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Abstract. Ever since the foundational work of Goldwasser and Micali,
simulation has proven to be a powerful and versatile construct for formu-
lating security in various areas of cryptography. However security defini-
tions based on simulation are generally harder to work with than game
based definitions, often resulting in more complicated proofs. In this work
we challenge this viewpoint by proposing new simulation-based security
definitions for secure channels that in many cases lead to simpler proofs
of security. We are particularly interested in definitions of secure chan-
nels which reflect real-world requirements, such as, protecting against
the replay and reordering of ciphertexts, accounting for leakage from the
decryption of invalid ciphertexts, and retaining security in the presence
of ciphertext fragmentation. Furthermore we show that our proposed
notion of channel simulatability implies a secure channel functionality
that is universally composable. To the best of our knowledge, we are the
first to study universally composable secure channels supporting these
extended security goals. We conclude, by showing that the Dropbear
implementation of SSH-CTR is channel simulatable in the presence of
ciphertext fragmentation, and therefore also realises a universally com-
posable secure channel. This is intended, in part, to highlight the merits
of our approach over prior ones in admitting simpler security proofs in
comparable settings.

Keywords Secure Channels · Ciphertext Fragmentation · Universal
Composability · SSH · Subtle Authenticated Encryption

1 Introduction

Over the years, several security notions for symmetric encryption have been pro-
posed in the cryptographic literature. In [8] Bellare et al. studied four notions
of confidentiality: semantic security, find-then-guess security, left-or-right secu-
rity, and real-or-random security, and showed them to be all equivalent. Another
notion, used in [1], demands indistinguishability between encryptions of real mes-
sages and encryptions of some fixed message of the same length. This is known
to be equivalent to the other four definitions and indeed we will make extensive
use of it in this work. Perhaps the most popular notion of confidentiality today



is indistinguishability from random bits, often denoted as IND$-CPA, which was
put forward in [28,27]. This requires ciphertexts to be indistinguishable from
random strings of the same length. In [27] Rogaway gave a number of reasons
why he prefers this notion over all others, arguing that it is stronger, easier to
prove, yielding more versatile objects, and being conceptually simpler. Indeed
these are likely to be the reasons to which this notion owes its popularity.

In our view, however, the aspect that makes IND$-CPA fundamentally dif-
ferent from all other notions is that it requires the encryption of real messages
to be indistinguishable from something computed without any knowledge of the
secret key. Thus, at its core is the idea that encryption be simulatable, where in
this specific case the simulator is required to be of a specific type. The all-in-one
notion of authenticated encryption introduced in [29], requiring indistinguisha-
bility of the encryption from $(·) and of the decryption from⊥(·), can be similarly
viewed as requiring that both processes be simulatable. It is then natural to ask
if there is something special about these two specific simulators, or if they can
be generalised further.

It turns out that a more general formulation is possible, and this is exactly
what we set out to explore in this work. As we shall see, formulating security
this way requires some care in order to guarantee the level of security that we
expect. In this respect, we identify some necessary restrictions that need to be
imposed on the simulators in order to meet their intended goal. We also establish
relations between the notions that we propose and also uncover certain interest-
ing connections, for instance, if (and only if) encryption can be simulated by a
stateless algorithm, then the encryption is key private. In addition, our security
notions have the added nice feature that, unlike other security definitions, there
are no prohibited queries that the adversary is not allowed to make.

Beyond being of theoretical interest, there is also a more pragmatic reason
motivating our study of these security notions. We are primarily interested in
symmetric encryption with advanced properties such as protecting against replay
and reordering of ciphertexts, maintaining security in the presence of inadver-
tent leakage from invalid ciphertexts, and supporting ciphertext fragmentation.
Such properties are particularly relevant to the security of encryption schemes
that are deployed in practice. A number of prior works [9,26,11,12,5,21,6,20,2]
have provided treatments of symmetric encryption with such properties, some
of which are rather intricate. We believe that our corresponding security def-
initions, based on simulation, can help to tame this complexity. For instance,
most works treat chosen ciphertext security and ciphertext integrity separately.
One reason for this is that the all-in-one notion of authenticated encryption does
not lend itself well to these extended settings. In particular, indistinguishability
from random strings is too strong a requirement. In practice ciphertexts will be
encoded or prepended with additional fields that render them easy to distin-
guish. In the presence of ciphertext fragmentation [26,11,2], this is particularly
hard to achieve since it implies that ciphertext boundaries should remain hidden.
However, because decryption can now process ciphertexts in a bit-by-bit fashion,
ciphertext boundaries are implicitly demarcated by the point at which decryp-
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tion returns an output. Another complication is that the combination of chosen
plaintext security and ciphertext integrity, embodied by the all-in-one notion,
no longer implies chosen ciphertext security for schemes which may return more
than one error message [12]. Our notion of channel simulatability with Integrity,
which can be viewed as a generalisation of the all-in-one notion of Rogaway and
Shrimpton, overcomes all these limitations. Another reason why our notions are
easier to work with is that they bring the security goal closer to the starting
point. Our goal in a security proof will now be to transform the scheme into a
simulated one, but because the structure that this simulator needs to satisfy is
very loose, it will normally require fewer and simpler steps.

Yet another perk of channel simulatability, is that it also guarantees universal
composability. More precisely, we show that a scheme being channel simulatable
with integrity implies that it realises a universally composable secure channel. In
particular, it is universally composable even when leakage from invalid cipher-
texts and ciphertext fragmentation are taken into account. Moreover, channel
simulatability is conceptually much simpler and easier to use than the universal
composability framework.

We conclude by presenting a proof that the Dropbear SSH-CTR implemen-
tation satisfies channel simulatability with integrity. In a recent measurement
study [2] it was found that Dropbear is the most ubiquitous SSH implementa-
tion on the Internet, with counter mode being the preferred choice of ciphersuite
– hence our choice to analyse this scheme. The security of SSH-CTR, in the case
of OpenSSH, was analysed by Paterson and Watson in [26]. While the difference
between the two implementations is not major and their treatment did take ci-
phertext fragmentation and multiple errors into account, their security model
had some limitations which were pointed out and addressed in [11,2]. Further-
more, our treatment guarantees universal composability, which is not known to
be implied by any of the prior works. However, we mostly intend this result to
serve as testament to the simplicity of our approach and invite the reader to
contrast our proof with that in [26].

2 Preliminaries

We start by surveying some prior related works, which we will later build upon.

Leakage From Invalid Ciphertexts. In most padding-oracle attacks, such as
[16,17,4], information is leaked to the adversary during the decryption of invalid
ciphertexts rather than valid ones. Consequently such attacks are not captured
by the usual security models where invalid ciphertexts invariably generate the
same error symbol. This motivated Boldyreva et al. to revisit the theory of au-
thenticated encryption in the case where distinguishable error symbols may be
returned [12]. In [5] Andreeva et al. set out to model the case where the decrypted
plaintext, or part thereof, becomes available to the adversary – known as Re-
lease of Unverified Plaintext (RUP) security. This work employs a syntax where
decryption is split into two algorithms, decryption and verification. Combined
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with the correctness requirement, this has the undesirable consequence that their
security model does not capture padding-oracle attacks, since the padding can-
not form part of the released plaintext. Yet in [5] RUP security was in part
motivated by the need to protect against such attacks. A related notion, called
Robust Authenticated Encryption (RAE), was put forward in [21] in which the
adversary also gets access to a plaintext string even if the ciphertext was deemed
invalid. RAE is formulated rather differently however, here a scheme is required
to be indistinguishable from a randomly-sampled injection with variable expan-
sion augmented with a leakage simulator. This renders RAE a relatively strict
security notion, attainable only by a limited set of schemes that generally require
two pass encryption and decryption. The above security notions were unified in
[6], for the case of nonce-based encryption, under the name Subtle Authenticated
Encryption. Here a nonce-based scheme is augmented with a leakage function, to
model the information leaked from the decryption of invalid ciphertexts, due to
the scheme’s implementation. The usual nonce-based security notions are then
augmented by additionally providing the adversary with oracle access to the
leakage function. We adopt a syntax similar to Subtle AE, adapted to the se-
cure channel setting. Consequently our security notions do capture leakage from
invalid ciphertexts.

Ciphertext Fragmentation. Secure channels realised over TCP/IP need to
be able to decrypt ciphertexts that may be fragmented in an arbitrary way. The
mechanisms needed to support ciphertext fragmentation have been exploited to
break confidentiality in the secure channel realisations of SSH [3] and IPsec [17]
which employ CBC encryption. These attacks exposed a limitation of our secu-
rity models, notably the affected secure channel realisation in SSH was proven
secure in [9] in a model which did not account for ciphertext fragmentation.
To amend this Paterson and Watson [26] proposed a model which accounted
for ciphertext fragmentation and used it to show that when SSH is instantiated
with counter mode encryption it is secure in this extended security model. The
proposed security definition, however, was closely tied to the SSH design and
suffered from a number of other issues which limited its applicability and gener-
ality. These issues were addressed in [11] which studied ciphertext fragmentation
more generally and introduced the related security notions of boundary hiding
and resilience to denial of service. In [20] Fischlin et al. consider an extended
setting where in addition to supporting ciphertext fragmentation, encryption
takes as input a stream of data (rather than atomic messages) which it may
fragment arbitrarily and encrypt separately. Recently in [2] Albrecht et al. did
a measurement study of SSH deployment and then used the framework of [11]
to analyse the security of three newly introduced ciphersuites in OpenSSH. In
this work we propose simulation-based security definitions supporting ciphertext
fragmentation, following the approach used in [11,2].
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2.1 Notation

Unless otherwise stated, an algorithm may be randomised. An adversary is an
algorithm. For any adversary A and algorithms X ,Y, . . . we use AX (·),Y(·),... ⇒
z to denote the process of running A with fresh coins and oracle access to
algorithms X ,Y, . . . and returning an output z. By convention the running time
of an adversary refers to the sum of its actual running time and the size of its
description. We generically refer to the resources of an adversary as any subset
of the following quantities: its running time, the number of queries that it makes
to its oracles, and the total length (in bits) of its oracle queries. If S is a set then
|S| denotes its size, and y � S denotes the process of selecting an element from
S uniformly at random and assigning it to y.

We use % to denote the integer modulo operation. For a bit b and a positive
integer n, we denote by bn the string composed of b repeated n times. With
{0, 1}n we denote the set of all binary strings of length n, and {0, 1}∗ denotes
the set of all binary strings of finite length. The empty string is represented by
ε. For any two strings u and v, |u| and |u|B denote the length of u in bits and
bytes, respectively, u‖v denotes their concatenation, u⊕ v denotes their bitwise
XOR, u � v denotes the prefix predicate which assumes the value true if and
only if there exists w ∈ {0, 1}∗ such that v = u ‖ w. We use u[i, j] to denote the
substring of u from bit i to bit j inclusive, where the indexes start at 1 and ∗
points to the end of the string. Similarly, u[i, j]B denotes the substring from byte
i to byte j. If i is a non-negative integer, then 〈i〉` denotes the unsigned `-bit
canonical binary representation of i. Accordingly, 〈·〉−1 represents the inverse
mapping which maps strings of any length to N. We use {0, 1}∗∗ to denote the
set of all string sequences.

In every experiment where an adversary interacts with an encryption oracle
(real or simulated), we assume that a transcript is maintained of its queries
and responses. More specifically, a transcript T is an ordered list of message-
ciphertext pairs (m, c), where each entry corresponds to an encryption query.
We endow this list with a next() method which returns its entries, one entry per
call, in the same order in which they were created – similarly to a queue. Other
times, we will treat T as a set and test whether a specific pair (m, c) is in T.
When present in an experiment, the sync flag is initially set to true.

It is often convenient to write distinguishing advantages in a compact form.
That is, given an adversary A which interacts with oracles X1,X2 or with oracles
Z1,Z2, we write

∆
A

[
X1,X2

Z1,Z2

]
:=
∣∣Prob

[
AX1,X2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣ .
According to this notation we can for example apply the triangle inequality∣∣Prob

[
AX1,X2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣
≤
∣∣Prob

[
AX1,X2 ⇒ 1

]
− Prob

[
AY1,Y2 ⇒ 1

]∣∣
+
∣∣Prob

[
AY1,Y2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣
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and write

∆
A

[
X1,X2

Z1,Z2

]
≤∆
A

[
X1,X2

Y1,Y2

]
+∆
A

[
Y1,Y2

Z1,Z2

]
.

Similarly, if an adversary A′ simulates oracles X2 resp. Z2 to A through some
other oracles X ′2 resp. Z ′2 by modifying the answers, e.g., if X2 and Z2 output
truncated answers of X ′2 and Z ′2, but otherwise executes A, then we can write

∆
A

[
X1,X2

Z1,Z2

]
≤∆
A

[
X1,X ′2
Z1,Z ′2

]
.

Note that, strictly speaking, the right hand side considers adversary A′, but since
this adversary only adapts the oracle replies we take this already into account by
using the other oracles in the notation. Moreover, in all cases, A′ will consume
the same resources as A, except for a small overhead in its running time to
adapt the oracle queries and responses. Since this overhead is usually minor in
comparison to the overall running time, we ignore it.

Syntax. We consider two types of symmetric encryption, atomic encryption [8,9]
and encryption supporting ciphertext fragmentation [11,2]. In both cases we al-
low invalid ciphertexts to leak information to the adversary, as in Subtle AE [6].
However, in contrast to Subtle AE our focus is on symmetric channels rather
than nonce-based symmetric encryption. We view the latter as a stepping stone
to building the former, and we believe that the utility of our security definitions
manifests itself when considering symmetric encryption with more complex func-
tionalities than nonce-based encryption.

An atomic symmetric encryption scheme SE = (K, E ,D) is a triple of algorithms:

- The randomised key generation algorithm K returns a secret key K. We will
slightly abuse notation and use K to also identify the key space associated to
the key generation algorithm.

- The encryption algorithm E : K × {0, 1}∗ → {0, 1}∗, may be randomised,
stateful or both. It takes as input the secret key K ∈ K, a plaintext message
m ∈ {0, 1}∗, and returns a ciphertext in {0, 1}∗. For stateful versions it may
update its internal state when executed.

- The decryption algorithm D : K×{0, 1}∗ → ({>,⊥}×{0, 1}∗) is deterministic
and may be stateful. It takes the secret key K, a ciphertext c ∈ {0, 1}∗,
to return a tuple (v,m) such that v ∈ {>,⊥} indicates the validity of the
corresponding ciphertext and m is a binary string representing a message or
some leakage. It may update its state upon execution.

Note that decryption may either return (>,m), indicating that the ciphertext
was valid and decrypts to the message m ∈ {0, 1}∗, or (⊥,m), indicating that
the ciphertext was invalid where m ∈ {0, 1}∗ may represent an error message,
some internal value, or some other form of leakage. The leakage-free setting is
modeled by returning (⊥, ε) in response to an invalid ciphertext.
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We further require that an atomic encryption scheme satisfies the follow-
ing standard correctness condition. We write c1, . . . , cn ← EK(m1, . . . ,mn) as
shorthand to denote the sequence of encryption operations c1 ← EK(m1), c2 ←
EK(m2), . . . , cn ← EK(mn). Similarly, (v1,m

′
1), . . . , (vn,m

′
n) ← DK(c1, . . . , cn)

denotes the analogous sequence of decryption operations.

Definition 1 (Atomic Correctness). For all keys K output by K and all
message sequences m1, . . . ,mn ∈ {0, 1}∗∗, if c1, . . . , cn ← EK(m1, . . . ,mn) and
(v1,m

′
1), . . . , (vn,m

′
n) ← DK(c1, . . . , cn), then for all 1 ≤ i ≤ n it holds that

vi = > and m′i = mi.

We only require decryption to recover the honestly generated messages when
ciphertexts are decrypted in the same order as they were produced. This slightly
weaker correctness requirement allows us to cater for schemes with a stateful
decryption algorithm.

A symmetric encryption scheme supporting ciphertext fragmentation SE =
(K, E ,D) is a triple of algorithms, where K and E act as before. The deterministic
and possibly stateful decryption algorithm D : K×{0, 1}∗ → ({>,⊥}×{0, 1}∗)∗,
this time, takes as input the secret key K and a ciphertext fragment f ∈ {0, 1}∗,
and returns a sequence of one or more tuples (v,m) or the empty string. Here
v ∈ {>,⊥} indicates whether the corresponding ciphertext part is valid or not,
and m is a binary string representing the recovered message (when v = >) or
leakage from an invalid ciphertext (when v = ⊥).

In contrast to the atomic case, decryption may now return more than one tu-
ple. This is because a ciphertext fragment could be composed of a concatenation
of ciphertexts in which case a tuple is returned for each ciphertext. Alterna-
tively, a ciphertext fragment may not contain sufficient information to recover
the message or even determine its validity, in which case decryption returns no
output. Accordingly, we will generally denote the process of decrypting a cipher-
text fragment by (v1,m

′
1) . . . (v`,m

′
`) ← DK(f), where a single output and no

output are indicated by ` = 1 and ` = 0 respectively. Note also that in order to
support ciphertext fragmentation decryption must necessarily be stateful.

For schemes supporting ciphertext fragmentation we also require a stronger
correctness condition. Namely, decryption should recover the original sequence
of messages even when the ciphertexts returned by the encryption algorithm are
concatenated together, optionally appended with an arbitrary string, and the
result is arbitrarily fragmented into substrings which are individually submitted
for decryption in their original order. This is stated formally below, using anal-
ogous notation for composite encryption and decryption operations as before.

Definition 2 (Correctness Under Ciphertext Fragmentation). For all
keys K output by K, all message sequences m1, . . . ,mn ∈ {0, 1}∗∗, and all cipher-
text fragment sequences f1, . . . , fk ∈ {0, 1}∗∗, if c1, . . . , cn ← EK(m1, . . . ,mn)
and (v1,m

′
1) . . . (v`,m

′
`) ← DK(f1, . . . , fk), where c1 ‖ . . . ‖ cn � f1 ‖ . . . ‖ fk,

then it holds that m′i = mi and vi = > for all 1 ≤ i ≤ n.
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A Note on Our Choice of Syntax. Our syntax for schemes supporting
ciphertext fragmentation differs from that used in [11,2] in three main ways.
The most significant difference is that our syntax is more restrictive about how
decryption should behave. The syntax in [11,2] allows decryption to return a
message in separate chunks, similarly to online decryption [22]. Moreover, what
chunk of the message is returned, and when, may vary from scheme to scheme
for a given sequence of ciphertext fragments. The only requirement is that the
concatenation of the outputs be an encoding of the original sequence of mes-
sages. In our case, we ultimately want to relate our security notion to an ideal
functionality in the UC framework. Specifying such a functionality forces us to
choose a concrete output behaviour for decryption. We opted for a functionality
where the message is returned all at once, which is how protocols like TLS and
SSH behave in practice. This choice is reflected in our syntax, which allows for
slightly simpler security definitions. We encounter a similar issue if we try to
extend encryption to take a stream as its input [20]. We would again be forced
to decide on a specific functionality regarding how the plaintext stream is to be
fragmented. The most natural and common choice in practice, is to separately
encrypt each message fragment as soon as it is input to the encryption algorithm.
In turn this would yield a syntax that is equivalent to the one we already have.

The other two differences, however, are merely cosmetic. Instead of decryp-
tion returning error symbols from some set {⊥1,⊥2, . . . }, decryption now returns
⊥ together with a string. Clearly this is without loss of generality, as the former
case can be easily be mapped to the latter. Thirdly, due to the differences we just
described, the end of message symbol (¶), previously used to delineate message
boundaries in the decryption output, becomes redundant in our setting and we
therefore drop it.

One notable exception that is not captured by our syntax is the InterMAC
scheme, described in [11], which does exhibit an online decryption behaviour. It
should be possible to formulate a different ideal functionality, that reflects Inter-
MAC’s behaviour, and replicate our general approach for that setting. However,
we do not pursue that direction in this work.

2.2 Security Without Simulation

For atomic encryption schemes we consider two types of security, plain and
stateful. The plain notions of confidentiality and integrity are IND-CCA and
INT-CTXT, which correspond to the similarly named notions from Bellare and
Namprempre [10] extended to the (stronger) subtle security setting of [6], where
subtleties refer to leakage from different error messages or release of unverified
plaintexts. Note that subtle security follows directly from our extended syntax
rather than any specific alteration in the security definitions. Stateful notions of
confidentiality (IND-sfCCA) and integrity (INT-sfCTXT) were introduced in [9]
to additionally protect against the replay and reordering of ciphertexts. Again,
through our choice of syntax, we here extend these stateful notions to the subtle
setting. We emphasize that our syntax of atomic encryption schemes requires
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neither encryption nor decryption to be stateful. However the decryption algo-
rithm must be stateful in order for a scheme to satisfy stateful security – hence
the name. For schemes supporting ciphertext fragmentation the confidentiality
and integrity analogues are IND-sfCFA and INT-sfCFRG from [11,2] which we
here adapt to our syntax. In all three cases, the weaker IND-CPA notion is the
usual one since it is unaffected by subtle security, stateful security, or ciphertext
fragmentation.

Dec(c′)

(v,m′)← DK(c′)

if ∃ m s.t. (m, c′) ∈ T

(v,m′)← (ε, ε)

return (v,m′)

sfDec(c′)

(v,m′)← DK(c′)

if sync

(m, c)← T.next()

if c′ = c

(v,m′)← (ε, ε)

else

sync← false

return (v,m′)

cfDec(f)

(v1,m
′
1) . . . (v`,m

′
`)← DK(f)

F ← F ‖ f ; j ← 1

while sync ∧ j ≤ `
if T = [ ]

sync← false

else

(m, c)← T.next()

C ← C ‖ c
if C � F
j ← j + 1

else

sync← false

return (vj ,m
′
j) . . . (v`,m

′
`)

Fig. 1: Decryption oracles for defining IND-CCA, IND-sfCCA, IND-sfCFA,
INT-CTXT, INT-sfCTXT, and INT-sfCFRG security. T is a live transcript of the
adversary’s queries to its encryption oracle containing message-ciphertext pairs.

Definition 3 (Confidentiality). Let SE = (K, E ,D) be an atomic symmetric
encryption scheme. Let algorithms Dec and sfDec be as specified in Figure 1,
then for any adversary A we define the corresponding IND-CCA and IND-sfCCA
advantages as:

Advind-ccaSE (A) =
∣∣∣Pr
[
AEK(·),Dec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),Dec(·) ⇒ 1

]∣∣∣ ,
and

Advind-sfccaSE (A) =
∣∣∣Pr
[
AEK(·),sfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),sfDec(·) ⇒ 1

]∣∣∣ ,
where in both cases the probabilities are over K � K and the algorithms’ coin
tosses. Alternatively, if SE is a symmetric encryption scheme supporting ci-
phertext fragmentation, then for any adversary A the corresponding IND-sfCFA
advantage is given by:

Advind-sfcfaSE (A) =
∣∣∣Pr
[
AEK(·),cfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),cfDec(·) ⇒ 1

]∣∣∣ ,
9



where cfDec is as specified in Figure 1. A scheme SE is said to be (ε,RA)-NN
secure, for NN ∈ {IND-CCA, IND-sfCCA, IND-sfCFA}, if for any adversary A with
resources at most RA, its NN advantage is bounded by ε.

In the above definition, EK(0|·|) is an oracle that on input m returns an en-
cryption of 0|m|. This formulation of confidentiality is equivalent (up to a small
constant factor in the advantages) to the more popular left-or-right and real-or-
random formulations.

Definition 4 (Ciphertext Integrity). Let SE = (K, E ,D) be an atomic sym-
metric encryption scheme. Let algorithms Dec and sfDec be as specified in Fig-
ure 1 and FORGE denote the event that the decryption oracle returns a pair
(v,m′) where v = >. Then for any adversary A the corresponding INT-CTXT
and INT-sfCTXT advantages are defined as:

Advint-ctxtSE (A) = Pr
[
K � K, AEK(·),Dec(·) : FORGE

]
,

and

Advint-sfctxtSE (A) = Pr
[
K � K, AEK(·),sfDec(·) : FORGE

]
.

Alternatively, if SE is a symmetric encryption scheme supporting ciphertext
fragmentation, let algorithm cfDec be as specified in Figure 1 and FORGE de-
note the event that the decryption oracle return an output (v1,m

′
1), . . . , (v`,m

′
`)

where vi = > for some 1 ≤ i ≤ `. Then for any adversary A the corresponding
INT-sfCFRG advantage is given by:

Advint-sfcfrgSE (A) = Pr
[
K � K, AEK(·),cfDec(·) : FORGE

]
,

where cfDec is as specified in Figure 1. A scheme SE is said to be (ε,RA)-NN
secure, for NN ∈ {INT-CTXT, INT-sfCTXT, INT-sfCFRG}, if for any adversary
A with resources at most RA, its NN advantage is bounded by ε.

In Section 3 we establish a relation between encryption simulatability and key
privacy. Key privacy was considered in [19,1] for stateless symmetric encryption
and then covered more extensively in [7] for the case of public-key encryption.
Our definition of key-privacy roughly follows the definitions used in [19,1] but we
adapt them to cater for stateful schemes. Roughly speaking, the prior definitions
would give the adversary access to two encryption oracles and it would then have
to distinguish whether the two oracles use the same key or not. Counter mode
encryption would not satisfy this definition since an adversary can easily detect
two encryptions under the same key and counter value. However counter mode
is meant to be used in a way that never re-uses the same counter value (as
even confidentiality would fail in that case) and such a situation should never
arise in practice. Accordingly we progress the state of the two encryption oracles
simultaneously, by encrypting every message by both instances and return to
the adversary only one ciphertext which it is allowed to select via an extra bit b
given to the oracle. This is stated more formally below.
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Definition 5 (Key Privacy). Let SE = (K, E ,D) be a symmetric encryption
scheme, atomic or supporting ciphertext fragmentation. Let 〈O0(·),O1(·)〉(b,m)
be the exclusive oracle combination described in Figure 2, then for any adversary
A we define its KP-CPA advantage as:

Advkp-cpaSE (A) =
∣∣∣Pr
[
A〈EK(·),EK̄(·)〉(·,·) ⇒ 1

]
− Pr

[
A〈EK(·),EK(·)〉(·,·) ⇒ 1

]∣∣∣ ,
where the probabilities are over the choice of K, K̄ � K resp. K � K, and the
algorithms’ coin tosses. A scheme SE is said to be (ε,RA)-KP-CPA secure, if for
any adversary A with resources at most RA, its KP-CPA advantage is bounded
by ε.

〈O0(·),O1(·)〉(b,m)

c0 ← O0(m)

c1 ← O1(m)

return cb

Fig. 2: Exclusive oracle combination used in the KP-CPA security definition.

3 Encryption Simulatability

3.1 Defining Encryption Simulatability

As observed in the introduction, IND$-CPA security stands out from other defi-
nitions of confidentiality in that it employs an encryption oracle ($(·)) that does
not make use of the encryption key. In particular, we might ask what is spe-
cial about it that if encryption is indistinguishable from it, then confidentiality
is guaranteed? The absence of the encryption key suggests a notion of encryp-
tion simulatability and that perhaps pseudorandomness is not really necessary.
Indeed this turns out to be the case, but we are still missing one ingredient.
The simulator needs to emulate encryption without any knowledge of the mes-
sage contents except its length. Otherwise the scheme m ← EK(m) would be
trivially simulatable but is clearly insecure. A formal definition of encryption
simulatability is given below.

Definition 6 (Encryption Simulatability). Let SE = (K, E ,D) be a sym-
metric encryption scheme, either atomic or supporting ciphertext fragmentation.
For an adversary A and a simulator S we define the corresponding ES advantage
as:

AdvesSE(A,S) = Pr
[
K � K : AEK(·) ⇒ 1

]
− Pr

[
K � K : AS(|·|) ⇒ 1

]

11



The scheme SE is said to be (ε,RS ,RA)-ES secure if there exists a randomised
and possibly stateful simulator S, requiring at most RS resources per query,
such that for any adversary A, requiring at most RA resources, its respective
advantage AdvesSE(A,S) is bounded by ε.

The presence of a simulator in our definition is perhaps reminiscent of other
simulation-based security definitions, such as semantic security and even zero
knowledge. Intuitively, encryption simulatability says that interacting with the
encryption algorithm should convey no knowledge of the key or the message
contents. There are some important differences however. In contrast to semantic
security, here the simulator is emulating the encryption algorithm rather than
the adversary. The simulator cannot depend on the adversary either, due to the
reversed order of quantifiers. Finally, contrary to the case of zero knowledge,
here the simulator is not allowed to rewind the adversary.

3.2 Understanding Encryption Simulatability

We motivated ES as a generalisation of IND$-CPA, and indeed from the definition
it follows straight away that IND$-CPA implies ES for any length-regular scheme.
Showing that the reverse implication does not hold, i.e., ES 6=⇒ IND$-CPA is
also straightforward, e.g., if the ciphertext contains redundant 0-bits. Despite
the differences we mentioned previously, between semantic security (equivalently
IND-CPA) and ES, the two notions turn out to be equivalent. In essence, for
any IND-CPA symmetric encryption scheme there exists a stateful encryption
simulator which samples a fresh key at the beginning and runs the encryption
algorithm on that key and a fixed message of the length indicated in its input.
This is stated more formally together with the reverse implication in Theorem 1.

Theorem 1 (IND-CPA ⇐⇒ ES). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme.

a) Then for any encryption simulator S it holds that:

Advind-cpaSE (A) ≤ 2 · AdvesSE(A,S) .

b) Furthermore, there exists a stateful encryption simulator S̄(`), which on its
first input runs K̄ � K once and responds to every query with EK̄(0`), such
that:

AdvesSE(A, S̄) ≤ Advind-cpaSE (A) .

Proof. For any adversary A its IND-CPA advantage given by:

Advind-cpaSE (A) =∆
A

[
EK(·)
EK(0|·|)

]
.

By the triangle inequality we obtain:

≤∆
A

[
EK(·)
S(|·|)

]
+∆
A

[
S(|·|)
EK(0|·|)

]
.

12



Now the first distinguishing game is exactly the ES game, whereas the second
game can be reduced to the ES game. In particular, any querym can be simulated
by querying 0|m| in the ES game, since |0|m|| = |m|. Thus it follows that:

Advind-cpaSE (A) ≤ 2 · AdvesSE(A,S).

This proves the first part of the theorem, we now prove the other direction. For
the given simulator S̄ and any adversary A we have that:

AdvesSE(A, S̄) =∆
A

[
EK(·)
EK̄(0|·|)

]
.

Applying the triangle inequality we obtain:

≤∆
A

[
EK(·)
EK(0|·|)

]
+∆
A

[
EK(0|·|)
EK̄(0|·|)

]
.

Now note that the first term is exactly the IND-CPA advantage, whereas the
second term is zero because the two oracles are distributional identical, i.e. for
any sequence of queries they yield identically distributed responses (over the
choice of the key and potentially the randomness of the encryption scheme).
Thus, the result follows:

AdvesSE(A, S̄) ≤ Advind-cpaSE (A) + 0 .

ut

One could also consider chosen-ciphertext extensions of encryption simulata-
bility (ES-ATK for ATK ∈ {CCA, sfCCA,CFA}) by additionally providing the ad-
versary with access to the corresponding decryption oracle from Figure 1. While
the first implication extends to these settings, i.e. ES-ATK =⇒ IND-ATK, the
implication in the other direction does not! The reason can be seen in the above
proof for the IND-CPA case. In the final step of the proof the second advantage
term in the proof is no longer zero when a decryption oracle is available. To see
why, consider an IND-CCA scheme where every ciphertext is valid, i.e. decrypts
to some string [18]. Now modify this scheme such that it uses two keys, one used
for encryption and decryption and the other is appended to the ciphertexts dur-
ing encryption. Decryption now checks whether the correct key is appended to
the ciphertext, if so it proceeds to decrypt the rest of the ciphertext and returns
an error otherwise. The resulting scheme is still IND-CCA secure but a simulator
can only guess the right key with negligible probability. An adversary can distin-
guish the two cases by modifying the part of the ciphertext which is not the key
and observe whether its decryption returns a string or an error message. This
separation extends easily to the sfCCA and CFA settings. Thus the equivalence
between encryption simulatability and semantic security does not extend to the
chosen-ciphertext setting.

Interestingly, if we further require that the simulator be stateless, meaning
that it maintains no state and uses independent coins in each call, then encryp-
tion simulatability additionally guarantees key privacy. The implication holds
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for schemes which are either stateless or whose state progression is indepen-
dent of the coins used, which is usually the case in practice, e.g., if a counter is
incremented for each call.

Theorem 2 (ES ∧ Stateless(S) =⇒ KP-CPA). Let SE = (K, E ,D) be a sym-
metric encryption scheme such that E uses fresh coins on each call, and is either
stateless or it progresses its state independently of its coins. Then for a stateless
simulator S using fresh coins on every query and any adversary A, it holds that:

Advkp-cpaSE (A) ≤ 3 · AdvesSE(A,S) .

Proof. For any adversary A the KP-CPA advantage is given by:

Advkp-cpaSE (A) =∆
A

[
〈EK(·), EK̄(·)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.

By the triangle inequality, for any encryption simulator S we have that:

≤∆
A

[
〈EK(·), EK̄(·)〉(·, ·)
〈EK(·),S(|·|)〉(·, ·)

]
+∆
A

[
〈EK(·),S(|·|)〉(·, ·)
〈S(|·|),S(|·|)〉(·, ·)

]
+∆
A

[
〈S(|·|),S(|·|)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.

Each of the above terms can be reduced to the encryption simulatability game.
In the first term the reduction (playing against EK̄(·) or S(|·|)) simulates the
first oracle EK(·) by sampling an independent encryption key K. In the second
term the reduction simulates the second oracle by running its own copy of the
simulator. The third reduction is where we require the simulator to be stateless
and the encryption algorithm to have a state progression that is independent
of its coins. The reduction uses one instance of the simulator to emulate two
independent ones, which is only possible if the simulator answers each query
independently. Similarly for encryption, if the state progression depends only
on the key and the message sequence, then both instances of the left and right
oracle will progress through the same sequence of states and can therefore be
emulated via a single instance. Thus we obtain:

Advkp-cpaSE (A) ≤∆
A

[
EK̄(·)
S(|·|)

]
+∆
A

[
EK(·)
S(|·|)

]
+∆
A

[
S(|·|)
EK(·)

]
≤ 3 · AdvesSE(A,S).

ut
We emphasise that the above implication necessitates that the simulator be

stateless. That is, if the simulator is allowed to be stateful then ES does not
imply KP-CPA. In particular, a scheme may leak a fixed portion of its key in its
ciphertexts and still be IND-CPA secure. Then by Theorem 1 the scheme has a
stateful encryption simulator, but clearly the scheme is not key private.

A Length-Hiding Variant. Our definition of encryption simulatability could
be extended to offer a limited form of length hiding by replacing the length
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function |·| with a rounding length function d·e. This would partition the message
space into intervals according to the message length. Then messages of differing
lengths but wich fall within the same interval would map to the same input to the
simulator. Intuitively, the simulator can now only leak the length interval that the
message belongs to but not its precise length. This security notion nicely captures
the intended protection against traffic analysis offered by practical schemes which
pad messages up to a multiple of the block length or some larger value.

4 Decryption Simulatability

It also makes sense to consider an analogous security notion where decryption
is required to be simulatable. Although not stated explicitly, security proofs
often involve either simulating part of the decryption oracle or employ a specific
type of simulator. Indeed ciphertext integrity can be viewed as requiring the
existence of a specific type of decryption simulator—one which returns⊥ to every
query. Error predictability [20] and leakage simulation [6] are two other examples
where parts of the decryption algorithm is simulated. The notion we propose is
a generalisation of these ideas, adapted to the channel setting, where we require
the whole decryption algorithm to be simulatable. It also allows us to argue
about the chosen ciphertext security of schemes which do not provide ciphertext
integrity, such as the schemes proposed in [18], where any string constitutes a
valid ciphertext but it will decrypt to a random-looking message.

4.1 Defining Decryption Simulatability

When defining decryption simulatability it makes sense to also give the adver-
sary access to the encryption algorithm. Then simulation of decryption requests
is only possible if as usual we prohibit the adversary from forwarding the ci-
phertexts it obtains from the encryption oracle. In this particular case, however,
we have an alternative option. We can lift these restrictions from the adversary
and instead give the decryption simulator access to a live transcript of the en-
cryption queries. Intuitively, this information is already known to the adversary
and should result in an equivalent security notion. However, as it turns out, this
intuition is not quite correct. We need to restrict the simulator’s access to the
transcript in order for security to be preserved.

To see why, consider the classical example where we alter a scheme by ap-
pending a redundant bit to the ciphertext during encryption and ignore this bit
during decryption. This modification renders the scheme malleable and thereby
fails to be IND-CCA even if the underlying scheme is. However the resulting
scheme does have a decryption simulator if it is given unrestricted access to the
encryption transcript. In particular, the decryption simulator could use the tran-
script to simulate the decryption of ciphertexts which are not in the transcript.
More concretely, let us assume that the underlying scheme is IND-CPA secure
and provides ciphertext integrity. Now, if the encryption of m returned c‖0 and
the adversary queries c‖1, the simulator can, through the available transcript,
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detect that this is a mauled ciphertext and return m as its response. Alterna-
tively, if the ciphertext is unrelated to a prior encryption query, the simulator
returns ⊥. Thus, if we were to allow unrestricted access to the transcript, the re-
sulting notion of decryption simulatability would not suffice to reduce IND-CCA
security to IND-CPA security.

To overcome this limitation we will wrap the simulator S with a fixed wrapper
algorithm that has access to the transcript and possibly overwrites the outputs
of S. Specifically, the wrapper will detect whether a ciphertext corresponds to a
prior encryption query and replace the output of S with the message in the tran-
script, unnoticeable for the simulator. Equivalently, the resulting algorithm can
be viewed as a composite decryption simulator where the wrapper component has
access to the transcript but its functionality is fixed and S has no access to the
transcript but its functionality is unrestricted and may depend on the scheme.
We consider three different wrappers V, W, and Z, described in Figure 3, each
yielding a different notion of decryption simulatability. The first, denoted by DS,
is plain decryption simulatability and is intended for atomic schemes. Stateful
decryption simulatability (SDS) corresponds to the stateful family of security
notions which additionally protect against replay and reordering. Fragmented
decryption simulatability (FDS) is intended for schemes supporting ciphertext
fragmentation.

Definition 7 (Decryption Simulatability). Let SE = (K, E ,D) be an atomic
symmetric encryption scheme. For an adversary A and a decryption simulator
S we define the corresponding DS and SDS advantages as:

AdvdsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),V[S](·) ⇒ 1

]
,

and

AdvsdsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),W[S](·) ⇒ 1

]
.

where the probabilities are over K � K and the algorithms’ coin tosses. Alterna-
tively, if SE is a symmetric encryption scheme supporting ciphertext fragmenta-
tion, its corresponding FDS advantage is given by:

AdvfdsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),Z[S](·) ⇒ 1

]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {DS,SDS,FDS},
if there exists a randomised and possibly stateful simulator S, requiring at most
RS resources per query, such that for any adversary A, requiring at most RA
resources, its respective advantage AdvnnSE(A,S) is bounded by ε.

4.2 Decryption Simulatability and Chosen-Ciphertext Security

The next theorem states that, as intended, decryption simulatability suffices to
reduce chosen ciphertext security to chosen plaintext security. We here state the
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V[S](c′) V[S](c′)

(v,m′)← S(c′)
if ∃ m s.t. (m, c′) ∈ T

(v,m′)← (>,m)

(v,m′)← (ε, ε)

return (v,m′)

W[S](c′) W[S](c′)

(v,m′)← S(c′)
if sync

(m, c)← T.next()

if c′ = c

(v,m′)← (>,m)

(v,m′)← (ε, ε)

else

sync← false

return (v,m′)

Z[S](f) Z[S](f)

(v1,m
′
1) . . . (v`,m

′
`)← S(f)

F ← F ‖ f ; j ← 1

while sync ∧ j ≤ `
if T = [ ]

sync← false

else

(m, c)← T.next()

C ← C ‖ c
if C � F

(vj ,m
′
j)← (>,m)

j ← j + 1

else

sync← false

return (v1,m
′
1) . . . (v`,m

′
`)

return (vj ,m
′
j) . . . (v`,m

′
`)

Fig. 3: The V and W wrappers for an atomic decryption simulator and the Z
wrapper for the decryption simulator supporting ciphertext fragmentation, used
to define decryption simulatability and channel simulatability. In all three cases
the boxed code is omitted. In the suppressing variants V, W, and Z the boxed
lines of code replace the lines above them. T is a live transcript of the adversary’s
queries to the encryption oracle and is not accessible to S. Note that (ε, ε)
represents the empty string.

theorem for the case of schemes supporting ciphertext fragmentation but anal-
ogous results hold for atomic schemes in the plain security setting (IND-CPA ∧
DS =⇒ IND-CCA) as well as the stateful security setting (IND-CPA∧ SDS =⇒
IND-sfCCA).

Theorem 3 (IND-CPA ∧ FDS =⇒ IND-sfCFA). Let SE = (K, E ,D) be a sym-
metric encryption scheme supporting ciphertext fragmentation. Then for any
adversary A and any decryption simulator S it holds that:

Advind-sfcfaSE (A) ≤ Advind-cpaSE (A) + 2 · AdvfdsSE(A,S) .

Proof. Observe that the decryption oracle cfDec(·) in Figure 1 is identical to
Z[DK ](·), where Z is described in Figure 3. Then, for any adversary A its
IND-sfCFA advantage is given by:

Advind-sfcfaSE (A) =∆
A

[
EK(·) ,Z[DK ](·)
EK(0|·|),Z[DK ](·)

]
.
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By the triangle inequality, for any decryption simulator S it holds that:

≤∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
+∆
A

[
EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]
+∆
A

[
EK(0|·|), Z[S](·)
EK(0|·|),Z[DK ](·)

]
.

By means of a reduction on the third term we now replace every encryption query
m with 0|m|. Note how this is only possible because the wrapper is suppressing
and would not be possible otherwise. In particular, in one case the transcript
stores m whereas in the other it stores 0|m|. However, in both cases the oracle’s
behaviour is identical since the suppressing wrapper does not make use of the
messages in the transcript. We now have that:

≤∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
+∆
A

[
EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]
+∆
A

[
EK(·), Z[S](·)
EK(·),Z[DK ](·)

]
.

We now reduce the first and third terms to the FDS game. We employ a straight-
forward reduction that applies Z to the decryption oracle, and observe that ap-
plying Z after Z is equivalent to applying Z directly. This means we can simulate
Z[DK ] resp. Z[S] through Z[DK ] and Z[S], and we can then also take advantage
of Z[DK ] = DK . Regarding the second term, it can be reduced to IND-CPA by
running a local copy of the decryption simulator and wrapper. This yields:

≤∆
A

[
EK(·),DK(·)
EK(·),Z[S](·)

]
+∆
A

[
EK(·)
EK(0|·|)

]
+∆
A

[
EK(·),Z[S](·)
EK(·),DK(·)

]
,

= AdvfdsSE(A,S) + Advind-cpaSE (A) + AdvfdsSE(A,S).
ut

Note that chosen ciphertext security does not imply decryption simulatabil-
ity, i.e. IND-CCA 6=⇒ DS. To show this separation we can use again the same
counterexample that we used in the discussion following Theorem 1. That is, a
scheme can leak part of the key in its ciphertext and still be IND-CCA secure.
Then decryption can behave differently, by returning a string or an error mes-
sage, depending on whether a ciphertext contains the right key or not. Now, since
a decryption simulator does not know the key, it cannot successfully emulate this
behaviour and is therefore not DS secure. However, for the case of encryption
simulatability the implication is valid, that is, ES-CCA =⇒ DS. In particular,
we can simulate decryption by running the algorithm on an independently sam-
pled key. Thus, if encryption is simulatable to an adversary with oracle access to
decryption, it follows that decryption is simulatable to an adversary with oracle
access to encryption. Analogous relations hold for stateful security and schemes
supporting ciphertext fragmentation. Below we state more formally, with proof,
the relation for the fragmentation setting.
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Theorem 4 (ES-sfCFA =⇒ FDS). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme supporting ciphertext fragmentation. Then there exists a stateful
decryption simulator SD(c), which on its first input runs K̄ � K and responds
to every query using DK̄(c), such that for any encryption simulator SE it holds
that:

AdvfdsSE(A,SD) ≤ 2 · Adves-sfcfaSE (A,SE) .

Proof. For the given simulator SD, which decrypts under a freshly chosen key
K̄, and any adversary A the FDS advantage is given by:

AdvfdsSE(A,SD) =∆
A

[
EK(·), DK(·)
EK(·),Z[SD](·)

]
=∆
A

[
EK(·), DK(·)
EK(·),Z[DK̄ ](·)

]
.

By the triangle inequality, for any encryption simulator SE it holds that:

≤∆
A

[
EK(·) , DK(·)
SE(|·|),Z[DK ](·)

]
+∆
A

[
SE(|·|),Z[DK ](·)
EK(·) ,Z[DK̄ ](·)

]
.

By the correctness of the scheme, we can replace DK(·) by Z[DK ](·) in the upper
row of the first term. With respect to the second term we drop the decryption
oracle since it can be simulated locally by sampling an independent key and
maintaining a local transcript for simulating the wrapper. We thus have:

≤∆
A

[
EK(·) ,Z[DK ](·)
SE(|·|),Z[DK ](·)

]
+∆
A

[
SE(|·|)
EK(·)

]
.

The first term can now be reduced to a similar game employing a suppressing
wrapper since the suppressed queries can be answered by maintaining a local
copy of the transcript. Therefore:

=∆
A

[
EK(·) ,Z[DK ](·)
SE(|·|),Z[DK ](·)

]
+∆
A

[
SE(|·|)
EK(·)

]
,

and the result now follows

= Adves-sfcfaSE (A,SE) + AdvesSE(A,SE).

ut

4.3 Decryption Simulatability and Ciphertext Integrity

Informally, decryption simulatability says that access to the decryption algo-
rithm is of no use to an adversary, thereby allowing us to reduce chosen cipher-
text security to chosen plaintext security. However, by itself, this does not guar-
antee ciphertext integrity. Luckily, we only need to impose a minor additional
requirement on the simulator for it to cover ciphertext integrity. Essentially, the
requirement is that the simulator always returns an error for mauled ciphertexts.
It then follows that the real decryption algorithm can only deviate from this be-
haviour with negligible probability. In our definition we conveniently make use
of the suppressing variants of the wrapper algorithms, from Figure 3, in order
to filter out any ciphertexts that were obtained from the encryption oracle.
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Definition 8 (Decryption Simulatability with Integrity). Let SE = (K, E ,D)
be an atomic symmetric encryption scheme. Then SE is said to be (ε,RS ,RA)-
DS-I or (ε,RS ,RA)-SDS-I secure, if it is respectively (ε,RS ,RA)-DS or (ε,RS ,RA)-
SDS secure, and, in addition, the corresponding simulator S augmented with V or
W respectively never (with probability zero) outputs a pair (v,m′) where v = >.

Similarly, if SE is a symmetric encryption scheme supporting ciphertext frag-
mentation it is said to be (ε,RS ,RA)-FDS-I secure if it is (ε,RS ,RA)-FDS secure
and its corresponding simulator S is such that Z[S] never (with probability zero)
returns an output (v1,m

′
1), . . . , (v`,m

′
`) where vi = > for some 1 ≤ i ≤ `.

Informally, the above says that the simulator will never return a valid output
for a ciphertext that is not in the transcript (DS-I) or once the queries become out
of sync (SDS-I and FDS-I). Note that such a property can be verified simply by
inspecting the code of the simulator. Thus no additional steps may be required
to prove ciphertext integrity if the decryption simulator already satisfies this
condition.

The following theorem says that decryption simulatability with integrity im-
plies the usual notions of ciphertext integrity. We prove this only for schemes
supporting ciphertext fragmentation, but analogous theorems and proofs hold
for the atomic setting, i.e. DS-I =⇒ INT-CTXT and SDS-I =⇒ INT-sfCTXT.

Theorem 5 (FDS-I =⇒ INT-sfCFRG). Let SE = (K, E ,D) be a symmetric
encryption scheme supporting ciphertext fragmentation and let S be a decryp-
tion simulator such that it is (ε,RS ,RA)-FDS-I secure. Then SE is (ε,RA)-
INT-sfCFRG secure.

Proof. Note that cfDec(·) is identical to Z[DK ](·). Hence for any simulator S and
any adversary A with at most RA resources, we have that:

∆
A

[
EK(·),cfDec(·)
EK(·), Z[S](·)

]
=∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
.

Then, by a straightforward reduction that applies Z to the decryption oracle and
observing that Z[Z[S]](·) is identical to Z[S](·), it follows that:

≤∆
A

[
EK(·),DK(·)
EK(·),Z[S](·)

]
,

= AdvfdsSE(A,S).

From the above relation it then follows that:

Advint-sfcfrgSE (A) = Pr
[
K � K, AEK(·),cfDec(·) : FORGE

]
,

≤ Pr
[
AEK(·),Z[S](·) : FORGE

]
+ AdvfdsSE(A,S).

Now since SE is (ε,RS ,RA)-FDS-I secure, there exists a simulator such that the
first term is zero and the second term is bounded by ε, thus:

≤ ε.
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Comparing DS to Prior Notions. We are not the first to consider notions
requiring the decryption algorithm to be simulatable. Two notable cases are the
works of Andreeva et al. [5] and that of Hoang, Krovetz, and Rogaway [21].
Below is a comparison of our notion with these

Inspired by plaintext awareness the authors of [5] propose two security no-
tions called PA1 and PA2, which involve an extractor algorithm that essentially
acts as a decryption simulator. Their first notion, PA1, roughly corresponds to a
notion of decryption simulatability where the simulator has unrestricted access
to the transcript. As we described in Section 4.1, such a formulation would not
suffice to guarantee chosen-ciphertext security and results in a weaker notion.
Accordingly, the authors put forward PA2 where the extractor no longer has ac-
cess to the transcript and the adversary is prohibited from querying ciphertext
to the extractor that it obtains from its encryption oracle. We note, however,
that a our notions and relations are not directly comparable to those in [5] since
their work assumes a different syntax. Apart from being nonce-based and requir-
ing encryption to be deterministic, their syntax splits decryption into separate
decryption and verification algorithms. This choice of syntax has important con-
sequences, where for instance, their resulting IND-CCA notion is weaker than
the traditional one, see [6].

A decryption simulator also appears in the definition of Robust Authenti-
cated Encryption (RAE) from [21]. RAE security requires that a (nonce-based)
encryption scheme be indistinguishable from an idealised scheme where encryp-
tion is a randomly-sampled injection, and decryption can be viewed as answering
its queries either by looking up the transcript or via a simulator. That is, the
idealised decryption oracle in RAE essentially behaves as our combination of a
decryption simulator and wrapper algorithm. Note that in RAE the decryption
simulator appears in conjunction with an ideal encryption oracle, whereas in DS
it appears in conjunction with the real encryption algorithm. As such, RAE is
perhaps more akin to ES ∧ DS (discussed in Section 5.1). Indeed, RAE security
could be viewed as a special case of ES∧DS (translated to the nonce-based set-
ting), where the encryption simulator is further restricted to be a pseudorandom
injection.

5 Channel Simulatability

We can now go a step further and require that both encryption and decryption
be simulatable.

5.1 Defining Channel Simulatability

A natural formulation is to require that there exist an encryption simulator SE
and a decryption simulator SD such that no adversary can distinguish between
unrestricted oracle access to EK(·) and DK(·) or SE(|·|) and V[SD](·). Such a
notion turns out to be equivalent to ES∧DS, i.e. the requirement that a scheme
satisfy both simulatability notions ES and DS. This notion can be viewed as a
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stronger analogue of IND-CCA security. Indeed, because decryption simulatabil-
ity reduces IND-CCA security to IND-CPA security and encryption simulatability
implies IND-CPA, it follows that ES ∧ DS =⇒ IND-CCA. Similarly ES ∧ DS-I,
where decryption simulatability also ensures integrity, can be viewed as an ana-
logue and a generalisation of the combined authenticated encryption security no-
tion from [29]. Clearly, all of the above also holds for stateful security (ES∧SDS-I)
and for schemes supporting ciphertext fragmentation (ES ∧ FDS-I).

We believe these notions are appealing for a number of reasons. On an in-
tuitive level, these notions say that an adversary’s computational abilities are
not any better when it is given oracle access to the channel, since it can be
simulated. That is, the ability to choose the messages that get encrypted, re-
play, reorder and fragment ciphertexts arbitrarily, and observe the output of the
decryption algorithm (possibly augmented with additional leakage such as error
messages and the release of unverified plaintext) are of no help to the adversary.
Moreover, there are no prohibited or suppressed queries, as is the case with all
CCA and authenticated encryption type of definitions. Being single-game def-
initions, they are also easier to prove than their two-game counterparts used
in [9,26,11,20,2]. Further backing to the claim that these notions are easier to
prove can be found in Section 7. Finally, as we will show later on, any scheme
that meets these notions realises a universally composable secure channel. Thus
our notions guarantee composability under extended security requirements, such
as the presence of leakage from invalid ciphertexts [12,5,21,6], protection against
replay and reordering [9], and security in the presence of ciphertext fragmenta-
tion [26,11,20,2].

However the above formulation, requiring separate simulators, has some limi-
tations. For instance the schemes used in SSH, which include an encrypted length
field as part of their ciphertext – see Section 7 or [26,2], cannot meet this notion.
In particular, because a ciphertext may be delivered as multiple fragments, the
length field is used by the decryption algorithm to determine the total length of
the ciphertext and accordingly at which point to verify the MAC tag. As such
the decryption simulator needs to be able to predict, both for in-sync and out-
of-sync ciphertexts, after how many bytes it should return an output. Note that
the contents of length field are known to the adversary and any inconsistency
between the real scheme and the simulated one would allow it to distinguish the
two. At the same time, the encryption simulator cannot leak this information
anywhere in the ciphertext, except through its size, as otherwise it would either
not constitute a good simulator, or the encryption used to protect the length
field in the real scheme is insecure. Consequently, for the schemes used in SSH
there can exist no pair of simulators that satisfy the security definition outlined
above.

In the case of SSH-CTR this issue can be overcome by allowing the simulators
to share a random tape that they can then use to one-time-pad the length field.
In general, the more freedom we give the simulators to share resources and com-
municate the easier it becomes to satisfy such a security notion. We therefore
lift all such restrictions by replacing the two simulators with a single simulator
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having separate interfaces for encryption and decryption, S(e, ·) and S(d, ·). The
resulting notion, which we call channel simulatability (CS) is stated more for-
mally in Defintion 9 and in Defintion 10. Note that ES ∧ DS =⇒ CS since two
separate simulators can easily be combined into one, but the converse is not true.
While it is easy to see that channel simulatability retains the appealing prop-
erties that we mentioned earlier, the SSH example we just described separates
it from ES ∧ DS. We must therefore make sure that channel simulatability still
offers an adequate level of security. We assert this in Theorem 6 and Theorem 10,
where we prove that it guarantees chosen ciphertext security and integrity. The
results are stated for schemes supporting ciphertext fragmentation but analogous
results hold in the atomic setting for plain and stateful security. In Section 6 we
show that channel simulatability implies UC-realising the secure channel ideal
functionality. By transitivity, it follows that ES ∧ DS also guarantees universal
composability.

Definition 9 (Channel Simulatability).
Let SE = (K, E ,D) be a symmetric encryption scheme. For any adversary A

and a channel simulator S we define the corresponding CS and SCS advantages
as:

AdvcsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),V[S](d,·) ⇒ 1

]
,

and,

AdvscsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),W[S](d,·) ⇒ 1

]
,

where the probabilities are over K � K and the algorithms’ coin tosses. Alterna-
tively, if SE is a symmetric encryption scheme supporting ciphertext fragmenta-
tion, its corresponding FCS advantage is given by:

AdvfcsSE(A,S) = Pr
[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),Z[S](d,·) ⇒ 1

]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {CS,SCS,FCS}, if
there exists a randomised and possibly stateful simulator S such that every query
of the form S(e, ·) or S(d, ·) requires at most RS resources, and for any adver-
sary A, requiring at most RA resources, its respective advantage AdvnnSE(A,S) is
bounded by ε.

Theorem 6 (FCS =⇒ IND-sfCFA). Let SE = (K, E ,D) be a symmetric en-
cryption scheme supporting ciphertext fragmentation. Then for any adversary A
and any channel simulator S it holds that:

Advind-sfcfaSE (A) ≤ 2 · AdvfcsSE(A,S) .

Proof. Observing that cfDec(·) is identical to Z[DK ](·), it follows that for any
adversary A:

Advind-sfcfaSE (A) =∆
A

[
EK(·) ,Z[DK ](·)
EK(0|·|),Z[DK ](·)

]
.
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By the triangle inequality, for any channel simulator S it follows that:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+∆
A

[
S(e, |·|),Z[S](d, ·)
EK(0|·|),Z[DK ](·)

]
.

In the second term, since the wrapper is suppressing, we can replace every en-
cryption query m with 0|m|, reducing it to:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+∆
A

[
S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK ](·)

]
.

Through a straightforward reduction that applies Z to the decryption oracle and
observing that applying Z after Z is equivalent to applying Z directly, we obtain:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+∆
A

[
S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK ](·)

]
,

and the result follows

= AdvfcsSE(A,S) + AdvfcsSE(A,S).

ut

5.2 Channel Simulatability with Integrity

Just like decryption simulatability, channel simulatability can easily be extended
to guarantee ciphertext integrity by additionally requiring an easily verifiable
property from the channel simulator. Informally, we require that, by design, the
simulator never return a valid output for a ciphertext that is not in the transcript
(CS-I) or once the queries become out of sync (SCS-I and FCS-I).

Definition 10 (Channel Simulatability with Integrity).
Let SE = (K, E ,D) be an atomic symmetric encryption scheme. Then SE

is said to be (ε,RS ,RA)-CS-I or (ε,RS ,RA)-SCS-I secure, if it is respectively
(ε,RS ,RA)-CS or (ε,RS ,RA)-SCS secure, and, in addition, the corresponding
channel simulator S is such that V[S](d, ·) ,or respectively W[S](d, ·), never (with
probability zero) outputs a pair (v,m′) where v = >.

Similarly, if SE is a symmetric encryption scheme supporting ciphertext frag-
mentation it is said to be (ε,RS ,RA)-FCS-I secure if it is (ε,RS ,RA)-FCS secure
and its corresponding simulator S is such that Z[S](d, ·) never (with probability
zero) returns an output (v1,m

′
1), . . . , (v`,m

′
`) where vi = > for some 1 ≤ i ≤ `.

The theorem below states that channel simulatability with integrity implies
the respective notion of ciphertext integrity. The theorem is stated for the case
of ciphertext fragmentation, but analogous results hold for the atomic schemes.
Its proof is similar to that of Theorem 5 with some minor adaptations. A proof
can be found in the full version of this paper.

Theorem 7 (FCS-I =⇒ INT-sfCFRG). Let SE = (K, E ,D) be a symmetric en-
cryption scheme supporting ciphertext fragmentation and let S be a channel sim-
ulator such that it is (ε,RS ,RA)-FCS-I secure. Then SE is (ε,RA)-INT-sfCFRG
secure.
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6 Simulatable Channels and Universal Composability

In this section we show that any scheme satisfying channel simulatability with
integrity realises a universally composable channel.

6.1 UC Framework

The universal composition framework [13] is a simulation-based security notion
for a protocol π implementing some ideal functionality F . The approach requires
that for any adversaryAUC attacking a real protocol π between parties P1, P2, . . .
there exists an ideal-model adversary SUC (or, simulator) interacting in a world
where all parties are connected to the ideal functionality F . The only task of
the parties in this ideal world is to forward their inputs to F and output the
responses of F . The communication with the ideal functionality is not visible to
other parties and cannot be tampered with.

We give here only an informal introduction to the model and refer to [13] for
the details. The UC model is different from other simulation-based notions in
that it uses an interactive distinguisher to decide in which of the two worlds the
execution takes place. This interactive distinguisher is called the environment
EUC, since it represents other potentially ongoing protocols and thereby ensures
composability. The environment determines the input of the parties, learns their
outputs, and can interact with the (real or ideal) adversary. To distinguish inputs
for different sessions, the UC model assumes that globally unique and publicly
known session identifiers sid are assigned to each protocol execution.

Let REALAUC,EUC,π(n) be the random variable denoting the environment’s
output in a real-world execution, where AUC interacts with the protocol π for
security parameter n, and IDEALSUC,EUC,F (n) be the corresponding random vari-
able when interacting with SUC in the ideal world. We say that a protocol π se-
curely realises F if for any probabilistic polynomial time (PPT) adversary AUC
there exists a PPT simulator SUC such that for any PPT environment EUC the
random variables REALAUC,EUC,π and IDEALSUC,EUC,F are computationally in-
distinguishable. For concrete security one would measure the difference in the
output distributions exactly. By viewing a potential distinguisher of the envi-
ronment’s output as part of the environment itself, we can equivalently assume
that the environment only outputs a bit to indicate which world it is in.

A secure channel functionality has been given in [15]. It consists of a stage
in which the channel between two parties Pi and Pj is established. Once this
is done, party Pi can securely transmit messages m to the other party. This is
performed by sending m to the secure channel functionality. The functionality
then informs the adversary about a transmission, but keeps the actual message
m secret. Only the length |m| of the message is revealed to the adversary. The
adversary can then decide when to deliver the next message to the receiving
party Pj .

We adapt this secure channel functionality to the unidirectional setting, i.e.,
only party Pi sends messages, and it is a single-instance functionality, i.e., it
only allows to establish a single channel. The UC composition theorem allows

25



to extend this simple form of a channel to more complex constructions. The
resulting secure channel functionality is described in Figure 4.

Functionality FSC

1. Upon receiving a command (EstCh, sid, Pi, Pj) from Pi send (EstCh, sid, Pi, Pj) to
the adversary and (delayed) to Pj . Store (EstCh, sid, Pi, Pj) and ignore all further
establishment requests. Create an empty queue Q for (EstCh, sid, Pi, Pj)

2. Upon receiving a command (Send, sid,m) from Pi check if there is a stored entry
(EstCh, sid, Pi, Pj). If not, ignore the message. Else send (Sent, sid, |m|) to the
adversary and enqueue Q.enq(m) in the queue.

3. Upon receiving a command (Deliver, sid) from the adversary, check if Q is empty;
if so, ignore the message. Else dequeue the next message m ← Q.deq() and send
(Sent, sid,m) to Pj .

Fig. 4: Ideal functionality for a secure channel (with static corruptions).

6.2 Simulatable Channels with Integrity are Universally
Composable

Here we show that simulatable channels (with integrity) are also universally
composable. The necessity of the integrity property stems from the definition of
the ideal channel functionality: The UC adversary can only demand to deliver
messages which have been actually inserted into the channel; it cannot make
the receiving party output further messages. In contrast, simulatable channels
without integrity in principle allow the simulator to output other messages as
well. Put differently, the secure channel functionality stipulates integrity by con-
struction.

We are, of course, faced with the problem that the two parties need to share
a key in the symmetric setting, without having a way to communicate securely
yet. Previous solutions [14] assumed that the keys are established by running
a suitable key exchange protocol first. To abstract out this step, we design our
protocol πSC in the hybrid setting where an ideal functionality FKE establishes a
shared key between the two parties. That is, πSC may call the ideal functionality
FKE as part of the protocol steps. We parameterise this functionality by a key
generation algorithm K to describe the underlying distribution over keys. The
concrete implementation of the key establishment protocol is a matter of choice,
but the UC framework says that any protocol realising FKE securely, can then
be composed with our protocol πSC to yield a secure, fully implemented protocol
for FSC. We assume that the session identifier sid ′ of the sub procedure has a
one-to-one correspondence with the session identifier sid of the calling protocol,
e.g., are given by sid‖0 and sid‖1.

Construction 8. Let SE = (K, E ,D) be an encryption scheme. Define the pro-
tocol πSC in the FKKE-hybrid model follows:
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Functionality FKKE

1. Upon receiving a command (EstKey, sid ′, Pi, Pj) from Pi, check that there is no
entry for sid ′ yet. If so, pick a random key K ← K and send (EstKey, sid ′, Pi, Pj)
to the adversary and the (delayed-output) messages (EstKey, sid ′, Pi, Pj ,K) to Pi

and Pj .

Fig. 5: Ideal functionality for key establishment (with static corruptions).

– On input (EstCh, sid, Pi, Pj) to Pi make a call (EstKey, sid ′, Pi, Pj) to FKKE.
– On input (EstKey, sid ′, Pi, Pj ,K) from FKKE to Pi or Pj store (sid, Pi, Pj ,K).
– On input (Send, sid,m) to Pi check for an entry (sid, Pi, Pj ,K). If found,

compute c← E(K,m), and possibly update the state, and send (sid, c) to Pj.
– On input (sid, f) check for an entry (sid, Pi, Pj ,K). If found, compute the

sequence (v1,m1), . . . , (v`,m`) ← D(K, f), possibly updating the state, and
for each vi = > output (Sent, sid,mi) (in this order).

We state our theorem with respect to the stateful fragmentation notion FCS-I.
The result also transfers straightforwardly to the stateless and stateful atomic
cases CS-I and SCS-I.

Theorem 9. If SE = (K, E ,D) supports fragmentation and is channel simu-
latable with integrity (FCS-I) then the protocol πSC securely realises FSC in the
FKKE-hybrid model.

The idea is to turn the channel simulator S, embedded into a wrapper Z, into
a UC simulator SUC, interacting with the channel functionality FSC instead.
The reduction then shows that any UC environment EUC (in combination with
a fixed but sufficiently general UC dummy adversary ÃUC) against this UC
simulator can be transformed into a channel simulatability adversary A. Note
that the order of quantifiers is important here: the UC simulator SUC works
for any environment EUC just as the channel simulator S works for any channel
adversary A. Integrity of the channel ensures that the simulation of the UC
simulator SUC is sound. The proof appears in the full version of this paper.

Unfortunately, we cannot show that universal composability implies channel
simulatability (with or without integrity). The reason is that ciphertexts may
carry redundancy, e.g., an extra bit appended to the ciphertext c‖0, which still
allows a UC simulator to detect an altered but valid ciphertext, say, c ‖ 1, and
to ask the ideal functionality to forward the next message in the queue. Our
channel simulator, on the other hand, does not know the message encapsulated
in c‖0 and the wrapper would not reveal it either.

6.3 Other Work on Composable Secure Channels

In [23], Küsters and Tuengerthal consider two ideal functionalities, one for en-
cryption and one for authenticated encryption and present matching proto-
cols which realise these functionalities iff the underlying symmetric encryption
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schemes respectively satisfy IND-CCA and IND-CPA ∧ INT-CTXT. These results
are limited to atomic and single-error encryption schemes. More importantly,
however, the ideal functionalities considered therein are significantly different
from that in [15] (and consequently also to ours): They consider the stronger no-
tion of adaptive corruptions and thus have to deal with the committing property
of encryption schemes. At the same time, their composition, in an intermediate
step, uses an encryption scheme with full key reveals, such that the problem
of key cycles —the environment asking for circular encryptions of a key under
that key— must be taken care of. In contrast, [15] and we here work with the
common notion of secret keys.

An alternative formulation of secure channels can be found in [25,24], in
the language of Maurer’s Constructive Cryptography framework. We believe
that an analogue of Theorem 9 should also hold for the Constuctive Cryptogra-
phy framework. That is, any scheme that is channel simulatable with integrity
(CS-I/SCS-I/FCS-I) can be used to convert an insecure channel into a secure
channel.

7 Dropbear’s SSH-CTR Implementation is FCS-I Secure

Dropbear is an SSH distribution intended specifically for resource-constrained
devices such as embedded systems. In a measurement study performed in early
2016 [2] it was found to be the most widely deployed SSH implementation on
the Internet. Owing to its minimalist design it only implements a handful of
ciphersuites. Following the attack from [3] which affected CBC encryption, it
added support for counter mode encryption and set this as the default. The
study from [2] identified counter-mode encryption as the preferred choice for
more than 90% of the Dropbear servers.

The SSH-CTR scheme described in Figure 6 is an accurate representation of
SSH’s symmetric encryption using counter mode that we extracted from Drop-
bear’s open source code. Throughout it is assumed that compression is disabled.
At various points during decryption a ciphertext may be deemed to be invalid
resulting in the connection being torn down. We model this by setting a closed
flag at which point all subsequent calls to the decryption algorithm will return
an error of the form (⊥,CONN_CLOSED). Dropbear does not return specific
error messages prior to closing a connection, however we adopt a conservative
approach and return distinct error messages for every decryption failure that
results in a connection tear-down. This only serves to strengthen our security
result, since security will hold even if an adversary can distinguish these events
through timing information or some other means.

We next show that SSH-CTR is FCS-I secure. To prove this, we need to
transform the scheme, through a sequence of game hops, into a pair of algorithms
such that a) both algorithm do not make use of the key, b) encryption does not
make use of the message contents, and c) decryption only returns error messages
for out-of-sync ciphertexts. This is easier than it sounds, in particular by the
point where we switch from a block cipher and MAC to their idealised forms
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(i.e. random functions) we have already eliminated the key. We then only need
a couple of simple probabilistic arguments to reach our goal. The advantage
of channel simulatability is that we can focus on specific portions of the code
without having to worry about its functionality as a whole. For example, we do
not have to worry about the parts of the code which handle the reconstruction
of ciphertexts and validating of the length field. Indeed if the scheme made use
of a nonce-based AEAD scheme, such as GCM, we would only need one game
hop to prove channel simulatability.

Below is a formal statement of the security theorem. Its proof can be found
in in the full version of this paper

Theorem 10 (SSH-CTR is FCS-I secure). Let SSH-CTR be the encryption
scheme supporting ciphertext fragmentation, composed of a blockcipher BC and a
MAC algorithm MAC, described in Figure 6. Then there exists a simulator S such
that for any FCS-I adversary Afcs attempting to distinguish S from SSH-CTR,
running in time t, making at most qe encryption queries totalling µe bits, and
at most qd decryption queries totalling µd bits, it holds that:

AdvfcsSSH-CTR(Afcs) ≤ AdvprfBC(t′, qf ) +
q2
f

2blocksize+1
+ AdvprfMAC(t′, qm) + 2−macsize ,

where qf = dµe+40qe
blocksize e+ qe + dµd+40qd

blocksize e+ qd, qm = qe + qd, and t′ ≈ t.

Furthermore, S is such that Z[S](d, ·) never returns an output (v1,m
′
1), . . . , (v`,m

′
`)

where vi = > for some 1 ≤ i ≤ `.
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