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5 École Normale Supérieure de Paris, Département d’informatique,
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Abstract. Local pseudorandom generators allow to expand a short ran-
dom string into a long pseudo-random string, such that each output bit
depends on a constant number d of input bits. Due to its extreme effi-
ciency features, this intriguing primitive enjoys a wide variety of applica-
tions in cryptography and complexity. In the polynomial regime, where
the seed is of size n and the output of size ns for s > 1, the only known
solution, commonly known as Goldreich’s PRG, proceeds by applying a
simple d-ary predicate to public random size-d subsets of the bits of the
seed.
While the security of Goldreich’s PRG has been thoroughly investigated,
with a variety of results deriving provable security guarantees against
class of attacks in some parameter regimes and necessary criteria to be
satisfied by the underlying predicate, little is known about its concrete
security and efficiency. Motivated by its numerous theoretical applica-
tions and the hope of getting practical instantiations for some of them,
we initiate a study of the concrete security of Goldreich’s PRG, and eval-
uate its resistance to cryptanalytic attacks. Along the way, we develop
a new guess-and-determine-style attack, and identify new criteria which
refine existing criteria and capture the security guarantees of candidate
local PRGs in a more fine-grained way.

Keywords: Pseudorandom generators, Algebraic attacks, Guess-and-
Determine, Gröbner basis.

1 Introduction

One of the most fundamental problems in cryptography is the question of what
makes an efficiently computable function hard to invert. The quest for the sim-
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plest design which leads to a primitive resisting all known attacks is at the heart
of both symmetric and asymmetric cryptography: while we might be able to
build seemingly secure primitives by relying on more and more complex designs
to thwart cryptanalysis attempts, such a “security by obscurity” approach is un-
satisfying. Instead, as advocated almost two decades ago by Goldreich [Gol00],
we should seek to construct the simplest possible function that we do not know
how to invert efficiently. Only this way, Goldreich argued, can we better under-
stand what really underlies the security of cryptographic constructions.

Random Local Functions. In an attempt to tackle this fundamental problem,
Goldreich suggested a very simple candidate one-way function as a promising
target for cryptanalysis: let (n,m) be integers, and let (σ1, . . . , σm) be a list of m
subsets of [n], such that each subset is of small size: for any i ≤ m, |σi| = c(n),
where c(n)� n (in actual instantiations, c(n) can for example be logarithmic in

n, or even constant). Fix a simple predicate P : {0, 1}c(n) 7→ {0, 1}, and define
the function f : {0, 1}n 7→ {0, 1}m as follows: on input x ∈ {0, 1}n, for any subset
S of [n], let x[σ] denote the subset of the bits of x indexed by σ. Compute f(x)
as P (x[σ1])|| · · · ||P (x[σm]) (that is, f(x) is computed by applying the predicate
P to all subsets of the bits of x indexed by the sets σ1, . . . , σm). We call random
local functions the functions obtained by instantiating this template.

In his initial proposal, Goldreich advocated instantiating the above method-
ology with m ≈ n and c(n) = O(log n), and conjectured that if the subsets
(σ1, . . . , σm) form an expander graph1, and for an appropriate choice of the
predicate P , it should be infeasible to invert the above function f in polynomial
time. While setting c(n) to O(log n) offers stronger security guarantees, the more
extreme design choice c(n) = O(1) (also discussed in Goldreich’s paper) enhances
the above candidate with an appealing feature: it enjoys constant input locality
(which puts it into the complexity class NC0), hence it is highly parallelizable
(it can be computed in constant parallel time). It appeared in subsequent works
that a stronger variant of Goldreich’s conjecture, which considers m � n and
claims that f is in fact a pseudorandom generator, was of particular interest; we
will elaborate on this later on.

Local Pseudorandom Generators. The question of whether cryptographic
primitives can exist in weak complexity classes such as NC0 has attracted a lot
of attention in the cryptographic community. A primitive of particular interest,
which has been the focus of most works on the subject, is the notion of pseudo-
random generators (PRGs), which are functions G : {0, 1}n 7→ {0, 1}m extending
a short random seed into a longer, pseudorandom string. The existence of PRGs
in NC0 was first considered by Cryan and Miltersen in [CM01]. Remarkably, it
was shown by Applebaum, Ishai, and Kushilevitz [AIK04, AIK08] that cryp-
tographically secure pseudorandom generators (with linear stretch m = O(n))

1 The subsets form an expander graph if for some k, every k subsets cover k + Ω(n)
elements of [n]. In practice, it suffices to pick once for all the subsets (σ1, . . . , σm)
at random to guarantee that they will be expanding except with o(1) probability.



On the Concrete Security of Goldreich’s PRG 3

exist in a complexity class as low as NC0
4 (the class of constant depth, polysize

circuits where each output bit depends on at most 4 input bits), under widely
believed standard assumption for the case of PRG with sublinear stretch (such
as factorization, or discrete logarithm), and under a specific intractability as-
sumption related to the hardness of decoding “sparsely generated” linear codes,
for the case of PRG with linear stretch. While this essentially settled the ques-
tion of the existence of linear stretch PRGs in NC0, an intriguing open question
remained: could PRGs in NC0 have polynomial stretch, m = poly(n)?

Some early negative results were given by Cryan and Miltersen [CM01] (who
ruled out the existence of PRGs in NC0

3 with stretch m > 4n) and Mossel, Sh-
pilka, and Trevisan [MST03] (who ruled out the existence of PRGs in NC0

4 with
stretch m > 24n). The authors of [CM01] also conjectured that any candidate
PRG with superlinear stretch in NC0 would be broken by simple, linear distin-
guishing tests1; this conjecture was refuted in [MST03], who gave a concrete
candidate PRG in NC0, by instantiating a random local function with c = 5,
and the predicate

P5 : (x1, x2, x3, x4, x5) 7→ x1 + x2 + x3 + x4x5 .

where the + denotes the addition in F2 i.e. the xor.
They proved that this PRG fools linear tests, even when m is a (sufficiently

small) polynomial in n. By the previously mentioned negative result on PRGs
in NC0

4, this candidate PRG, which has locality 5, achieves the best possible
locality. Recently, there has been a renewed interest in the study of this local
PRG, now commonly known as Goldreich’s PRG, and its generalizations [BQ09,
App12, OW14, CEMT14, App15, ABR16, AL16, IPS08, LV17, BCG+17].

1.1 Implications of Polynomial-Stretch Local Pseudorandom
Generators

The original motivation for the study of local pseudorandom generators was the
intriguing possibility of designing cryptographic primitives that can be evaluated
in constant time, using polynomially many cores. While this is already a strong
motivation in itself, it was observed in several works that the existence of (poly-
stretch) local PRGs had a number of non-trivial implications, and is at the heart
of feasibility results for several high-end cryptographic primitives. We provide
below a brief overview.

– Secure computation with constant computational overhead. In the recent
work [IKOS08], the authors explored the possibility of computing crypto-
graphic primitives with essentially optimal efficiency, namely, constant over-
head over a naive insecure implementation of the same task. One of their
main results establishes the existence of constant-overhead two-party com-
putation protocols for any boolean circuit, assuming the existence of poly-
stretch local PRGs (and oblivious transfers). In a recent work [ADI+17a],

1 A linear test attempts to distinguish a string from random by checking whether the
xor of a subset of the bits of the string is biased toward either 0 or 1.
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this result was extended to arithmetic circuits, using an arithmetic general-
ization of local PRGs.

– Indistinguishability obfuscation (iO). Introduced in the seminal paper of
Barak et al. [BGI+01], iO is a primitive that has received a considerable
attention from the crypto community in the past years, as a long sequence
of works starting with [SW14] has demonstrated that iO had tremendous
theoretical implications, to the point that it is often referred to as being a
“crypto-complete” primitive. All known candidate constructions of iO rely,
directly or indirectly, on a primitive called k-linear map, for some degree k.
Recently, a sequence of papers (culminating with [LT17]) has attempted to
find out the minimal k for which a k-linear map would imply the existence
of iO (with the ultimate goal of reaching k = 2, as bilinear maps are well
understood objects). These works have established a close relation between
this value k and the existence of pseudorandom generators with poly-stretch,
and locality k.1

– MPC-friendly primitives. Historically, the design of symmetric cryptographic
primitives (such as block ciphers, pseudorandom generators, and pseudo-
random functions) has been motivated by efficiency considerations (mem-
ory consumption, hardware compatibility, ease of implementation,...). The
field of multiparty computation (MPC), where parties want to jointly eval-
uate a function on secret inputs, has led to the emergence of new efficiency
considerations: the efficiency of secure evaluation of symmetric primitives
is strongly related to parameters such as the circuit depth of the primi-
tive, and the number of its AND gates. This observation has motivated
the design of MPC-friendly symmetric primitives in several recent works
(e.g. [ARS+15, CCF+16, MJSC16, GRR+16]). Local pseudorandom genera-
tors make very promising candidate MPC-friendly PRGs (and lead, through
the GGM transform [GGM84], to promising candidates for MPC-friendly
pseudorandom functions). Secure evaluation of such symmetric primitives
enjoys a wide variety of applications.

– Cryptographic capsules. In [BCG+17], Boyle et al. studied the recently in-
troduced primitive of homomorphic secret sharing (HSS). An important
implication of HSS is that, assuming the existence of a local PRG with
poly-stretch, one can obtain multiparty computation protocols in the pre-
processing model2 where the amount of communication between the parties
is considerably smaller than the circuit size of the function, by constructing a
primitive called cryptographic capsule which, informally, allows to compress
correlated (pseudo-)random coins. MPC protocols with low-communication
preprocessing have numerous appealing applications; however, the efficiency

1 The locality requirement can in fact be weakened to a related notion of block locality.
2 In this model, n parties securely compute a function f on private inputs (x1, . . . , xn);

in the preprocessing phase, the parties have access to f (but not to the input), and
generate some preprocessing material. Then, in the online phase, the parties execute
an information-theoretically secure protocol to compute f(x), using the preprocessed
material. MPC protocols in the preprocessing model are among the most promising
candidates for getting practical solutions to the multiparty computation problem.
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of the constructions of cryptographic capsule strongly depends on the local-
ity and seed size of the underlying local PRG (both should be as small as
possible to get a reasonably efficient instantiation).

In addition to the above (non-exhaustive) overview, we note that the ex-
istence of poly-stretch local pseudorandom generators also enjoys interesting
complexity-theoretic implications. For example, they have been shown in [AIK08]
to imply strong (tight) bounds on the average-case inapproximability of con-
straints satisfactions problems such as Max3SAT.

1.2 On the Security of Goldreich’s PRG

In this section, we provide a brief overview of the state-of-the-art regarding the
security of local pseudorandom generators. For a more detailed and well-written
overview dating from 2015, we refer the reader to [App15].

Positive Results: Security against Class of Attacks. The seminal paper of
Goldreich [Gol00] made some preliminary observations on necessary properties
for a local one-way function. Namely, the predicate P must satisfy some non-
degeneracy properties, such as being non-linear (otherwise, one could inverse the
function using Gaussian elimination). It also noted that to avoid a large class of
natural “backtracking” attacks, which make a guess on the values of bit inputs
based on local observations and attempt to combine many local solutions into
a global solution, the subsets (S1, . . . , Sm) should be sufficiently expanding : for
some k, every k subsets should cover k + Ω(n) elements of [n]. The security
of Goldreich’s candidate one-way function against a large class of backtracking
algorithm was formally analyzed in [AHI05, CEMT14], where it was proven that
two restricted types of backtracking algorithms (called “drunk” and “myopic”
backtracking algorithms) take exponential time to invert the function (with high
probability). They also ran experiments to heuristically evaluate its security
against SAT solvers (and observed experimentally an exponential increase in
running time as a function of the input length).

The pseudorandomness of random local functions was originally analyzed
in [MST03]. They proved (among other results) that the random local function
instantiated with the predicate P5 : (x1, x2, x3, x4, x5) 7→ x1 + x2 + x3 + x4x5
fools all F2-linear distinguishers for a stretch up to m(n) = n1.25−ε (for an arbi-
trary small constant ε). This result was later extended to a larger stretch n1.5−ε

in [OW14]. In the same paper, the authors proved that this candidate PRG is also
secure against a powerful class of attacks, the Lasserre/Parrilo semidefinite pro-
gramming (SDP) hierarchy, up to the same stretch. Regarding security against
F2-linear attacks, a general dichotomy theorem was proven in [ABR12], which
identified a class of non-degenerate predicates and showed that for most graphs,
a local PRG instantiated with a non-degenerate predicate is secure against lin-
ear attacks, and for most graphs, a local PRG instantiated with a degenerate
predicate is insecure against linear distinguishers. In general, to fool F2-linear
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distinguishers, the predicate should have high algebraic degree (in particular, a
random local function instantiated with a degree-` predicate cannot be pseudo-
random for a stretch ` (m ≡ n`), as it is broken by a straightforward Gaussian
elimination attack).

Being pseudorandom seems to be a much stronger security property than
being one-way. Nevertheless, in the case of random local functions, it was shown
in [App12] that the existence of local pseudorandom generators follows from the
existence of one-way random local functions (with sufficiently large output size).

Negative Results. The result of O’Donnell and Witmer [OW14] regarding
security against SDP attacks is almost optimal, as attacks from this class are
known to break the candidate for a stretch Θ(n1.5 log n). More generally, opti-
mizing SDP attacks leads to a polytime inversion algorithm for any predicate
P which is (even slightly) correlated with some number c of its inputs, as soon
as the output size exceeds m ∈ Ω(nc/2 + n log n) [OW14, App15]. Therefore, a
good predicate should have high resiliency (i.e. it should be k-wise independent,
for a k as large as possible). This result shows, in particular, that a random
local function with a constant locality d and with an output size m > poly(d) ·n
is insecure when instantiated with a uniformly random predicate P . Combin-
ing this observation with the result of Siegenthaler [Sie84], which studied the
correlation of d-ary predicates, gives a polytime inversion algorithm for any ran-
dom local function implemented with a d-ary predicate, and with an output size
m ∈ Ω(n1/2b2d/3c log n).

Bogdanov and Qiao [BQ09] studied the security of random local functions
when the output is sufficiently larger than the input (i.e., m ≥ Dn, for a large
constant D). They proved that for sufficiently large D, inverting a random local
function could be reduced to finding an approximate inverse (i.e. finding any x′

which is close to the inverse x in Hamming distance), by showing how to invert
the function with high probability given an advice x′ close to x. For random local
function with an output size polynomial in n, m = ns for some s, this leads to a
subexponential-time attack [App15]: fix a parameter ε, assign random values to
the (1− 2ε)n first inputs, and create a list that enumerates over all possible 2εn
assignments for the remaining variables. Then the list is guaranteed to contain a
value x′ that agree with the preimage x on a (1/2+ε)n fraction of the coordinates
with good probability. By applying the reduction of [BQ09], using each element
of the list as an advice string, one recovers the preimage in time poly(n) · 22εn
provided that m = Ω(n/ε2d) (d is the arity of the predicate P ). In the case of the

5-ary predicate P5, this leads to an attack in subexponential-time 2O(n1−(s−1)/2d)

(e.g. using s = 1.45 gives an attack in time 2O(n0.955)).

By the previous observations, we know that the predicate of a random lo-
cal function must have high resiliency and high algebraic degree to lead to a
pseudorandom function. A natural question is whether this characterization is
also sufficient; this question was answered negatively in [AL16], who proved
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that a predicate must also have high bit-fixing degree to fool linear attacks.1 In
particular, this observation disproved a previous conjecture of Applebaum that
XOR-AND predicates (which are natural generalizations of the predicate P5)
could lead to local PRGs with stretch greater than 2 that fools all linear tests
(see [AL16, Corollary 1.3]).

In the same work, Applebaum and Lovett considered the class of algebraic
attacks on local pseudorandom function, which are incomparable to linear at-
tacks. An algebraic attack against a function f : {0, 1}n 7→ {0, 1}m starts with
an output y and uses it to initialize a system of polynomial equations over
the input variables x = (x1, . . . , xn). The system is further manipulated and
extended until a solution is found or until the system is refuted. Applebaum
and Lovett proved that a predicate must also have high rational degree to fool
algebraic attacks (a predicate P has rational degree e if it is the smallest in-
teger for which there exist degree e polynomials Q and R, not both zero, such
that PQ = R). Indeed, if e < s then P is not s-pseudorandom against alge-
braic attacks (see [AL16], Theorem 1.4). In the symmetric cryptography com-
munity, the rational degree denotes the well-known algebraic immunity criterion
on Boolean function that underlies the so-called algebraic attacks on stream ci-
phers [CM03, Cou03]. An algebraic immunity of e implies an r-bit fixing degree
greater than or equal to e − r ([DGM05], Proposition 1), giving that an high
algebraic immunity guarantees both high rational degree and high bit fixing de-
gree. The algebraic degree is equivalent to the 0-bit fixing degree, then it leads
to the following characterization: a predicate of a random local function must
have high resiliency and high algebraic immunity. In light of this characteriza-
tion, the authors of [AL16] suggested the XOR-MAJ predicate as a promising
candidate for building high-stretch local PRGs, the majority function having
optimal algebraic immunity [DMS05].

Security against Subexponential Attacks. While there is a large body of
work that studied the security of random local functions, leading to a detailed
characterization of the parameters and predicates that lead to insecure instanti-
ations, relatively little is known on the exact security of local PRGs instantiated
with non-degenerated parameters. In particular, most papers only prove that
some classes of polytime attacks provably fail to break candidates local PRGs;
however, these results do not preclude the possible existence of non-trivial subex-
ponential attacks (specifically, these polytime attacks do not “degrade grace-
fully” into subexponential attacks when appropriate parameters are chosen for
the PRG; instead, they do always and provably not succeed). To our knowledge,
the only results in this regard are the proof from [AHI05, CEMT14] that many
backtracking-type attacks require exponential time to invert a random local func-
tion, and the subexponential-time attack arising from the work of Bogdanov and
Qiao [BQ09]. However, as we saw above, the latter attack only gives a slightly-

1 A predicate P has r-bit fixing degree e if the minimal degree of the restriction of P
obtained by fixing r inputs is e
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subexponential algorithm, in time 2O(n1−(s−1)/2d) for a d-ary predicate, and an
ns-stretch local PRG.

1.3 Our Goals and Results

In this work, we continue the study of the most common candidate local pseu-
dorandom generators. However, we significantly depart from the approach of
previous works, in that we wish to analyze the concrete security of local PRGs.
To our knowledge, all previous works were only concerned about establishing
asymptotic security guarantees for candidate local PRGs, without providing any
insight on, e.g., which parameters can be conjectured to lead to a primitive with
a given bit-security. Our motivations for conducting this study are twofold.

– Several recent results, which we briefly overviewed in Section 1.1, indicate
that (poly-stretch) local PRGs enjoy important theoretical applications.
However, the possibility of instantiating these applications with concrete
PRG candidates remains unclear, as their efficiency quickly deteriorates with
the parameters of the underlying PRG. For example, the iO scheme of [LT17],
which requires low-degree multilinear maps and therefore might be a viable
approach to obtain efficiency improvements in iO constructions (as candi-
date high-degree multilinear maps are prohibitively expensive); however, it
has a cost cubic in the seed size of a poly-stretch local PRG, which renders
it practical only if we can safely use local PRGs with reasonably small seeds.
Overall, we believe that there is a growing need for a better understanding of
the exact efficiency of candidate local PRGs, and providing concrete estima-
tions can prove helpful for researchers willing to understand which efficiency
could potentially be obtained for local-PRG-based primitives.

– At a more theoretical level, previous works on (variants of) Goldreich’s PRG
have identified criteria which characterize the predicates susceptible to lead
to secure local PRGs. Identifying such criteria is particularly relevant to
the initial goal set up by Goldreich in [Gol00], which is to understand what
characteristics of a function is the source of its cryptographic hardness, by
designing the simplest possible candidate that resists all attacks we know of.
However, existing criteria only distinguish predicates leading to insecure in-
stances from those leading to instances for which no polynomial-time attack
is known. We believe that it is also of particular relevance to this fundamen-
tal question to find criteria which capture in a more fine-grained way the
cryptographic hardness of random local functions.

Our Results. We provide new cryptanalytic insights on the security of Goldre-
ich’s pseudorandom generator.

– A new subexponential attack on Goldreich’s PRG. We start by devising a
new attack on Goldreich’s PRG. Our attack relies on a guess-and-determine
technique, in the spirit of the recent attack [DLR16] on the FLIP family of

stream ciphers [MJSC16]. The complexity of our attack is 2O(n2−s) where s is
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the stretch and n is the seed size. This complements O’Donnel and Witmer’s
result [OW14] showing that Goldreich’s PRG is likely to be secure for stretch
up to 1.5, with a more fine-grained complexity estimation. We implemented
our attack and provide experimental results regarding its concrete efficiency,
for various seed size and stretch parameters.

– Generalization. We generalize the previous attack to a large class of predi-
cates, which are divided into two parts, a linear part and a non-linear part,
XORed together. This captures all known candidate generalizations of Gol-
dreich’s PRG. Our attack takes subexponential time as soon as the stretch
of the PRG is strictly above one. Importantly, our attack does not depend
on the locality of the predicate, but only on the number of variables involved
in the non-linear part. In a recent work [AL16], Applebaum and Lovett put
forth an explicit candidate local PRG (of the form XOR-MAJ), as a con-
crete target for cryptanalytic effort. Our attack gives a new subexponential
algorithm for attacking this candidate.

– Extending the Applebaum-Lovett polynomial-time algebraic attack. Apple-
baum and Lovett recently established that local pseudorandom generators
can be broken in polynomial time, as long as the stretch s of the PRG is
greater than the rational degree e of its predicate. We extend this result
as follows: we show that the seed of a large class of local PRGs (which in-
clude all existing candidates) can be recovered in polynomial time whenever
s ≥ e − logNe/ log n, where e is the rational degree, n is the seed size, and
Ne is the number of independent annihilators of the predicate1 of degree at
most e.

– Linearization and Gröbner attack. We complement our study with an anal-
ysis of the efficiency of algebraic attacks à la Gröbner on Goldreich’s PRG.
While it is known that Goldreich’s PRG (and its variants) provably resists
such attacks for appropriate choices of (asymptotic) parameters [AL16], little
is known about its exact security against such attacks for concrete choices of
parameters. We evaluated the concrete security of Goldreich’s PRG against
an order-two linearization attack. The existence of such an attack allows to
derive bounds on Gröbner basis performance. Using an implemented proof
of concept, we introduce heuristic bounds for vulnerable parameters.

As illustrated by our attacks, both the number of annihilators of the predicate
and the r bit fixing algebraic immunity play an important role in the security
of Golreich’s PRG. These criteria were overlooked in all previous works on local
PRGs. Last but not least, our concrete analysis indicates that Gröbner basis
attacks, although provably “ruled out” asymptotically, matters when studying
the vulnerabilities of Goldreich’s PRG, and the security of concrete instances.

1.4 Organization of the Paper

Section 2 introduces necessary preliminaries on predicates and local pseudoran-
dom generators. Section 3 describes a guess-and-determine attack on Goldreich’s

1 An annihilator of a predicate P is a non-zero polynomials Q such that Q · P = 0
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PRG instantiated with the predicate P5 and analyzes it, where the proofs are
given in the full version of our paper [CDM+18]. Section 4 extends this attack
to all predicates of the form XOR-MAJ, where the proofs are given in the full
version of our paper. Eventually, still in the full version of our paper, an order
2 linearization attack on Goldreich’s PRG is described. The same full version of
our paper considers the case of using Goldreich’s PRG with ordered subset (as
was initially advocated in [Gol00]) and provides indications that this weakens its
concrete security. Finally, the full version of our paper improves the theorem of
Applebaum and Lovett, by taking into account the number of annihilators of the
predicate. The full version of our paper contains missing proofs on collisions.

2 Preliminaries

Throughout this paper, n denotes the size of the seed of the PRGs considered. A
probabilistic polynomial time algorithm (PPT, also denoted efficient algorithm)
runs in time polynomial in the parameter n. A positive function f is negligible
if for any polynomial p there exists a bound B > 0 such that, for any integer
k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on n occurs with overwhelming
probability when its probability is at least 1 − negl(n) for a negligible function
negl. Given an integer k, we write [k] to denote the set {1, . . . , k}. Given a finite

set S, the notation X
$← S means a uniformly random assignment of an element

of S to the variable X. Given a string x ∈ {0, 1}k for some k and a subset σ of
[k], we let x[σ] denote the subsequence of the bits of x whose index belong to σ.
Moreover, the i-th bit of x[σ] will be denoted by xσi

.

2.1 Hypergraphs

Hypergraphs generalize the standard notion of graphs (which are defined by a
set of nodes and a set of edges, an edge being a pair of nodes) to a more general
object defined by a set of nodes and a set of hyperedges, each hyperedge being
an arbitrary subset of the nodes. We define an (n,m, d)-hypergraph G to be a
hypergraph with n vertices and m hyperedges, each hyperedge having cardinality
d. The hyperedges are assumed to be ordered from 1 to m, and each hyperedge
{i1, i2, . . . , id} is ordered and satisfies ij 6= ik for all j ≤ d, k ≤ d, j 6= k. We will
consider hypergraphs satisfying some expansion property, defined below.

Definition 1 (Expander Graph).
An (n,m, d)-hypergraph G, denoted (σ1, . . . , σm), is (α, β)-expanding if for

any S ⊂ [m] such that |S| ≤ α ·m, it holds that | ∪i∈S σi| ≥ β · |S| · d.

2.2 Predicates

The constructions of local pseudorandom generators that we will consider in this
work rely on predicates satisfying some specific properties. Formally, a predicate
P of arity d is a function P : {0, 1}d 7→ {0, 1}. We define below the two properties
that were shown to be necessary for instantiating local PRGs:
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– Resiliency. A predicate P is k-resilient if it has no nontrivial correlation with
any linear combination of up to k of its inputs. An example of predicate with
maximal resiliency is the parity predicate (i.e., the predicate which xors all
its inputs).

– Algebraic Immunity. A predicate P has algebraic immunity e, referred to as
AI(P ) = e, if the minimal degree of a non null function g such that Pg = 0 (or
(P + 1)g = 0) on all its entries is e. A local PRG built from a AI-e predicate
cannot be pseudorandom with a stretch ne due to algebraic attacks.

Note that the algebraic immunity (also referred as rational degree in [AL16])
implies a lower bound on the degree and on the bit-fixing degree. Moreover, a
high algebraic immunity implies at least the same degree. Hence, for now on,
those two criterion are considered as the relevant criteria for evaluating the
security of Goldreich’s PRG.

We define a particular family of predicates which have been considered as a
potential instantiation:

Definition 2 (XOR`Mk predicates). We call XOR`Mk predicate a predicate P
of arity `+ k such that M is a predicate of arity k and:

P (x1, . . . , x`, z1, . . . , zk) =
∑̀
i=1

xi +M(z1, . . . , zk) .

We define also a subfamily of XOR`Mk predicates, which have been considered
in [AL16]:

Definition 3 (XOR`MAJk predicates). We call XOR`MAJk predicate a pred-
icate P of arity ` + k such that P is a XOR`Mk predicate such that M is the
majority function in k variables:

M(z1, . . . , zk) = 1⇔ wH(z1, . . . , zk) ≥
⌈
k

2

⌉
,

where wH denotes the Hamming weight.

2.3 Pseudorandom Generators

Definition. A pseudorandom generator is a deterministic process that expands
a short random seed into a longer sequence, so that no efficient adversary can
distinguish this sequence from a uniformly random string of the same length.
Formally,

Definition 4 (Pseudorandom Generator). A m(n)-stretch pseudorandom
generator, for a polynomial m, is an efficient uniform deterministic algorithm

PRG which, on input a seed x ∈ {0, 1}n, outputs a string y ∈ {0, 1}m(n)
. It satis-

fies the following security notion: for any probabilistic polynomial-time adversary
Adv,

Pr[y
$← {0, 1}m(n)

: Adv(pp, y) = 1]

≈Pr[x
$← {0, 1}n, y ← PRG(x) : Adv(pp, y) = 1]
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Here ≈ denotes that the absolute value of the difference of the two probabilities
is negligible in the security parameters, and pp stands for the public parameters
of the PRG. For any n ∈ N, we denote PRGn the function PRG restricted to n-bit
inputs. A pseudorandom generator PRG is d-local (for a constant d) if for any
n ∈ N, every output bit of PRGn depends on at most d input bits.

Goldreich’s Pseudorandom Generator. Goldreich’s candidate local PRGs
form a family FG,P of local PRGs: PRGG,P : {0, 1}n 7→ {0, 1}m, parametrized
by an (n,m, d)-hypergraph G = (σ1, . . . , σm) (where m = m(n) is polynomial in

n), and a predicate P : {0, 1}d 7→ {0, 1}, defined as follows: on input x ∈ {0, 1}n,
PRGG,P returns the m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm

1
, . . . , xσm

d
)).

Conjecture 1 (Informal). If G is a sufficiently expanding (n,m, d) hypergraph
and P is a predicate with sufficiently high resiliency and high algebraic immunity,
then the function PRGG,P is a secure pseudorandom generator.

Note that picking an hypergraph G uniformly at random suffices to ensure
that it will be expanding with probability 1− o(1). However, picking a random
graph will always give a non-negligible probability of having an insecure PRG.
To see that, observe that when the locality d is constant, a random hypergraph G
will have two hyperedges containing the same vertices with probability 1/poly(n);
for any such graph G, the output of PRGG,P on a random input can be trivially
distinguished from random. Therefore, the security of random local functions
is usually formulated non-uniformly, by stating that for a 1 − o(1) fraction of
all hypergraphs G (and appropriate choice of P ), no polytime adversary should
be able to distinguish the output of PRGG,P from random with non-negligible
probability.

Fixed hypergraph versus random hypergraphs. Goldreich’s candidates
local pseudorandom generators require to use a sufficiently expanding hyper-
graph. Unfortunately, building concrete graphs satisfying the appropriate expan-
sion properties is a non-trivial task. Indeed, all known concrete constructions of
expanding bipartite hypergraphs fail to achieve parameters which would allow
to construct a PRG with constant locality. Therefore, to our knowledge, in all
works using local PRG (see e.g. [IKOS08, App13, Lin17, ADI+17b, BCG+17]),
it is always assumed (implicitly or explicitly) that the hypergraph G of the PRG
is picked uniformly at random (which makes it sufficiently expanding with prob-
ability 1− o(1), even in the constant-locality setting) in a one-time setup phase.
Therefore, this is the setting we assume for our cryptanalysis.

Notations. In the first part of this work, we focus on the predicate P5, assuming
that the subsets σ1, ..., σm are random subsets. The predicate P5 can be regarded
as a Boolean function of five variables:

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 .
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The predicate P5 has algebraic degree 2 and an algebraic immunity of 2, and
is 2-resilient. Let n be the size of the input, i.e. the number of initial random
bits. We define the stretch s and denote the size m of the output as m = ns.
Let x1, . . . , xn ∈ F2 be the input random bits and y1, . . . , ym ∈ F2 be the output
bits. The m public equations Ei for 1 ≤ i ≤ m are drawn as follows:

– a subsequence of [n] of size 5 is chosen uniformly at random. Let us call it

σi = [σi1, σ
i
2, σ

i
3, σ

i
4, σ

i
5] .

– Ei is the quadratic equation of the form

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi .

The public system Σ that we consider is then defined with the m equations,
that is (Ei)1≤i≤m.

Ordered and unordered. There are two different cases to consider:

1. (Ordered case) σi is ordered, i.e. σi1 < σi2 < σi3 < σi4 < σi5.
2. (Unordered case) The order σi’s elements is arbitrary.

However, in the core of the paper, we will consider the unordered case, as
we’ll provide evidence that the vulnerabilities are even more important for the
ordered case in the full version of our paper [CDM+18].

Matrix inversion complexity. Our attacks require a sparse matrix inversion
algorithm. We consider the Wiedemann’s algorithm [Wie86], the complexity of
which is O(n2) in our context, since there are less than d ·n non-zero elements of
our matrices. Other algorithms could be used, but the complexity of our attacks
would have to be modified accordingly.

3 Guess and Determine Cryptanalysis of Goldreich’s
PRG with P5

In this section, we describe a new subexponential seed recovery attack on Gol-
dreich’s PRG when instantiated within the predicate P5. Our attack is a Guess
and Determine like attack, which is a widely used technique in symmetric crypt-
analysis [HR00, EJ00]. As an example, a similar attack [DLR16] has been done
on the preliminary version of the stream cipher FLIP [MJSC16] (which can be
interpreted as an instance of Goldreich’s PRG with linear locality and fixed secu-
rity parameters). The idea of guessing elements before making algebraic analysis
has been also introduced in [Bet11] under the name of hybrid attacks. In the
following, we sketch a similar idea applied to the highly structured Goldreich’s
PRG .
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3.1 Overview of the Attack

Using the above notations, we further make the following observations on Gol-
dreich’s PRG instantiated with P5.

Observations.

Quasi-linearity If either xσi
4

or xσi
5

is known, then the corresponding equation
becomes a linear equation. This is the main vulnerability that we use to
mount our attack.

Collisions If two equations have the same monomial of degree 2, then the sum
of these equations becomes linear (details are given in Section 3.2). Using this
phenomenon, we can also get linear equations. We first analyze the number
c of pairs of equations that shares a monomial of degree 2. Let the notion of
collision refer to this phenomenon.

Definition 5 (Collision). A collision is a couple (i, j) ∈ [m]2 such that i 6= j
and {σi4, σi5} = {σj4, σ

j
5}.

Combining both observations, a subexponential attack can be derived. The
main idea is to find linear equations using collisions and quasi-linearity.

The attack.

step 1 Find all collisions and derive the corresponding linear equations. Let c
be the number of linear equations obtained with this step.

step 2 Take a small subset of ` variables in {x1, . . . , xn}, called xi1 , . . . , xi` ,
such that by guessing them, n− c new equations are generated (` is formally
defined in Definition 6).

step 3 For all 2` possible values of (xi1 , . . . , xi`), build the system of at least n
linear equations, solve it1, find a candidate seed and check if that candidate
matches the public evaluation of the PRG. If so, then it is the secret seed
and the guess is correct.

Definition 6 (Number of guesses `). Let an instance of Goldreich’s PRG be
generated with n variables and m equations. Let c be the number of collisions.
Let us define ` as a sufficient number of guesses required to build n − c linear
equations.

The above attack works as long as the systems of linear equations obtained
in step 2 and 3 above contain an invertible subsystem of size sufficiently large
to recover the seed. Our experiments confirm that this is always the case. We
formalize this observation with a combinatorial hypothesis: define Dn to be the
distribution over Fn×n2 obtained by sampling the hypergraph of Goldreich’s PRG

1 If more than n linear equations are recovered from Step 1 and 2, the system is
unlikely to be solvable for an incorrect guess. In that case, it is not necessary to
check if the public output matches with the candidate seed.
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at random (with d = 5), finding c linear equations from the collisions, taking the
smallest subset of variables which suffices to recover n′ ≥ n− c additional linear
equations, guessing at random the value of these variables, and outputting the
n× n matrix An of the linear system (if n′ > n, we truncate to n equations for
simplicity).

Hypothesis 1 There exists a constant γ such that for every sufficiently large
n ∈ N, the matrix An contains with overwhelming probability an invertible
subsystem of γ · n equations, where the probability is taken over the coins of
An

$← Dn.

In the full version of this work [CDM+18], we provide a detailed analysis of
Hypothesis 1. Specifically:

– By applying the result of [BQ09], which describes a polytime seed recovery
attack given an approximate preimage of the PRG, we formally show that
Hypothesis 1 implies that our attack succeeds with overwhelming probability.

– We conduct detailed experimentations. In our experiments, the matrix An
always contains an invertible subsystem of γ · n equations, with γ > 0.9.

– We show that Hypothesis 1 is related to well-established conjectures in math-
ematics, related to the distribution of the rank of random sparse matrices.
Unfortunately, formally proving Hypothesis 1, even under some heuristics
(e.g. replacing Dn by the uniform distribution over sparse matrices), appears
to be a highly non-trivial mathematical problem, which requires techniques
far out of the scope of the current paper.

– Eventually, we show that our attack can be modified to (provably) break
the pseudorandomness of Goldreich’s PRG, without having to rely on any
unproved hypothesis. Hence, Hypothesis 1 seems to be only necessary for
showing that our attack breaks the one-wayness of Goldreich’s PRG.

In the next part, we give more details of our attack and we prove that the
complexity of this attack will always be smaller than

O(n22n
2−s

) .

We later introduce experimental results in Section 3.3.

3.2 Complexity analysis and details

Assessing the number of collisions. As previously noticed, collisions can be
used to build linear equations. For example, let us assume we have the following
two equations in Σ:

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi (1)

xσj
1

+ xσj
2

+ xσj
3

+ xσi
4
xσi

5
= yj (2)

then adding equation (1) and equation (2) gives us the following linear equation:

xσi
1

+ xσi
2

+ xσi
3

+ xσj
1

+ xσj
2

+ xσj
3

= yi + yj
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However, we stress that if we had a third colliding equation:

xσk
1

+ xσk
2

+ xσk
3

+ xσi
4
xσi

5
= yk (3)

then we could only produce a single other linear equation (w.l.o.g. (1) + (3)),
since the other combination ((2) + (3)) would be linearly equivalent to the two
previous linear equations.

Hence, this problem can be seen as a balls-into-bins problem: m balls are
randomly thrown into

(
n
2

)
bins and we want to know how many balls in aver-

age hit a bin that already contains at least one ball. Indeed, this number will
approximate the value c of the algorithm.

Proposition 1 (Average number of collisions). Let n be the number of vari-
ables, and m be the number of equations, let C be the random variable counting
the number of collisions on the degree two monomials in the whole system. Then,
the average number of collisions is:

E(C) = m−
(
n

2

)
+

(
n

2

)((n
2

)
− 1(
n
2

) )m
∈ O(n2(s−1)) .

The proof of this proposition is given in the full version [CDM+18]. Tab. 1
gives the evaluation of this formula for some set of parameters. Our experimen-
tal results (see Section 3.3) corroborate these expectations and show that the
number of collisions is always very close to this expected average.

We now assess the complexity of the first step.

Lemma 1. In the worst case, Step 1 has complexity O(m · log(m)).

The proof is given in the full version of our paper [CDM+18].

Finding the smallest subset of guesses. The dominant term of the com-
plexity of our attack is given by the number of guesses ` we have to make in the
second step. Thus, minimizing ` is important. Consequently, the variables of the
seed that we guess correspond to those appearing the most in the monomials
of degree two. Then, the worst case happens when the instance of the PRG is
such that there is no best set of guesses. In this specific unlikely setting, each
guess generates the exact same amount of linear equations. Here, we bound the
number of guesses with the minimum number of guesses for a worst case system.

Table 1. Average number of collisions

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771
s = 1.4 83 145 254 442 773
s = 1.3 28 42 64 97 147
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Proposition 2 (Number of guesses). For any instance with n variables, m
equations and c collisions, an upper bound on the sufficient number of guesses
required to build n− c linear equations is:

` ≤
⌊

n(n− c)
2(m− c) + n

+ 1

⌋
. (4)

The proof is given in the full version of our paper [CDM+18]. Eventually,
Equation 4 can be approximated with⌊

n(n− c)
2(m− c) + n

+ 1

⌋
' O

(
n2−s

2

)
. (5)

We show further in Section 3.3 that experimental results are much better. We
stress that this theoretical worst case expectation is far from experience. Some
explanations of this gap are given in the full version of our paper.

The complexity of Step 2 is given by the following lemma.

Lemma 2. Step 2 has complexity O(` · m) which is O(n2) with Equation 5
estimation.

The proof is given in the full version of our paper.

Solving the linear system. Now, ` variables {xi1 , . . . , xi`} are chosen to be
guessed and an exhaustion over all the 2` values of these variables is necessary.
For every possible guess, one can try to solve the linear equations collected in
the previous steps. In the case that more than n equations are collected, the
system is overdetermined and thus may not be solvable. If so, then the guess is
incorrect, else we obtain a candidate seed. This candidate can be either confirmed
or rejected using the public quadratic system and the public output of the PRG.
If the candidate is rejected, then the guess is also incorrect. However, if the
candidate matches the public evaluation of the PRG, then the candidate seed is
the secret seed with overwhelming probability1 and the search can be stopped.

The complexity of this attack is given by the following lemma.

Lemma 3. The complexity of Step 3 is

O
(
nω2

n2−s

2

)
,

which is also the asymptotic complexity of the full attack.

The proof is given in the full version of our paper [CDM+18].

1 It is very unlikely that two seeds give the same output by evaluating the same
quadratic system. Even though, if it is the case, this procedure still finds an equiv-
alent seed which makes the system insecure.
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3.3 Experiment

Distribution of the number of collisions. The theoretical results of Table 1
are verified in practice, as shown in Fig. 1 for the particular case of n = 1024
and s = 1.4. As expected with the analytical formula, the number of collisions is
very close to 254 in average. Moreover, our experimental results are very dense
around the average, suggesting that the distribution has a low variance.
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Number of collisions

Fig. 1. Number of collisions for n = 1024
and s = 1.4 with 2000 tests

64 65 66 67 68 69
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Number of guesses

Fig. 2. Number of guesses for n = 2048
and s = 1.3 with 2000 tests

Implementation of the attack. Since the study of this paper is the concrete
security of Goldreich’s PRG , it is important to practically check if the attack
presented in Section 3.1 can be efficient when implemented. For this purpose,
we provide a proof of concept in Python.

One can note that the practical attack should be on average more efficient
than assessed theoretically. Indeed, the asymptotic complexity of Proposition 3
is estimated in the worst case and pessimistic approximations were made on n−c
and on the value of `. Hence, we experimented this attack for different stretches
and different values of n and we effectively noticed that the complexity in average
is much smaller than the expected complexity. Table 2 represents the theoretical
number of guesses necessary to recover the seed and Table 3 represents the
average number of guesses actually needed in the experiment. Moreover, we also
noticed that the number of guesses needed to invert the system has a very low
variance, as shown in Fig. 2.

With this experiment, we were able to estimate the practical security of Gol-
dreich’s PRG against the guess and determine approach with 80 bits of security.
Indeed, for one instance of the PRG, the complexity of the seed recovery can
be easily derived from the number ` of guesses as 2`nω. So to assess the 80
bits security, one can evaluate the average number of guesses necessary for one
choice of (n, s) and check if the complexity is lower than 280. For that, for 30
values of n ∈ [27, 214], we delimited the smallest stretch for which the average
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Table 2. Theoretical number of guesses
in the worst case

n 256 512 1024 2048 4096

s = 1.45 4 7 11 18 27
s = 1.4 9 15 23 37 58
s = 1.3 20 34 56 94 156

Table 3. Experimental number of guesses
in average

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21
s = 1.4 6 11 17 27 44
s = 1.3 13 23 39 65 110

number of guesses allows a 80 bits attack. Each average has been done on 1000
measurements because the variance was very small. Fig. 3 represents the limit
on vulnerable (n, s) parameters. Above the line, the parameters are on average
insecure against the guess and determine attack.
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above: < 80 bits security

Fig. 3. Limit stretch for vulnerable instances. The gray zone above the curve denotes
the insecure choices of parameters.

Candidate Non-Vulnerable Parameters. We were able to estimate the prac-
tical range of parameters that appear to resist to this attack. To assess them, we
estimated the number of guesses necessary and deduced the bit security. With
many measurements (1024 for each set of parameters), we could find the limit
stretch for parameters that are, not vulnerable to our attack. The couples (n, s)
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Table 4. Challenge parameters for seed recovery attacks. The first line contains the
parameter n and below are represented the associated stretches s.

Elementary operations 512 1024 2048 4096

< 280 1.120 1.215 1.296 1.361
< 2128 1.048 1.135 1.222 1.295

that possess the maximal s with an expected security of 80 or 128 bits1 are
conjectured to be the limit for non vulnerable parameters. These couples2 are
represented by the two lines in Fig. 4.

We also introduce certain parameters in Table 4 as challenges for improving
the cryptanalysis of Goldreich’s PRG. These parameters correspond to choices of
the seed size and the stretch which cannot be broken in less than 280 (resp. 2128)
operations with the attacks of this paper. Further study is required to assess
confidence in the security level given by these parameters.
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below: conjectured > 128 bits security

Fig. 4. Limit stretch for conjectured non vulnerable instances.

1 We actually took a margin of 10% to take into account the possible improvements
of our implementation

2 This curve should not be extrapolated because outside of its range, Gröbner attacks
seem more powerful, see Fig. 5
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Fig. 5. Limit stretch for vulnerable parameters with 80 bits of security against both
guess and determine (Section 3) and order 2 linearization attacks (See the full version of
our paper). The gray zone above the curves denotes the insecure choices of parameters.

3.4 Other Algebraic Cryptanalysis

To complement this attack, we also made an analysis of the efficiency of alge-
braic attacks with Gröbner basis on Goldreich’s PRG. While it is known that
Goldreich’s PRG (and its variants) provably resists such attacks for appropriate
choices of (asymptotic) parameters ( [AL16], Theorem 5.5), little is known about
its exact security against such attacks for concrete choices of parameters.

Since Goldreich’s PRG is far from a Boolean random quadratic system, the
performance of a Gröbner basis strategy is hard to assess with the existing
theory. In order to give an intuition on how Gröbner basis algorithms would
behave on Goldreich’s PRG with predicate P5, we provide in the full version
of our paper [CDM+18] an easy-to-understand order two linearization attack.
This polynomial attack leads to a practical seed recovery for certain parameters
(n, s) and we derive a heuristic bound for vulnerable (n, s) for 80 bits of security.
The existence of such an attack allows to estimate bounds on Gröbner basis
performance. Using an implemented proof of concept, we introduce heuristic
bounds for vulnerable parameters. From this linearization attack performance
and complexity, we derive a heuristic bound on vulnerable (n, s) parameters
against a Gröbner basis technique. We refer the reader to the full version of our
paper for the complete analysis.
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3.5 Conclusion

We described in this section a guess and determine attack against Goldreich’s
PRG. In the full version of our paper, we complement this result with an analysis
of the security of Goldreich’s PRG against an order 2 linearization attack (à la
Gröbner). We represent on Figure 5 the range of parameters for which Goldre-
ich’s PRG is conjectured to have 80 bits of security against those two attacks.
As illustrated on the graph, the guess and determine approach targets more pa-
rameters for low n while the linearization attack performs better for n > 4000.
Although Goldreich’s PRG is conjectured to be theoretically secure for a stretch
approaching 1.5 by an arbitrary constant, our analysis shows that a very large
seed must be used to achieve at least 80 bits of security with such stretch. In
particular, if a stretch of 1.4 is needed, no seed smaller than 5120 bits should be
used. Similarly, for a stretch as small as 1.1, the seed must be at least 512 bits
long.

4 Generic Attacks against Goldreich’s PRG

Beyond the predicate P5 we investigate the security of other predicates for higher
stretches, and show that the considered criteria are not sufficient to determine the
security. In the full version of our paper, we prove that the number of independent
annihilators of the predicate has to be taken into account. Hence, the algebraic
immunity is not enough, as we provide a new bound on the stretch that refines
the theorem of Applebaum and Lovett. On the other side, we provide in this
section an improvement of the guess and determine technique, combined with an
algebraic attack. This generalization can be seen as an hybrid attack as defined
in [Bet11].

4.1 A Subexponential-Time Algorithm

The theorem of Applebaum and Lovett for polynomial-time algorithms regarding
algebraic attacks can be improved, as shown in the full version of our paper. In
this section, we focus on subexponential-time algorithms. The idea here is to
generalize our initial attack of Section 3 against the PRG instantiated with the
predicate P5, to all other considered predicates. Therefore we generalize the
attack to all XOR`Mk predicates and then more particularly to the XOR`MAJk
predicates.

The principle. Let n be the size of the seed of the PRG with stretch s, and
let P be a predicate with locality d. The general idea is to guess r variables
of the seed, and solve the corresponding system of equations for each possible
value of those r bits. For each equation obtained, an equation of smaller or equal
degree can be derived using the principle of the algebraic immunity. Then, the
complexity of the attack mainly depends on the values of r and the algebraic
immunity of the functions we obtain. It corresponds to the general principle
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of algebraic attacks with guess and determine ([MJSC16]), for which we can
affine the complexity in the particular case of XOR`Mk predicates. We begin by
considering the complexity of an attack targeting the degree of the M predicate
after guessing some bits, based on the following remark:

Remark 1. As soon as k − 1 variables among the k variables of M are fixed, a
linear equation can be found, as the output of M depends on only one variable
and as XOR` is linear.

The attack. Our sub-exponential time algorithm works as follows:

step 1 Fix r variables of the seed (xi1 , . . . , xir ), with r ∈ O
(
n

k−s
k−1

)
.

step 2 For all 2r possible values of xi1 , . . . , xir , recover the corresponding linear
system of equations.

step 3 Solve the system in (n − r)ω operations; if there is a contradiction go
back to step 2, otherwise add the solution to the list.

step 4 Return the list of solutions.

This attack works as long as the system of linear equations obtained in step
3 above contains an invertible subsystem of size sufficiently large to recover the
seed. We then apply Hypothesis 1 with An being the linear system obtained by
guessing at random the 2r possible values of xi1 , . . . , xir .

Complexity analysis. The complexity is dominated by Step 3, as we repeat
this step 2r times (we have to solve a system of linear equations of size n −
r for each possible values of the r bits), the complexity of this algorithm is
sub-exponential: O(nω2r). Eventually, the final complexity is determined by the
following proposition:

Proposition 3. For an overwhelming proportion of Goldreich’s PRG instanti-
ated with a XOR`Mk predicate, under Hypothesis 1 on step 2 system, the com-
plexity order of the previous algorithm can be approximated by :

2n
k−s
k−1 · nω .

The proof is given in the full version of our paper.

Remark 2. It is important to notice that the parameter of this attack does not
rely directly on the locality, but only on the number k of variables that ap-
pear in the nonlinear part M, hence, it improves the complexity of [BQ09]. In-

deed, the generic complexity of Bogdanov and Qiao is roughly O(2n
1−(s−1)/2d

)
where d denotes the locality, as our algorithm has a complexity that is in

O
(
nω · 2n1−(s−1)/(k−1)

)
, with k − 1 < d, by definition of k.

Moreover, the predicate requires a high resiliency to avoid linear attacks,
and one of the most natural constructions to build a resilient function is to
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add an independent linear part to a function. It corresponds to the XOR`Mk

predicates, which have a resiliency of at least ` − 1 given by the xor part. It is
also possible to build resilient functions differently, which seems to be a better
choice regarding this attack. For the case of P5, we have k = 2, that gives us an
attack in O(nω2n

2−s

).

Possible improvement. This algorithm only relies on the number of variables
of the non-linear part, but not on its algebraic immunity. Instead of fixing vari-
ables in order to obtain linear equations in the non-linear part of a XOR`Mk

predicate, an attacker can fix variables in order to recover equations of degree
greater than 1. Indeed, using the algebraic immunity of the M predicate, the
attacker can recover such equations by fixing less than k bits in the M part. By
doing so, it appears that the relevant criterion regarding this attack is no longer
the algebraic immunity, neither the r-bit fixing degree defined in [AL16], but a
generalization of the two. The efficiency of the attack will depend on the alge-
braic immunity of the predicates obtained after doing some guesses, and on the
probability of getting predicates (in fewer variables) with this algebraic immu-
nity (or smaller). A lower bound on the algebraic immunity that can be obtained
with r guesses is given by the r-bit fixing algebraic immunity (introduced first in
term of recurrent algebraic immunity in [MJSC16] to bound the complexity of
algebraic attacks combined with guess and determine) defined in the following
sense:

Definition 7. (r-bit fixing algebraic immunity) Let f be a Boolean function with
d variables. For any 0 ≤ r ≤ d, and b = (b1, . . . , br) ∈ {0, 1}r, i = (i1, . . . , ir) ∈
[d]r such that i1 < i2 < · · · < ir, we note f(b,i) the restriction of f where the r
variables indexed by i1, . . . , ir are fixed to the value b1, . . . , br. Then f has r-bit
fixing algebraic immunity a if

min
(
AI(f(b,i)) : i = (i1, . . . , ir) ∈ [d]r, i1 < i2 < · · · < ir, b ∈ {0, 1}r

)
= a

where AI denotes the algebraic immunity.

For the case of XOR`Mk predicates we prove in the full version of our paper
[CDM+18] an upper bound on the r-bit fixing algebraic immunity. Thereafter,
determining the number of predicates with this algebraic immunity that could be
reached guessing r variables will lead to other sub-exponential time algorithms.
The description and analysis of this algorithm applied on XOR`Mk predicates is
given in the full version of our paper. However, this algorithm only generalizes the
result given by the first algorithm as it considers systems of equations of degree
greater than one. But it does not assume any property on the M predicate, and
leads to consider the maximum algebraic immunity that can be provided by
this part when some variables are fixed. Considering the principle of the r-bit
fixing algebraic immunity, we can try to find guesses which lower this algebraic
immunity, leading to an attack with even better complexity.

In the following, we show on the XOR-MAJ predicates how only taking into
account specific values of guessed bits (but changing the positions that we guess)
enables to target a low algebraic immunity with enough equations.
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Application to XOR-MAJ Predicates. In the previous algorithms, we fix
r bits that never change, but we test all possible values for those bits. However,
it might be of interest to change the bits that we guess, by taking into account
a specific value for those bits, such that we decrease more drastically the degree
of the equations that we get. Using the notations of Definition 7, it boils down
to finding values of b ∈ {0, 1}r such that AI(f(i,b)) is low for enough i.

Let us consider the XOR`MAJk predicate (Definition 3), then our initial algo-

rithm breaks the construction with complexity O(nω2n
(k−s)/(k−1)

), and its gen-

eralization with complexity O

(
2n

1+j−s+d(k−j)/2e
j

nω(d k−j
2 e+1)

)
for all integer j

such that 1 ≤ j ≤ k. Moreover, this algorithm is an improvement only for bigger
stretches. In the following, we change the way we make our guesses, in order to
capture how the r-bit fixing algebraic immunity is a relevant criterion.

In these algorithms, one can notice that fixing j bits among the k variables
that appear in the majority function can derive different degrees of equations,
depending on the value of the bits that are guessed: fixing

⌈
k
2

⌉
bits all to 0 (or

all to 1) will derive directly linear equations. Indeed, for the majority function,
if strictly more than half of the bits are supposed to be all zero, then the corre-
sponding output has to be 0 by definition of the majority, and respectively 1 if
all these bits are ones. On the other side, fixing a quarter of bits to be ones and
a quarter of bits to be zero will derive an other majority function taken other
half of the bits, which is clearly non-linear for k big enough.

Hence, instead of fixing r bits and guess all possible values of those bits, we
choose r bits, guessing that all those bits are all one or all zero, and repeat this
until the guess is right (the position of the r guessed variables changes, not the
value). This particular guess-and-determine is exactly what Duval, Lallemand
and Rotella investigated in [DLR16] on the FLIP family of stream ciphers (and
which complexity can be bounded through the r-bit fixing algebraic immunity,
[MJSC16] Section 3.4).

Description of the algorithm.

step 1 Fix randomly r variables of the seed (xi1 , . . . , xir ).
step 2 Assume that all of them are equal to zero, solve the corresponding linear

system, add the solution to the list.
step 3 Assume that all the r variables are equal to one, solve the corresponding

linear system, add the solution to the list.
step 4 If in the solution list there is one with no contradiction with the PRG

output, output the solution as the seed. Otherwise, empty the list and go
back to Step 1.

As for the first algorithm, we assume that Hypothesis 1 is verified with An
representing the linear systems of Step 2 and 3.

Complexity analysis. The complexity is dominated by the number of repetition
of Step 2 and Step 3, we determine it through the following proposition:
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Proposition 4. For an overwhelming proportion of Goldreich’s PRG instanti-
ated with a XOR`MAJk predicate, under Hypothesis 1 for Step 2 and 3 systems,
the seed can be recovered in time complexity of order:

nω2n
1− s−1

d k
2 e+1

.

The proof is given in the full version of our paper.
This algorithm captures something else than the previous ones, as it shows

that one has to consider all possible choices of guesses in order to evaluate exactly
the security of such constructions. In other words, it shows that the r-bit fixing
algebraic immunity is exactly the relevant criterion to resist our attack, as it
defines the smallest algebraic immunity that can be considered for an attack.
However, one must also take the probability that a corresponding guess happens
on the equations into account. Hence there exists a trade-off between the choice
of the good guesses, and the probability that the corresponding equation of small
degree can be derived.

4.2 Open Questions

The attacks and their variants described here asked lot of open questions. For
the polynomial time algorithm using the number of linearly independent anni-
hilators, we do not take into account some dependencies into different equations
as explained in the full version of our paper [CDM+18]. Hence, the condition on
the stretch that we gave could be improved by considering dependencies on the
subsets.

For the subexponential-time attack that uses the r bit fixing algebraic immu-
nity, we do not know if the bound given in the full version of our paper is tight,
that is if there exist predicates, such that fixing any bits will still derive Boolean
functions with fewer variables that reach the maximal algebraic immunity. In
other words, is it possible to have a perfect predicate regarding the r bit fixing
algebraic immunity? Recalling that it is the relevant criterion in this context.

Moreover, this bound does not depend on the value of the bits that are
guessed, whereas this might have an influence, as shown on the XOR-MAJ pred-
icate. For example, the Boolean function x0 +x1x2x3x4 is of algebraic immunity
2, but fixing x1 to be 1 will derive a Boolean function that is still of algebraic
immunity 2, but fixing x1 = 0 will bring directly an equation of degree 1. Hence,
all choices of guess are not equivalent, implying that different choices of guesses
could improve the complexity of our subexponential-time algorithm, depending
strongly on the predicate.

Last but not least, how the first idea of using different annihilators can im-
prove the subexponential-time algorithms using guess and determine?
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