
An e�cient structural attack on NIST submission

DAGS

Élise Barelli1 and Alain Couvreur1

INRIA & LIX, CNRS UMR 7161,
École polytechnique, 91128 Palaiseau Cedex, France.

elise.barelli@inria.fr, alain.couvreur@lix.polytechnique.fr

Abstract. We present an e�cient key recovery attack on code based
encryption schemes using some quasi�dyadic alternant codes with exten-
sion degree 2. This attack permits to break the proposal DAGS recently
submitted to NIST.

Keywords: Code-based Cryptography · McEliece encryption scheme ·
Key recovery attack · Alternant codes · Quasi�dyadic codes · Schur pro-
duct of codes.

Introduction

In 1978, in the seminal article [?], R. J. McEliece designed a public key
encryption scheme relying on the hardness of the bounded decoding pro-
blem [?], i.e. on the hardness of decoding an arbitrary code. For a long
time, this scheme was considered as unpractical because of the huge size
of the public keys compared to public key encryption schemes relying on
algorithmic number theoretic problems. The trend changed in the last
decade because of the progress of quantum computing and the increasing
threat of the existence in a near future of a quantum computer able to
break usual cryptography primitives based on number theoretic problems.
An evidence for this change of trend is the recent call of the National
Institute for Standards and Technology (NIST) for post quantum cryp-
tography. The majority of the submissions to this call are based either on
codes or on lattices.

After forty years of research on code based cryptography, one can iden-
tify two general trends for instantiating McEliece's scheme. The �rst one
consists in using codes from probabilistic constructions such as MDPC
codes [?,?]. The other one consists in using algebraic codes such as Goppa
codes or more generally alternant codes. A major di�erence between these
two families of proposals is that the �rst one, based on MDPC codes bene-
�ts in some cases from clean security reductions to the decoding problem.

Concerning McEliece instantiations based on algebraic codes, which
include McEliece's original proposal based on binary Goppa codes, two
approaches have been considered in order to address the drawback of the
large of pubic key sizes. On the one hand, some proposals suggested to
replace Goppa or alternant codes by more structured codes such as gener-
alised Reed�Solomon (GRS) codes [?], their low dimensional subcodes [?],
or GRS codes to which various transformations have been applied [?,?,?].
It turns out that most of these proposals have been subject to polynomial
time key-recovery attacks [?,?,?,?]. In addition, proposals based on Goppa
codes which are close to GRS codes, namely Goppa code with a low ex-
tension degree m have been the target of some structural attacks [?,?].
On the other hand, many proposals suggest the use of codes with a non
trivial automorphism group [?,?,?,?]. A part of these proposals has been
either partially or completely broken [?,?,?]. In particular, in the design
of such proposals, precautions should be taken since the knowledge of a
non trivial automorphism group of the public code facilitates algebraic
attacks by signi�cantly reducing the degrees and number of variables of
the algebraic system to solve in order to recover the secret key.

Among the recent submissions to NIST call for post quantum cryp-
tography, a proposal called DAGS [?] is based on the use of quasi�dyadic
(QD) generalised Srivastava codes with extension degreem = 2. By quasi�
dyadic we mean that the permutation group of the code is of the form
(Z/2Z)γ for some positive integer γ. Moreover, generalised Srivastava
codes form a proper subclass of alternant codes. DAGS proposal takes
advantage of both usual techniques to reduce the size of the keys. First,
by using alternant codes which are close to generalised Reed Solomon
codes i.e. with an extension degree 2. Second, by using codes with a large
permutation group. In terms of security with respect to key recovery at-
tacks, DAGS parameters are chosen to be out of reach of the algebraic
attacks [?,?]. In addition, it should be emphasised that the choice of al-
ternant codes which are not Goppa codes permits to be out of reach of
the distinguisher by shortening and squaring used in [?].

Our contribution In this article, we present an attack breaking McEliece
instantiations based on alternant codes with extension degree 2 and a
large permutation group. This attack permits to recover the secret key in

O
(
n
3+ 2q

|G|
)
operations in Fq, where G denotes the permutation group, n

the code length and Fq is the base �eld of the public code. The key step
of the attack consists in �nding some subcode of the public code referred
to as D . From this code D and using an operation we called conductor,

2

the secret key can easily be recovered. For this main step, we present
two ways to proceed, the �rst approach is based on a partial brute force
search while the second one is based on the resolution of a polynomial
system of degree 2. An analysis of the work factor of this attack using the
�rst approach shows that DAGS keys with respective estimated security
levels 128, 192 and 256 bits can be broken with respective approximate
work factors 270, 280 and 258. For the second approach, we were not able
to provide a complexity analysis. However, its practical implementation
using Magma [?] is impressively e�cient on some DAGS parameters. In
particular, it permits to break claimed 256 bits security keys in less than
one minute!

This attack is a novel and original manner to recover the structure of
alternant codes by jointly taking advantage of the permutation group and
the small size of the extension degree. Even if some variant of the attack
reposes on the resolution of a polynomial system, this system has nothing
to do with those of algebraic attacks of [?,?,?]. On the other hand, despite
this attack shares some common points with that of [?] where the Schur
product of codes (See Section ?? for a de�nition) plays a crucial role, the
keys we break in the present article are out of reach of a distingusher
by shortening and squaring and hence our attack di�ers from �ltration
attacks as in [?,?].

It is worth noting that reparing DAGS scheme in order to resist to the
present attack is possible. Recently, the authors presented new parameter
sets which are out of reach of the �rst version of the attack. These new
parameters are available on the current version of the proposal1.

1 Notation and prerequisites

1.1 Sub�eld subcodes and trace codes

De�nition 1. Given a code C of length n over Fqm , its sub�eld subcode
is the subcode of vectors whose entries all lie in Fq, that is the code:

C ∩ Fnq .

The trace code is the image of the code by the component wise trace map

TrFqm/Fq(C)
def
=
{
TrFqm/Fq(c) | c ∈ C

}
.

1 https://dags-project.org/pdf/DAGS_spec.pdf

3

https://dags-project.org/pdf/DAGS_spec.pdf

Let us recall a classical and well�known result on sub�eld subcodes
and trace codes.

Theorem 1 (Delsarte Theorem [?]). Let C ⊆ Fnqm be a code. Then

(C ∩ Fnq)
⊥ = TrFqm/Fq(C

⊥).

1.2 Generalised Reed�Solomon codes and alternant codes

Notation 1. Let q be a power of prime and k a positive integer. We
denote by Fq[z]<k the vector space of polynomials over Fq whose degree
is bounded from above by k. Let m be a positive integer, we will consider
codes over Fqm with their sub�eld subcodes over Fq. In � ?? and further,
we will focus particularly on the case m = 2.

De�nition 2 (Supports and multipliers). A vector x ∈ Fnqm whose

entries are pairwise distinct is called a support. A vector y ∈ Fnqm whose

entries are all nonzero is referred to as a multiplier.

De�nition 3 (Generalised Reed�Solomon codes). Let n be a posi-

tive integer, x ∈ Fnqm be a support and y ∈ Fnqm be a multiplier. The

generalised Reed�Solomon (GRS) code with support x and multiplier y
of dimension k is de�ned as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[z]<k} .

When y = 1, the code is a Reed�Solomon code and is denoted as RSk(x).

The dual of a GRS code is a GRS code too. This is made explicit in
Lemma ?? below. Let us �rst introduce an additional notation.

Notation 2. Let x ⊆ Fnqm be a support, we de�ne the polynomial πx ∈
Fqm [z] as

πx(z)
def
=

n∏
i=1

(z − xi).

Lemma 1. Let x,y ∈ Fnqm be a support and a multiplier of length n and

k 6 n. Then
GRSk(x,y)

⊥ = GRSn−k(x,y
⊥),

where

y⊥
def
=

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
,

and π′x denotes the derivative of the polynomial πx.

4

De�nition 4 (Alternant code). Let m, n be positive integers such that

n 6 qm. Let x ∈ Fnqm be a support, y ∈ Fnqm be a multiplier and r be a

positive integer. The alternant code of support x, multiplier y and degree
r over Fq is de�ned as

Ar(x,y)
def
= GRSr(x,y)

⊥ ∩ Fnq .

The integer m is referred to as the extension degree of the alternant code.

As a direct consequence of Lemma ?? and De�nition ??, we get the
following explicit description of an alternant code.

Ar(x,y) =

{(
1

π′x(xi)yi
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ Fnq . (1)

Next, by duality and using Delsarte's Theorem (Theorem ??), we have

Ar(x,y)
⊥ = TrFqm/Fq

({
(yig(xi))i=1,...,n

∣∣∣ g ∈ Fqm [z]<r
})

. (2)

We refer the reader to [?, Chapter 12] for further properties of al-
ternant codes. Recall that the code Ar(x,y) de�ned in De�nition ?? has
dimension k > n−mr and equality holds in general. Moreover, these codes
bene�t from e�cient decoding algorithms correcting up to b r2c errors (see
[?, Chapter 12�9]).

Fully non degenerate alternant codes We conclude this subsection
on alternant codes by a de�nition which is useful in the sequel.

De�nition 5. An alternant code Ar(x,y) is said to be fully non degen-
erate if it satis�es the two following conditions.

(i) A generator matrix of Ar(x,y) has no zero column.

(ii) Ar(x,y) 6= Ar+1(x,y).

Most of the time, an alternant code is fully non degenerate.

1.3 Punctured and shortened codes

The notions of puncturing and shortening are classical ways to build new
codes from existing ones. We recall here their de�nition.

5

De�nition 6. Let C be a code of length n and I ⊆ {1, . . . , n}. The punc-
turing and the shortening of C at I are respectively de�ned as the codes

PI (C)
def
= {(ci)i∈{1,...,n}\I | c ∈ C },

SI (C)
def
= {(ci)i∈{1,...,n}\I | c ∈ C such that ∀i ∈ I, ci = 0}.

Let us �nish by recalling the following classical result.

Notation 3. Let x ∈ Fnqm be a vector and I ⊆ {1, . . . , n}. Then, the
vector xI denotes the vector obtained from x be removing the entries
whose indexes are in I.

Proposition 1. Let m, r be positive integers. Let x,y ∈ Fnqm be as in

De�nition ??. Let I ⊆ {1, . . . , n}. Then

SI (Ar(x,y)) = Ar(xI ,yI).

Proof. See for instance [?, Proposition 9]. ut

1.4 Quasi�dyadic codes, quasi-dyadic alternant codes

Quasi�dyadic (QD) codes are codes with a nontrivial permutation group
isomorphic to (Z/2Z)γ for some positive integer γ. Such a code has length
n = 2γn0. The permutation group of the code is composed of permuta-
tions, each one being a product of transpositions with disjoint supports.
The example of interest in the present article is the case of QD�alternant
codes. In what follows, we explain how to create them.

Notation 4. From now on, q denotes a power of 2 and ` denotes the
positive integer such that q = 2`.

� Let G ⊂ Fqm be an additive subgroup with γ generators, i.e. G is an
F2�vector subspace of Fqm of dimension γ with an F2�basis a1, . . . , aγ .
Clearly, as an additive group, G is isomorphic to (Z/2Z)γ . The group
G acts on Fqm by translation: for any a ∈ G, we denote by τa the
translation

τa :

{
Fqm −→ Fqm
x 7−→ x+ a

.

� Using the basis (a1, . . . , aγ), we �x an ordering in G as follows. Any ele-
ment u1a1+· · ·+uγaγ ∈ G can be regarded as an element (u1, . . . , uγ) ∈
(Z/2Z)γ and we sort them by lexicographic order. For instance, if
γ = 3:

0 < a1 < a2 < a1 + a2 < a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.

6

� Let n = 2γn0 for some positive n0 and such that n 6 qm. Let x ∈ Fnqm
be a support which splits into n0 blocks of 2γ elements of Fqm , each
block being an orbit under the action of G by translation on Fqm sorted
using the previously described ordering. For instance, suppose γ = 2,
then such an x is of the form,

x = (t1, t1 + a1, t1 + a2, t1 + a1 + a2, . . . ,
. . . , tn0 , tn0 + a1, tn0 + a2, tn0 + a1 + a2),

(3)

where the ti's are chosen to have disjoint orbits under the action of G
by translation on Fqm .

� Let y ∈ Fnqm be a multiplier which also splits into n0 blocks of length
2γ whose entries are equal.

� Let r be a positive integer and consider the code Ar(x,y).
� The set of entries of x is globally invariant under the action of G by
translation. In particular, for any a ∈ G, the translation τa induces a
permutation of the code Ar(x,y). We refer this permutation to as σa.
For instance, reconsidering Example (??), the permutations σa1 and
σa1+a2 are respectively of the form

σa1 = (1, 2)(3, 4) · · · (n− 3, n− 2)(n− 1, n)

σa1+a2 = (1, 4)(2, 3) · · · (n− 3, n)(n− 2, n− 1).

The group of permutations {σa | a ∈ G} is isomorphic to G and hence
to (Z/2Z)γ . For convenience, we also denote this group of permutations
by G.

Proposition 2. For any r > 0, the code Ar(x,y) is quasi�dyadic.

Proof. See for instance [?, Chapter 5]. ut

1.5 Invariant subcode of a quasi�dyadic code

De�nition 7. Given a code C with a non�trivial permutation group G,
we de�ne the code C G as the subcode of C :

C G
def
= {c ∈ C | ∀σ ∈ G, σ(c) = c}.

The invariant subcode has repeated entries since on any orbit of the
support under the action of G, the entries of a codeword are equal. This
motivates an alternative de�nition of the invariant code where repetitions
have been removed.

7

De�nition 8. In the context of De�nition ??, let c ∈ Fnqm be a vector

such that for any σ ∈ G, σ(c) = c. We denote by c the vector obtained by

keeping only one entry per orbit under the action of G on the support. We

de�ne the invariant code with non repeated entries as

C
G def
=
{
c | c ∈ C G

}
.

We are interested in the structure of invariant of QD alternant codes.
To study this structure, we �rst need to recall some basic notions of ad-
ditive polynomials.

Additive polynomials

De�nition 9. An additive polynomial P ∈ Fqm [z] is a polynomial whose

monomials are all of the form z2
i
for i > 0. Such a polynomial satis�es

P (a+ b) = P (a) + P (b) for any a, b ∈ Fqm .

The zero locus of an additive polynomial in Fqm is an additive subgroup
of Fqm and such polynomials satisfy some interpolation properties.

Proposition 3. Let G ⊂ Fqm be an additive group of cardinality 2γ. There
exists a unique additive polynomial ψG ∈ Fqm [z] which is monic of degree

2γ and vanishes at any element of G.

Proof. See [?, Proposition 1.3.5 & Lemma 1.3.6]. ut

Notation 5. From now on, given an additive subgroup G ⊆ Fqm , we
always denote by ψG the unique monic additive polynomial of degree |G|
in Fqm [z] that vanishes on G.

Invariant of a quasi�dyadic alternant code It turns out that the
invariant code with non repeated entries of a QD alternant code is an
alternant code too. This relies on the following classical result of invariant
theory for which a simple proof can be found in [?].

Theorem 2. Let f ∈ Fqm [z] and G ⊂ Fqm be an additive subgroup. Sup-

pose that for any a ∈ G, f(z) = f(z + a). Then, there exists h ∈ Fqm [z]
such that f(z) = h(ψG(z)), where ψG is the monic additive polynomial of

degree |G| vanishing at any element of G.

This entails the following result on the structure of the invariant code
of an alternant code. We refer to De�nition ?? for the notation in the
following statement.

8

Theorem 3. Let C = Ar(x,y) be a QD�alternant code with permutation

group G of order 2γ. Set r′ =
⌊
r
2γ

⌋
. Then,

C
G
= Ar′(ψG(x),y),

Proof. See [?]. ut

1.6 DAGS

Among the schemes recently submitted to NIST, the submission DAGS [?]
uses as a primitive a McEliece encryption scheme based on QD generalised
Srivastava codes. It is well known that generalised Srivastava codes form
a subclass of alternant codes [?, Chapter 12]. Therefore, this proposal lies
in the scope of the attack presented in what follows.

Parameters proposed in DAGS submission are listed in Table ??.

Name q m n n0 k k0 γ r0

DAGS_1 25 2 832 52 416 26 4 13

DAGS_3 26 2 1216 38 512 16 5 11

DAGS_5 26 2 2112 33 704 11 6 11

Table 1. Parameters proposed in DAGS.

Let us recall what do the parameters q,m, n, n0, k, k0, γ, r0 stand for:

� q denotes the size of the base �eld of the alternant code;
� m denotes the extension degree. Hence the GRS code above the alter-
nant code is de�ned over Fqm ;

� n denotes the length of the QD alternant code;
� n0 denotes the length of the invariant code with non repeated entries

Ar(x,y)
G
, where G denotes the permutation group.

� k denotes the dimension of the QD alternant code;
� k0 denotes the dimension of the invariant code;
� γ denotes the number of generators of G, i.e. G ' (Z/2Z)γ ;
� r0 denotes the degree of the invariant code with non repeated entries,
which is alternant according to Theorem ??.

Remark 1. The indexes 1, 3 and 5 in the parameters names correspond to
security levels according to NIST's call. Level 1, corresponds to 128 bits
security with a classical computer, Level 3 to 192 bits security and Level
5 to 256 bits security.

9

In addition to the set of parameters of Table ??, we introduce self
chosen smaller parameters listed in Table ??. They do not correspond to
claimed secure instantiations of the scheme but permitted to test some of
our assumptions by computer aided calculations.

Name q m n n0 k k0 γ r0

DAGS_0 24 2 240 15 80 5 4 5

Table 2. Small scale parameters, not proposed in DAGS.

2 Schur products

From now on and unless otherwise speci�ed, the extension degree m will
be equal to 2. This is the context of any proposed parameters in DAGS.

2.1 Product of vectors

The component wise product of two vectors in Fnq is denoted by

a ? b
def
= (a1b1, . . . , anbn).

Next, for any positive integer t we de�ne a?t as

a?t
def
= a ? · · · ? a︸ ︷︷ ︸

t times

.

More generally, given a polynomial P ∈ Fq[z] we de�ne P (a) as the vector
(P (a1), . . . , P (an)). In particular, given a ∈ Fnq2 , we denote by Tr(a) and
N(a) the vectors obtained by applying respectively the trace and the norm
map component by component:

Tr(a)
def
= (a1 + aq1, . . . , an + aqn)

N(a)
def
= (aq+1

1 , . . . , aq+1
n).

Finally, the all one vector (1, . . . , 1), which is the unit vector of the algebra
Fnq with operations + and ? is denoted by 1.

10

2.2 Schur product of codes

The Schur product of two codes A and B ⊆ Fnq is de�ned as

A ?B
def
= 〈a ? b | a ∈ A , b ∈ B〉Fq .

In particular, A ?2 denotes the square code of a code A : A ?2 def
= A ?A .

2.3 Schur products of GRS and alternant codes

The behaviour of GRS and of some alternant codes with respect to the
Schur product is very di�erent from that of random codes. This provides
a manner to distinguish GRS codes from random ones and leads to a
cryptanalysis of GRS based encryption schemes [?,?,?]. Some alternant
codes, namely Wild Goppa codes with extension degree 2 have been also
subject to a cryptanalysis based on Schur products computations [?,?].

Here we recall an elementary but crucial result.

Theorem 4. Let x ∈ Fnqm be a support and y,y′ ∈ Fnqm be multipliers.

Let k, k′ be two positive integers, then

GRSk(x,y) ?GRSk′(x,y
′) = GRSk+k′−1(x,y ? y

′).

Proof. See for instance [?, Proposition 6]. ut

3 Conductors

In this section, we introduce a fundamental object in the attack to follow.
This object was already used in [?,?] without being named. We chose here
to call it conductor. The rationale behind this terminology is explained in
Remark ??.

De�nition 10. Let C and D be two codes of length n over Fq. The con-
ductor of D into C is de�ned as the largest code Z ⊆ Fnq such that

D ?Z ⊆ C . That is:

Cond(D ,C)
def
= {u ∈ Fnq | u ?D ⊆ C }.

Proposition 4. Let D ,C ⊆ Fnq be two codes, then

Cond(D ,C) =
(
D ? C⊥

)⊥
.

Proof. See [?,?]. ut

Remark 2. The terminology conductor has been borrowed from number
theory in which the conductor of two subrings O,O′ of the ring of integers
OK of a number �eld K is the largest ideal P of OK such that P ·O ⊆ O′.

11

3.1 Conductors of GRS codes

Proposition 5. Let x,y ∈ Fnqm be a support and a multiplier. Let k 6 k′

be two integers less than n. Then,

Cond(GRSk(x,y),GRSk′(x,y)) = RSk′−k+1(x).

Proof. Let E denote the conductor. From Proposition ?? and Lemma ??,

E ⊥ = GRSk(x,y) ?GRSn−k′(x,y
⊥) = GRSn−k′+k−1(x,y ? y

⊥).

Note that

y ? y⊥ =

(
1

π′x(x1)
, . . . ,

1

π′x(xn)

)
.

Then, using Lemma ?? again, we get

E = GRSk′−k+1(x, (y ? y
⊥)
⊥
) = RSk′−k+1(x).

ut

Let us emphasize a very interesting aspect of Proposition ??. We con-
sidered the conductor of a GRS code into another one having the same
support and multiplier. The point is that the conductor does not de-
pend on y. Hence the computation of a conductor permits to get rid of
the multiplier and to obtain a much easier code to study: a Reed�Solomon
code.

3.2 An illustrative example : recovering the structure of GRS
codes using conductors

Before presenting the attack on QD�alternant codes, we propose �rst to
describe a manner to recover the structure of a GRS code. This may help
the reader to understand the spirit the attack to follow.

Suppose we know a generator matrix of a code Ck = GRSk(x,y)
where (x,y) are unknown. In addition, suppose that we know a generator
matrix of the subcode Ck−1 = GRSk−1(x,y) which has codimension 1 in
Ck. First compute the conductor

X = Cond(Ck−1,Ck).

From Proposition ??, the conductor X equals RS2(x). This code has
dimension 2 and is spanned by 1 and x. We claim that, from the knowledge
of X , a pair (x′,y′) such that Ck = GRSk(x

′,y′) can be found easily by

12

using techniques which are very similar from those presented further in
� ??.

Of course, there is no reason that we could know both GRSk(x,y)
and GRSk−1(x,y). However, we will see further that the quasi�dyadic
structure permits to �nd interesting subcodes whose conductor may reveal
the secret structure of the code.

3.3 Conductors of alternant codes

When dealing with alternant codes, having an exact description of the
conductors like in Proposition ?? becomes di�cult. We can at least prove
the following theorem.

Proposition 6. Let x,y ∈ Fnq2 be a support and a multiplier. Let r′ > r
be two positive integers. Then,

RSr′−r+1(x) ∩ Fnq ⊆ Cond(Ar′(x,y),Ar(x,y)). (4)

Proof. Consider the Schur product(
RSr′−r+1(x) ∩ Fnq

)
?Ar′(x,y)

=
(
RSr′−r+1(x) ∩ Fnq

)
? (GRSn−r′(x,y

⊥) ∩ Fnq)
⊆ (RSr′−r+1(x) ?GRSn−r′(x,y

⊥)) ∩ Fnq .

Next, using Theorem ??,(
RSr′−r+1(x) ∩ Fnq

)
?Ar′(x,y) ⊆ GRSn−r(x,y

⊥) ∩ Fnq
⊆ Ar(x,y).

The last inclusion is a consequence of Lemma ?? and De�nition ??. ut

3.4 Why the straigthforward generalisation of the illustrative
example fails for alternant codes

Compared to Proposition ??, Proposition ?? provides only an inclusion.
However, it turns out that we experimentally observed that the equality
frequently holds.

On the other hand, even if inclusion (??) was an equality, the attack
described in � ?? could not be straightforwardly generalised to alternant
codes. Indeed, suppose we know two alternant codes with consecutive
degrees Ar+1(x,y) and Ar(x,y). Then, Proposition ?? would yield

RS2(x) ∩ Fnq ⊆ Cond(Ar+1(x,y),Ar(x,y)). (5)

13

Suppose that the above inclusion is actually an equality; as we just said
this is in general what happens. The point is that as soon as x has one
entry in Fq2 \ Fq, then RS2(x) ∩ Fnq is reduced to the code spanned by 1
and hence cannot provide any relevant information.

The previous discussion shows that, if we want to generalise the toy
attack described in �?? to alternant codes, we cannot use a pair of alter-
nant codes with consecutive degrees. In light of Proposition ??, the gap
between the degrees r and r′ of the two alternant codes should be large
enough to provide a non trivial conductor. A su�cient condition for this
is that RSr′−r+1(x) ∩ Fnq is non trivial. This motivates the introduction
of a code we called the norm trace code.

3.5 The norm�trace code

Notation 6. In what follows, we �x α ∈ Fq2 such that Tr(α) = 1. In
particular, (1, α) forms an Fq�basis of Fq2 .

De�nition 11 (Norm trace code). Let x ∈ Fnq2 be a support. The

norm�trace code NT (x) ⊆ Fnq is de�ned as

NT (x)
def
= 〈1,Tr(x),Tr(αx),N(x)〉Fq .

This norm trace code turns out to be the code we will extract from the
public key by conductor computations. To relate it with the previous dis-
cussions, we have the following statement whose proof is straightforward.

Proposition 7. Let x ∈ Fnq2 be a support. Then, for any k > q + 1, we
have

NT (x) ⊆ RSk(x) ∩ Fnq . (6)

Remark 3. It addition to this statement, we observed experimentally that
for 2q + 1 > k > q + 1 inclusion (??) is in general an equality.

3.6 Summary and a heuristic

First, let us summarise the previous discussions.

� If we know a pair of alternant codes Ar(x,y) and Ar′(x,y) such that
q < r′ − r, then Cond(Ar′(x,y),Ar(x,y)) is non trivial since, ac-
cording to Propositions ?? and to (??), it contains the norm�trace
code.

14

� Experimentally, we observed that if q < r′−r < 2q, then, almost every
time, we have

Cond(Ar′(x,y),Ar(x,y)) = NT (x).

� One problem remains: given an alternant code Ar(x,y), how to get
a subcode Ar′(x,y) in order to apply the previous results? This will
be explained in � ?? and ?? in which we show that for quasi�dyadic
alternant codes it is possible to get a subcode D ⊆ Ar(x,y) such that
D ⊆ Ar′(x,y) for some r′ satisfying r′ − r > q + 1.
Moreover, it turns out that Ar′(x,y) can be replaced by a subcode
without changing the result of the previous discussions. This is what
is argued in the following heuristic.

Heuristic 1. In the context of Proposition ??, suppose that q < r− r′ <
2q. Let D be a subcode of Ar′(x,y) such that

(i) dimD · dimAr(x,y)
⊥ > n;

(ii) D 6⊂ Ar′+1(x,y);

(iii) a generator matrix of D has no zero column.

Then, with a high probability,

Cond(D ,Ar(x,y)) = NT (x).

Let us give some evidences for this heuristic. From Proposition ??,

Cond(D ,Ar(x,y)) =
(
D ?Ar(x,y)

⊥
)⊥
.

From (??), we have Ar(x,y)
⊥ = TrFq2/Fq(GRSr(x,y)). Since D is a code

over Fq and by the Fq�linearity of the trace map, we get

D ?Ar(x,y)
⊥ = TrFq2/Fq (D ?GRSr(x,y)) .

Since D ⊆ Ar′(x,y) then, from (??), it is a subset of a GRS code. Namely,

D ⊆ GRSn−r′(x,y
⊥), where y⊥ =

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
.

Therefore, thanks to Theorem ??, we get

D ?Ar(x,y)
⊥ ⊆ TrFq2/Fq

(
GRSn−r′+r−1(x,y ? y

⊥)
)
. (7)

15

Note that D ?Ar(x,y)
⊥ is spanned by dimD · dimAr(x,y)

⊥ generators
which are obtained by computing the Schur products of elements of a
basis of D by elements of a basis of Ar(x,y)

⊥. By (??), the number of
such generators exceeds n. For this reason, it is reasonable to hope that
this Schur product �lls in the target code and that,

D ?Ar(x,y)
⊥ = TrFq2/Fq

(
GRSn−r′+r−1(x,y ? y

⊥)
)
.

Next, we have

y ? y⊥ =

(
1

π′x(x1)
, . . . ,

1

π′x(xn)

)
.

Therefore, using Lemma ??, we conclude that(
D ?Ar(x,y)

⊥
)⊥

= RSr′−r+1(x) ∩ Fnq .

Using Remark ??, we get the result.

Remark 4. Assumption (??) permits to avoid the situation where the con-
ductor could be the sub�eld subcode of a larger Reed�Solomon code. As-
sumption (??) permits to avoid the presence of words of weight 1 in the
conductor that would not be elements of a Reed�Solomon code.

Further discussion on the Heuristic In all our computer experiments, we
never observed any phenomenon contradicting this heuristic.

4 Fundamental degree properties of the invariant

subcode of a QD alternant code

A crucial statement for the attack is:

Theorem 5. Let x,y ∈ Fnq2 be a support and a multiplier. Let s be an

integer of the form s = 2γs0. Suppose that As0(ψG(x),y) is fully non

degenerate (see De�nition ?? and � ?? for notation ψG and y). Then,

(a) As(x,y)
G ⊆ As+|G|−1(x,y);

(b) As(x,y)
G 6⊆ As+|G|(x,y).

Proof. From (??), we have

As(x,y) =

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s

}
∩ Fnq .

16

This code is obtained by evaluation of polynomials of degree up to

n− s− 1 = (2γ(n0 − s0)− 1).

From Theorem ??, the invariant codewords of As(x,y) come from evalu-
ations of polynomials of the form h ◦ψG . Such polynomials have a degree
that is a multiple of degψG = 2γ and hence their degree cannot exceed
2γ(n0−s0−1). Thus, they should lie in Fq2 [z]6n−s−|G| = Fq2 [z]<n−s−|G|+1.
This leads to

As(x,y)
G ⊆

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s−|G|+1

}
∩ Fnq

⊆ As+|G|−1(x,y).

This proves (??).
To prove (??), note that the assumption on As0(ψG(x),y) asserts the

existence of f ∈ Fq2 [z]<n0−s0 such that deg f = n0−s0−1 and f(ψG(x)) ∈
Fn0
q . Thus, f(ψG(x)) ∈ Fnq and deg(f ◦ ψG) = n − s − |G|. Therefore
f(ψ(x)) ∈ As(x,y)

G and As(x,y)
G contains an element of As+|G|−1(x,y)

that is not in As+|G|(x,y). ut

5 Presentation of the attack

5.1 Context

Recall that the extension degree is always m = 2. The public code is the
QD alternant code

Cpub
def
= Ar(x,y),

with a permutation group G of cardinality |G| = 2γ . As in � ??, the code
has a length n = n02

γ , dimension k and is de�ned over a �eld Fq and
q = 2` for some positive integer `. The degree r of the alternant code is
also a multiple of |G| = 2γ and hence is of the form r = r02

γ . We suppose
from now on that the classical lower bound on the dimension k is reached,
i.e. k = n − 2r. This always holds in the parameters proposed in [?]. We
�nally set k0 = k/2γ . In summary, we have the following notation

n = n02
γ , k = k02

γ , r = r02
γ . (8)

17

5.2 The subcode D

We introduce a subcode D of Cpub and prove that its knowledge permits
to compute the norm trace code. This code D is unknown by the attacker
and we will see in � ?? that the time consuming part of the attack consists
in guessing it.

De�nition 12. Suppose that |G| 6 q. We de�ne the code D as

D
def
= Ar+q(x,y)

G .

Remark 5. For parameters suggested in DAGS, we always have |G| 6 q,
with strict inequality for DAGS_1 and DAGS_3 and equality for DAGS_5.

Remark 6. The case q < |G| which never holds in DAGS suggested pa-
rameters would be particularly easy to treat. In such a situation, replacing
possibly G by a subgroup, one can suppose that |G| = 2q. Next, according
to Theorem ??, and Heuristic ??, we would have

Cond((Cpub)
G ,Cpub) = NT (x),

which would provide a very simple manner to compute NT (x).

The following results are the key of the attack. Theorem ?? explains
why this subcode D is of deep interest and how it can be used to recover
the norm�trace code, from which the secret key can be recovered (see
� ??). Theorem ?? explains why this subcode D can be computed in a
reasonable time thanks to the QD structure. Indeed, it shows that even if
D has a large codimension as a subcode of Cpub its codimension in (Cpub)

G

is much smaller. This is why the QD structure plays a crucial role in this
attack.

Theorem 6. Under Heuristic ?? and assuming that Ar+q(x,y)
G
is fully

non degenerate (see De�nition ??), we have

Cond(D ,Cpub) = NT (x).

Proof. It is a direct consequence of Theorem ?? and Heuristic ??. ut

Theorem 7. The code D has codimension 6 2q
|G| = 2`−γ+1 in (Cpub)

G.

Proof. Using Theorem ??, we know that D has the same dimension as
Ar0+

q
|G|

(ψG(x),y). This code has dimension > n0 − 2(r0 + q
|G|). Since

dim (Cpub)
G = k0 = n0 − 2r0, we get the result. ut

Remark 7. Actually the codimension equals 2`−γ+1 almost all the time.

18

Proposal D Codimension in (Cpub)
G

DAGS_1 A240(x,y)
G 4

DAGS_3 A416(x,y)
G 4

DAGS_5 A768(x,y)
G 2

Table 3. Numerical values for the code D

5.3 Description of the attack

The attack can be summarised as follows:

(1) Compute (Cpub)
G ;

(2) Guess the subcode D of (Cpub)
G of codimension 2q

|G| such that

Cond(D ,Cpub) = NT (x);

(3) Determine x from NT (x) and then y from x.

The di�cult part is clearly the second one: how to guess D? We present
two manners to realise this guess.

� The �rst one consists in performing exhaustive search on subcodes of
codimension 2q

|G| of (Cpub)
G .

� The second one consists in �nding both D and NT (x) by solving a
system of equations of degree 2 using Gröbner bases.

The �rst approach has a signi�cant cost but which remains far below
the expected security level of DAGS proposed parameters. For the second
approach, we did not succeed to get a relevant estimate of the work factor
but its practical implementation permits to break DAGS_1 in about 20
minutes and DAGS_5 in less than one minute (see � ?? for further details
on the implementation). We did not succeed to break DAGS_3 parameters
using the second approach. On the other hand the �rst approach would
have a work factor of ≈ 280 for keys with an expected security of 192 bits.

The remainder of this section is devoted to detail the di�erent steps
of the attack.

5.4 First approach, brute force search of D

A �rst way of getting D and then of obtaining NT (x) consists in enu-
merating all the subspaces X ⊆ (Cpub)

G of codimension 2q
|G| until we �nd

one such that Cond(X ,Cpub) has dimension 4. Indeed, for an arbitrary

19

X the conductor will have dimension 1 and be generated by 1, while for
X = D the conductor will be NT (x) which has dimension 4.

The number of subspaces to enumerate is inO(q(2q/|G|)(k0−2q/|G|)) which
is in general much too large to make the attack practical. It is however
possible to reduce the cost of brute force attack as follows.

Using random subcodes of dimension 2 For any parameter set pro-
posed in DAGS, the public code has a rate k/n less than 1/2. Hence, its
dual has rate larger than 1/2. Therefore, according to Heuristic ??, given a
random subcode D0 of D of dimension 2, then Cond(D0,Cpub) = NT (x)
with a high probability.

Thus, one can proceed as follows

� Pick two independent vectors c, c′ ∈ (Cpub)
G at random and compute

Cond(〈c, c′〉,Cpub);
� If the conductor has dimension 4, you probably found NT (x), then
pursue the attack as explained in � ??.

� Else, try again.

The probability that c, c′ ∈ D equals q−
4q
|G| . Therefore, one may have

found NT (x) after O(q
4q
|G|) computations of conductors.

Example 1. The average number of computations of conductors will be

� O(q8) = O(240) for DAGS_1;
� O(q8) = O(248) for DAGS_3;
� O(q4) = O(224) for DAGS_5.

Using shortened codes Another manner consists in replacing the public
code by one of its shortenings. For that, we shorten Cpub = Ar(x,y) at a
set of a = a02

γ positions which is a union of blocks, so that the shortened
code remains QD. We choose the integer a such that the invariant subcode
of the shortened code has dimension 2 + 2q

|G| and hence the shortening of
D has dimension 2. Let I be such a subset of positions. To determine
SI (D), we can enumerate any subspace X of dimension 2 of SI (Cpub)
and compute Cond(X ,SI (Cpub)). In general, we get the trivial code
spanned by the all�one codeword 1. If the conductor has dimension 4 it
is highly likely that we found SI (D) and that the computed conductor
equals NT (xI).

The number of such spaces we enumerate is in O(q
4q
|G|), which is very

similar to the cost of the previous method.

20

5.5 Second approach, solving polynomial system of degree 2

An alternative approach to recover D and NT (x) consists in solving a
polynomial system. We proceed as follows. Since Tr(x) ∈ Cond(D ,Cpub)

and, from Proposition ??, Cond(D ,Cpub) = (D ? Cpub
⊥)
⊥
, then

GD?Cpub
⊥ · Tr(x)> = 0,

where GD?Cpub
⊥ denotes a generator matrix of D ? Cpub

⊥. The above

identity holds true when replacing Tr(x) by Tr(βx) for any β ∈ Fq2 .
Hence,

GD?Cpub
⊥ · x> = 0. (9)

The above identity provides the system we wish to solve. We have two

type of unknowns: the code D and the vector x. Set c
def
= 2q
|G| the codimen-

sion of D in (Cpub)
G . For D , let us introduce (k0 − c)k0 formal variables

U11, . . . , U1,c, . . . , Uk0−c,1, . . . , Uk0−c,c and set

U
def
=

U11 · · · U1,c

...
...

Uk0−c,1 · · · Uk0−c,c

 and G(Uij)
def
=
(
Ik0−c | U

)
·Ginv,

where Ik0−c denotes the (k0−c)×(k0−c) identity matrix andGinv denotes
a k0×n0 generator matrix of (Cpub)

G . It is probable that D has a generator
matrix of the form G(uij) for some special values u11, . . . , uk0−c,c ∈ Fq.
The case where D has no generator matrix of this form is rare and can be
addressed by choosing another generator matrix for (Cpub)

G .
Now, let H be a parity�check matrix of Cpub. A generator matrix

of D ? Cpub
⊥ can be obtained by constructing a matrix whose rows list

all the possible Schur products of one row of a generator matrix of D
by one row of a parity�check matrix of Cpub. Therefore, let R(Uij) be a
matrix with entries in Fq[U1,1, . . . , Uk0−c,c] whose rows list all the possible
Schur products of one row of G(Ui,j) and one row of H. Hence, there is
a specialisation u11, . . . , uk0−c,c ∈ Fq of the variables Uij such that R(uij)
is a generator matrix of D ? Cpub

⊥.
The second set of variables X1, . . . , Xn corresponds to the entries of

x. Using (??), the polynomial system we have to solve is nothing but

R(Uij) ·

X1

...

Xn

 = 0. (10)

21

Reducing the number of variables Actually, it is possible to reduce
the number of variables using three di�erent tricks.

1. Since the code is QD, the vector x is a union of orbits under the action
of the additive group G. Therefore, one can introduce formal variables
A1, . . . , Aγ corresponding to the generators of G. Then, one can replace
(X1, . . . , Xn) by

(T1, T1 +A1, . . . , T1 +A1 + · · ·+Aγ , T2, T2 +A1, . . .). (11)

for some variables T1, . . . , Tn0 .
2. Without loss of generality and because of the 2�transitive action of

the a�ne group on Fq2 , one can suppose that the �rst entries of x are
0 and 1 respectively (see for instance [?, Appendix A]). Therefore, in
(??), one can replace T1 by 0 and A1 by 1.

3. Similarly to the approach of � ??, one can shorten the codes so that D
has only dimension 2, which reduces the number of variables Uij to 2c
and also reduces the length of the support we seek and hence reduces
the number of the variables Ti.

On the structure of the polynomial system The polynomial equa-
tions have all the following features:

� Any equation is the sum of an a�ne and a bilinear form;
� Any degree 2 monomial is either of the form UijAk or of the form
UijTk.

Table ?? lists for the di�erent proposals the number of variables of
type U,A and T of the system when we use the previously described
shortening trick.

Proposal Number of Uij 's Number of Ai's Number of Ti's

DAGS_1 8 3 31

DAGS_3 8 4 27

DAGS_5 4 5 25

Table 4. Number of variables of type U,A and T of the system

22

5.6 Finishing the attack

When the previous step of the attack is over, then, if we used the �rst
approach based on a brute force search of D , we know at least NT (x)
or NT (xI) for some set I of positions. If we used the second approach,
then x is already computed, or at least xI for some set of indexes I. Thus,
there remains to be able to

(1) recover x from NT (x) or xI from NT (xI);
(2) recover y from x or yI from xI ;
(3) recover x,y from xI ,yI .

Recovering x from NT (x) The code NT (x) has dimension 4 over Fq
and is spanned by 1,Tr(x),Tr(αx),N(x). It is not di�cult to prove that

NT (x)⊗ Fq2 = 〈1,x,x?q,x?(q+1)〉,

where NT (x) ⊗ Fq2 denotes the Fq2�linear code contained in Fnq2 and
spanned over Fq2 by the elements of NT (x).

Because of the 2�transitivity of the a�ne group on Fq2 , without loss
of generality, one can suppose that the �rst entry of x is 0 and the second
one is 1 (see for instance [?, Appendix A]). Therefore, after shortening
NT (x)⊗ Fq2 we get a code that we call S , which is of the form

S
def
= S{1}

(
NT (x)⊗ Fq2

)
= 〈x,x?q,x?(q+1)〉Fq2 .

Next, a simple calculation shows that

S ∩S ?2 = 〈x?(q+1)〉.

Since, the second entry of x has been set to 1, we can deduce the value of
x?(q+1).

Remark 8. Actually, both S and NT (x) have a basis de�ned over Fq,
therefore, to get 〈x?(q+1)〉Fq it is su�cient to perform any computation on
codes de�ned over Fq.

Now, �nding x is easy: enumerate the a�ne subspace of NT (x)⊗Fq2
of vectors whose �rst entry is 0 and second entry is 1 (or equivalently,
the a�ne subspace of vectors of S whose �rst entry equals 1). For any
such vector c, compute c?(q+1). If c?(q+1) = x?(q+1), then c equals either
x or x?q. Since Ar(x,y) = Ar(x

?q,y?q) (see for instance [?, Lemma 39]),
taking x or x?q has no importance. Thus, without loss of generality, one
can suppose x has been found.

23

Recovering y from x This is very classical calculation. The public code
Cpub is alternant, and hence is well�known to have a parity�check matrix
de�ned over Fq2 of the form

Hpub =

y1 · · · yn

x1y1 · · · xnyn
...

...

xr−11 y1 · · · xr−1n yn

 . (12)

Denote by Gpub a generator matrix of Cpub. Then, since the xi's are
known, then the y′is can be computed by solving the linear system

Hpub ·G>pub = 0.

Recovering x, y from xI , yI After a suitable reordering of the indexes,
one can suppose that I = {s, s+1, . . . , n}. Hence, the entries x1, . . . , xs−1
of x and y1, . . . , ys−1 are known. Set I ′ def

= I \ {s}. Thus, let G(I ′) be
a generator matrix of Ar(xI′ ,yI′), which is nothing by SI′ (Cpub). Using
(??), we have

y1 · · · ys

x1y1 · · · xsys
...

...

xr−11 y1 · · · xr−1s ys

 ·G(I ′) = 0.

In the above identity, all the x′is and y
′
is are known but xs, ys. The entry

ys can be found by solving the linear system(
y1 · · · ys

)
·G(I ′) = 0.

Then, xs can be deduced by solving the linear system(
x1y1 · · · xsys

)
·G(I ′) = 0.

By this manner, we can iteratively recover the entries xs+1, . . . , xn and
ys+1, . . . , yn. The only constraint is that I should be small enough so that
SI (Cpub) is nonzero. But this always holds true for the choices of I we
made in the previous sections.

24

5.7 Comparison with a previous attack

First, let us recall the attack on Wild Goppa codes over quadratic ex-
tensions [?]. This attack concerns some subclass of alternant codes called
wild Goppa codes. For such codes a distinguisher exists which permits to
compute a �ltration of the public code. Hence, after some computations,
we obtain the subcode Ar+q+1(x,y) of the public code Ar(x,y). Then,
according to Heuristic ??, the computation of a conductor permits to get
the code NT (x). As soon as NT (x) is known, the recovery of the se-
cret is easy. Note that, the use of the techniques of � ?? can signi�cantly
simplify the end of the attack of [?] which was rather technical.

We emphasise that, out of the calculation of NT (x) by computing
a conductor which appears in our attack so that in [?], the two attacks
remain very di�erent. Indeed, the way one gets a subcode whose conductor
into the public code provides NT (x) is based in [?] on a distinguisher
which does not work for general alternant codes which are not Goppa
codes. In addition, in the present attack, the use of the permutation group
is crucial, while it was useless in [?].

6 Complexity of the �rst version of the attack

As explained earlier, we have not been able to provide a complexity anal-
ysis of the approach based on polynomial system solving. In particular
because the Macaulay matrix in degree 2 of the system turned out to
have a surprisingly low rank, showing that this polynomial system was
far from being generic. Consequently, we limit our analysis to the �rst
approach based on performing a brute force search on the subcode D .

Since we look for approximate work factors, we will discuss an upper
bound on the complexity and not only a big O.

6.1 Complexity of calculation of Schur products

A Schur product A ? B of two codes A ,B of length n and respective
dimensions ka, kb is computed as follows.

1. Take bases a1, . . . ,aka and b1, . . . , bkb of A and B respectively and
construct a matrix M whose rows are all the possible products ai ?bj ,
for 1 6 i 6 ka and 1 6 j 6 kb. This matrix has kakb rows and n
columns.

2. Perform Gaussian elimination to get a reduced echelon form of M .

25

The cost of the computation of a reduced echelon form of a s× n matrix
is nsmin(n, s) operations in the base �eld. The cost of the computation
of the matrix M is the cost of kakb Schur products of vectors, i.e. nkakb
operations in the base �eld. This leads to an overall calculation of the
Schur product equal to

nkakb + nkakbmin(n, kakb)

operations in the base �eld. When kakb > n, the cost of the Schur product
can be reduced using a probabilistic shortcut described in [?]. It consists
in computing an n×n submatrix ofM by choosing some random subset of
products ai ?bj . This permits to reduce the cost of computing a generator
matrix in row echelon form of A ?B to 2n3 operations in the base �eld.

6.2 Cost of a single iteration of the brute force search

Computing the conductorCond(X ,Cpub) consists in computing the code

(X ? Cpub
⊥)
⊥
. Since our attack consists in computing such conductors for

various X 's, one can compute a generator matrix of Cpub
⊥ once for good.

Hence, one can suppose a generator matrix for Cpub
⊥ is known. Then,

according to � ??, the calculation of a generator matrix of X ? Cpub
⊥

costs at most 2n3 operations in Fq.

6.3 Complexity of �nding D and NT (x)

According to � ??, the average number of iterations of the brute force

search is q2CodimD , that is q
4q
|G| . Thus, we get an overall cost of the �rst

step bounded above by

2n3q
4q
|G| operations in Fq.

Since, n = Θ(q2), we get a complexity in O(n
3+ 2q

|G|) operations in Fq for
the computation of NT (x).

6.4 Complexity of deducing x, y from NT (x)

A simple analysis shows that the �nal part of the attack is negligible
compared to the previous step. Indeed,

� the computation of NT (x)?2 costs O(n2) operations in Fq (because
of Remark ??, one can perform these computations over Fq) since the
code has dimension 4;

26

� the computation of NT (x)?2 ∩NT (x) boils down to linear algebra
and costs O(n3) operations in Fq;

� The enumeration of the subset of NT (x) ⊗ Fq2 of elements whose
�rst entry is 0 an second one is 1 and computation of their norm
costs O(q4n) = O(n3) operations in Fq2 . Indeed the a�ne subspace
of NT (x) ⊗ Fq2 which is enumerated has dimension 2 over Fq2 and
hence has q4 elements, while the computation of the component wise
norm of a vector costs O(n) operations assuming that the Frobenius
z 7→ zq can be computed in constant time in Fq2 .

� The recovery of y from x boils down to linear algebra and hence
can also be done in O(n3) operations in Fq2 . If we have to recover
x,y from xI ,yI , it can be done iteratively by solving a system of
a constant number of equations, hence the cost of one iteration is in
O(n2) operations in Fq2 .

Thus, the overall cost remains in O(n3) operations in Fq2 .

6.5 Overall complexity

As a conclusion, the attack has an approximate work factor of

2n3q
4q
|G| operations in Fq. (13)

6.6 Approximate work factors of the �rst variant of the attack
on DAGS parameters

We assume that operations in Fq can be done in constant time. Indeed,
the base �elds of the public keys of DAGS proposal are F32 and F64. For
such a �eld, it is reasonable to store a multiplication and inversion table.

Therefore, we list in Table ?? some approximate work factors for
DAGS according to (??). The second column recalls the security levels
claimed in [?] for the best possible attack. The last column gives the
approximate work factors for the �rst variant of our attack.

Name Claimed security level Work factor of our attack

DAGS_1 128 bits ≈ 270

DAGS_3 192 bits ≈ 280

DAGS_5 256 bits ≈ 258

Table 5. Work factors of the �rst variant of the attack

27

7 Implementation

Tests have been done using Magma [?] on an Intel R© Xeon 2.27 GHz.
Since the �rst variant of the attack had too signi�cant costs to be

tested on our machines, we tested it on the toy parameters DAGS_0. We
performed 20 tests, which succeeded in an average time of 2 hours.

On the other hand, we tested the second variant based on solving a
polynomial system on DAGS_1, _3 and _5. We have not been able to break
DAGS_3 keys using this variant of the attack, on the other hand about 100
tests have been performed for DAGS_1 and DAGS_5. The average running
times are listed in Table ??.

Name Claimed security level Average time

DAGS_1 128 bits 19 mn
DAGS_5 256 bits < 1 mn

Table 6. Average times for the second variant of the attack.

Acknowledgements

The authors are supported by French Agence nationale de la recherche

grants ANR-15-CE39-0013-01 Manta and ANR-17-CE39-0007 CBCrypt.
Computer aided calculations have been performed using softwareMagma
[?]. The authors express their deep gratitude to Jean-Pierre Tillich and
Julien Lavauzelle for very helpful comments.

28

