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Abstract. We show how to encrypt a relational database in such a
way that it can efficiently support a large class of SQL queries. Our
construction is based solely on structured encryption (STE) and does
not make use of any property-preserving encryption (PPE) schemes such
as deterministic and order-preserving encryption. As such, our approach
leaks considerably less than PPE-based solutions which have recently
been shown to reveal a lot of information in certain settings (Naveed et
al., CCS ’15 ). Our construction is efficient and—under some conditions
on the database and queries—can have asymptotically-optimal query
complexity. We also show how to extend our solution to be dynamic
while maintaining the scheme’s optimal query complexity.

1 Introduction

The problem of encrypted search has received attention from industry, academia
and government due to its potential applications to cloud computing and database
security. Most of the progress in this area, however, has been in the setting of
keyword search on encrypted documents. While this has many applications in
practice (e.g., email, NoSQL databases, desktop search engines, cloud document
storage), much of the data produced and consumed in practice is stored and pro-
cessed in relational databases. A relational database is, roughly speaking, a set
of tables with rows representing entities/items and columns representing their
attributes. The relational database model was proposed by Codd [18] and most
relational DBs are queried using the structured query language (SQL) which is
a special-purpose declarative language introduced by Chamberlain and Boyce
[14].

The problem of encrypted relational DBs is one of the “holy-grails” of database
security. As far as we know, it was first explicitly considered by Hacigümüs, Iyer,
Li and Mehrotra [25] who described a quantization-based approach which leaks
the range within which an item falls. In [37], Popa, Redfield, Zeldovich and Bal-
akrishnan describe a system called CryptDB that can support a non-trivial sub-
set of SQL without quantization. CryptDB achieves this in part by making use
of property-preserving encryption (PPE) schemes like deterministic and order-
preserving (OPE) encryption, which reveal equality and order, respectively. The
high-level approach is to replace the plaintext operations needed to execute a
SQL query (e.g., equality tests and comparisons) by the same operations on
PPE-encrypted ciphertexts. This approach was later adopted by other systems
including Cipherbase [3] and SEEED [23]. While this leads to systems that are
efficient and legacy-friendly, it was shown by Naveed, Kamara and Wright [34]



that PPE-based EDB systems can leak a lot of information when used in certain
settings like electronic medical records (EMRs). In light of this result, the major
open problem in encrypted search and, more generally, in database security is
whether it is possible to efficiently execute SQL queries on encrypted DBs with
less leakage than the PPE-based solutions.

Our contributions. In this work, we address this problem and propose the
first solution for SQL on encrypted DBs that does not make use of either PPE or
general-purpose primitives like fully-homomorphic encryption (FHE) or oblivi-
ous RAM (ORAM).1 As such, our scheme leaks less than any of the previously-
known practical approaches and is more practical than any solution based on
FHE or ORAM. Our approach is efficient and handles a sub-class of SQL queries
and an even larger class if we allow for a small amount of post-processing at the
client.

More precisely, our construction handles the class of conjunctive queries 2

[15] which corresponds to SQL queries of the form

Select attributes From tables Where
(
att1 = X1 ∧ · · · ∧ att` = X`

)
,

where att1 through att` are attributes in the DB schema and X1 through Xn

are either attributes or constants. For ease of exposition, we mainly focus on
conjunctive queries with Where predicates that are uncorrelated which, very
roughly speaking, means that the attributes are not the same across terms (we
refer the reader to Section 5 for a precise definition). The case of correlated
predicates is quite involved so it is deferred to the full version of this work.
While the class of conjunctive queries is smaller than the class supported by
the PPE-based solutions, it is one of the most well-studied and useful classes of
queries. Furthermore, as mentioned above, if one allows for a small amount of
post-processing at the client, we show how to extend the expressiveness of our
solution to a wider sub-class.

With respect to efficiency, we show that the query complexity of our scheme
is asymptotically optimal in time and space when (s1 + · · · + st)/h = O(1),
where t denotes the number of tables in the query, si denotes the number of
columns in the ith table and h denotes the number of attributes in the Select
term of the query. Towards analyzing the asymptotic complexity of our solution,
we precisely characterize the result size of an SPC query as a function of the

1 In the full version of this work, we present a dynamic variant of our construction
that makes use of ORAM to achieve forward-security, but it is only used to store
and manage one of several data structures needed by the scheme. In other words,
ORAM is not used to store and manage the entire database.

2 We stress that conjunctive queries in the context of relational databases (and as used
throughout this work) is conceptually unrelated to conjunctive keyword queries as
studied in the searchable encryption literature (e.g., in [12,28]). In particular, our
scheme does not make use of any searchable encryption schemes for conjunctive key-
word queries and our problem cannot be solved by applying these schemes directly on
tables. However it is worth mentioning that some of the techniques in the expressive
SSE literature could possibly be leveraged to achieve a better leakage profile.
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query and of the underlying relational database. This analysis, deferred to the
full version of this work, could be of independent interest.

We also show how to extend our construction to be dynamic and to support
two traditional SQL update operations: row addition and row deletions. Sur-
prisingly, our dynamic construction has the same asymptotic efficiency as our
static construction. Finally, we show how to extend our dynamic construction
to be forward-secure at the cost of a poly-logarithmic overhead for updates but
maintaining the same query complexity.

1.1 Possible Approaches
PPE-based. The PPE-based approach to EDBs essentially replaces the plain-
text execution of a SQL query with an encrypted execution of the query by
executing the server’s low-level operations (i.e., comparisons and equality tests)
directly on the encrypted cells. This can be done thanks to the properties of PPE
which guarantee that operations on plaintexts can be done on ciphertexts as well.
This “plug-and-play” approach makes the design of EDBs relatively straightfor-
ward since the only requirement is to replace plaintext cells with PPE-encrypted
cells. This approach however has been shown to leak a lot of information in cer-
tain scenarios [34].

SSE-based. Searchable symmetric encryption (SSE) allows one to perform
search queries on an encrypted document collection. While SSE constructions
do not yield an encrypted relational database, they could be used to handle a
very small subset of SQL. By applying SSE to a column one could handle queries
of the form

Select attribute From table Where att = X,

where att is the attribute that has been indexed with SSE and X is a constant.
If the SSE scheme supports ranges this would extend to queries of the form

Select attribute From table Where att	X,

where 	 ∈ {=, <,>} and if it supports conjunctions it would extend to

Select attribute From table Where
(
att = X1 ∧ · · · ∧ att = X`

)
.

Note that the supported queries in both cases are limited to a single column and
a single table, and don’t support joins or projections. This is, unfortunately, far
from what is expected from a relational database. In addition, extending existing
expressive SSE schemes (e.g., OXT [12], BlindSeer [36] or IEX [28]) to handle
SQL operations would be highly non-trivial—unless one used the naive approach
of executing many simple queries and having the server build the response (e.g.,
like the naive approach to conjunctions or disjunctions) which would leak a
lot more. In general, expressiveness in SSE does not imply the same level of
expressiveness in the relational setting, i.e., we cannot use an expressive SSE
scheme in a “plug-and-play” fashion (similar to PPE) to handle the same level
of expressiveness in relational databases.
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Generic approaches. Fully-homomorphic encryption (FHE) or oblivious RAM
(ORAM) could be used in a black-box fashion to handle full SQL. However, these
approaches would be inefficient due the the inherent cost of the primitives.

1.2 Our Techniques

Conceptual approach. Our first step towards a solution is in isolating some
of the conceptual difficulties of the problem. Relational DBs are relatively sim-
ple from a data structure perspective since they just consist of a set of two-
dimensional arrays. The high-level challenge stems from SQL and, in particular,
from its complexity (it can express first-order logic) and the fact that it is declar-
ative. To overcome this we restrict ourselves to a simpler but widely applicable
and well-studied subset of SQL queries (see above) and we take a more procedu-
ral view. More precisely, we work with the relational algebra formulation of SQL
which is more amenable to cryptographic techniques. The relational algebra was
introduced by Codd [18] as a way to formalize queries on relational databases.
Roughly speaking, it consists of all the queries that can be expressed from a set
of basic operations. It was later shown by Chandra and Merlin [15] that three of
these operations (selection, projection and cross product) capture a large class
of useful queries called conjunctive queries that have particularly nice theoret-
ical properties. Since their introduction, conjunctive queries have been studied
extensively in the database literature.

The subset of the relational algebra expressed by the selection, projection
and cross product operators is also called the SPC algebra. By working in the
SPC algebra, we not only get a procedural representation of SQL queries, but we
also reduce the problem to handling just three basic operations. Conceptually,
this is reminiscent of the benefits one gets by working with circuits in secure
multi-party computation and FHE. Another important advantage of working in
the SPC algebra is that it admits a normal form; that is, every SPC query can
be written in a standard form. By working with this normal form, we get another
benefit of general-purpose solutions which are that we can design and analyze a
single construction that handles all SPC queries. Note, however, that like circuit
representations the SPC normal form is not always guaranteed to be the most
efficient.

The SPC algebra. As mentioned, the SPC algebra consists of all queries
that can be expressed by a combination of the select, project and cross product
operators which, at a high-level, work as follows. The select operator σΨ takes
as input a table T and outputs the rows of T that satisfy the predicate Ψ . The
project operator πatt1,...,atth takes as input a table T and outputs the columns of
T indexed by att1, . . . , atth. Finally, the cross product operator T1×T2 takes two
tables as input and outputs a third table consisting of rows in the cross product
of T1 and T2 when viewed as sets of rows. An SPC query in normal form over a
database DB = (T1, . . . ,Tn) has the form,

πatt1,··· ,atth

(
[a1]× · · · × [af ]× σΨ (Ti1 × · · · × Tit)

)
,
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where [aj ] is a 1×1 table that holds a constant aj for all j ∈ [f ], Ψ is of the form
att1 = X1∧· · ·∧att` = X` where att1, . . . , att` are attributes in the schema of DB
and X1, . . . , X` are either attributes or constants. So, concretely, our problem
reduces to the problem of encrypting a relational database DB = (T1, . . . ,Tn)
in such a way that it can support SPC queries in normal form.

Structured encryption & constructive queries. The main difficulty in
the case of relational DBs and, in particular, in handling SPC queries is that
queries are constructive in the sense that they produce new data structures from
the original base structure. Intuitively, handling constructive queries (without
interaction) is particularly challenging because the intermediate and final struc-
tures that have to be created by the server to answer the query are dependent on
the query and, therefore, cannot be constructed by the client in the setup/pre-
processing phase. An important observation about relational DBs that underlies
our approach, however, is that while SPC queries are constructive, they are not
arbitrarily so. In other words, the tables needed to answer an SPC query are not
completely arbitrary but are structured in a way that can be predicted at setup.
What is query-dependent is the content of these tables but, crucially, all of that
content is already stored in the original database. So the challenge then is to
provide the server with the means to construct the appropriate intermediate and
final tables and to design encrypted structures that will allow it to efficiently find
the (encrypted) content it needs to create those tables.

Handling SPC normal form queries. By taking a closer look at the SPC
normal form, one can see that the first intermediate table needed to answer a
query is the cross product T′ = Ti1 × · · ·×Tit . Ignoring the cross products with
[a1], . . . , [af ] for ease of exposition, the remaining intermediate tables as well as
the final table are “sub-tables” of T′ that result from selecting a subset of rows
(according to Ψ) and keeping a subset of columns (according to att1, . . . , atth).
Handling such a query naively requires one to first compute the cross product of
the tables which can be prohibitively large. As we show in Section 5, however,
SPC normal form queries can be rewritten in a different and optimized form
we introduce called the heuristic normal form (HNF). We then show how to
encrypt the database in such a way that we can handle queries in their HNF
form. At a high level, we achieve this by creating a set of encrypted structures
that store different representations of the database. For example, one of the
encrypted structures stores a row-wise representation of the database whereas
another stores a column-wise representation. By using these various representa-
tions and by combining them in an appropriate manner, we can generate tokens
for the server to recover the encrypted database rows needed for it to process
the query in its HNF form.

The SPX framework. We describe and analyze our scheme using algorithms
that make black-box use of several lower-level STE schemes (e.g., multi-map and
dictionary encryption schemes). As such, our construction is more of a frame-
work that can be used to design encrypted relational databases with various effi-
ciency/leakage trade-offs. In fact, in Section 7.1, we describe an instantiations of
our framework with a zero-leakage variant of the TWORAM-based construction
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of Garg, Papamanthou and Mohassel [20] which results in a very low-leakage
construction at the cost of an additional poly-logarithmic overhead.

Dynamism. We show how to extend our static construction to be dynamic.
This is challenging as we want to maintain the scheme’s query complexity while
not introducing additional leakage. From a functionality perspective, we restrict
our attention to row additions and deletions and leave as important open prob-
lem the handling of more complex update operations. While real-world databases
also handle edits, we note that these two update operations are already interest-
ing in practice and non-trivial to achieve. As discussed above, we store different
encrypted representations of the database. One of these representations, how-
ever, stores parts of the database that are highly inter-correlated. The difficulty
this poses is that we cannot simply add or remove items from this structure as
any change affects all the other items stored in the structure. We introduce a
two-party protocol to solve this challenge without the client having to trivially
download the entire structure and without leaking too much information to the
server. We then show how to extend this solution to be forward-secure at the
cost of a poly-logarithmic blowup (for updates). This is achieved by storing and
managing one of the structures in an oblivious RAM.

A note on our techniques. We stress that our approach to handle the
SPC algebra is very different from how these queries are handled on plaintext
databases. In other words, our approach does not simply replicate standard data
structures and algorithms from the database literature. In fact, our approach to
handling SPC queries could be of independent interest for plaintext relational
databases.

2 Related Work

Searchable & structured encryption. Encrypted search was first consid-
ered explicitly by Song et al. in [38] which introduced the notion of searchable
symmetric encryption (SSE). Goh provided the first security definition for SSE
and a solution based on Bloom filters with linear search complexity. Curtmola et
al. introduced and formulated the notion of adaptive semantic security for SSE
[19] together with optimal-time and optimal-space constructions. Chase and Ka-
mara introduced the notion of structured encryption which generalizes SSE to
arbitrary data structures [16]. Cash et al. [11] show how to construct optimal-
time SSE schemes with low I/O complexity and Cash and Tessaro [13] gave lower
bounds on the locality of adaptively-secure SSE schemes. Asharov et al. build
SSE schemes with optimal locality, optimal space overhead and nearly-optimal
read efficiency [4]. Garg et al. [20] presented a new SSE construction with re-
duced leakage leveraging oblivious RAM and garbled RAM techniques. Bost [9]
proposed an efficient forward-secure SSE construction based on trapdoor permu-
tations. SSE has also been considered in the multi-user setting [19,27]. Pappas
et al. [36] proposed a multi-user SSE construction based on garbled circuits and
Bloom filters that can support Boolean formulas, ranges and stemming. Other
approaches for encrypted search include oblivious RAMs (ORAM) [22], secure
multi-party computation [6], functional encryption [8] and fully-homomorphic
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encryption [21] as well as solutions based on deterministic encryption [5] and
order-preserving encryption (OPE) [7].

Encrypted relational databases. As far as we know the first encrypted re-
lational DB solution was proposed by Hacigümüs et al. [25] and was based on
quantization. Roughly speaking, the attribute space of each column is parti-
tioned into bins and each element in the column is replaced with its bin number.
Popa et al. proposed CryptDB [37]. CryptDB was the first non-quantization-
based solution and can handle a large subset of SQL. Instead of quantization,
CryptDB relies on PPE like deterministic encryption [5] and OPE [2,7]. The
CryptDB design influenced the Cipherbase system from Arasu et al. [3] and the
SEEED system from Grofig et al. [23]. In [34], Naveed et al. study the security of
these PPE-based solutions in the context of medical data. Recently, Grubbs, Ris-
tenpart and Shmatikov [24] point out pitfalls in integrating encrypted database
solutions in real-world database management systems (DBMS).

Attacks on SSE. While we do not consider the problem of designing an SSE
scheme in this work, we can use SSE schemes as building blocks to instantiate
SPX. Several works have proposed attacks that try to exploit the leakage of
SSE. This includes the query-recovery attacks of Islam et al. [26], of Cash et
al. [10] and of Zhang et al. [40]. Recently, Abdelraheem et al. [33], presented
attacks on encrypted relational databases. We briefly mention here that although
the attacks in [33] are ostensibly on relational EDBs, they are not related to
or applicable to our construction. For more details on these attacks and their
relation to our work we refer the reader to Section 7.3.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}.
We write x ← χ to represent an element x being sampled from a distribution

χ, and x
$← X to represent an element x being sampled uniformly at random

from a set X. The output x of an algorithm A is denoted by x ← A. Given a
sequence v of n elements, we refer to its ith element as vi or v[i]. If S is a set
then #S refers to its cardinality. If s is a string then |s| refers to its bit length.

Basic structures. We make use of several basic data types including dictio-
naries and multi-maps which we recall here. A dictionary DX of capacity n is
a collection of n label/value pairs {(`i, vi)}i≤n and supports get and put oper-
ations. We write vi := DX[`i] to denote getting the value associated with label
`i and DX[`i] := vi to denote the operation of associating the value vi in DX
with label `i. A multi-map MM with capacity n is a collection of n label/tuple
pairs {(`i, ti)}i≤n that supports get and put operations. Similarly to dictionar-
ies, we write ti := MM[`i] to denote getting the tuple associated with label `i
and MM[`i] := ti to denote operation of associating the tuple ti to label `i. Note
that tuples may have different lengths. Multi-maps are the abstract data type
instantiated by an inverted index. In the encrypted search literature multi-maps
are sometimes referred to as indexes, databases or tuple-sets (T-sets). We refer
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to the set of all possible queries a data structure supports as its query space and
to the set of its possible responses as its response space. For some data structure
DS we sometimes write DS : Q → R to mean that DS has query and response
spaces Q and R, respectively.

Relational databases. A relational database DB = (T1, . . . ,Tn) is a set of
tables where each table Ti is a two-dimensional array with rows corresponding
to an entity (e.g., a customer or an employee) and columns corresponding to
attributes (e.g., age, height, salary). For any given attribute, we refer to the set
of all possible values that it can take as its domain (e.g., integers, booleans,
strings). We define the schema of a table T to be its set of attributes and denote
it S(T). The schema of a database DB = (T1, . . . ,Tn) is then the set S(DB) =⋃
i S(Ti). We assume the attributes in S(DB) are unique and represented as

positive integers. We denote a table T’s number of rows as ‖T‖r and its number
of columns as ‖T‖c.

We sometimes view tables as a tuple of rows and write r ∈ T and sometimes
as a tuple of columns and write c ∈ Tᵀ. Similarly, we write r ∈ DB and c ∈ DBᵀ

for r ∈
⋃
i Ti and c ∈

⋃
i T

ᵀ
i , respectively. For a row r ∈ Ti, its table identifier

tbl(r) is i and its row rank rrk(r) is its position in Ti when viewed as a tuple of
rows. Similarly, for a column c ∈ Tᵀ

i , its table identifier tbl(c) is i and its column
rank crk(c) is its position in Ti when viewed as a tuple of columns. For any

row r ∈ DB and column c ∈ DBᵀ, we refer to the pairs χ(r)
def
= (tbl(r), rrk(r))

and χ(c)
def
= (tbl(c), crk(c)), respectively, as their coordinates in DB. Similarly,

we denote by χ(att) the coordinate of column c with attribute att ∈ S(DB)
such that χ(att) = χ(c). We write r[i] and c[i] to refer to the ith element of a
row r and column c. The coordinate of the jth cell in row r ∈ Ti is the triple
(i, rrk(r), j). Given a column c ∈ DBᵀ, we denote its corresponding attribute by
att(c). For any pair of attributes att1, att2 ∈ S(DB) with the same domain such
that dom(att1) = dom(att2), DBatt1=att2 denotes the set of row pairs

{
(r1, r2) ∈

DB2 : r1[att1] = r2[att2]
}

. For any attribute att ∈ S(DB) and constant a ∈
dom(att), DBatt=a is the set of rows

{
r ∈ DB : r[att] = a

}
.

SQL. In practice, relational databases are queried using the special-purpose
language SQL, introduced by Chamberlain and Boyce [14]. SQL is a declarative
language and can be used to modify and query a relational DB. In this work, we
only focus on its query operations. Informally, SQL queries typically have the
form

Select attributes From tables Where condition,

where attributes is a set of attributes/columns, tables is a set of tables and
condition is a predicate over the rows of tables and can itself contain a nested
SQL query. More complex queries can be obtained using Group-by, Order-by and
aggregate operators (i.e., max, min, average etc.) but the simple form above
already captures a large subset of SQL. The most common class of queries on
relational DBs are conjunctive queries [15] which have the above form with
the restriction that condition is a conjunction of equalities over attributes and
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constants. In particular, this means there are no nested queries in condition.
More precisely, conjunctive queries have the form

Select attributes From tables Where
(
att1 = X1 ∧ · · · ∧ att` = X`

)
,

where atti is an attribute in S(DB) and Xi can be either an attribute or a
constant.

The SPC algebra. It was shown by Chandra and Merlin [15] that conjunctive
queries could be expressed as a subset of Codd’s relational algebra which is an
imperative query language based on a set of basic operators. In particular, they
showed that three operators select, project and cross product were enough. The
select operator σΨ is parameterized with a predicate Ψ and takes as input a
table T and outputs a new table T′ that includes the rows of T that satisfy
the predicate Ψ . The projection operator πatt1,...,atth is parameterized by a set
of attributes att1, . . . , atth and takes as input a table T and outputs a table
T′ that consists of the columns of T indexed by att1 through attn. The cross
product operator × takes as input two tables T1 and T2 and outputs a new table
T′ = T1×T2 such that each row of T′ is an element of the cross product between
the set of rows of T1 and the set of rows of T2. The query language that results
from any combination of select, project and cross product is referred to as the
SPC algebra. We formalize this in Definition 1 below.

Definition 1 (SPC algebra). Let DB = (T1, . . . ,Tn) be a relational database.
The SPC algebra consists of any query that results from the combination of the
following operators:

– T′ ← σΨ (T): the select operator is parameterized with a predicate Ψ of form
att1 = X1 ∧ · · · ∧ att` = X`, where atti ∈ S(DB) and Xi is either a constant
equal to a in the domain of atti (type-1) or an attribute xj ∈ S(DB) (type-2).
It takes as input a table T ∈ DB and outputs a table T′ = {r ∈ T : Ψ(r) = 1},
where terms of the form atti = xj are satisfied if r[atti] = r[xj ] and terms of
the form atti = a are satisfied if r[atti] = a.

– T′ ← πatt1,...,atth(T): the project operator is parameterized by a set of at-
tributes att1, . . . , atth ∈ S(DB). It takes as input a table T ∈ DB and outputs
a table T′ = {〈r[att1], . . . , r[atth]〉 : r ∈ T}.

– R ← T1 × T2: the cross product operator takes as input two tables T1 and
T2 and outputs a result table R =

{〈
r,v
〉

: r ∈ T1 and v ∈ T2

}
, where 〈r,v〉

is the concatenation of rows r and v.

Intuitively, the connection between conjunctive SQL queries and the SPC algebra
can be seen as follows: Select corresponds to the projection operator, From to
the cross product and Where to the (SPC) select operator.

SPC normal form. Any query in the SPC algebra can be reduced to a normal
form using a certain set of well-known identities. The normal form of an SPC
query over a relational database DB = (T1, . . . ,Tn) has the form:

πatt1,··· ,atth

(
[a1]× · · · × [af ]× σΨ (Ti1 × · · · × Tit)

)
,
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where a1, . . . , af ∈
⋃

att∈S(DB) dom(att) and [aj ] is the 1 × 1 table that holds
aj . The 1 × 1 tables are needed for the normal form to have enough expressive
power to capture the SPC algebra (for more details see [1]). Here, the attributes
att1, . . . , atth in the projection are either in S(DB) or refer to the columns gen-
erated by [a1] through [af ]. In the latter case, we say that they are virtual
attributes and are in S(VDB), where VDB is the virtual database defined as
VDB =

(
[a1], . . . , [af ]

)
.

One of the advantages of working in the relational algebra is that it allows for
powerful optimization techniques. Given a query, we can use several identities
to rewrite the query so that it can be executed more efficiently. The topic of
query optimization is a large and important area of research in both database
theory and engineering and real-world database management systems crucially
rely on sophisticated query optimization algorithms. The main disadvantage of
working with SPC queries in normal form is that their execution is extremely
expensive, i.e., exponential in t. Furthermore, it is a-priori unclear how one could
use standard query optimization techniques over encrypted data. We will see in
Section 5, however, that these challenges can be overcome.

We note that while executing normal form SPC queries is prohibitively ex-
pensive, converting conjunctive SQL queries to normal form SPC queries is a
well-studied problem with highly-optimized solutions. In particular, the queries
that result from such a translation are “compact” in the sense that the number
of projects, selects and cross products in the resulting SPC query is the same
as the number of attributes, tables and conditions, respectively, in the original
SQL query (for an overview of SQL-to-SPC translation we refer the reader to
[39]).

Basic cryptographic primitives. We make use of encryption schemes that
are random-ciphertext-secure against chosen-plaintext attacks (RCPA). RCPA-
secure encryption can be instantiated practically using either the standard PRF-
based private-key encryption scheme or, e.g., AES in counter mode.

4 Definitions

In this Section, we define the syntax and security of STE schemes. A STE scheme
encrypts data structures in such a way that they can be privately queried. There
are several natural forms of structured encryption. The original definition of
[16] considered schemes that encrypt both a structure and a set of associated
data items (e.g., documents, emails, user profiles etc.). In [17], the authors also
describe structure-only schemes which only encrypt structures. Another distinc-
tion can be made between interactive and non-interactive schemes. Interactive
schemes produce encrypted structures that are queried through an interactive
two-party protocol, whereas non-interactive schemes produce structures that can
be queried by sending a single message, i.e, the token. One can also distinguish
between response-hiding and response-revealing schemes: the latter reveal the
query response to the server whereas the former do not.

Our main construction, SPX, is response-hiding but makes use of response-
revealing schemes as building blocks. Furthermore, SPX’s building blocks can
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be instantiated using either non-interactive or interactive schemes. We define
response-hiding and response-revealing schemes below, but only for the non-
interactive setting. The definitions, however, can be naturally extended to the
interactive case. At a high-level, non-interactive STE works as follows. During
a setup phase, the client constructs an encrypted structure EDS under a key K
from a plaintext structure DS. The client then sends EDS to the server. During
the query phase, the client constructs and sends a token tk generated from its
query q and secret key K. The server then uses the token tk to query EDS and
recover either a response r or an encryption ct of r depending on whether the
scheme is response-revealing or response-hiding.

Definition 2 (Response-revealing structured encryption [16]). A response-
revealing structured encryption scheme Σ = (Setup,Token,Query) consists of
three polynomial-time algorithms that work as follows:

– (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a
security parameter 1k and a structure DS and outputs a secret key K and
an encrypted structure EDS.

– tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input
a secret key K and a query q and returns a token tk.

–
{
⊥, r

}
← Query(EDS, tk): is a deterministic algorithm that takes as input an

encrypted structure EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for
all k ∈ N, for all poly(k)-size structures DS : Q→ R, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens
tki output by Token(K, qi), Query(EDS, tki) returns DS(qi) with all but negligible
probability.

Definition 3 (Response-hiding structured encryption [16]). A response-
hiding structured encryption scheme Σ = (Setup,Token,Query,Dec) consists of
four polynomial-time algorithms such that Setup and Token are as in Definition
2 and Query and Dec are defined as follows:

– {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an
encrypted structured EDS and a token tk and outputs either ⊥ or a ciphertext
ct.

– r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key
K and a ciphertext ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for
all k ∈ N, for all poly(k)-size structures DS : Q→ R, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens
tki output by Token(K, qi), DecK

(
Query

(
EDS, tki

))
returns DS(qi) with all but

negligible probability.

Security. The standard notion of security for structured encryption guarantees
that an encrypted structure reveals no information about its underlying structure
beyond the setup leakage LS and that the query algorithm reveals no information
about the structure and the queries beyond the query leakage LQ. If this holds
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for non-adaptively chosen operations then this is referred to as non-adaptive
semantic security. If, on the other hand, the operations are chosen adaptively,
this leads to the stronger notion of adaptive semantic security. This notion of
security was introduced by Curtmola et al. in the context of SSE [19] and later
generalized to structured encryption in [16].

Definition 4 (Adaptive semantic security [19,16]). Let Σ = (Setup,Token,
Query) be a response-revealing structured encryption scheme and consider the
following probabilistic experiments where A is a stateful adversary, S is a stateful
simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:
RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS

from the challenger, where (K,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of queries q1, . . . , qm. For all i ∈
[m], the adversary receives tk ← Token(K, qi). Finally, A outputs a bit b
that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends
to the challenger. Given z and leakage LS(DS) from the challenger, the sim-
ulator S returns an encrypted data structure EDS to A. The adversary then
adaptively chooses a polynomial number of operations q1, . . . , qm. For all
i ∈ [m], the simulator receives a tuple

(
DS(qi),LQ(DS, qi)

)
and returns a

token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if there exists a ppt
simulator S such that for all ppt adversaries A, for all z ∈ {0, 1}∗, the following
expression is negligible in k:

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]|

The security definition for response-hiding schemes can be derived from Def-
inition 4 by giving the simulator

(
⊥,LQ(DS, qi)

)
instead of

(
DS(qi),LQ(DS, qi)

)
.

5 SPX: A Relational Database Encryption Scheme

In this Section we describe our main construction SPX. We start by giving a
high-level overview of two of the main techniques we rely on. The first is how we
index the DB to in order to handle HNF queries efficiently. The second is how
we use the “chaining” technique from [16] to build complex encrypted structures
from simpler ones.

Database indexing. The first step of our construction is to build different
representations of the database, each designed to handle a particular operation
of the SPC algebra. These representations are designed—when combined in an
appropriate manner— to support the efficient processing of SPC queries. We
use four representations. The first is a row-wise representation of the database
instantiated as a multi-map MMR that maps the coordinate of every row in the
DB (recall that a coordinate is a row rank / table identifier pair) to the contents
of the row. The second representation is a column-wise representation of the DB.
Similarly, we create a multi-map MMC that maps the coordinate of every column
to the contents of that. The third representation, contrary to MMR and MMC ,
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does not store any content of the table but the equality relation among values
in the database. For this, we create a multi-map MMV that maps each value in
every column to all the rows that contain the same value. Finally, the fourth
representation is a set of multi-maps, one for every column c in the DB. Each
multi-map, MMc, maps a pair of column coordinates to all the rows that have
the same value in both those columns. Now, using multi-map and dictionary
encryption schemes, we encrypt all these representations. This results in the
encrypted multi-maps EMMR,EMMC ,EMMV and an encrypted dictionary EDX
(which stores all the all EMMc’s).

Chaining and constructive queries. The different representations we just
described are designed so that, given an SPC query, the server can generate
the intermediate (encrypted) tables needed to produce the final (encrypted) re-
sult/table. To do this, the server will need to make further intermediate queries
on these (intermediate) encrypted tables. This type of query evaluation is con-
structive in the sense that the intermediate and final encrypted tables are not the
result of pre-processing at setup time but are constructed at query time by the
server as a function of the query and the underlying DB. To handle this, we use
the chaining technique of [16]. At a high level, the idea is to store query tokens
for one encrypted structure as the responses of another encrypted structure. By
carefully chaining the various encrypted multi-maps (EMMs) described above,
we can handle constructive queries by first querying some subset of the EMMs
to recover either tokens for EMMs further down the chain or encrypted content
which we will use to populate intermediate tables. This process proceeds further
down the chain until the final result/table is constructed.

Security and efficiency. The database representations we choose along with
the careful chaining of their encryptions provide us a way to control both the
efficiency and the security of scheme. While intermediate results/tables will vary
depending on the query, the chaining sequence remains the same for any SPC
query written in our heuristic normal form. The chaining sequence is important
because it determines the leakage profile of the construction. We analyze the
security of our scheme in black-box manner; that is, we provide a black-box
leakage profile that is a function of the leakage profile of the underlying encrypted
multi-map and encrypted dictionaries used. This allows us to isolate the leakage
that is coming from the underlying building blocks and the leakage that is coming
directly from our construction. This further enables us to reason about and
decide which concrete instantiations to use as building blocks so that we can
choose the kind of leakage/performance tradeoff that is most appropriate.

From an efficiency standpoint, we show that when SPX is instantiated with
optimal-time encrypted multi-map and dictionary schemes, it can achieve op-
timal query complexity and linear storage complexity (in the size of the DB)
under natural assumptions about the database.

5.1 (Plaintext) Database Indexing
As detailed above, SPX relies on several ideas and techniques. Some of these
are cryptographic and some are not. To better explain these techniques we will
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progressively build our solution; starting with a naive plaintext algorithm for
evaluating SPC queries and ending with a detailed description of SPX.

The naive SPC algorithm. The naive way to evaluate an SPC normal form
query

πatt1,··· ,atth

(
[a1]× · · · [af ]× σΨ (Ti1 × · · · × Tit)

)
on a database DB = (T1, . . . ,Tn) is to first compute R1 := Ti1 × · · · × Tit , then
R2 := σΨ (R1), then R3 := [a1]× · · · × [af ]× R2 and finally R := πatt1,...,atth(R3).
This algorithm is dominated by the cross product computation which is O(mt ·∑t
i=1 si), where m = maxti=1 ‖Ti‖r and si = ‖Ti‖c. The exponential blowup

in t is the main reason normal form SPC queries are never used in practice. In
addition, since m is usually very large the naive algorithm is prohibitive even
for small t.

The benefit of working with the SPC normal form is generality; that is, we
can handle an entire class of queries by finding a solution for a single well-
specified query form. The disadvantage, however, is that normal form queries
take exponential time to evaluate even on a plaintext database.

Heuristic normal form (HNF). We show that certain optimizations can
be applied to the SPC normal form so that its evaluation time only induces a
multiplicative factor of

∑t
i=1 si/h over the optimal evaluation time on a plaintext

database. We refer to this new normal form as the heuristic normal form. In some
cases, this multiplicative factor is a constant as it does not depend on the size of
the result and, in such cases, the HNF evaluation is optimal. The idea is inspired
by a query optimization heuristic from database theory which takes advantage
of a distributive property between the select and cross product operators. For
example, if the predicate Ψ =

(
att1 = a1 ∧ · · · ∧ att` = a`

)
is only composed of

type-1 terms and if, for all i ∈ [`], atti ∈ Ti, and the number of terms in Ψ equals
the number of tables in the cross product, ` = t, then we have the identity

σΨ
(
T1 × · · · × Tt

)
= σatt1=a1(T1)× · · · × σattt=at(Tt).

In the database literature this is known as “pushing selects through products”
and, depending on the selectivity of the terms, it can greatly reduce the cost
of the evaluation. We extend this approach to arbitrary conjunctive predicates
which can have both type-1 and type-2 terms. Optimizing these queries is quite
involved because the terms can have complex dependencies. In the following,
we say that a query is correlated if its predicate Ψ satisfies any of the following
properties: (1) two or more type-2 terms share a common attribute; (2) a type-1
and type-2 term share a common attribute; (3) the attributes of two or more
type-2 terms are from the same table; and (4) the attributes from a type-1 and
type-2 term are from the same table. We say that a query is uncorrelated if it
is not correlated. For ease of exposition, we only describe here how to handle
uncorrelated queries and treat the case of correlated queries in the full version
of this work.
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HNF for uncorrelated queries. If Ψ is uncorrelated, we process each term
of Ψ and apply the following rules. Let ϕ be an empty query. If there are p ≥ 1
type-1 terms att1 = a1, . . . , attp = ap from some table T, then we set

ϕ := ϕ×
(
σatt1=a1(T) ∩ · · · ∩ σattp=ap(T)

)
,

and remove these terms from Ψ . If the term has form att1 = att2 (i.e., is type-2),
where att1 and att2 are from tables T1 and T2, respectively, then we set

ϕ := ϕ× σatt1=att2(T1 × T2).

Note that if att1 and att2 are from the same table T, then T1 = T2 = T above.
At the end of this rewriting process, we say that the query

πatt1,··· ,atth

(
[a1]× · · · [af ]× ϕ

)
is in the heuristic SPC normal form or simply the heuristic normal form.

Indexing. In database systems, select and project operations can be executed
in one of two ways: with or without an index. In an unindexed execution, the
database management system evaluates the operation using sequential scan. For
example, to evaluate the operation σatt=a(T), it scans the rows of T and returns
the ones that satisfy att = a. In an indexed execution, on the other hand,
the database management system uses a pre-computed data structure (e.g., an
index) to find the relevant rows in sub-linear time. Here, we give an overview
of how one can index the database to support efficient heuristic normal form
queries. Note that our indexing strategy is really designed so that we can support
heuristic normal form queries on encrypted data (which we discuss below) so it
is not necessarily the most natural way to index a plaintext database.

Given a database DB = (T1, . . . ,Tn), we first create a multi-map MMR that
stores, for all r ∈ DB, the pair (

χ(r), r

)
.

In other words, the multi-map MMR maps row coordinates to rows. We then
create a second multi-map MMC that maps column coordinates to columns.
Following this, we build a third multi-map, MMV , that maps every value/column
pair (v, χ(c)) in the database to the coordinates of the rows that hold v in column
c. That is, for all columns c ∈ DBT and all values v ∈ c, MMV stores the pair(〈

v, χ(c)

〉
,

(
χ(r)

)
r∈DBatt(c)=v

)
.

Finally, we build a set of multi-maps for every column c ∈ DBT. More pre-
cisely, for all columns c ∈ DBT we create the multi-map MMc which maps the
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coordinates of c and any other column c′ that has the same domain as c, to
the coordinates of rows r and r′ such that r[c] = r′[c′]. More precisely, for all
c′ ∈ DBT such that dom(c′) = dom(c), MMc stores pairs(〈

χ(c), χ(c′)

〉
,

(
χ(r), χ(r′)

)
(r,r′)∈DBatt(c)=att(c′)

)
.

To speed up access to the multi-map MMc, we store it in a dictionary DX. That
is, for all c ∈ DBᵀ, we set

DX[χ(c)] := MMc.

Note that, in practice, we could store a pointer to MMc in the dictionary instead.

Indexed execution of HNF queries. We now show how to perform an
indexed execution of heuristic normal form queries using these structures.3 For
clarity, we use a small database composed of two tables and a simple SQL query.
We hope that this example clarifies some of the ideas behind our construction.

Recall that HNF queries have form

πatt1,··· ,atth

(
[a1]× · · · × [af ]× ϕ

)
,

where ϕ = ϕ1 × · · · × ϕd with each ϕi having form either σatt1=a1(T) ∩ · · · ∩
σattp=ap(T) or σatt1=att2(T1 × T2). We process each ϕi and create a set Ri of
rows as follows:

– (Case 1) If ϕi has form σatt1=a1(T) ∩ · · · ∩ σattp=ap(T) we recover for each
term σattj=aj (T) a set R′j by computing(

χ(r)

)
r∈DBattj=aj

:= MMV

[〈
aj , χ(attj)

〉]
and querying MMR on each of the returned row coordinates. We then set

Ri = R′1 ∩ · · · ∩R′p.

– (Case 2) If ϕi has form σatt1=att2(T1 × T2), we first compute MMatt1 :=
DX[χ(att1)] and(

χ(r1), χ(r2)

)
(r1,r2)∈DBatt1=att2

:= MMatt1

[〈
χ(att1), χ(att2)

〉]
.

Then we query MMR on all of the returned row coordinates to produce a set

Ri :=

{
r1 × r2

}
(r1,r2)∈DBatt1=att2

.

3 In the full version of this work, we provide a concrete example that walks through
our indexed HNF algorithm.
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After processing ϕ1, . . . , ϕd, we compute a temporary table

S := [a1]× · · · × [af ]×R1 × · · · ×Rd.

We then consider the set of attributes in the project operation that are in tables
that appear in the select operation. Specifically, this is the set:

I =

{
att ∈ S : att ∈

t⋃
j=1

S(Tij )

}
,

where S
def
= {att1, . . . , atth}. Suppose I has z ≥ 1 elements which we denote

(atti1, . . . , att
i
z).We compute

W := πatti1,...,attiz (S).

We then consider the attributes in the project operation that are not in the
tables that appear in the select operation; that is, the set O = S \ I. Suppose O
has h− z elements which we denote (atto1, . . . , att

o
h−z). For all 1 ≤ j ≤ h− z, we

compute

cj := MMc

[
χ(attoj)

]
.

Finally, we generate the result table

R := c1 × · · · × ch−z ×W,

where the cj ’s are viewed as single-column tables.

5.2 Detailed Construction
We now describe our SPX construction at a high-level. Due to space limitations,
we defer the pseudo-code to the full version of this work. The scheme makes
black-box use of a response-revealing multi-map encryption scheme ΣMM =
(Setup,Token,Get), of a response-revealing dictionary encryption scheme ΣDX =
(Setup,Token,Get), of a symmetric-key encryption scheme SKE = (Gen,Enc,Dec).
Note that encrypted multi-maps and dictionaries can be instantiated using a va-
riety of schemes [19,16,30,12,11,35].

Overview. At a high-level, the Setup algorithm takes as input a database
DB = (T1, . . . ,Tn), creates the multi-maps MMR, MMC , MMV , {MMc}c∈DBᵀ

and the dictionary DX, as described above, and then encrypts each structure
with the appropriate structured encryption scheme. The Token algorithm works
by parsing the heuristic normal form query and generating appropriate tokens
for each structure so as to enable the server to perform an indexed execution of
the query (over encrypted data) as described in the previous paragraph.

Setup. The Setup algorithm takes as input a relational database DB = (T1, . . . ,
Tn) and indexes it as above. This results in three multi-maps MMR, MMV and
MMC and a dictionary DX that stores pointers to an additional set of multi-maps
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{MMc}c∈DBᵀ . The algorithm then encrypts every row r in MMR using SKE. In
other words, MMR now holds value/tuple pairs of the form(

χ(r),

(
EncK1

(r1), . . . ,EncK1
(r#r)

))
,

where K1
$← {0, 1}k. It then encrypts MMR with ΣMM which results in a key KR

and an encrypted multi-map EMMR. It then encrypts every column c in MMC

using SKE in the same manner as above and encrypts MMC with ΣMM. This
results in KC and an encrypted multi-map EMMC .

Now for all r ∈ DB, it replaces all occurrences of χ(r) in MMV and {MMc}c∈DBᵀ

with
rtkr := ΣMM.Token(KR, χ(r)).

It then encrypts MMV and {MMc}c∈DB with ΣMM which results in keys KV and
{Kc}c∈DBᵀ and encrypted multi-maps EMMV and {EMMc}c∈DBᵀ . It then stores
pairs

(
χ(c),EMMc

)
c∈DBᵀ in a dictionary DX and encrypts DX with ΣDX which

results in a key KD and an encrypted dictionary EDX.
Finally, the Setup algorithms then outputs the key

K = (K1,KR,KV ,KC ,KD, {Kc}c∈DBᵀ),

and the encrypted database

EDB = (EMMR,EMMC ,EMMV ,EDX).

Token. The Token algorithm takes as input a secret key K and a query q in
SPC normal form. It first transforms it in heuristic normal form:

πatt1,··· ,atth

(
[a1]× · · · [af ]× ϕ1 × · · · × ϕd

)
.

For all i ∈ [h], if the project attribute atti does not appear in ϕ1 × · · · ×ϕd, the
algorithm computes

ptki := ΣMM.Token
(
KC , χ(atti)

)
,

and sets ytki = (ptki, out); otherwise it sets

ptki := posi,

where posi ∈
[∑t

j=1 ‖Tij‖c
]

denotes the position of the attribute in the tables

referenced in ϕ1 × · · · × ϕd. It then sets ytki = (ptki, in).
For every constant a1 through af it computes e1 ← EncK1

(a1) through ef ←
EncK1

(af ). It then processes ϕ1 through ϕd and for each ϕi it does the following:

– (Case 1) if ϕi has form σatt1=a1(T) ∩ · · · ∩ σattp=ap(T), it sets

stki := (itk1, . . . , itkp),

where, for all j ∈ [p],

itkj := ΣMM.Token
(
KV , 〈aj , χ(attj)〉

)
.
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– (Case 2) if ϕi has form σatt1=att2(T1 × T2) it sets stki := (dtki, jtki), where

dtki := ΣDX.Token
(
KD, χ(att1)

)
and

jtki := ΣMM.Token

(
Kc,

〈
χ(att1), χ(att2)

〉)
.

Finally, it outputs the token

tk =

((
ytki

)
i∈[h],

(
ei
)
i∈[f ],

(
stki
)
i∈[d]

)
.

Query. The Query algorithm works like the plaintext indexed HNF query eval-
uation algorithm we described above. Given a token

tk =

((
ytki

)
i∈[z],

(
ei
)
i∈[f ],

(
stki
)
i∈[d]

)
as input, it process the sub-tokens (stk1, . . . , stkd). For each stki it recovers a set
of encrypted rows Ri as follows:

– (Case 1) if stki has form (itk1, . . . , itkp), then it recovers, for all j ∈ [p], a
set R′j by first computing

(rtk1, . . . , rtks) := ΣMM.Get(EMMV , itkj).

It then computes

ct1 := ΣMM.Get(EMMR, rtk1), . . . , cts := ΣMM.Get(EMMR, rtks),

and sets R′j := {ct1, . . . , cts}. Finally, it sets Ri = R′1 ∩ · · · ∩R′p.
– (Case 2) if stki has form (dtki, jtki) it first computes

EMMc := ΣDX.Get(EDX, dtki)

and (
(rtk1, rtk

′
1), . . . , (rtks, rtk

′
s)

)
:= ΣMM.Get(EMMc, jtki).

It then computes

ct1 := ΣMM.Get(EMMR, rtk1), . . . , cts := ΣMM.Get(EMMR, rtks),

and

ct′1 := ΣMM.Get(EMMR, rtk
′
1), . . . , ct′s := ΣMM.Get(EMMR, rtk

′
s).

Finally, it sets Ri =

{
ctj × ct′j

}
j∈[s]

.
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After processing stk1 through stkd, it creates the temporary encrypted table

S = ea1 × · · · × eaf ×R1 × · · · ×Rd.

Let (ytki1, . . . , ytk
i
z) be the ytk sub-tokens with form (ptki, in). It then computes

W := πptk1,··· ,ptkz
(
S
)
.

Let (ytko1, . . . , ytk
o
h−z) be the ytk sub-tokens with form (ptki, out). For all i ∈

[h− z], it computes
cti := ΣMM.Get(EMMC , ptki).

Finally, it generates the response table

R := ct1 × · · · × cth−z ×W,

where the encrypted column cti is viewed as a single-column table.

Decryption. The Dec algorithm takes as input a secret key K and the re-
sponse table R returned by the server and simply decrypts each cell of R.

5.3 Efficiency
We now turn to analyzing the search and storage efficiency of our construction.

Search complexity. Consider an SPC query written in its heuristic normal
form

πatt1,··· ,atth

(
[a1]× · · · [af ]× ϕ1 × · · · × ϕd

)
.

We show in the full version of this work that the size of the result table over a
plaintext database (in cells) is linear in

#R = h ·
(
mh−z ·

d∏
i=1

#Ri
)
, (1)

where z = #

{
att ∈ S : att ∈

⋃t
j=1 S(Tij )

}
and S

def
= {att1, . . . , atth}, and Ri is

the set of rows returned by the evaluation of the term ϕi.

Theorem 1. If ΣDX and ΣMM are optimal dictionary and multi-map encryption
schemes, then the time and space complexity of the Query algorithm presented
in Section 5.2 is

O

(
#R

h
·

t∑
i=1

si

)
,

where h is the number of selected attributes, si the number of attributes of the ith
table for all i ∈ [t], and #R is the size of the result table over plaintext database
as shown in Eq. 1.

We defer the proof of Theorem 1 to the full version of this work.
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Corollary 1. If h−1 ·
∑t
i=1 si is a constant in #R, then both time and space

complexity are in O(#R), which is optimal.

The corollary follows simply from Theorem 1. Optimality here refers to query
complexity that is linear in the size of the response table, which is the mini-
mum time needed to return it. This is similar to the SSE setting where optimal
solutions are linear in the number of documents that hold the keyword.

Storage complexity. For a database DB = (T1, . . . ,Tn), SPX produces four
encrypted multi-maps EMMR, EMMC , EMMV and EDX. For ease of exposition,
we again assume each table has m rows. Finally, note that standard multi-map
encryption schemes [19,30,12,11] produce encrypted structures with storage over-
head that is linear in sum of the tuple sizes. Using such a scheme as the under-
lying multi-map encryption scheme, we have that EMMR and EMMC will be
O(
∑

r∈DB #r) and O
(∑

c∈DBᵀ #c
)
, respectively, since the former maps the co-

ordinates of each row in DB to their (encrypted) row and the latter maps the
coordinates of very column to their (encrypted) columns. Since EMMV maps
each cell in DB to tokens for the rows that contain the same value, it requires
O
(∑

c∈DBᵀ

∑
v∈c #DBatt(c)=v

)
storage. EDX maps the coordinates of each col-

umn c ∈ DBᵀ to an encrypted multi-map EMMc which in turn maps each pair
of form (c, c′) such that dom(att(c)) = dom(att(c′)) to a tuple of tokens for rows
in DBatt(c)=att(c′). As such, EDX will have size

O

( ∑
c∈DBᵀ

∑
c′:dom(att(c′))=dom(att(c))

#DBatt(c)=att(c′)

)
.

Note that the expression will vary greatly depending on the number of columns
in DB with the same domain. In the worst case, all columns will have a common

domain and the expression will be a sum of O
((∑

i ‖Ti‖c
)2)

terms of the form
#DBatt(c)=att(c′). In the best case, none of the columns will share a domain and
EDX will be empty. In practice, however, we expect there to be some relatively
small number of columns with common domains. In the full version of the paper,
we provide a concrete example of the storage overhead of an encrypted database.

6 Black-Box Security and Leakage of SPX

We show that our construction is adaptively-secure with respect to a well-
specified leakage profile. Part of the subtlety in our security analysis is that
some of the leakage is “black-box” in the sense that it comes from the underly-
ing building blocks and part of it is “non-black-box” in the sense that it comes
directly from the SPX construction.

6.1 Setup leakage
The setup leakage of SPX captures what an adversary can learn before perform-
ing any query operation. The setup leakage of SPX is

Lspx
S

(
DB
)

=

(
Ldx
S (DX),Lmm

S (MMR) ,Lmm
S (MMC) ,Lmm

S (MMV )

)
,
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where Ldx
S and Lmm

S are the setup leakages of ΣDX and ΣMM, respectively. If the
latter are instantiated with standard encrypted multi-map constructions, the
setup leakage of SPX will consist of the number of rows and columns in DB and
the size of the dictionary. Note that standard encrypted dictionary constructions
leak only the maximum size of the values they store so the size of the EMMc’s
will be hidden (up to the maximum size).

6.2 Query Leakage

The query leakage is more complex and is defined as follows,

Lspx
Q

(
DB, q

)
=

(
XPP(DB, q),PrP(DB, q),SelP(DB, q)

)
,

where each individual pattern is described next.

Cross product. The first leakage pattern is the cross product pattern which
is defined as

XPP(DB, q) =

{(
|ai|
)
i∈[f ]

}
,

and includes the size of the virtual attributes.

Projection. The second leakage pattern is the projection pattern which is
defined as

PrP(DB, q) =

(
P(att1), . . . ,P(atth)

)
,

where

P(atti) =


(
out,Lmm

Q

(
MMC , χ(atti)

)
,
(
|cj |
)
j∈[#ci]

,AccP(ci)

)
if atti ∈ S \ I;(

in, atti

)
otherwise,

where I =

{
att ∈ S : att ∈

⋃t
j=1 S(Tij )

}
and S

def
= {att1, . . . , atth}, ci ∈ DBᵀ

denotes the column with attribute atti and AccP(ci) indicates the access pattern,
i.e., if and when the column ci has been accessed before. PrP captures the leakage
produced when the server queries MMC and for every attribute atti reveals
whether the attribute was in or out of the set composed of the attributes in
the predicate Ψ . If it is out, it also reveals the size of the items in the projected
column and if and when this column has been accessed before. Notice that it also
reveals the ΣMM query leakage on the coordinates of the projected attribute. If
the attribute is in, it just reveals the attribute.4

4 To be more precise, it reveals only the position of the attribute in the heuristic
normal form. The position, however, is independent of the attribute itself.
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Selection. The third leakage pattern is the selection pattern which is defined
as

SelP(DB, q) =

(
Z(ϕ1), . . . ,Z(ϕd)

)
.

If ϕi has form σatti,1=ai,1(T) ∩ · · · ∩ σatti,pi=ai,pi (T), then Z(ϕi) is defined as

Z(ϕi) =

(
case-1, pi,

(
Lmm
Q

(
MMV ,

〈
Xi,j , χ(atti,j)

〉)
,{

Lmm
Q

(
MMR, χ(r)

)
,AccP(r)

}
r∈DBatti,j=Xi,j

)
j∈[pi]

)
,

where AccP(r) indicates whether the row r has been accessed before, and case-
1 refers to the first form of ϕi as introduced in Section 5.1. Z(ϕi) captures
the leakage produced when the server queries MMV and uses the resulting row
tokens to then query MMR. It reveals whether the selection term is of case-1,
the ΣMM query leakage on the constant aj , and the coordinates of the attribute
atti,j , for all j ∈ [pi] where pi represents the number of attributes atti,j that are
in the same table T. In addition, it also leaks the ΣMM query leakage on the
coordinates of the rows in DBatti,j=ai,j as well as if and when they have been
accessed before, for all j ∈ [pi].

If, on the other hand, ϕi has form σatti,1=atti,2(Ti,1 × Ti,2), then Z(ϕi) is
defined as

Z(ϕi) =

(
case-2,Ldx

Q

(
DX, χ(atti,1)

)
,Lmm

S (MMatti,1),AccP(EMMatti,1),

Lmm
Q

(
MMatti,1 ,

〈
χ(atti,1), χ(atti,2)

〉)
,

{
Lmm
Q

(
MMR, χ(r1)

)
,

AccP(r1),Lmm
Q

(
MMR, χ(r2)

)
,AccP(r2)

}
(r1,r2)∈DBatti,1=atti,2

)
,

where AccP(r1), AccP(r2) and AccP(EMMatti) indicate if and when r1, r2 and
EMMatti,1 have been accessed before, and case-2 refers to the second form of ϕi
as introduced in Section 5.1. In this case, Z(ϕi) captures the leakage produced
when the server queries EDX to retrieve some EMMatti,1 which it in turn queries to
retrieve row tokens with which to query EMMR. It reveals whether the selection
term is of case-2, the ΣDX query leakage on the coordinates of atti,1, the ΣMM

setup leakage on MMatti,1 and if and when EMMatti,1 has been accessed in the
past. In addition, it reveals the query leakage of ΣMM on the coordinates of atti,1
and atti,2 and, for every pair of rows (r1, r2) in DBatti,1=atti,2 , their ΣMM query
leakage and if and when they were accessed in the past.

6.3 Black-Box Security of SPX
We show that SPX is adaptively semantically-secure with respect to the leakage
profile described in the previous sub-section.
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Theorem 2. If SKE is RCPA secure, ΣDX is adaptively
(
Ldx
S ,Ldx

Q

)
-semantically

secure and ΣMM is adaptively
(
Lmm
S ,Lmm

Q

)
-secure, then SPX is (Lspx

S ,Lspx
Q )-semantically

secure.

The proof of Theorem 2 is in the full version of the paper.

7 Concrete Security and Leakage of SPX

7.1 With Zero-Leakage Building Blocks

Here, we are interested in the leakage profile of SPX when the underlying build-
ing blocks are ZL. By a ZL encrypted structure, we mean that its query op-
erations only reveals information that can be derived from the security pa-
rameter or other public parameters. We write this as LQ(DS, q) = ⊥, for any
query q in its corresponding query space. When instantiated with ZL building
blocks, the query leakage of SPX decreases considerably but its setup leakage
remains the same. Specifically, the projection pattern becomes PrP(DB, q) =(
P(att1), . . . ,P(atth)

)
, where

P(atti) =


(
out,

(
|cj |
)
j∈[#ci]

,AccP(ci)

)
if atti ∈ S \ I;(

in, atti

)
otherwise.

The selection pattern SelP becomes SelP(DB, q) =

(
Z(ϕ1), . . . ,Z(ϕd)

)
, where

if ϕi has form σatti,1=ai,1(T) ∩ · · · ∩ σatti,pi=ai,pi (T), then Z(ϕi) is defined as

Z(ϕi) =

(
case-1, pi,

{
AccP(r)

}
r∈DBatti,j=Xi,j

,j∈[pi]

)
,

Otherwise if, ϕi has form σatti,1=atti,2(Ti,1 × Ti,2), then Z(ϕi) is defined as

Z(ϕi) =

(
case-2,Lmm

S (MMatti,1),AccP(EMMatti,1),{
AccP(r1),AccP(r2)

}
(r1,r2)∈DBatti,1=atti,2

)
.

We are aware of two ZL encrypted multi-map constructions. The first can be
derived from an SSE construction of Garg, Mohassel and Papamanthou [20]
that itself is based on the TWORAM construction. We note that the SSE scheme
proposed in that work is not ZL (since it reveals the response length) but it can be
made so with a careful parametrization of its block size. The second construction
is FZL by Kamara, Moataz and Ohromenko [29]. Of course, ZL schemes come
with an additional efficiency overhead. For example, if the TWORAM-based
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construction is used in SPX its time and space complexity would incur an additive
overhead of

Õ

(
(2`+ h) ·m · log (n ·m) + d ·m2 · log

( ∑
i∈[n]

‖Ti‖c ·m
))

,

where n is the number of tables in DB. Note that SPX becomes interactive if it
is instantiated with any of the currently-known ZL constructions.

7.2 With Standard Building Bocks
In this section, we describe the leakage profile of SPX when instantiated with
encrypted dictionary or multi-map schemes with the “standard” leakage profile
[19,30,16,12,11,35]. A standard response-revealing encrypted multi-map or dic-
tionary encryption reveals the search pattern SP and access pattern AP, whereas
a standard response-hiding encrypted multi-map or dictionary reveals the search
pattern SP and the response length RL. The search pattern reveals if and when
a query is repeated, the access pattern reveals the responses, and the response
length reveals the length of the response. The query leakage of SPX when in-
stantiated with standard STE schemes is the one detailed in Section 6.2 except
that we replace Lmm

Q with the patterns detailed above depending on whether the
underlying scheme is response-revealing or response-hiding. In the following, we
provide a high level description of both the projection and selection patterns of
SPX.

Projection. The projection pattern discloses the frequency of accesses made
to a particular attribute. An adversary can learn the size of the accessed columns,
and therefore the number of entries that a specific table has. The impact of such
leaked information depends on the auxiliary information the attacker possesses.
In some settings, just knowing the size of the table can be sufficient for an
adversary to know the targeted information, but this is a general problem that
can be addressed by padding, for instance.

Selection. Of all the leakage patterns of SPX, the selection pattern is the one
that leaks the most. If ϕi is of case-1, then an adversary can know the number
of rows that contain the same value at a particular column(s), and this applies
to all the pi attributes in ϕi. The adversary can also learn the frequency with
which a particular row has been accessed, and also the size of that row. If many
queries have been performed on the same table and the same column, then the
adversary can build a frequency histogram of that specific column’s contents.
Otherwise if ϕi is of case-2, then the server learns how many rows are equal to
each other in both columns.

7.3 SPX and SSE Attacks
As mentioned, one of the possible instantiation SPX makes use of standard SSE
to implement the underlying encrypted multi-maps. There are several known
attacks that try to exploit the leakage of various SSE schemes such as the in-
ference attacks of Islam et al. [26] and of Cash et al. [10] and the file injection
attacks of Cash et al. [10] and Zhang et al. [40]. It is not exactly clear what
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the impact of these attacks would be to our setting since our construction han-
dles more complex objects and has a different leakage profile than standard SSE
schemes. What is clear, however, is that our scheme leaks more than standard
SSE schemes so presumably the techniques from these works could be extended
to apply to our construction.

We note, however, that the attacks in [26,10] rely on strong assumptions
including knowledge of a large fraction of the client’s data and knowledge of some
client queries 5. Specifically, for IKK, the adversary needs to know about 90% of
the client’s data in order to recover about 10% of its queries. Similarly, the Count
attack from [10] requires the adversary to know 80% of the client’s data and 5%
of its queries in order to recover 40% of the client’s queries (note that the success
rate of the counting attack is not linear so knowing even 75% of the client’s data
is not enough for the adversary to learn even 1% of the client’s queries). With
90% of the data and 2% of the queries, the Count attack does not work at all.
Another limitation of these attacks is related to how the adversary can recover
client data in practice. Recall that in an outsourced storage setting the client is
assumed to erase its data after storing it in encrypted form on the server (that
is the purpose of outsourcing). It is therefore not clear how the adversary can
recover, say 80%, of client data unless the client encrypts publicly-known data—
in which case it should use a different primitive like private information retrieval.
In a model where the adversary does not know any of the client’s data a-priori—
which is the standard model for SSE and structured encryption—neither the
IKK attack nor the Count attack can recover any queries at all.

Unlike the previously mentioned attacks, the file injection attacks of [40] are
effective in practice but are only applicable against dynamic SSE schemes and in
scenarios where the adversary can inject data into the encrypted structure. This
is the case, for example, if one were to use a dynamic SSE scheme to encrypt an
email archive since the server/adversary could send the client malicious emails.
In our setting, we assume the data is generated by the client and is not publicly
modifiable after the setup. However, if our dynamic scheme SPX+ were used in a
setting where row injections are possible then, presumably, attacks like those of
[40] could be designed and some queries could be disclosed. As suggested in [40],
one countermeasure in this case is to use forward-secure constructions. In the
full version of this work, we discuss how to make SPX+ forward-secure.

Recently, Abdelraheem et al. [33] presented an attack on relational databases
encrypted with SSE. We stress, however, that the attack of [33] only applies to
a very specific and naive SSE-based relational EDB construction described in
that work and first used for experiments in [12] (e.g., the construction does not
handle any non-trivial SQL query). While it is not clear at all how this attack
would apply to our construction, we point out that the attack relies on strong
assumptions. In particular, it works only for databases with attributes whose
domain sizes are unique. In addition, it relies on the adversary knowing the
attributes in the database and their domain sizes. Furthermore, the adversary

5 While the Count attack is not described as a known-query attack in [10], it has come
to our attention that this was an error and will be fixed by the authors.
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also needs to know, for each attacked column, which domain element appears
the most frequently, the second most frequently etc. Finally, the attack needs
to solve an NP-complete problem that can be solved in pseudo-polynomial time
only for databases with a small number of rows and small attribute domains
(experimental results were conducted for databases with 32, 561 rows and domain
sizes that range from 2 to 41 and execution times were not reported).

7.4 Comparison to PPE-based Solutions
As mentioned in Section 1, PPE-based solutions can handle a large class of
SQL queries which includes conjunctive queries. To support conjunctive queries,
however, these solutions have to rely on deterministic encryption. For example, to
handle a case-1 query on a table T, they will reveal a deterministic encryptions of
all the accessed attributes c in T (i.e., every element of every column is encrypted
under the same key). To handle a case-2 query between two columns c1 and
c2, they will reveal deterministic encryptions of both columns (under the same
key). In turn, this will provide the frequency information on the entire columns
to the server. Depending on the setting, frequency patterns can be particularly
dangerous, as shown in [34].

SPX leaks considerably less. First, it does not leak any frequency information
on entire columns or rows. For case-1 queries, it only leaks information about
the attributes in the query and the rows that match the term. For case-2 queries,
it only leaks information about the pair of attributes (atti,1, atti,2) in the select
and the rows that match the term. Note that this leakage is only a function of
the attributes in the query and of the rows that match it, whereas the leakage
in PPE-based solutions is a function of entire columns. Moreover, in the case
of SPX, if the underlying multi-map and dictionary schemes are instantiated
with standard constructions, the information leaked about the attributes and
matching rows is “repetition” type of information, i.e., if and when they have
appeared in the past. Analogously, the project operations in SPX only leak in-
formation about the attributes in the project and the columns that match it and
the information being leaked “repetition” type of information.

Formally, the setup leakage of PPE-based solutions like CryptDB is

Lppe
S (DB) =

(
‖Ti‖c, ‖Ti‖r

)
i∈[n]

,

where n is the number of tables in DB. Given a SQL query q, the query leakage
is

Lppe
Q (DB, q) =

(
XPP(DB, q),PrP(DB, q),SelP(DB, q),FrP(DB, q)

)
,

where XPP, PrP and SelP are the cross product, projection and selection pat-
terns (defined as in the leakage profile of SPX), and FrP(DB, q) is the frequency
pattern which leaks frequency information on all queried columns. It is easy to
see that even when SPX is instantiated with non-ZL building blocks, its query
leakage is a subset of the query leakage of the PPE-based solutions. Note that,
not only is FrP relatively easy to exploit [34], it is also persistent in the sense
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that it is available not only to an adversary that has the query tokens and wit-
nesses or executes the query operation but also to a “snapshot” adversary which
only has access to the encrypted DB. This is not the case for SPX.

A remark on leakage. Ideally, one would hope to better understand how sig-
nificant the leakage of practical encrypted search solutions are but we currently
lack any theoretical framework to conduct such an analysis. In other words, the
best we can currently do is to give a precise leakage profile and prove that our
constructions do not leak anything beyond that profile. For the same reason, the
best we can currently do to compare two leakage profiles is to show that one is
a subset of the other (and in some cases, this is not even possible).

8 Extensions

In the full version of the paper, we show how to extend SPX to handle additional
post-processing operations including Group-by, Order-by and various aggregate
functions such as Sum, Average, Median, Count, Mode, Max and Min.

In addition, due to its modularity, SPX can be extended to be dynamic
without re-designing it entirely. We refer to the dynamic version of SPX as SPX+

and describe it in the full version of this work. Note that SPX+ maintains the
same query complexity and query leakage as SPX. We also discuss how to use
ORAM to make SPX+ forward-secure at the cost of a poly-logarithmic overhead
for updates and without affecting the query complexity.

9 Future Directions and Open Problems

In this work, we proposed the first encrypted relational database scheme purely
based on STE techniques. As such, our construction offers more security than
the PPE-based solutions and are more efficient than solutions based on general-
purpose techniques like ORAM simulation or FHE. Our work leaves open sev-
eral interesting questions. The first is whether our techniques can be extended
to handle the full relational algebra which, effectively, is the entire SQL. To
achieve this, our solution would have to be extended to handle negations and
disjunctions (set unions) in the Where clause of the SQL query. We believe this
to be challenging. A second problem is to handle SQL queries with ranges in
the Where clause. A first step towards achieving this would be to improve the
state of the art in encrypted range queries. In particular, finding schemes with
improved leakage profiles is important since recent work [31,32] has described
powerful attacks against the state of the art encrypted search solutions (under
some assumptions on the data and queries).
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