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Abstract. The notion of non-interactive secure computation (NISC)
first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies
the following problem: Suppose a receiver R wishes to publish an encryp-
tion of her secret input y so that any sender S with input x can then
send a message m that reveals f(x, y) to R (for some function f). Here,
m can be viewed as an encryption of f(x, y) that can be decrypted by
R. NISC requires security against both malicious senders and receivers,
and also requires the receiver’s message to be reusable across multiple
computations (w.r.t. a fixed input of the receiver).

All previous solutions to this problem necessarily rely upon OT (or spe-
cific number-theoretic assumptions) even in the common reference string
model or the random oracle model or to achieve weaker notions of secu-
rity such as super-polynomial-time simulation.

In this work, we construct a NISC protocol based on the minimal as-
sumption of one way functions, in the stateless hardware token model.
Our construction achieves UC security and requires a single token sent
by the receiver to the sender.
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1 Introduction

A motivating scenario [1]. Suppose there is a public algorithm D that takes
as input the DNA data of two individuals and determines whether or not they
are related. Alice would like to use this algorithm to find family relatives, but
does not want to publish her DNA data in the clear. Instead, she would like to
publish an “encryption” of her DNA data b so that anyone else with DNA data
a can send back a single message to Alice that reveals D(a, b), i.e., whether or
not Alice is related to that person. This process must be such that it prevents
either party from influencing the output (beyond the choice of their respective
inputs), while also ensuring the privacy of their DNA data.

Non-interactive Secure Computation. The notion of non-interactive secure
computation (NISC), introduced by Ishai et al. [25], provides a solution to the
above problem. In its general form, NISC allows a receiver party R to publish
an encryption of her input y such that any sender party S with input x can then
send a message m that reveals f(x, y) to R (for some function f), where m can
be viewed as an encryption of f(x, y) that can be decrypted by R. NISC achieves
security against malicious senders and receivers, and also allows the receiver’s
message to be reusable across multiple computations (w.r.t. a fixed input of the
receiver).

Note that if malicious security was not required, then one could readily ob-
tain a solution via Yao’s secure computation protocol [33]. However, NISC guar-
antees malicious security, and is therefore impossible in the plain model w.r.t.
polynomial-time simulation [20].

The work of Ishai et al. [25] gave the first solution for NISC in a hybrid
model where the parties have access to the oblivious transfer (OT) functionality.
Subsequently, efficient solutions for NISC based on cut-and-choose techniques
were investigated in the common reference string (CRS) model [1,29], the global
random oracle model [9], as well as the plain model with super-polynomial-time
simulation [2].

Our Goal. All of these works, however, necessarily rely upon OT [25,2] (or spe-
cific number-theoretic assumptions, as in [1,9,29].). In this work, we ask whether
it is possible to construct NISC protocols based on the minimal assumption of
one-way functions?

Since OT is necessary for secure computation (even in CRS and random
oracle model), we investigate the above question in the tamper-proof hardware
token model, namely, where parties can send hardware tokens to each other.

Starting from the work of Katz [26], there is a large body of research work
on constructing secure computation protocols in the hardware token model (see
Section 3 for a detailed discussion). However, all known solutions require two
or more rounds of interaction between the parties (after an initial token trans-
fer phase) regardless of the assumptions and the number of tokens used in the
protocol. Thus, so far, the problem of NISC in the hardware token model has
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remained open.

Our Result. In this work, we construct a UC-secure NISC protocol based on
one-way functions that uses a single, stateless hardware token. Note that this is
optimal both in terms of complexity assumption as well as the number of tokens.

Concretely, our solution uses the following template: first, a receiver R sends
out a hardware token that has its input y hardwired. Upon communicating with
the token, a sender S sends out a single message to R, who can then evaluate
the output. Note that by using the transformation of [27] which involves adding
a single message from R to S, we can also support the case where we want both
parties to learn the output.

We remark that prior work on cryptography using hardware tokens has stud-
ied the use of both stateful and stateless hardware tokens. The latter is consid-
ered to be a more desirable model since it is more realistic, and places weaker
requirements on the token manufacturer. Our protocol, therefore, only relies on
a stateless hardware token. Moreover, following prior work, we do not make
any assumptions on the token if R is malicious; in particular, in this case, the
adversarial token may well be stateful.

2 Technical Overview

We now describe the techniques used in our non-interactive secure computation
(NISC) protocol using one stateless token and assuming one way functions.

Token Direction. Recall that in a NISC protocol, the receiver R first sends her
input y in some encrypted manner such that any sender S with input x computes
on this encrypted input and sends back a message m that the receiver can then
decrypt to recover the output f(x, y). For different choices of the function f and
input x, the sender can generate a fresh message m using the same encrypted
input of the receiver. Therefore, to follow this paradigm, in the setting of state-
less hardware tokens, we require that the receiver first sends a stateless token
T (containing her input) which can be followed by a communication message
from the sender. Another approach is to perhaps have the receiver first send a
communication message followed by a token sent by the sender. However, such
an approach has the drawback that to reuse the receiver’s first message, each
time, the sender has to generate and send a fresh token. Hence, we stick to the
setting of the receiver first sending a token.

A natural first approach then is to start with the large body of secure compu-
tation protocols based on stateless tokens [23,11,18,24] and try to squish one of
them into a protocol that comprises of just one token from the receiver and one
communication message from the sender. However, in all these works, it is the
sender who first sends a token to the receiver (as opposed to our setting where
the direction of token transfer is reversed) and this is followed by at least two
rounds of interaction between the two parties. As such, it is completely unclear
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how this could be done even if we were to rely on assumptions stronger than
one-way functions.

Therefore, we significantly depart from the template followed in all prior
works, and start from scratch for constructing NISC in the stateless hardware
token model.

Input authentication. In the stateless hardware token model, an important
desideratum is to prevent an adversary from gaining undue advantage by reset-
ting the stateless token that it receives from the honest party. In all prior works,
to prevent the adversary from resetting the token and changing its input in each
interaction with the token and observing the output (which may potentially allow
it learn more information), the token recipient’s input encoding is first authen-
ticated by the token creator before interaction with the token. However, such an
approach necessarily requires at least two rounds of communication between S
and R after the exchange of tokens which is not feasible in our setting. To over-
come this issue, we in fact do allow S to potentially reset the token and interact
with the token using different inputs! While this might seem strange at first, the
key observation is that S performs only “encrypted” computation in its inter-
action with the token. Therefore, even if S resets and interacts with the token
using different inputs, he learns no information whatsoever about R’s input from
his interaction with the token. Thus, resetting attacks are nullified even without
authentication. We now describe how to perform such “encrypted” computation.

Protocol structure. At a very high level, our construction follows the garbled
circuit based approach to secure computation [33]. That is, the sender S with
input x sends a garbled version of a circuit Cx that computes f(x, z) for any
input z. Since we are in the setting of malicious adversaries, an immediate ques-
tion is how does S prove correctness of the garbled circuit? Clearly, a proof of
correctness to the receiver will require more than one message of interaction. In-
stead, we make S prove to the token T that the garbled circuit GC was correctly
generated. At the end of the proof, T outputs a signature on GC which is sent
by the sender S to the receiver R (along with GC) as authentication that this
garbled circuit was indeed correctly generated.

To make this approach work, one question that naturally arises is how does
R receive the labels corresponding to her input in order to evaluate the garbled
circuit? Recall that we wish to rely on only one way functions and hence can’t
assume stronger primitives like oblivious transfer (OT). Also, previous stateless
token based OT protocols rely on multiple rounds of interaction and in some
cases, multiple tokens and stronger assumptions. We instead do the following:
S sends the garbled circuit GC to T and additionally discloses the randomness
rand used to generate the garbled circuit. The token can use this randomness to
compute on its own the labels corresponding to R’s input y. It then responds
with a ciphertext CT of these labels, and further proves that this ciphertext was
indeed correctly generated using the receiver’s input y and the randomness rand.
Then, if the proof verifies, S sends CT along with the garbled circuit GC and its
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signature to R. The receiver R decrypts the ciphertext CT to recover the labels
and then evaluates the garbled circuit. To prevent S from tampering with the
ciphertext in its message to R, we will additionally require that the token T signs
the ciphertext as well. In fact, we require that the signature queries on GC and
CT are performed jointly as a single query to prevent an adversarial sender from
resetting the token and getting signatures from the token on a garbled circuit
GC computed using randomness rand, and an encryption CT of the wire labels
corresponding to R’s input computed using different randomness rand′ 6= rand.
Indeed, such an attack may allow the sender to force an incorrect output on R.

Selective Abort. One issue with the above protocol is that if R is malicious,
the token could launch an aborting attack as follows: on being queried with the
garbled circuit GC and randomness rand used for garbling, reconstruct the cir-
cuit Cx, thereby learning the sender’s input x and output ⊥ if x begins with 0
(for example). Now, if R received a valid message from S, she knows that S’s
input begins with 1. The observation is that it is crucial for the token T to not
learn both the garbled circuit GC and the randomness rand used for garbling.
Since it is necessary for T to know rand to generate the encrypted labels, we
tweak the protocol to have S query the token only with a commitment to the
garbled circuit (along with the randomness used for garbling) and prove that
this commitment is correctly computed. T then produces a signature on this
commitment. In his message to R, S now sends the commitment, the signature
on it and the decommitment to help R recover the garbled circuit.

Subliminal Channel. Another attack that a malicious receiver could launch is
by embedding information about the randomness rand in the ciphertext and sig-
natures it generates. Note that even though the token proves that the signature
and the ciphertext were correctly generated, a malicious token could still choose
the randomness for generating the ciphertext/signature as a function of rand.
Now, even though the proof verifies successfully, the receiver, using the knowl-
edge of the encryption key/ signing key, might be able to recover the randomness
used for encrypting/signing and learn information about rand thus breaking the
security of the garbled circuit GC (which, in turn, can reveal S’s input). To
prevent such an attack, it is necessary to enforce that the randomness used by
the token to generate the ciphertext and signature is independent of rand, but
unknown to the sender. We do this by making the token fix this randomness
ahead of time (using a commitment) and proving that the randomness used to
encrypt and sign was the one committed to before knowing rand. Additionally,
we ensure (using pseudorandom functions) that a malicious sender, via resetting
attacks, can not learn this randomness used for encrypting and signing.

Finally, note that to deal with resetting attacks in the proofs, we use a
resettably sound zero-knowledge argument for the proof given by the sender to
the token and a resettable zero-knowledge argument of knowledge for the proof
from the token to the sender. Both these arguments are known assuming just one
way functions [14,13,12,15]. Here, we need the argument of knowledge property in
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order to extract the receiver’s input in the security proof. To extract the sender’s
input in the ideal world, the simulator uses knowledge of the garbled circuit (sent
to the receiver) and the randomness for garbling (sent to the simulated token).
We refer the reader to the main body for more details about our construction
and other issues that we tackle.

3 Related Work

We briefly review prior work on cryptography using hardware tokens. The sem-
inal work of Katz [26] initiated the study of secure computation protocols using
tamper-proof hardware tokens and established the first feasibility results us-
ing stateful hardware tokens. Subsequently, this stateful token model has been
extensively explored in several directions with the purpose of improving upon
the complexity assumptions, round-complexity of protocols and the number of
required tokens[30,21,28,16,17].

The study of secure computation protocols in the stateless hardware token
model was initiated by Chandran et al. [10]. They constructed a polynomial
round two-party computation protocol for general functions where each party
exchanges one token with the other party, based on enhanced trapdoor permu-
tations. Subsequent to their work, Goyal et al. [23] constructed constant-round
protocols assuming collision-resistant hash functions (CRHFs). However, these
improvements were achieved at the cost of requiring a polynomial number of
tokens. Choi et al. [11] subsequently improved upon their result by decreasing
the number of required tokens to only one, while still using only constant rounds
and CRHFs. Recently, two independent works [18,24] obtained the first protocols
for secure two party computation based on the minimal assumption of one-way
functions. Specifically, Döttling et al. [18] construct a secure constant round
protocol using only one token. Hazay et al. [24] construct two-round two-party
computation in this model using a polynomial number of tokens.

All the above works, including ours, focus on achieving Universally Compos-
able (UC) [6] security 4.

4 Preliminaries

UC-Secure Two Party Computation. We follow the standard real-ideal
paradigm for defining secure two party computation. We include the formal def-
initions in Appendix A.

Non-interactive Secure Computation (NISC). A secure two party compu-
tation protocol in the stateless hardware token model between a sender S and a
receiver R where only R learns the output is called a NISC protocol if it has the
following structure: first, R sends a token to S and then the sender S sends a
single message to R. We require security against both a malicious sender and a

4 Hazay et al. [24] study the stronger notion of Global UC security [7,9].

6



malicious receiver (who can create the token to be stateful). Further, note that
we work in the stand-alone security model and don’t consider composability.
Token functionality. We model a tamper-proof hardware token as an ideal
functionality FWRAP, following Katz [26]. A formal definition of this function-
ality can be found in Appendix A. Note that our ideal functionality models
stateful tokens. Although all our protocols use stateless tokens, an adversarially
generated token may be stateful.

Cryptographic primitives. In our constructions, we use the following cryp-
tographic primitives all of which can be constructed from one way functions:
pseudorandom functions, digital signatures, commitments, garbled circuits, pri-
vate key encryption [19,33,32,31].

Additionally, we also use the following advanced primitives that were recently
constructed based on one way functions: resettable zero knowledge argument of
knowledge and resettably sound zero knowledge arguments. [8,3,14,4,13,12,5,15].

Interactive proofs for a “stateless” player. We consider the notion of an in-
teractive proof system for a “stateless” prover/verifier. By “stateless”, we mean
that the verifier has no extra memory that can be used to remember the tran-
script of the proof so far. Consider a stateless verifier. To get around the issue
of not knowing the transcript, the verifier signs the transcript at each step and
sends it back to the prover. In the next round, the prover is required to send this
signed transcript back to the verifier and the verifier first checks the signature
and then uses the transcript to continue with the protocol execution. Without
loss of generality, we can also include the statement to be proved as part of
the transcript. It is easy to see that such a scenario arises in our setting if the
stateless token acts as the verifier in an interactive proof with another party.

5 Construction

In this section, we construct a non-interactive secure computation (NISC) pro-
tocol based on one-way functions using only one stateless hardware token. For-
mally, we prove the following theorem:

Theorem 1. Assuming one-way functions exist, there exists a non-interactive
secure computation (NISC) protocol that is UC-secure in the stateless hardware
token model using just one token.

Notation. We first list some notation and the primitives used.

– Let λ denote the security parameter.
– Let’s say the sender S has private input x ∈ {0, 1}λ and receiver R has

private input y ∈ {0, 1}λ and they wish to evaluate a function f on their
joint inputs.

– Let PRF : {0, 1}λ × {0, 1}λ2 → {0, 1}λ be a pseudorandom function.
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– Let Commit be a non-interactive 5computationally hiding and statistically
binding commitment scheme that uses n bits of randomness to commit to
one bit.

– Let(Gen,Sign,Verify) be a signature scheme.
– Let (ske.setup, ske.enc, ske.dec) be a private key encryption scheme.
– Let RSZK = (RSZK.Prove,RSZK.Verify) be a resettably-sound zero-knowledge

argument system for a “stateless verifier” and RZKAOK = (RZKAOK.Prove,
RZKAOK.Verify) be a resettable zero knowledge argument of knowledge sys-
tem for a “stateless prover” as defined in Section 4.

– Let (Garble,Garble.KeyGen,Eval) be a garbling scheme for poly sized circuits.

Note that all the primitives can be constructed assuming the existence of
one-way functions.

NP languages. We will use the following NP languages in our protocol.

1. NP language LT characterized by the following relation RT .
Statement : st = (cGC , ct, σ, cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct))
Witness : w = (y, ry, ek, rek, sk, rsk, k, rk, `y, rSign)
RT2 (st,w) = 1 if and only if :
– cy = Commit(y; ry) (AND)
– cek = Commit(ek; rek) (AND)
– csk = Commit(sk; rsk) (AND)
– ck = Commit(k; rk) (AND)
– `y = Garble.KeyGen(y; toss) (AND)
– ct = ske.enc(ek, `y;PRF(k, rske.enc)) (AND)
– (vk, sk) = Gen(rSign) (AND)
– σ = Sign(sk, (cGC , ct);PRF(k, r(cGC,ct))).

2. NP language L characterized by the following relation R.
Statement : st = (toss, cGC , f)
Witness : w = (x,GC, rGC)
R(st,w) = 1 if and only if :
– GC = Garble(C; toss) (AND)
– C(·) = f(x, ·) (AND)
– cGC = Commit(GC; rGC)

5.1 Protocol

The NISC protocol π is described below:

Token Transfer:
R does the following:

5 To ease the exposition, we use non-interactive commitments that are based on injec-
tive one-way functions. We describe later how the protocol can be modified to use
a two-message commitment scheme that relies only on one-way functions without
increasing the message complexity of the protocol.
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1. Pick a random key k
$←{0, 1}λ for the function PRF.

2. Pick random strings ry, rek, rsk, rk, rSign.
3. Compute (sk, vk)← Gen(λ; rSign) and ek← ske.setup(λ).
4. Create a token T containing the code in Figure 1.
5. Send token T to S.

Communication Message:
The sender S does the following:

1. Query the token with input “Start” to receive (cy, cek, csk, ck, vk).
2. Pick random strings (toss, rske.enc, r(cGC,ct)). Compute GC = Garble(Cx; toss)

where toss is the randomness for garbling and Cx is a circuit that on input a
string y, outputs f(x, y). Then, compute cGC = Commit(GC; rGC).

3. Using the prover algorithm (RSZK.Prove), engage in an execution of an
RSZK argument with T (who acts as the verifier) for the statement st =
(toss, cGC , f) ∈ L using witness w = (x,GC, rGC). That is, as part of the
RSZK, if the next message of the prover is msg, query T with input (“RSZK”,
toss, cGC , rske.enc, r(cGC,ct),msg).6

4. At the end of the above argument, receive (ct, σ(cGC,ct)) from T.
5. Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution

of a RZKAOK with T (who acts as the prover) for the statement stT =
(cGC , ct, σ(cGC,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct)) ∈ LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK”, toss, rske.enc, r(cGC,ct),msg). Output ⊥ if the argument does
not verify successfully.

6. Send (cGC ,GC, rGC , ct, σ(cGC,ct)) to the receiver R.

Output Computation Phase:
R does the following to compute the output:

1. Abort if Verifyvk((cGC , ct), σ(cGC,ct)) = 0.
2. Abort if cGC 6= Commit(GC; rGC).
3. Compute ` = ske.dec(ek, ct).
4. Evaluate the garbled circuit GC using the labels ` to compute the output.

That is, out = Eval(GC, `).

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In order
to rely on just one way functions, we switch our commitment scheme to a two
message protocol where the receiver of the commitment sends the first message.
Now, we tweak our protocol as follows: after receiving the token, P1 sends the
first message of the commitment which is then used by the token T to compute
cy. Similarly, P1 computes c1 after receiving a first message receiver’s commit-
ment message from T. Note that this doesn’t affect the round complexity of the
NISC protocol.

6 Looking ahead, note that a malicious sender can’t change the value of toss across
different rounds of the RSZK argument because the token checks the signed copy of
the transcript at each step.
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Constants: (k, vk, sk, ek, y, ry, rek, rsk, rk, rSign)
Case 1: If Input =“Start”:

– Compute cy = Commit(y; ry), cek = Commit(ek; rek), csk = Commit(sk; rsk) and
ck = Commit(k; rk).

– Output (cy, cek, csk, ck, vk).

Case 2: If Input =(“RSZK”, toss, cGC , rske.enc, r(cGC ,ct),msg):

– Using a random tape defined by PRF(kR, c1) and the verifier algorithm
(RSZK.Verify), engage in an execution of a RSZK argument with the querying
party as the prover for the statement st = (toss, cGC , f) ∈ L.

– Output ⊥ if the argument does not verify successfully.
– Compute `y = Garble.KeyGen (y; toss), ct = ske.enc(ek, `y;PRF(k, rske.enc)) and
σ(cGC ,ct) = Sign(sk, (cGC , ct);PRF(k, r(cGC ,ct))).

– Output (ct, σ(cGC ,ct)).

Case 3: If Input =(“RZKAOK”, toss, rske.enc, r(cGC ,ct),msg):

– Using a random tape defined by PRF(kR, 1
λ2

) and the prover al-
gorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party as the verifier for the statement stT =
(cGC , ct, σ(cGC ,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC ,ct)) ∈ LT using witness

wT = (y, ry, ek, rek, sk, rsk, k, rk, `y, rSign).

Fig. 1: Code of token T

5.2 Correctness

The correctness of the protocol follows from the correctness of all the underlying
primitives.

6 Security Proof: Malicious Receiver

Let’s first consider the case where the receiver R∗ is malicious. Let the environ-
ment be denoted by Z. Initially, the environment chooses an input {x} ∈ {0, 1}λ
and sends it to the honest sender S as his input.

6.1 Simulator Description

The strategy for the simulator Sim against a malicious receiver R∗ is described
below:

Token Exchange Phase:
Receive token T from R∗.

Token Interaction:
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1. Query the token with input “Start” to receive (cy, cek, csk, ck, vk).
2. Pick random strings (toss, rske.enc, r(cGC,ct)). Compute cGC = Commit(0λ; rGC).
3. Using the simulator SimRSZK, engage in an execution of an RSZK argument

with T (who acts as the verifier) for the statement st = (toss, cGC , f) ∈ L.
That is, as part of the RSZK, if the next message of SimRSZK is msg, query T
with input (“RSZK”, toss, cGC , rske.enc, r(cGC,ct), msg). Note that Sim forwards
the code M of the token T that it received from FWRAP to SimRSZK.

4. At the end of the above argument, receive (ct, σ(cSim.GC,ct)) from T.
5. Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution

of a RZKAOK with T (who acts as the prover) for the statement stT =
(cGC , ct, σ(cGC,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct)) ∈ LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK”, toss, rske.enc, r(cGC,ct),msg). Output ⊥ if the argument does
not verify successfully.

Query to Ideal Functionality:

1. Run ExtRZKAOK on the transcript of the above argument to extract a witness
(y, ry, ek, rek, sk, rsk, k, rk, `y, rSign). Note that Sim forwards the code M of the
token T that it received from FWRAP to ExtRZKAOK.

2. Query the ideal functionality with input y to receive as output out. The
honest sender does not receive any output from the ideal functionality.

Communication Message:

1. Using the output out, generate a simulated garbled circuit and simulated
labels. That is, compute (Sim.GC,Sim.`y)← Sim.GC(out).

2. Compute a commitment to the garbled circuit. That is, compute cSim.GC =
Commit(Sim.GC; rSim.GC).

3. Recompute the ciphertext and the signature using the same keys and ran-
domness as done by the token. That is, compute ct = ske.enc(ek, Sim.`y;PRF
(k, rske.enc)), σ(cSim.GC,ct) = Sign(sk, (cSim.GC , ct);PRF (k, r(cGC,ct))).

4. Send (cSim.GC ,Sim.GC, rSim.GC , ct, σ(cSim.GC,ct)) to the receiver R∗.

6.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb0 corresponds to the real
world and Hyb4 corresponds to the ideal world.

– Hyb0 - Real World: Consider a simulator SimHyb that performs exactly as
done by the honest sender S in the real world.

– Hyb1 - Extraction: In this hybrid, SimHyb runs the “Query to Ideal Func-
tionality” phase as in the ideal world. That is, run the algorithm ExtRZKAOK

to extract (y, ry, ek, rek, sk, rsk, k, rk, `y, rSign), then query the ideal functional-
ity with the value y to receive output out.
Note that SimHyb continues to use the honest circuit GC and its commitment
cGC in its interaction with T and the receiver.

11



– Hyb2 - Simulate RSZK: In this hybrid, in its interaction with the token T,
SimHyb computes the RSZK argument by running the simulator SimRSZK in-
stead of running the honest prover algorithm RSZK.Prove. Note that SimHyb

forwards the code M of the token T that it received from FWRAP to SimRSZK.

– Hyb3 - Simulate Garbled Circuit: In this hybrid, SimHyb computes the
message sent to the receiver as in the ideal world. That is, after interacting
with the token, SimHyb does the following:
• Using the output out, generate a simulated garbled circuit and simulated

labels. That is, compute (Sim.GC,Sim.`y)← Sim.GC(out).
• Compute a commitment to the garbled circuit. That is, compute cSim.GC =

Commit(Sim.GC; rSim.GC).
• Recompute the ciphertext and the signature using the same keys and

randomness as done by the token. That is, compute ct = ske.enc(ek,
Sim.`y;PRF(k, rske.enc)), σ(cSim.GC,ct) = Sign(sk, (cSim.GC , ct);PRF(k, r(cGC,ct))).

• Send (cSim.GC ,Sim.GC, rSim.GC , ct, σ(cSim.GC,ct)) to the receiver R∗.

– Hyb4 - Switch Commitment: In this hybrid, SimHyb computes cGC =
Commit(0λ; rGC) and uses this in its interaction with the token. This hybrid
corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally in-
distinguishable and this completes the proof.

Claim. Assuming the argument of knowledge knowledge property of the RZKAOK
system, Hyb0 is computationally indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb also
runs the extractor ExtRZKAOK to extract the adversary’s input y. Therefore, by
the argument of knowledge property of the RZKAOK system, we know that the
extractor ExtRZKAOK is successful except with negligible probability given the
transcript of the argument and the code of the prover (that is, the token’s code
M). Hence, the two hybrids are computationally indistinguishable.

Here, note that SimHyb forwards the code M of the token T that it received
from FWRAP to the the algorithm ExtRZKAOK.

Claim. Assuming the zero knowledge property of the RSZK system, Hyb1 is
computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the
RSZK argument is computed. In Hyb1, SimHyb computes the RSZK by running
the honest prover algorithm RSZK.Prove, while in Hyb2, SimHyb computes the
RSZK by running the simulator SimRSZK. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the zero knowledge
property of the RSZK argument system with non-negligible probability which is
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a contradiction.

Here, note that SimHyb forwards the code M of the token T that it re-
ceived from FWRAP to the external challenger which it uses to run the algorithm
SimRSZK.

Claim. Assuming the security of the garbling scheme (Garble,Eval) and the ar-
gument of knowledge property of the RZKAOK system, Hyb2 is computationally
indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is the way in which the gar-
bled circuit and the labels that are sent to the receiver are computed. We show
that if there exists an adversary A that can distinguish between the two hybrids,
then there exists an adversary AGC that can break the security of the garbling
scheme. The reduction is described below.

AGC interacts with the adversary A as done by SimHyb in Hyb2 except for the
changes below. AGC first runs the token interaction phase and the query to ideal
functionality phase as done by SimHyb in Hyb2. In particular, it picks a random
string toss, computes cGC as a commitment to an honest garbled circuit, gener-
ates a simulated RSZK argument, extracts the adversary’s input y and learns
the output out.

Then, AGC interacts with the challenger ChallGC of the garbling scheme and
sends the tuple (Cx, y, out). Here, Cx is a circuit that on input any string z out-
puts f(x, z). ChallGC sends back a tuple (C∗, `∗y ) which is a tuple of garbled
circuit and labels that are either honestly generated or simulated. Then, AGC

computes c∗ = Commit(C∗; r∗), ct∗ = ske.enc(ek, `∗y ;PRF(k, rske.enc)), σ(c∗,ct∗) =
Sign(sk, (c∗, ct∗);PRF(k, r(cGC,ct∗))). Finally, AGC sends (c∗, C∗, r∗, ct∗, σ(c∗,ct∗)) to
the adversary A as the message from the sender.

Observe that when ChallGC computes the garbled circuit and keys honestly,
the interaction between AGC and A corresponds exactly to Hyb2. This is true
because even though in Hyb2, its the token that generates the ciphertext ct and
the signature σ(cGC,ct), from the argument of knowledge property of the scheme
RZKAOK, we know that except with negligible probability, they were generated
using the message and randomness exactly as computed by AGC. Then, when
ChallGC simulates the garbled circuit and keys, the interaction between AGC and
A corresponds exactly to Hyb3. Now, note that the adversary A does not get
access to the randomness toss or the commitment cGC sent to the token T∗ by
the reduction AGC. Also, crucially, the randomness used in either the ciphertext
generation or the signature generation is completely independent of the message
being encrypted or signed and hence they don’t leak any subliminal information
from the token T∗ to the adversary A. Finally, AGC does not require any of the
randomness used by ChallGC to generate the garbled circuit and labels since AGC

simulates the RSZK argument in its interaction with T∗. Thus, if the adversary
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A can distinguish between these two hybrids with non-negligible probability,
AGC can use the same guess to break the security of the garbling scheme with
non-negligible probability which is a contradiction.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb3
is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is the way in which the
value cGC is computed. In Hyb3, it is computed as a commitment to the garbled
circuit GC while in Hyb4, it is computed as a commitment to 0λ. Note that the
value committed to or the randomness for commitment is not used anywhere else
since the RSZK argument is now simulated. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the hiding property
of the commitment scheme Commit with non-negligible probability, which is a
contradiction.

7 Security Proof: Malicious Sender

Consider a malicious sender S∗. Let the environment be denoted by Z. Initially,
the environment chooses an input {y} ∈ {0, 1}λ and sends it to the honest
receiver R as his input.

7.1 Simulator Description

The strategy for the simulator Sim against a malicious sender S∗ is described
below:

Token Exchange Phase:
Sim does the following:

1. Pick a random key k
$←{0, 1}λ for the function PRF.

2. Pick random strings ry, rek, rsk, rk, rSign.
3. Compute (sk, vk)← Gen(λ; rSign) and ek← ske.setup(λ).
4. Create a token TSim almost exactly as in the honest protocol execution with

the only difference that instead of the honest receiver’s input y, the token uses
a random string y∗ as input. For completeness, we describe the functionality
of the simulated token’s code in Figure 2.

5. Send token TSim to S∗.

Communication Message:
Receive (cGC ,GC, rGC , ct, σ(cGC,ct)) from the sender S∗.

Query to Ideal Functionality:

1. Abort if Verifyvk((cGC , ct), σ(cGC,ct)) = 0.
2. Abort if cGC 6= Commit(GC; rGC).
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3. Amongst the queries made to the token TSim, pick one containing the tuple
(cGC , toss) for which the RSZK argument verified. Note that the queries to
the token are known to Sim by the observability property of the token.

4. Using this randomness toss from the above query and the garbled circuit
GC sent by S∗, recover S∗’s input x. Recall that GC = Garble(Cx; toss) where
Cx(·) = f(x, ·).

5. Send x to the ideal functionality and instruct it to deliver output to the
honest receiver.

Constants: (k, vk, sk, ek, y∗, ry, rek, rsk, rk, rSign)
Case 1: If Input =“Start”:

– Compute cy = Commit(y∗; ry), cek = Commit(ek; rek), csk = Commit(sk; rsk) and
ck = Commit(k; rk).

– Output (cy, cek, csk, ck, vk).

Case 2: If Input =(“RSZK”, toss, cGC , rske.enc, r(cGC ,ct),msg):

– Using a random tape defined by PRF(kR, c1) and the verifier algorithm
(RZKAOK.Prove), engage in an execution of a RSZK argument with the querying
party as the prover for the statement st = (toss, cGC , f) ∈ L.

– Output ⊥ if the argument does not verify successfully.
– Compute `y = Garble.KeyGen (y∗; toss), ct = ske.enc(ek, `y;PRF(k, rske.enc)) and
σ(cGC ,ct) = Sign(sk, (cGC , ct);PRF(k, r(cGC ,ct))).

– Output (ct, σ(cGC ,ct)).

Case 3: If Input =(“RZKAOK”, toss, rske.enc, r(cGC ,ct),msg):

– Using a random tape defined by PRF(kR, 1
λ2

) and the prover al-
gorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party as the verifier for the statement stT =
(cGC , ct, σ(cGC ,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC ,ct)) ∈ LT using witness

wT = (y∗, ry, ek, rek, sk, rsk, k, rk, `y, rSign).

Fig. 2: Code of simulated token TSim. The difference from the honest token code
is highlighted in red font.

7.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb0 corresponds to the real
world and Hyb5 corresponds to the ideal world.

– Hyb0 - Real World: Consider a simulator SimHyb that performs exactly as
done by the honest receiver R in the real world.
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– Hyb1 - Extraction: In this hybrid, SimHyb also runs the “Query to Ideal
Functionality” phase as in the ideal world. That is, SimHyb extracts the ma-
licious sender’s input, sends it to the ideal functionality and instructs it to
deliver output to the honest party.

– Hyb2 - Simulate RZKAOK: In this hybrid, in case 3 of the token’s de-
scription, SimHyb computes the RZKAOK argument by using the simulator
SimRZKAOK instead of running the honest prover algorithm. Note that this
happens only internally in the proof and not in the final simulator’s descrip-
tion. Hence, the final simulator will not require the code of the environment
or need to rewind it.

– Hyb3 - Switch Commitment: In this hybrid, in case 1 of the token’s de-
scription, SimHyb computes cy = Commit(y∗; ry).

– Hyb4 - Switch Ciphertext: In this hybrid, in case 2 of the token’s descrip-
tion, SimHyb sets `y = Garble.KeyGen(y∗; toss) and computes ct = ske.enc(ek, `y
; rske.enc) as in the ideal world.

– Hyb5 - Honest RZKAOK: In this hybrid, in case 3 of the token’s descrip-
tion, SimHyb computes the RZKAOK argument by running the honest prover
algorithm as in the ideal world. This hybrid corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally in-
distinguishable and this completes the proof.

Claim. Assuming the unforgeability property of the signature scheme (Gen,Sign,
Verify), the binding property of the commitment scheme Commit, the soundness
of the RSZK argument system, Hyb0 is computationally indistinguishable from
Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb ex-
tracts the adversary’s input x as in the ideal world. We now argue that this
extraction is successful except with negligible probability and this completes the
proof that the two hybrids are computationally indistinguishable.

First, from the soundness of the argument system RSZK, we know that ex-
cept with negligible probability, in one of the arguments given by the malicious
sender to the token containing the tuple (cGC , toss), there exists (x,GC, rGC) such
that C(·) = f(x, ·), GC = Garble(C; toss) and cGC = Commit(GC; rGC). Then, from
the unforegability of the signature scheme, we know that except with negligible
probability, the commitment cGC sent by S∗ in the first message is indeed the
same as the one used in the above RSZK argument. Similarly, from the bind-
ing property of the commitment scheme, we know that except with negligible
probability, the commitment cGC sent by S∗ in the first message is indeed a
commitment to the same value GC that was used as witness in the above RSZK
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argument. Hence, the value x extracted by SimHyb is the adversary’s input ex-
cept with negligible probability. There is no difference in the adversary’s view
between the two hybrids. Thus the joint distribution of the adversary’s view and
honest party’s input is indistinguishable between both the hybrids.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the
RZKAOK argument is computed. In Hyb1, SimHyb computes the RZKAOK by
running the honest prover algorithm RZKAOK.Prove, while in Hyb2, SimHyb com-
putes the RZKAOK by running the simulator SimRZKAOK. Thus, it is easy to see
that if there exists an adversary that can distinguish between the joint distribu-
tion of the malicious sender’s view and the honest party’s output in these two
hybrids with non-negligible probability, Sim can use that adversary to break the
resettable zero knowledge property of the RZKAOK system with non-negligible
probability, which is a contradiction.

Note: This is a non-black box reduction - that is, in this reduction, SimHyb

needs the adversary’s code. However, this is only within this specific reduction.
In particular, we stress again that the final simulator will not require the code
of the environment or need to rewind it and hence the protocol achieves UC
security.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb2
is computationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is the way in which the
value cy is computed. In Hyb2, it is computed as a commitment to the string
y while in Hyb3, it is computed as a commitment to 0λ. Note that the value
committed to or the randomness for commitment is not used as a witness in
the RZKAOK since the argument is now simulated. We only need the value y to
generate the ciphertext which is not a problem. Thus, it is easy to see that if there
exists an adversary that can distinguish between between the joint distribution
of the malicious sender’s view and the honest party’s output in these two hybrids
with non-negligible probability, Sim can use that adversary to break the hiding
property of the commitment scheme Commit with non-negligible probability,
which is a contradiction.

Claim. Assuming the semantic security of the encryption scheme (ske.setup,
ske.enc, ske.dec), Hyb3 is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is the way in which the
ciphertext ct is computed. In Hyb3, it is computed as an encryption of the string
`y = Garble.KeyGen(y; toss) while in Hyb4, it is computed as an encryption of
`y = Garble.KeyGen(y∗; toss). Note that the message encrypted, the randomness
for encryption or the secret key of the encryption scheme are not used as a
witness in the RZKAOK since the argument is now simulated. We only need
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the value y∗ to generate the ciphertext which is not a problem. Thus, it is easy
to see that if there exists an adversary that can distinguish between the joint
distribution of the malicious sender’s view and the honest party’s output in these
two hybrids with non-negligible probability, Sim can use that adversary to break
the semantic security of the encryption scheme with non-negligible probability
which is a contradiction.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb4 is computationally indistinguishable from Hyb5.

Proof. This is identical to the proof of Claim 7.2.

8 Extension

Output for Both parties:
By using the transformation of [27] which involves the receiver’s output also
containing a signed copy of the sender’s output that is then sent to the sender
using an extra message from the receiver, we can get a two message protocol
where both parties receive output. Formally:

Corollary 2 Assuming one-way functions exist, there exists a two message UC-
secure two party computation protocol in the stateless hardware token model using
just one token, where both parties receive output.
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A UC Framework and Ideal Functionalities

For simplicity, we define the two-party protocol syntax, and then informally re-
view the two-party UC-framework, which can be extended to the multi-party
case. For more details, see [6].

Protocol syntax. Following [22], a protocol is represented as a system of proba-
bilistic interactive Turing machines (ITMs), where each ITM represents the pro-
gram to be run within a different party. Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs
running on the same machine, and the communication tapes model messages
sent to and received from the network. Adversarial entities are also modeled as
ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first,
an ideal functionality is defined, which is a “trusted party” that is guaranteed
to accurately capture the desired functionality. Then, the process of executing
a protocol in the presence of an adversary and in a given computational envi-
ronment is formalized. This is called the real-life model. Finally, an ideal process
is considered, where the parties only interact with the ideal functionality, and
not amongst themselves. Informally, a protocol realizes an ideal functionality
if running of the protocol amounts to “emulating” the ideal process for that
functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe
the ideal and real world executions.

The real-life process. The real-life process consists of the two parties P1 and
P2, the environment Z, and the adversary A. Adversary A can communicate
with environment Z and can corrupt any party. When A corrupts party Pi, it
learns Pi’s entire internal state, and takes complete control of Pi’s input/output
behavior. The environment Z sets the parties’ initial inputs. Let REALΠ,A,Z be
the distribution ensemble that describes the environment’s output when protocol
Π is run with adversary A.

We also consider a G-hybrid model, where the real-world parties are addi-
tionally given access to an ideal functionality G. During the execution of the
protocol, the parties can send inputs to, and receive outputs from, the function-
ality G. We will use REALGΠ,A,Z to denote the distribution of the environment’s
output in this hybrid execution.

The ideal process. The ideal process consists of two “dummy parties” P̂1 and
P̂2, the ideal functionality F , the environment Z, and the ideal world adversary
Sim, called the simulator. In the ideal world, the uncorrupted dummy parties
obtain their inputs from environment Z and simply hand them over to F . As
in the real world, adversary Sim can corrupt any party. Once it corrupts party
P̂i, it learns P̂i’s input, and takes complete control of its input/output behavior.
Let IDEALFSim,Z be the distribution ensemble that describes the environment’s
output in the ideal process.
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Definition 1. (UC-Realizing an Ideal Functionality) Let F be an ideal func-
tionality, and Π be a protocol. We say that Π UC-realizes F in the G-hybrid
model if for any hybrid-model PPT adversary A, there exists an ideal process
expected PPT adversary Sim such that for every PPT environment Z:

{IDEALF,Sim,Z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,Z(n, z)}n∈N,z∈{0,1}∗ (1)

Note that the above equation, says that in the ideal world, the simulator Sim
has no access to the ideal functionality G. However, when G is a set-up assump-
tion, this is not necessarily true and the simulator may have access to G even in
the ideal world. Indeed, there exist different formulations of the UC framework,
capturing different requirements on the set-assumptions (e.g., [7]). In [7] for ex-
ample, the set-up assumption is global, which means that the environment has
direct access to the set-up functionality G. Hence, the simulator Sim needs to
have oracle access to G as well.

The Ideal Token Functionality We now describe the ideal token function-
ality. Note that our ideal functionality models stateful tokens. Although all our
protocols use stateless tokens, an adversarially generated token may be stateful.

Functionality FWRAP

The functionality is parameterized by a polynomial p(·) and a security parameter n.

Create: Upon receiving an input (CREATE, sid,C,U,M) from a party C (i.e., the
token creator), where U is another party (i.e., the token user) and M is an interactive
Turing machine, do:
If there is no tuple of the form 〈C,U, ·, ·, ·〉 stored, store 〈C,U,M, 0, φ〉. Send
(CREATE, 〈sid,C,U〉) to the adversary.
Deliver: Upon receiving (READY, 〈sid,C,U〉) from the adversary, send
(READY, 〈sid,C,U〉) to U.
Execute: Upon receiving an input (RUN, 〈sid,C,U〉,msg) from U, find the unique
stored tuple 〈C,U,M, i, state〉. If no such tuple exists, do nothing. Otherwise, do:
If M has never been used yet, i.e, i = 0, then choose uniform w ∈ {0, 1}p(n) and
set state := w. Run (out, state′) := M(msg; state) for at most p(n) steps where out
is the response and state′ is the new state of M (set out := ⊥ and state′ := state if
M does not respond in the allotted time). Send (RESPONSE, 〈sid,C,U〉, out) to U.
Erase 〈C,U,M, i, state〉 and store 〈C,U,M, i+ 1, state′〉.

Fig. 3: The ideal token functionality FWRAP for stateful tokens.
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