can be reused for several proofs. Moreover, it can be generated
from uniformly random bits in poly(λ)(L+M +

√
T ) TinyRAM steps and has

similar size, so it has little effect on the overall performance of the system. The
following theorem follows directly from their work.

Theorem 2 (Bootle et al. [BCG+17]). Using a linear-distance linear error-
correcting code and a statistically-hiding commitment scheme, we can compile
a public-coin straight-line extractable proof (KILC,PILC,VILC) for a relation R
over the ILC channel to a proof (K,P,V) for R over the standard channel.
The compilation is computationally knowledge sound, statistically SHVZK, and
preserves perfect completeness of the ILC proof.

Combining the above with Theorem 1 we get our main theorem.
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Theorem 3 (Main Theorem). Compiling the ILC proof system (KILC,PTinyRAM,
VTinyRAM) of Fig. 4, we get a proof system over the standard channel for the re-
lation Rfield

TinyRAM with perfect completeness, statistical SHVZK, and computational
knowledge soundness assuming the existence of collision-resistant hash functions.

In the following section we detail the efficiency of the proof system obtained by
compiling the proof system of Fig. 4.

Efficiency of the compiled TinyRAM Proof System. Computation is
feasible only when it is polynomial in the security parameter, i.e., T = poly(λ)
and M = poly(λ). Assuming T,M ≥ λ, this means log T = Θ(log λ) and
logM = Θ(log λ). To address all memory we therefore need W = Ω(log λ). To
keep the circuit size of a processor modest, it is reasonable to keep the word size
low, so we will assume W = Θ(log λ). Our proof system also works for larger
word size but it is less efficient when the word size is superlogarithmic. Note that
we can at the cost of a constant factor overhead store register values in memory
and therefore without loss of generality assume K = O(1).

To get negligible knowledge error we need the field to have superpolynomial

size |F| = λω(1). This means we need a superconstant ratio e = log |F|
W = ω(1). On

a TinyRAM machine, field elements require e words to store and using school
book arithmetic field operations can be implemented in α = O(e2) steps7

Our proof system is designed for a setting where the running time is large,
so we will assume T � L+M . In the ILC proof for correct program execution
the prover commits to O(T ) field elements and uses O(T ) field operations. The
verifier on the other hand, only uses O(L+ |v|+

√
T ) field operations.

To compile the ILC proof into a proof over the standard channel, Bootle et
al. use a linear-time collision-resistant hash function and linear error-correcting
codes. The collision-resistant hash function by Applebaum et al. [AHI+17] based
on the bSVP assumption for sparse matrices is computable in linear time and can
be used to instantiate the statistically hiding commitment scheme used in the
compilation. As the hash function operates over bit-strings we need to ensure that
the efficiency is preserved once implemented in a TinyRAM program. If we stored
each bit in a separate word of size W = Θ(log λ) we would incur a logarithmic
overhead. However, the hash function is computable by a linear-size boolean
circuit and we can therefore apply a bit-slicing technique. We view the hash of
an n-word string as W parallel hashes of n-bit strings. Each of the bit-strings
is processed with the same boolean circuit, which means they can computed in
parallel in one go by a TinyRAM program using a linear number of steps.

The error-correcting codes by Druk and Ishai [DI14] have constant rate and
can be computed with a linear number of field additions. Applying the error-
correcting codes therefore only changes the prover and verifier complexities by
constant factors during the compilation. This means the compilation preserves
the efficiency of the ILC proof up to constant factors. Taking into account the

7 More sophisticated techniques such as FFT may reduce the cost of field multiplications
to O(e log e) steps, but if e is only slightly superconstant it will take a long time
before the asymptotics kick in.
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overhead of doing field operations, we summarize the efficiency of our proof
system in Table 6.

Field operations TinyRAM operations

Prover Computation O(T ) operations in F O(αT ) TinyRAM steps

Verifier Computation poly(λ)(L+ |v|+
√
T ) ops in F poly(λ)(L+ |v|+

√
T ) steps

Communication poly(λ)
√
T field elements poly(λ)

√
T words

Round Complexity O(log log T ) O(log log T )

Fig. 6: Efficiency of our proof system for RTinyRAM under the assumption W =

Θ(log λ), K = O(1), L+M < T ≈ 2W , k ≈
√
T , and log |F| = Θ(

√
α) log λ for

an arbitrarily small α = ω(1).
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