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Abstract. The security analysis of real-world protocols involves reduc-
tion steps that are conceptually simple but still have to account for many
protocol complications found in standards and implementations. Taking
inspiration from universal composability, abstract cryptography, process
algebras, and type-based verification frameworks, we propose a method
to simplify large reductions, avoid mistakes in carrying them out, and
obtain concise security statements.

Our method decomposes monolithic games into collections of stateful
packages representing collections of oracles that call one another using
well-defined interfaces. Every component scheme yields a pair of a real
and an ideal package. In security proofs, we then successively replace each
real package with its ideal counterpart, treating the other packages as
the reduction. We build this reduction by applying a number of algebraic
operations on packages justified by their state separation. Our method
handles reductions that emulate the game perfectly, and leaves more
complex arguments to existing game-based proof techniques such as the
code-based analysis suggested by Bellare and Rogaway. It also facilitates
computer-aided proofs, inasmuch as the perfect reductions steps can be
automatically discharged by proof assistants.

We illustrate our method on two generic composition proofs: a proof
of self-composition using a hybrid argument; and the composition of
keying and keyed components. For concreteness, we apply them to the
KEM-DEM proof of hybrid-encryption by Cramer and Shoup and to the
composition of forward-secure game-based key exchange protocols with
symmetric-key protocols.

1 Introduction

Code-based game-playing by Bellare and Rogaway [§] introduces pseudo-
code as a precise tool for cryptographic reasoning. Following in their foot-
steps, we would like to reason about games using code, rather than inter-
active Turing machines [48]. Our code uses state variables and function
calls, hiding the details of operating on local tapes and shared tapes. Func-
tion calls enable straightforward code composition, defined for instance



by inlining, and enjoy standard but useful properties, such as associativ-
ity. In the following, we refer to code units A, R and G as code packages. If
adversary A calls reduction R and R calls game G, we may see it either as
code A-calling-R that calls code G, or as code A calling code R-calling-G.
This form of associativity is used to define reductions, e.g., in abstract
cryptography and in Rosulek’s book The Joy of Cryptography [44].

As a first example, consider indistinguishability under chosen plain-
text attacks, coded as a game IND-CPA® with secret bit b, and let A
be an adversary that interacts with this game by calling its encryption
oracle, which we write A o IND-CPA. As a construction, consider a sym-
metric encryption scheme based on a pseudorandom function (PRF). We
can decompose IND-CPA? into some corresponding wrapper MOD-CPA that
calls PRF?, where b now controls idealization of the PRF. The equality
IND-CPA® = MOD-CPA o PRF® can be checked syntactically (and can be
automatically discharged by proof assistants). IND-CPA security follows
from PRF security using MOD-CPA as reduction:

A o(MOD-CPA) o PRF” = (A o MOD-CPA) o PRF’.

The extended version of this paper [I5] presents this example in more
details, including a discussion of our definitional choices. In particular,
we encode all games as decisional games between a real game and an
ideal game, following the tradition of [18], [35] and [12].

KEM-DEM. Our second example, the composition of a key encapsula-
tion mechanism (KEM) with a one-time deterministic encryption scheme
(DEM), involves associativity and interchange, another form of code re-
arrangement (defined in Section[2). Cramer and Shoup [20] show that the
composition of a KEM and a DEM that are both indistinguishable under
chosen ciphertext attacks (IND-CCA) results in an IND-CCA public-
key encryption scheme. We give a new formulation of their proof. While
Cramer and Shoup consider standard IND-CCA security, we additionally
require ciphertexts to be indistinguishable from random ($-IND-CCA-
security, defined in Section . As sampling random strings is a key-
independent operation, this makes the ideal game behaviour closer to
an ideal functionality.

We first reduce to the security of the KEM, replacing the encapsulated
KEM key with a uniformly random key, then we reduce to the security of
the DEM, which requires such a key. To facilitate these two reductions and
analogously to the previous example, we decompose the PKE-CCA game
for public-key encryption into a wrapper MOD-CCA that calls the games



for KEM and DEM security. That is, we use a parallel composition of
the KEM and the DEM game. As the KEM and the DEM share the
encapsulated KEM key, we need to enable state-sharing between both
games. We achieve this by also decomposing the KEM and DEM security
games into two packages such that they both contain a so-called KEY
package that stores the shared key.

The KEM Game. Fig. depicts the decomposed $-IND-CCA KEM game
using a KEY package (also see page Def. E[) The formal semantics of the
graph-based notation of package composition is introduced in Section

The $-IND-CCA KEM game allows the adversary to make a KEMGEN
query to initialize the game as well as encapsulation queries ENCAP and
decapsulation queries DECAP. Upon receiving an encapsulation query
ENCAP, the KEM package makes a SET(k) query to KEY to store the real
encapsulation key k, if the bit b is 0. In turn, if the bit b is 1, the KEM pack-
age makes a GEN query to the KEY package that samples a key uniformly
at random.

In standard formulations of KEM security, the adversary not only
receives an encapsulation, but also the encapsulated key (or a random
key, if b = 1) as an answer to ENCAP. In our decomposed equivalent
formulation, the adversary can access the encapsulated key (or a random
key, if b = 1) via a GET query to the KEY package (also see page
Definition [13| for the $-IND-CCA KEM game).

The DEM Game. Fig. depicts the decomposed $-IND-CCA DEM game
that also contains a KEY package. Here, the adversary can ask a GEN
query to the KEY package which induces the KEY package to sample a
uniformly random key that the DEM package obtains via a GET query to
the KEY package. Note that in the DEM game, the adversary only has
access to the GEN oracle of the KEY package, but neither to SET nor to
GET. Moreover, in the DEM game, the adversary can make encryption
and decryption queries (see page Definition for the definition of
$-IND-CCA security for DEMs).

KEM-DEM security. Recall that we prove that the KEM-DEM con-
struction is a $-IND-CCA secure public-key encryption scheme. Using
the packages KEM, DEM and KEY, we now write the $-IND-CCA security
game for public-key encryption in a modular way, see Figure 2| In the
extended version of this paper [15] we prove via inlining, that the modu-
lar game in Figure is equivalent to the monolithic $-IND-CCA game
for public-key encryption with secret bit 0 and that the modular game in
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Fig. 1: Decomposed KEM and DEM games

Figure [2¢] is equivalent to the monolithic $-IND-CCA game for public-key
encryption with secret bit 1.

Thus, we first idealize the KEM package and then idealize the DEM
package. Technically, this works as follows. Starting from the composition
in Fig. we lengthen the edges of the graph such that the KEM® and KEY
packages are on the right side of a vertical line (see Fig. . Analogously
to the first example, we use associativity (and additional rules, explained
shortly) to reduce to the security of KEM by noticing that the packages
on the left side of the vertical line call the packages on the right side of
the vertical line, where the latter correspond to the KEM security game.

Reasoning on the graph corresponds to reasoning on compositions of
packages, defined via the sequential operator o and the parallel compo-
sition operator, see Section [2l The lengthening of edges corresponds to
inserting forwarding packages, denoted identity ID. The aforementioned
interchange rule then allows to formally interpret the vertical line in the
graph as a sequential composition of the packages on the left side of the
line with the packages on the right side. For a graphical depiction of the
identity rule and the interchange rule, see Section

After applying the KEM assumption (which modifies KEM® to KEM!),
we contract the graph which, again, corresponds to applying the inter-
change rule and then removing IDs, see Fig. Via the analogous mech-
anism, we stretch the graph edges such that the DEM? and KEY appear on
the right side of a vertical line, see Fig.[2d] We apply the DEM assumption
and then contract the graph to obtain Fig. as desired.

Contents. §7 Proof methodology. In this section, we set up the under-
lying code framework and define sequential and parallel composition. We
specify rules to operate on package compositions such as the aforemen-
tioned associativity, interchange and identity rules. Those rules enable the
graphical interpretation as a call graph which we explain in Section [2.2
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Fig. 2: KEM-DEM Proof.

ﬁ KEY package composition. We introduce keying games (such as the
KEM game) and keyed games (such as the DEM game) which both con-
tain a KEY package, introduced in this section. In a single key lemma we
prove indistinguishability properties of composed keyed and keying pack-
ages. A core argument in the proof of the lemma is that the idealization of
the keying game leads to only calling the GEN oracle. As keyed games rely
on uniformly random keys, we model their security formally by inserting
an identity package IDggn that only forwards the GEN oracle. Based on
Section we maintain a coherent mapping to the graphical notation in
which accessible oracles are simply labels on edges.

§4| KEM-DEM. We provide the details of the KEM-DEM construction
and proof discussed earlier. In particular, the security reduction is a
straightforward application of the single key lemma.

§9 Multi-Instance Packages and Composition. In this section, we general-
ize to the multi-instance setting and carry out a multi-instance-to-single-
instance composition proof. We then build on the multi-instance lemma
to obtain multi-instance version of the single key lemma.



Avoiding multi-to-single instance reductions is one of the motivations

of composition frameworks (see below). Hence, we see it as a sanity check
that our proof methodology captures multi-to-single instance reductions.
Note that also in the game-based setting, general multi-instance to single-
instance reductions for classes of games have been provided before (see,
e.g., Bellare, Boldyreva and Micali [3]).
§6 Composition of forward-secure key exchange. To showcase our key-
composition techniques in the multi-instance setting, we re-prove a com-
position theorem for forward-secure game-based key exchange and arbi-
trary symmetric-key based protocols such as secure channels. This result
was proven in Brzuska, Fischlin, Warinschi, and Williams [I7/14] and be-
comes a straightforward application of the multi-instance key lemma. Our
results are closely related to composition results very recently shown in
the framework of CryptoVerif [13].

Limitations and Challenges. Our method considers distinguishing
games for single-stage adversaries [42], that is, we do not consider games
where the adversary is split into separate algorithms whose communica-
tions are restricted. Although suitable extensions might exist (e.g., by
extending adversaries into packages that can call each other), we chose
to restrict our current method to the simpler single-stage setting.

Another apparent restriction is that we encode all security properties
via indistinguishability. Search problems such as strong unforgeability
can also be encoded via indistinguishability. While the encoding might
seem surprising when not used to it, at a second thought, an appropriate
encoding of an unforgeability game also simplifies game-hopping: Imagine
that we insert an abort condition whenever a message is accepted by
verification that was not signed by the signer. This step corresponds to
idealizing the verification of the signature scheme so that it only accepts
messages that were actually signed beforeﬁ

A challenge that all cryptographic works on real-world protocols face
is to decompose a protocol that does not inherently have a modular struc-
ture into cryptographic building blocks. As demonstrated by [32J30/11]
this can be done even for archaic protocols such as TLS. Our method is
influenced by the insights of the miTLS project to allow for the necessary
flexibility.

Related Techniques. Our approach is inspired by important concep-
tual works from cryptography and programming language. In particular,

4 CryptoVerif [12] also encodes authentication properties as indistinguishability.



we would like to acknowledge the influences of Canetti’s universal com-
posability framework (UC) [I8], Renner’s and Maurer’s work on random
systems and abstract cryptography [37)36], process algebras, such as the
m-calculus of Milner, Parrow, and Walker [39], and type-based verification
frameworks used, e.g., to verify the TLS protocol [10]. We now discuss
these influences in detail.

Cryptographic Proof Frameworks. Composable proofs in the pen-and-
paper world as pioneered by Backes, Pfitzmann, Waidner and by Canetti
have a long history full of rich ideas [I/IR8334T26/38/27/49], such as con-
sidering an environment that cannot distinguish a real protocol from an
ideal variant with strong security guarantees.

Likewise, Maurer’s and Renner’s work on random systems, abstract
cryptography and constructive cryptography [37U3436)35] inspired and
encouraged our view that a more abstract and algebraic approach to
cryptographic proofs is possible and desirable. Several of our concepts
have close constructive cryptography analogues: for instance, our use of
associativity in this paper is similar to composition-order independence
in Maurer’s frameworks [35]. Sequential and parallel composition also
appears in cryptographic algebras. An ambitious expression of the idea
is found in [36] Section 6.2]. Abstract cryptography has an associativity
law and neutral element for sequential composition and an interchange
law for parallel composition. The same line of work [36/35] introduces a
distinguishing advantage between composed systems and makes use of
transformations that move part of the system being considered into and
out of the distinguisher.

Our focus is not on definitions but on writing game-based security
proofs. As such we are also influenced by game-based composition works,
e.g., Brzuska, Fischlin, Warinschi, and Williams [I7]. We aim to facilitate
security proofs for full-fledged standardized protocols [28/32I23]19]. Such
proofs typically involve large reductions relating a complex monolithic
game to diverse cryptographic assumptions through an intricate simula-
tion of the protocol.

Language-Based Security and Cryptography. Algebraic reasoning is at
the core of process calculi such as the w-calculus by Milner, Parrow and
Walker [39]. They focus on concurrency with non-determinism, which
is also adequate for symbolic reasoning about security protocols. Subse-
quently, probabilistic process algebras have been used to reason compu-
tationally about protocols, e.g., in the work of Mitchell, Ramanathan,
Scedrov, and Teague [40] and the computational indistinguishability logic



(CIL) of Barthe, Crespo, Lakhnech and Schmidt [3]. Packages can be
seen as an improvement of CIL oracle systems, with oracle visibility and
associativity corresponding to the context rules of CIL.

Monadic composition, a generalisation of function composition to ef-
fectful programs, is an central principle of functional languages such as
Haskell, F¥, and F* [29/46/45]. Associativity is also used by Mike Rosulek
in his rich undergraduate textbook draft The Joy of Cryptography to
make the cryptographic reduction methodology accessible to undergrad-
uate students with no background in complexity theory [44]. Our concept
of packages is inspired by module systems in programming languages such
as F*, OCaml, SML (see e.g. Tofte [47]). Our oracles similarly define a
public interface for calling functions that may share private state.

Existing techniques for overcoming the crisis of rigour in provable se-
curity as formalised by Bellare and Rogaway [8] and mechanised in Easy-
crypt [4] have focused on the most intricate aspects of proofs. Easycrypt
supports a rich module system similar to the ones found in functional
programming languages [2] (including parametric modules, i.e. functors),
but it has not yet been used to simplify reasoning about large reductions
in standardized protocols.

The closest to our idea of package-based reductions is the modular
code structure of miTLS, an cryptographically verified implementation of
TLS coded in F* [25JT0/T1I22]. Fournet, Kohlweiss and Strub [25] show
that code-based game rewriting can be conducted on actual implementa-
tion code, one module at a time, with the rest of the program becoming
the reduction for distinguishing the ¢deal from the real version of the
module. Packages are simpler than F* modules, with interfaces consist-
ing just of sets of oracle names, whereas F* provides a rich type system
for specifying module interfaces and verifying their implementations.

Our method draws from both formal language techniques and pen-
and-paper approaches for cryptographic proofs. We see facilitating the
flow of information between the two research communities as an impor-
tant contribution of our work. In this paper, we use pseudo-code, treat-
ing the concrete syntax and semantics of our language as a parameter.
This simplifies our presentation and make it more accessible to the cryp-
tographic community. Our method can be instantiated either purely as
a pen-and-paper method or via using a full-fledged programming lan-
guage, equipped with a formal syntax and operational semantics. The
latter might also allow the development of tools for writing games and
automating their proofs.



2 Proof Methodology

As discussed in the introduction, we suggest to work with pseudo-code in-
stead of Turing machines as a model of computation and thus, this section
will start by providing a definition of code. We then continue to define
functions and function calls (to probabilistic and stateful functions), also
known as oracles and oracle calls in the cryptographic literature. We will
then collect several such functions (oracles) into a package, and when
the package itself does not make any function calls, we call a package
closed or a game. We then define sequential composition of 2 packages,
where the first package calls functions (oracles) defined by the second
package. Moreover, we define parallel composition which allows to take
the functions defined by two packages and to take their union.

Then, we move to more advanced packages and algebraic rules that
allow to implement the “moving to the right” operation that we hinted
to in the introduction.

2.1 Composing Oracle Definitions

While we advocate to work with pseudo-code, we do not define a par-
ticular language, but rather parametrize our method by a language for
writing algorithms, games, and adversaries. We specify below the proper-
ties of the syntax and semantics of any language capable of instantiating
our approach. We first describe our pseudo-code and give a probabilistic
semantics to whole programs, then we explain our use of functions for
composing code.

Definition 1 (Pseudo-Code). We assume given sets of values v,...,
local variables x,y, ..., expressions e, state variables a,T (uppercase de-
notes tables),. .., and commands c.

Values provide support for booleans, numbers, and bitstrings. Expres-
stons provide support for operations on them. FExpressions may use local
variables, but not state variables.

Commands include local-variable assignments x < e, sampling from
a distribution x <—s D, state updates T[x] < e, sequential compositions
¢;d, and return e for returning the value of e. We write fv(c) for the
state variables accessed in c. We assume given default initial values for
all state variables, e.g. T < 0.

We write Pr[v < c] for the probability that command c returns v. (We
only consider programs that always terminate.) We assume this probability
is stable under injective renamings of local variables and state variables.



For brevity, we often write commands with expressions that depend
on the current state, as a shorthand for using intermediate local variables
for reading the state, e.g. we write T'[z] - T[z] + 1 as a shorthand for
t < T[z];T[z] + t+ 1.

Definition 2 (Functions). We assume given a set of names f,... for
functions. We let O range over function definitions of the form f(z) — c.
and write 2 = {fi(x;) — ¢;i}tiz1.n for a set of n function definitions
with distinct function names. We write dom(S2) for the set of names
{f1,..., fn} defined in 2 and X (£2) for the set of state variables accessed
in their code.

We extend commands with function calls, written y < f(e). We write
fn(c) for the set of function names called in c, and similarly define fn(O)
and fn(£2). We say that a term is closed when this set is empty.

We interpret all function calls by inlining, as follows: given the def-
inition f(x) — c;return €, the call y < f(e) is replaced with c;y « €
after replacing x with e in the function body. We write inline(c, £2) for
the code obtained by inlining all calls to the functions f1, ... f, defined
by 2 in the command c. Similarly, we write inline(£2, §2) for the set of
definitions obtained by inlining all calls to functions in {2 into the code
of the definitions of (2'.

We consider function definitions up to injective renamings of their
local variables.

Packages. We now introduce the general definition of packages as collec-
tions of oracles that subsume adversaries, games and reductions. Packages
are sets of oracles {2s defined above. Intuitively, we will treat the state
variables of their oracles as private to the package, i.e., the rest of the
code only get oracle access. Looking ahead to the composition of packages
we endow each package with an output interface consisting of the oracles
names that it defines and an input interface consisting of the oracles
names that it queries.

Definition 3 (Packages). A package M is a set of function definitions {2
(its oracles) up to injective renamings of its state variables X(§2).

We write in(M) = fn({2) for its input interface and out(M) = dom({2)
for its output interface.

We disallow internal calls to prevent recursion. Technically, the disal-
lowing of internal calls is captured (a) by the input interface of a package,
since this input provides all oracles that are called by the oracles in {2,
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and (b) by the Def. [4] of sequential composition that specifies that oracle
calls are instantiated by the oracles of another package.

We often consider families of oracles O and packages M/ parametrized
by II, treating parameters as symbolic values in their code. We usually
omit parameters and refer to oracles and packages by their name, unless
context requires further clarification. In particular, we write in(M7) only
if the input interface differs for different parameters; out(M) never depends
on the parameters.

Package composition. We say that M matches the output interface of M
iff in(M) C out(M). When composing two matching packages M o M| we
inline the code of all oracles of M’ called by oracles in M, as specified in
Definition [21

Definition 4 (Sequential Composition). Given two packages M with

oracles 2 and M with oracles 2" such that M matches M and X(£2) N

X(82") =0, their sequential composition MoM' has oracles inline(£2, £2).
Thus, we have out(MoM') = out(M) and in(MoM') = in(M).

Uniqueness. When describing a package composition, one cannot use the
same package twice, e.g., it is not possible to have compositions such as
(MoM’ oM). Note that this is a fundamental restriction, since it is unclear
how to define the state of such a composition, since there would be copies
of pointers to the same state (a.k.a. aliases).

Lemma 1 (Associativity). Let My, Mj, My such that in(Myg) C out(M;)
and in(M;) C out(M2). We have (MyoM;) oMy = Mgo(M; oMg).

Proof outline. We rename the local variables and state variables of the
three packages to prevent clashes, then unfold the definition of sequential
compositions by inlining, and rely on the associativity of their substitu-
tions of function code for function calls.

Identity packages. Some proofs and definitions make one or more oracles
of a package unavailable to the adversary, which is captured by sequential
composition with a package that forwards a subset of their oracle calls:

Definition 5 (Identity Packages). The identity package IDx for the
names X has oracles {f(x) — r < f(x);return r }¢cx.

Hence, for X C out(M), the package IDx oM behaves as M after deleting
the definitions of oracles outside X. In particular, the next lemma gives
some identity compositions that do not affect a package.

11



Lemma 2 (Identity Rules). For all packages M, we have M = IDy4(w) © M
and M = Mo IDin() -

Proof outline. By definition of sequential composition and basic proper-
ties of substitutions, we obtain the following from IDg¢q) o M:
We substitute ‘f(z) — ¢;returnr’ in ‘f(z) — r « f(z);return r’ and
yield ‘f(z) + ¢;r < r;return ’ which is equivalent to ‘f(z) — c¢; return r’.
Analogously, for Mo IDj,ay):
We substitute ‘f(z) — r « f(z);return s’ in ' < f(z) and yield
‘r < f(x);r" < r’ which is equivalent to ‘r’ + f(z) 0
We now define parallel composition, which is essentially a disjoint
union operator that takes two packages and builds a new package that
implements both of them in parallel. It is important to note that only the
output interfaces of M and M need to be disjoint, while they can potentially
share input oracles. This feature allows for parallel composition of several
packages that use the same input interface.

Definition 6 (Parallel Composition). Given two packages M with or-
acles 2 and M with oracles 2" such that out(M) Nout(M) = and X(£2)N
2($2) =0, their parallel composition g (alternatively (MM')) has oracles
2w (2. Thus, out(s7) = out(M) Wout(M) and in(3) = in(M) Uin(M).
(This composition may require preliminary renamings to prevent clashes
between the state variables of M and M'.)

Lemma 3. Parallel composition is commutative and associative.

The proof of these properties directly follows from our definition of pack-
ages. Associativity enables us to write n-ary parallel compositions of pack-
ages. Next, we show that sequential composition distributes over parallel
composition. (The conditions in the lemma guarantee that the statement
is well defined.)

Lemma 4 (Interchange). For all packages Mg, M1, My, Mj, if out(Mo) N
out(My) = 0, out(My) Nout(M}) = 0, out(Mg) C in(M) and out(M;) C in(M)),
then

Mo o M6 B Mo OM6

M M, MjoM;’

Proof outline. This equality follows from our definition, relying on the
property that function-call inlining applies pointwise to each of the oracle
definitions in the 3 sequential compositions above.

12



2.2 Graphical Representation of Package Composition

Writing fully-precise package compositions can be tedious. Recall the
KEM-DEM proof of Fig. |2} the step from (a) to (b) corresponds to ap-
plying a mix of interchange and identity rules:

KEMC 1D o KEM” m ke
CCA© 5 OKEY | =cCAO | ——— OKEY | = cCAo | | —5 0 —— | OKEY
DEM pEMO 0 ID pEMO 1D

Instead of writing such steps explicitly, we propose a graphical repre-
sentation of package composition that allows us to reason about compo-
sitions “up to” applications of the interchange, identity and associativity
rules.

From terms to graphs lIdentity packages IDg S
map to edges, one for each oracle in the set S. R
Other packages map to a node labelled with
the package name. Each output oracle of the out(A) in(A)
package maps to an incoming edge of the node, 4’ A %
labelled with the oracle name. Similarly, input ~— —
oracles map to outgoing edges.

Sequential composition AoB
simply consists of merging the out-  ©ut(4) — in(A)J_\ in(B) .
going edges of A with the incom- : A : B :
ing edges of B with the same label. " " >

Note that in this process, some of
the incoming edges of B may be dropped, i.e. A may not use all of the
oracles exported by B.

The parallel composition of A and B
is simply the union of the graphs con- out(4) in(A)
structed from A and B. By definition of

-
parallel composition, out(A) Nout(B) = ; A \ g Nin(B)
: B :
- J

(), while input oracles may be used both
by A and B. We merge shared input
edges (i.e. unconnected outgoing edges)
in the resulting graph to capture this  out(B) in(B)
sharing.

From graphs to terms By inductive application of the above 3 rules, one
can construct a graph representing any term. However, some information
is lost in the process: most importantly, the order in which sequential
and parallel compositions are applied. For instance, consider the left-hand
side and right-hand side of the interchange rule:

13



out(A) in(C)

both terms map to the same
graph. This is by design, as we
intend to represent terms modulo
interchange. By drawing explicit
boxes around parallel and se-
quential compositions, it is possi-
ble to ensure that a graph can be
interpreted unambiguously as a
term. For instance, the figure on
the right shows how to depict the
interchange rule on graphs with
boxes.

out(B)[ _— (B) ____| in(D)

out(A) in(C)

out(B)| _ |in(B)] ____ | in(D)

2.3 Games and Adversaries

Games A game is a package with an empty input interface. We model
security properties of a cryptographic scheme as indistinguishability be-
tween a pair of games, usually parameterized by a bit b € {0,1} (which
is equivalent to a single game that draws a bit and then runs one of the
two games at random.).

Adversaries. An adversary A is a package with output interface {run}
that returns a bit 0 or 1. We model the adversary as a package whose
input interface is equal to the set of names of the oracles of the game that
the adversary is meant to interact with.

Next, we define games and adversaries such that their composition
A oG be a closed package of the form R = {run() — ¢;return g}.

Since Definition [I| defines our probabilistic semantics only on com-
mands, we first extend it to such closed packages, defining Pr[1 < R] as
Pr[l < ¢;return g|. (The command ¢;return g is the ‘top-level’ code
g < run(); return g after inlining the definition of run in R.)

Definition 7 (Games). A game is a package G such that in(G) = 0. An
adversary against G is a package A such that in(A) = out(G) and out(A) =
{run}. A game pair consists of two games G and G that define the same
oracles: out(G?) = out(G'). Naturally, a game G® with a binary parameter
b defines a game pair. We thus use the two notions interchangeably.

We now define distinguishing advantages. Note that we operate in
the concrete security setting as it is more adequate for practice-oriented
cryptography and therefore only define advantages rather than security
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in line with the critique of Rogaway [43], Bernstein and Lange [9]. Our
ideas can be transferred analogously to the asymptotic setting.

Definition 8 (Distinguishing Advantage). The advantage of an ad-
versary A against a game pair G is

ea(A) = ‘1%[1  A0G"| —Pr[1+ Aoc!]].

In the rest of the paper, we may refer to the advantage function €g in this
definition by writing G° 2 Gl As an example, we restate below the usual
triangular equality for three games with the same oracles.

Lemma 5 (Triangle Inequality). Let F, G and H be games such that
€1 €2 €3
out(F) = out(G) = out(H). IfF =G, G H, and F = H, then e3 < €1 + €.

The triangle inequality helps to sum up game-hops. Many game-hops will
exploit simple associativity, as the following lemma illustrates.

Lemma 6 (Reduction). Let G be a game pair and let M be a package
such that in(M) C out(G). Let A be an adversary that matches the output
interface of M, then for both b € {0,1}, the adversary D := AoM satisfies

Pr[l(—Ao(Mon)} :Pr[l%Don].

e(A
As a corollary, we obtain A oMo GO gfw) AoMo Gl for e(A) = eg(AoM).

Proof. The proof follows by associativity of sequential composition, i.e.,
Lemma yields Ao (MoG?) = (AoM) oG =Dod

3 KEY Package Composition

Many cryptographic constructions emerge as compositions of two crypto-
graphic building blocks: The first building block generates the (symmet-
ric) key(s) and the second building block uses the (symmetric) key(s).
In the introduction, we already discussed the popular composition of key
encapsulation mechanisms (KEM) with a deterministic encryption mech-
anism (DEM). Likewise, complex protocols such as TLS first execute a
key exchange protocol to generate symmetric keys for a secure channel.
In composition proofs, the keying building block and the keyed building
block share the (symmetric) key(s). To capture this shared state, we in-
troduce a key package KEY* that holds a single key k of length \. (We
handle multiple keys in Section )
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Definition 9 (Key Package). For A € N, KEY® is the package that
defines the three oracles below, i.e., out(KEY") = {GEN, SET,GET}.

GEN() SET(K) GET()
assert k= L assert k= L assert k # L
k +s{0,1}* k<« K return k

Hence, this package encapsulates the state variable k, initialized (once)
by calling either GEN or SET, then accessed by calling GET. This usage
restriction is captured using asserts, and all our definitions and theorems
apply only to code that never violate assertions.

Definition 10 (Keying Games). A keying game K is a game composed
of a core keying package CK and the key package as follows:

CK>
Kva —

= o KEY™.
ID{GET)

where b € {0,1}, in(CK®*) = {SET}, and in(CK'*) = {GEN}.

Definition 11 (Keyed Games). A keyed game D is a game composed
of a core keyed package CD and the key package as follows:

D
D = LEW ¢ kgy?,
Db

where b € {0,1} and in(CD**) = {GET}.

Lemma 7 (Single Key). Keying games K and keyed games D are com-
patible when they have the same key length \ and they define disjoint
oracles, i.e., out(K) Nout(D) = (. For all compatible keying and keyed
games, with the notations above, we have

cK® ) € CK! A\ CcK® ) & CKY N
a) —— oKEY"'~ — oKEY b) —— oKEY"' =~ — oKEY
(e) cpo cp!l ’ (%) cpo cp! ’

where, for all adversaries A,

IDout(CK) ) CK!
< b A -
ca (A) =K (A ° cDo e | Ao Dout(CD) ’

ID,,
ey(A) <ea(A) + <A o CDT“”) .
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GEN

: GEN
! ={ o ] SET — 3w

KEY

GET »| cpt

\

Fig. 3: Reduction to the keying game (left) and the keyed game (right).

Proof. Fig.|3|gives the proof outline using graphs: To show (a), we idealize
the core keying package, switching from SET to GEN (left); we idealize
the core keyed package (Fig. [3 right). To show (b), we also de-idealize
the core keying package, switching back form GEN to SET (left).

We give a more detailed proof below, using the algebraic rules of
Section |2 to rewrite packages in order to apply Def. [10| and

(1) Idealizing the core keying package. The first intermediate goal is to
bring the package into a shape where we can use Def. [10| to change CK"

into CK'. Below, for all adversaries A, we have €1(A) = & (.A o ID‘(’:”SE)CK) )

cKO 1D cKO

o KEY)‘ _ out(CK) o

cpY cpY ID{ceT}
€ IDout(CK) ck!

cpo ° 1D
{GET}

o KEY* (identity & interchange)

ck!
o KEY? = —— o KEY?
cpo

(2) Idealizing the core keyed package. As a second step, we want to use
Def. |11| to move from CD? to CD' and thus need to make ID{GEN} appear.
Note that we can use ID;geny because {GEN} is equal to the input inter-
face of CK!. This was not possible before idealizing to CK!, since in(CK’) =

{SET}. Below, for all adversaries A, we have €3(.A) = €p (A o —CK! )

IDout(CD)

CK! ckl  ID
5 ° KEY? = o {GEN} oKEY? (identity & interchange)
CD IDout(CD) CD

1

CK! 1D CK
£2 o ACEN} | kEy? — 66T<3KEYA

IDout(cp) cp!

(3) De-idealizing the core keying package. Finally, we move back from
CK! to CK?, taking the inverse steps of idealizing the core keying package.
We obtain e3(A) = & (A o ID‘&“,%).
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4 KEM-DEMs

Cramer and Shoup [20, §7] show that composing a CCA-secure key encap-
sulation mechanism (KEM) and a CCA-secure data encapsulation mech-
anism (DEM) yields a CCA-secure public-key encryption (PKE). Using
the KEY package composition introduced in Section 3 we give a new for-
mulation of their KEM-DEM proof.

Schemes are function definitions that do not employ state variables.
We write M? for a package calling functions of the scheme £ in its param-
eters. Formally, for a package M with oracles 2, M® denotes the package
with oracles inline(2, 3).

We denote the set of functions defined by a PKE scheme with ci-
phertext expansion clen(|m|) by ¢ = {kgen, enc, clen, dec} with standard
semantics. We denote the set of functions of a DEM scheme with key
length \ and ciphertext expansion clen(|m|) by 8 = {\, enc, clen, dec},
where we recall that enc is a deterministic, one-time encryption algo-
rithm. We prepend function names by ¢ and 6 for disambiguation. We
denote a KEM scheme with output key length A and encapsulation length
elen by n = {kgen, encap, elen, decap, \}, where kgen produces a key pair
(pk, sk), encap(pk) generates a symmetric key k of length 1.\ and a key
encapsulation c¢ of length 7n.elen, while decap(sk,c) given sk and an en-
capsulation c¢ returns a key k. For all three schemes, we consider perfect
correctness. Throughout this section, we consider a single symmetric-key
length A that corresponds to the length of the symmetric key used by the
DEM scheme as well as the length of the symmetric key produced by the
encapsulation mechanism 7.encap. We now turn to the security notions
which are $-IND-CCA security notions for all three primitives, i.e., we
consider ciphertexts that are indistinguishable from random.

Definition 12 (PKE-CCA Security). Let ( be a PKE-scheme. We
define its $3-IND-CCA advantage eng_CCA, where PKE-CCAYC defines the
following oralces, i.e., out(PKE-CCAS) = {PKGEN, PKENC, PKDEC}.

PKGEN() PKENC(mn) PKDEC(¢)
assert sk = | assert pk # L assert sk # L
pk, sk <3 (.kgen() assert ¢ = | assert ¢ # ¢
return pk ifb=0 thenl m < C.dec(sk,c)
elsce%s; 0,13 iy return m

¢ <sC.enc(pk, m)
return c
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We model the KEM as a keying and the DEM as a keyed package. We
will use the KEY* package as specified in Def. @ Note that we additionally
require that encapsulations are indistinguishable from random.

Definition 13 (KEM-CCA Security). Let n be a KEM. We define
its $-IND-CCA advantage eggy-ccy using a keying game whose core key-
ing package KEM®" defines the following oracles, so that out(KEM-CCA") =
{KEMGEN, ENCAP, DECAP, GET}:

KEMGEN() ENCAP() DECAP(¢)
assert sk = L assert pk # L assert sk # L
pk, sk <sn.kgen() assert ¢ = | assert ¢ # c
return pk if b =0 then k < n.decap(sk,c)
k,c <sn.encap(pk)
SET(k) return k
else
¢ +s{0,1}"
GEN()
return c

Note that the adversary queries GET to obtain the challenge key. Encod-
ing the standard KEM notion in this way enables the following algebraic
reasoning:

KEMO-" ) GQEELCCA KEML7

DGeT} ID{cET}

KEM-CCA?" = o KEY" = KEM-CCA "

Definition 14 (DEM-CCA Security). Let 0 be a DEM. We define its
$-IND-CCA advantage elgy_ccp using a keying game with output interface
out(DEM-CCA?) = {GEN,ENC,DEC}, where the oracles of the core keyed
packages DEM*Y are defined as follows:

ENC(m) DEC(¢)
assert ¢ = L assert c # ¢
k + GET() k + GET()
if b=0 then m « 6.dec(k,c)
c < 0.enc(k,m)
return m
else
c+3${0, 1}”18"("”')
return c

Note that DEM security justifies the following equational reasoning

DEM-CCA%Y = _DEM? o KEYO-A Do DEM'Y
D{cEN} ID{cen)

o KEY?* = DEM-ccal?
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4.1 Composition and Proof

We prove that the PKE scheme obtained by composing a KEM-CCA
secure KEM and a DEM-CCA secure DEM is PKE-CCA secure.

Construction 1 (KEM-DEM Construction) Let n be a KEM and
0 be a DEM. We define the PKE scheme ( with ciphertext expansion
n.elen + 6.clen(|m|) as follows:

C.kgen() C.enc(pk,m) C.dec(sk, c)
return 7.gen() k,c1 <sn.encap(pk) cillez ¢
c2 < 0.enc(k,m) k < n.decap(sk, c1)

return ci||c; m < 0.dec(k, c2)

return m

Theorem 1 (PKE Security of the KEM-DEM Construction). Let
¢ be the PKE scheme in Construction[l. For adversaries A, we have that

IDout(keMn
engE-CCA(A) < EQEM-CCA (-A o MOD-CCA o ];;;1\/([0,9 )> +

KEML"
egEM_CcA ./4 o MOD_CCA o —
out(DEM?)

where the oracles of MOD-CCA are defined in Fig. [4)

In the extended version of this paper [15] , we prove via code comparison
that for b € {0, 1}, PKE-CCA®¢ equals MOD-CCA o ggﬂzz o KEY?. Thus, for
all adversaries A, we can now apply Lemma [7la to the adversary B =
A o MOD-CCA, as KEM-CCA" is a keying game, DEM-CCA? is a keyed game,
and the two are compatible. Note that we do not de-idealize KEM'" as
PKE-CCA!¢ requires random ciphertexts. For all adversaries B, we denote

e(B) KEM"-0
KEY* ~ Bo om ° KEY?.

KEM"-0
° DEMPO °

and the value €(B) is less or equal to

ID KEML:"
n out(KEM7) 0
€KEM-CCA <B ° > + éppmcea | Bo — | -
DEM" IDout(pEmo)
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PKGEN() PKENC(m) PKDEC(¢')

assert pk = | assert pk # L assert pk # L
pk < KEMGEN() assert c= L assert c # ¢
return pk ¢1 < ENCAP() cillch < ¢
c2 < ENC(m) if ¢} = ¢, then
¢4 cillez m <+ DEC(c3)
return (c) else

k' «+ DECAP(c})
m < 0.dec(k’, c5)

return m

Fig. 4: MOD-CCA construction.

5 Multi-Instance Packages and Composition

Definition 15 (Indexed Packages). For a command c with free names
fn(c) we denote by ¢; the command in which every function name f € fn(c)
is replaced by a name f; with the additional index i. For function definition
O = f(x) = ¢, we denote by O;_ the definition fi(x) — ¢ and by O; the
definition fi(x) — ¢;.

Let D be a package with function definitions 2. We denote by D;— and
D; packages with definitions {O;—|0 € 2} and {O;|0 € 2} respectively.
This means that in(D;—) = in(D) and in(D;) = {fi|f € in(D)}.

Definition 16 (Multi-Instance Operator). For a package D and n €
N, we define []_;D;j— := (D1— |...|Dp—) and []}—1 D; := (D1 |...| D).

Note that using a product sign [[;"; D; to denote multi-instance paral-
lel composition (Dy |...|Dy) is convenient, since it allows to emphasize the
multi-instance notation via a prefix which is more prominent than merely
a special subscript or index, it reduces the number of brackets per ex-
pression, and it allows to avoid dots. While common in arithmetics and,
notably, the w-calculus, product notation might be a bit unusual for cryp-
tographers. Also note that including indices in oracle names assures that
instances of the same package have disjoint output interfaces which is
necessary for their parallel composition. The following lemma states that
the multi-instance operator [[;"; commutes with parallel composition,
sequential composition and ID.
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Lemma 8 (Multi-Instance Interchange). Let M and N be packages
such that M matches the output interface of N. Let P be a packages such
that out(M) and out(P) are disjoint. Then, for any number n of instances,
the following hold:

n

[Tmon); =m0 [N L 1T (TDout(m)):
=1

=1 =1 =1
ﬁ (M> iz1 Mi M. —1D M
—_ — i = t(M),i— 1)
i=1 P 7 H?:l P’L out(M)i

Proof. Firstly, note that the package [[;{M; o [[i; N; is well-defined,
since [, M; matches the input interface of [[}_; N; due to Definition
Using the interchange rule, we obtain that it is equal to [[;—;(M o N);.

Note that %leZ: is well-defined due to the disjointness condition on
i=1"¢

the output interfaces. The term is equal to [~ (%)Z by associativity of

parallel composition. The last two equations follow by inspection of the

ID definitions.

5.1 Multi-Instance Lemma

We introduce a multi-instance lemma that allows us to turn arbitrary
games using symmetric keys into multi-instance games.

Lemma 9 (Multi-Instance). Let M be a game pair with distinguishing
advantage ey. Then for any number n of instances, adversaries A, and
reduction R that samples j <-s{1,...,n} and runs

j—1
1+
i=1

we have that MI® = T[7_, M is a game pair with eyz(A) < n-en(AoR).

n
1
IDout(M),j—’ IT »
i=j+1

In the extended version of this paper [15] we provide a systematic recipe
for hybrid arguments and instantiate it for the proof of this lemma.

5.2 Multi-Instance Key Lemma

We now combine key composition and multi-instance lemmas. For this
purpose, we use a multi-instance version of the following single-instance
package CKEY. In contrast to the simpler KEY package, CKEY allows for
corrupted keys (whence the name CKEY) and, consequently, needs to allow
the symmetric-key protocol to check whether keys are honest.
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Definition 17 (CKEY Package). For A\ € N, CKEY is the package that de-
fines the oracles below, i.e., out(CKEY) = {GEN,SET,CSET, GET, HON}.

GEN() SET(K)  CSET(K) GET() HON()
assert k=1 assert k=1 assert k=1 assert k# |l asserth# L
E<+s{0,1}* k<« K kK

h<+1 h<+1 h<+0 return k return h

A corruptible keying game is composed of a core keying package and
the multi-instance version of CKEY*. The core keying package can set
corrupt keys via the CSET oracle. A corruptible keyed game is single-
instance but will be turned into a multi-instance game later. Its core
keyed package can access the honesty status of keys via the HON oracle.

Definition 18 (Corruptible Keying Game). A corruptible keying
game K is composed of a core keying packages CK and the CKEY package
as follows:

o Kb n
I[7=: (IDgGET HONY )i 3

where n, A € N, b € {0,1}, in(CK*) = {SET;, CSET,;}»_,, and in(CK'*) =
{GEN;, CSET;}}_,

CKEY?.

Definition 19 (Corruptible Keyed Game). A corruptible keyed game
D is composed of a core keyed package CD and the CKEY package as follows:

»x  ID{GEN,CSET}
phA = )
CDbA

where A € N, b € {0,1}, and in(cD**) = in(cD"*) = {GET, HON}.

o CKEY".

Lemma 10 (Multiple Keys). Keying and keyed games K and D are
compatible when they have the same key length A and they define disjoint
oracles out(K) N out([1i2; D;). For all compatible corruptible keying and
keyed games, with the notation above, we have that

H CKEY} ~ H CKEY?,

1= 1 =1
where for all adversaries A, €(A) is less or equal to
D CK! D
6K<Aonom(CK2)>+n~6D Ao———0R +6K<Aonom(cml>.
i=1 CD; Doy (T2, coi) i=1CD;
where reduction R samples j<s{1,...,n} and implements the package

(TT/=1 2| (TDoysqn))j— | T 1 M), where MY = LEELCSET: 6 oREy?,
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Proof Outline The proof proceeds analogously to the 3 steps in the proof
of Lemma [7]b, i.e., idealizing the corruptible keying game, then the cor-
ruptible keyed game and then de-idealizing the corruptible keying game.
For the algebraic proof steps, we use the multi-instance variants of the
identity rule and the interchange rule, as given in Lemma [§] We defer the
details of the proof to the extended version [15] and here only include the
multi-instance to single instance reduction involved in the idealization of
the corruptible keyed game.

Multi—z’nstanC%Lemma. We invoke Multi-instance Lemma [9] on game pair
M with Mb = —E=ED o CKEY?. By applying Lemma |9 we obtain that
for all adversaries B, we have

ent(B) <n-ep(BoR), (1)

where MI® = [ ; M’ and reduction R samples j s {1,...,n} and imple-
i—1
ments the package ([T, M?|(IDout(M))j_| | M}).

6 Composition of Forward-Secure Key Exchange

We here give a short definition of authenticated key exchange (AKE) pro-
tocols with forward security based on the definition of forward security by
Bellare, Rogaway and Pointcheval [6] adapted from password authentica-
tion to the setting with asymmetric long-term keys. Moreover, unlike [6],
we do not encode security against passive adversaries via an Execute query
but rather via require the existence of an origin-session, as suggested by
Cremers and Feltz [2I]. Brzuska, Fischlin, Warinschi and Williams [17]
essentially use the same security definiting, except that they did not en-
code passivity and used session identifiers instead of partner functions.
We explain our definitional choices at the end of this section.

Definition 20 (Key Exchange Protocol). A key exchange protocol
m consists of a key generation function w.kgen and a protocol function
w.run. w.kgen returns a pair of keys, i.e., (sk, pk) «—sm.kgen. w.run takes
as input a state and an incoming message and returns a state and an
outgoing message, i.e., (state’,m’) <—sw.run(state, m).

Each party holds several sessions and the function m.run is executed lo-
cally on the session state. We use indices ¢ for sessions and indices u, v for
parties. For the ith session of party u, we denote the state by IT[u, i].state.
The state contains at least the following variables. For a variable a, we
denote by II[u,].a the variable a stored in II[u,i].state.
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— (pk, sk): the party’s own public-key and corresponding private key
— peer: the public-key of the intended peer for the session
— role: determines whether the session runs as an initiator or responder

a: protocol state that is either running or accepted.
— k: the symmetric session key derived by the session

Upon initialization of each session, the session state is initialized with
pair (pk, sk), the public-key peer of the intended peer of a session, a value
role € {I, R}, a« = running and k = L. The first three variables cannot
be changed. The variables o and & can be set only once. We require that

Iu,i].a = accepted = IIu,i].k # L.

The game that we will define soon will run (state’, m’) <—s m.run(state, L)
on the initial state state and an empty message L. For initiator roles, this
first run returns m’ # L, and for responder roles, it outputs m’ = L.

Protocol correctness. For all pairs of sessions which are initialized with
(pky, skr), pkg, role = I, & = running and k = L for one session, and
(pkp, skr), pky, role = R, o = running and k = L for the other session,
the following holds: When the messages produced by m.run are faithfully
transmitted to the other session, then eventually, both sessions have o =
accepted and hold the same key k # L.

Partnering. As a partnering mechanism, we use sound partnering func-
tions, one of the partnering mechanisms suggested by Bellare and Rog-
away [7]. Discussing the specifics, advantages and disadvantages of part-
nering mechanisms is beyond the scope of this work, we provide a short
discussion as well as a definition and the soundness requirement for part-
ner functions in the extended version of this paper [I5] . For the sake of
the AKE definition presented in this section, the reader may think of the
partnering function f(u,i) as indicating the (first) session (v, j) which
derived the same key as (u, 1), has a different role than (u, 1), and is the
intended peer of (u,7). On accepted sessions, it is a symmetric function,
thus partners of sessions, if they exist, are unique.

Session key handles. Upon acceptance the SEND oracle returns the index
of the CKEY package from which the session key can be retrieved using
GET. This index is an administrative identifier that is set when the first
of two partnered sessions accept. The second accepting session is then
assigned the same identifier as its partner session.
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Definition 21 (IND-AKE Security). For a key exchange protocol m =
(kgen, run), a symmetric, monotonic, sound partnering function f, and a
number of instances n € N, we define IND-AKE advantage e}rﬁ{)ﬂKE using
a keying game IND-AKE™/™ with corruptible keying package AKEY™f whose
oracles are defined in Fig. @ yielding output interface out(IND—AKE’T’f’”) =
{NEWPARTY, NEWSESSION, SEND, CORRUPT, GET}.

NEWSESSION(u, 4,7, v)

assert PK[u] # L, PK[v] # L, II[u,i] = L
Hu, i) + (

(ph, 5k)  (PK[u], SK[u]),

peer <— v,

role < r,

a4 running,

k<« 1)
(Iu,i),m) <-sm.run(I[u,i], L)

return m
SEND(u, i, m) NEWPARTY (u)
assert II[u,i].a = running assert PK[u] = L
(I [u,i],m") +sm.run(I[u,i],m) (SK[u], PK|u)) +s$m.kgen
if I[u,i].cc # accepted then Hlu] <1
return (m’, 1). return PKJu]

if I1[f(u,i)].c = accepted then

return (m', ID[f(u,1)]) M
ID[u, i) + cntr Hlu] <0
if H[II[u,t].peer] =1V f(u,i) # L then return SK[u]
if b =0 then
SET cner (I [u, i].k)
else
GEN cnir-()
else

CSET entr (1 [u, i).k)
cntr <— cntr + 1

return (m', ID[u, i])

Fig. 5: Oracles of the core keying package AKE. cntr is initialized to 0.
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Theorem 2 (BR-Secure Key Exchange is Composable). Let 7 be
a key exchange protocol with partnering function f such that forn, A € N,
their IND-AKE advantage is e€mb" . Let D be a corruptible keyed game
that is compatible with the corruptible keying game IND-AKE™/™. Then it
holds that

AKEO™S o Ve AKE Omf =

T oo HC HCKEY

= 1

where

IDout(akE AKEL™S
epr(A) < €7ITN]1;’ AKE (A ° 7‘;“7(0130) +n-ep| Ao Er P R
i=1 v out(HT.L CD;)

=1
IDout(AKE)
+ G}rﬁlj[;—nAKE (-’4 °C T n  Anl |

1
i=1 CD;
and where reduction R samples j <s{1,...,n} and implements the pack-
age (TTZ1 M9 |(TDauegn)s—| TEy 1 ML), where 10 = IEEUEETL o cey,

Proof. We observe that Theorem [2|is a direct application of the Multiple
Key Lemma Firstly, AKE is a corruptible core keying package as we
have that in(AKE®™/f) = {SET,CSET} and in(AKE"™/) = {GEN, CSET}.
Also, by definition, D is a corruptible keyed game that is compatible with
the corruptible keying game IND-AKE™/",

Discussion of definitional choices. Forward secrecy usually requires a
notion of time that cryptographic games are not naturally endowed with
and that we have no tools to handle in hand-written proofs. In the miTLS
work and also in our notation of key exchange security, instead, it is de-
cided upon acceptance whether a session shall be idealized or not. The
advantage is that one can check in the moment of acceptance whether the
preconditions for freshness are satisfied, and this check does not require
a notion of time. In our encoding the CKEY package then stores either a
real or a random key, and when the partner of the session accepts, the
partner session inherits these idealization or non-idealization properties.
A downside of this encoding is that it is only suitable for protocols with
explicit entity authentication (See, e.g., Fischlin, Gunther, Schmidt and
Warinschi [24]), as in those, the first accepting session is already ideal-
ized. In particular, our model does not capture two-flow protocols such
as HMQV [31].
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Using partner functions instead of session identifiers or key partnering
has the advantage that the at most condition of Match security defined
by Brzuska, Fischlin, Smart, Warinschi and Williams [16] holds syntacti-
cally. Thus, one does not need to make probabilistic statements that are
external to the games. Note that we made another simplication to the
model: Currently, the CKEY module and thus CD does not receive informa-
tion about the timing of acceptance. This can be integrated at the cost
of a more complex CKEY module.
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