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Abstract. In this work we develop a new theory for concretely efficient, large-
scale MPC with active security. Current practical techniques are mostly in the
strong setting of all-but-one corruptions, which leads to protocols that scale badly
with the number of parties. To work around this issue, we consider a large-scale
scenario where a small minority out of many parties is honest and design scal-
able, more efficient MPC protocols for this setting. Our results are achieved by
introducing new techniques for information-theoretic MACs with short keys and
extending the work of Hazay et al. (CRYPTO 2018), which developed new pas-
sively secure MPC protocols in the same context. We further demonstrate the
usefulness of this theory in practice by analyzing the concrete communication
overhead of our protocols, which improve upon the most efficient previous works.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties to compute
some function f on the parties’ private inputs, while preserving a number of security
properties such as privacy and correctness. The former property implies data confiden-
tiality, namely, nothing leaks from the protocol execution but the computed output. The
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latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties are not led to accept a wrong output. Se-
curity is proven either in the presence of a passive adversary that follows the protocol
specification but tries to learn more than allowed from its view of the protocol, or an
active adversary that can arbitrarily deviate from the protocol specification in order to
compromise the security of the other parties in the protocol.

The past decade has seen huge progress in making MPC protocols communica-
tion efficient and practical; see [KS08, DPSZ12, DKL+13, ZRE15, LPSY15, WMK17,
HSS17] for just a few examples. In the two-party setting, actively secure protocols
[WRK17a] by now reach within a constant overhead factor over the notable semi-
honest construction by Yao [Yao86]. On the practical side, a Boolean circuit with around
30,000 gates (6,400 AND gates and the rest XOR) can be securely evaluated with ac-
tive security in under 20ms [WRK17a]. Moreover, current technology already supports
protocols that securely evaluate circuits with more than a billion gates [KSS12]. On
the other hand, secure multi-party computation with a larger number of parties and
a dishonest majority is far more difficult due to scalability challenges regarding the
number of parties. Here, the most efficient practical protocol with active security has a
multiplicative factor of O(λ/ log |C|) due to cut-and-choose [WRK17b] (where λ is a
statistical security parameter and |C| is the size of the computed circuit). On the prac-
tical side, the same Boolean circuit of 30,000 gates can be securely evaluated at best
in 500ms for 14 parties [WRK17b] in a local network where the latency is neglected,
or in more than 20s in a wide network. The problem is that current MPC protocols
do not scale well with the number of parties, where the main bottleneck is a relatively
high communication complexity, while the number of applications requiring large scale
communication networks are constantly increasing, involving sometimes hundreds of
parties.

An interesting example is safely measuring the Tor network [DMS04] which is
among the most popular tools for digital privacy, consisting of more than 6000 relays
that can opt-in for providing statistics about the use of the network. Nowadays and due
to privacy risks, the statistics collected over Tor are generally poor: There is a reduced
list of computed functions and only a minority of the relays provide data, which has to
be obfuscated before publishing [DMS04]. Hence, the statistics provide an incomplete
picture which is affected by a noise that scales with the number of relays.

In the context of securely computing the interdomain routing within the Border
Gateway Protocol (BGP) which is performed at a large scale of thousands of nodes,
a recent solution in the dishonest majority setting [ADS+17] centralizes BGP so that
two parties run this computation for all Autonomous Systems. Large scale protocols
would allow scaling to a large number of systems computing the interdomain routing
themselves using MPC, hence further reducing the trust requirements.

Another important application that involves a massive number of parties is an auc-
tion with private bids, where the winning bid is either the first or the second price.
Auctions have been widely studied by different communities improving different as-
pects and are central in the area of web electronic commerce. When considering pri-
vacy and correctness, multi-party computation offers a set of tools that allow to run the
auction while preserving the privacy of the bidders (aka. passive security). MPC can
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also enforce independent of inputs between the corrupted and honest parties as well
as correctness, in the sense that parties are not allowed to change their vote once they
learn they lost. This type of security requires more complicated tools and is knows as
active security. Designing secure solutions for auctions played an important role in the
literature of MPC. In fact, the first MPC real-world implementation was for the sugar
beet auction [BCD+09] with three parties and honest majority, where the actual num-
ber of parties was 1129. In a very recent work by Keller et al. [KPR18], the authors
designed a new generic protocol based on semi-homomorphic encryption and lattice-
based zero-knowledge proofs of knowledge, and implemented the second-price auction
with 100 parties over a field of size 240. The running time of their offline phase for the
SPDZ protocol is 98s. The authors did not provide an analysis of their communication
complexity.

Motivated by the fact that current techniques are insufficient to produce highly prac-
tical protocols for such scenarios, we investigate the design of protocols that can more
efficiently handle large numbers of parties with strong security levels. In particular, we
study the setting of active security with only a minority (around 10–30%) of honest par-
ticipants. By relaxing the well-studied, very strong setting of all-but-one corruptions (or
full-threshold), we hope to greatly improve performance. Our starting point is the re-
cent work by Hazay et al. [HOSS18] which studied this corruption setting with passive
security and presented a new technique based on “short keys” to improve the communi-
cation complexity and the running times of full-threshold MPC protocols. In this paper
we extend their results to the active setting.

Technical background for [HOSS18]. Towards achieving their goal, Hazay et al. ob-
served that instead of basing security on secret keys held by each party individually,
they can base security on the concatenation of all honest parties’ keys. Namely, a se-
cure multi-party protocol with h honest parties can be built by distributing secret key
material so that each party only holds a small part of the key. Formalizing this intuition
is made possible by reducing the security of their protocols to the Decisional Regu-
lar Syndrome Decoding (DRSD) problem, which, given a random binary matrix H, is
to distinguish between the syndrome obtained by multiplying H with an error vector
e = (e1‖ · · · ‖eh) where each ei ∈ {0, 1}2

`

has Hamming weight one, and the uniform
distribution. This can equivalently be described as distinguishing

⊕h
i=1 H(i, ki) from

the uniform distribution, where H is a random function and each ki is a random `-bit
key. A specified in [HOSS18], when h is large enough, the problem is unconditionally
hard even for ` = 1, which means for certain parameter choices 1-bit keys can be used
without introducing any additional assumptions.

Our contribution. In this work we develop a new theory for concretely efficient, large-
scale MPC in the presence of an active adversary. More concretely, we extend the short
keys technique from [HOSS18] to the active setting. Adapting these ideas to the active
setting is quite challenging and requires modifying information-theoretic MACs used
in previous MPC protocols [BDOZ11, DPSZ12] to be usable with short MAC keys. As
our first, main contribution, we present several new methods for constructing efficient,
distributed, information-theoretic MACs with short keys, for the setting of a small, hon-
est minority out of a large set of parties. Our schemes allow for much lower costs when
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creating MACs in a distributed manner compared with previous works, due to the use of
short MAC keys. For our second contribution, we show how to use these efficient MAC
schemes to construct actively secure MPC for binary circuits, based on the ‘TinyOT’
family of protocols [NNOB12, BLN+15, FKOS15, HSS17, WRK17b]. All previous
protocols in that line of work supported n − 1 out of n corruptions, so our protocol
extends this to be more efficient for the setting of large-scale MPC with a few honest
parties.

Concrete efficiency improvements. The efficiency of our protocols depends on the to-
tal number of parties, n, and the number of honest parties, h, so there is a large range of
parameters to explore when comparing with other works. We discuss this in more detail
in Section 8. Our protocol starts to concretely improve upon previous protocols when
we reach n = 30 parties and t = 18 corruptions: here, our triple generation method
requires less than half the communication cost of the fastest MPC protocol which is
also based on TinyOT [WRK17b] (dubbed WRK) tolerating up to n − 1 corruptions.
For a fairer comparison, we also consider modifying WRK to run in a committee of
size t+ 1, to give a protocol with the same corruption threshold as ours. In this setting,
we see a small improvement of around 10% over WRK, but at larger scales the impact
of our protocol becomes much greater. For example, with n = 200 parties and t = 160
corruptions we have up to an 8 times improvement over WRK with full-threshold, and
a 5 times improvement when WRK is modified to the threshold-t setting.

Technical Overview

In our protocols we assume that two committees, P(h) and P(1), have been selected out
of all the n parties providing inputs in the MPC protocol, such thatP(h) contains at least
h honest parties andP(1) contains at least 1 honest party. These can be chosen determin-
istically, for instance, if there are h honest parties in total we let P(h) = {P1, . . . , Pn}
and P(1) = {P1, . . . , Pn−h+1}. We can also choose committees at random using coin-
tossing, if we start with a very large group of parties from which h′ > h are honest.
Since we have |P(h)| > |P(1)|, to avoid unnecessary interaction we take care to ensure
that committeeP(h) is only used when needed, and when possible we will do operations
in committee P(1) only.

Section 3. We first show a method for authenticated secret-sharing based on information-
theoretic MACs with short keys, where given a message x, a MAC m and a key k,
verification consists of simply checking that s linear equations hold. Our construction
guarantees that forging a MAC to all parties can only be done with probability 2−λ,
even when the key length ` is much smaller than λ, by relying on the fact that at least
h parties are honest. We note that the reason for taking this approach is not to obtain a
more efficient MAC scheme, but to design a scheme allowing more efficient creation
of the MACs. Setting up the MACs typically requires oblivious transfer, with a com-
munication cost proportional to the key length, so a smaller ` gives us direct efficiency
improvements to the preprocessing phase, which is by far the dominant cost in appli-
cations. Our basic MAC scheme requires all parties in both committees to take part,
but to improve this we also present several optimizations, which can greatly reduce the
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storage overhead by “compressing” the MACs into a single, SPDZ-like sharing in only
committee P(1).

Section 4–5. We next show how to efficiently create authenticated shares for our MAC
scheme with short keys. As a building block, we need a protocol for random correlated
oblivious transfer (or random ∆-OT) on short strings. We consider a variant of the
OT extension protocol of Keller et al. [KOS15], modified to produce correlated OTs
(as done in [NST17]) and with short strings. Our authentication protocol for creating
distributed MACs improves upon the previous best-known approach for creating MACs
(optimized to use h honest parties) by a factor of h(n− h)/n times in terms of overall
communication complexity. This gives performance improvements for all h > 1, with
a maximum n/4-fold gain as h approaches n/2.

Section 7. Finally, we introduce our triple generation protocol, in two phases. Similarly
to [WRK17b], we first show how to compute the cross terms in multiplication triples
by computing so-called ‘half-authenticated’ triples. This protocol does not authenticate
all terms and the result may yield an incorrect triple. Next, we run a standard cut-and-
choose technique for verifying correctness and removing potential leakage. Our method
for checking correctness does not follow the improved protocol from [WRK17b] due to
a limitation introduced by our use of the DRSD assumption. The security of our protocol
relies on a variant of the DRSD assumption that allows one bit of leakage, and for this
reason the number of triples r generated by these protocols depends on the security of
RSD. So, while we can produce an essentially unlimited number of random correlated
OTs and random authenticated bits, if we were to produce ‘half-authenticated’ triples
in a naive way, we would be bounded on the total number of triples and hence the
size of the circuits we can evaluate. To fix this issue we show how to switch the MAC
representation from using one key ∆ to a representation under another independent key
∆̃. This switch is performed every r triples.

Extension to Constant Rounds. Since Hazay et al. [HOSS18] also described a constant
round protocol based on garbled circuits with passive security, it is natural to wonder
if our approach with active security also extends to this setting. Unfortunately, it is
not straightforward to extend our approach to multi-party garbled circuits with short
keys and active security, since the adversary can flip a garbled circuit key with non-
negligible probability, breaking correctness. Nevertheless, we can build an alternative,
efficient solution based on the transformation from [HSS17], which shows how to turn
any non-constant round, actively secure protocol for Boolean circuits into a constant
round [BMR90]-based protocol. When applying [HSS17] to our protocol, we obtain a
multi-party garbling protocol with full-length keys, but we still improve upon the naive
(full-threshold) setting, since the preprocessing phase is more efficient due to our use
of TinyOT with short keys. More details will be given in the full version.

2 Preliminaries

We denote the computational and statistical security parameter by κ and λ, respectively.
We say that a function µ : N → N is negligible if for every positive polynomial p(·)
and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . The function µ is noticeable (or
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non-negligible) if there exists a positive polynomial p(·) such that for all sufficiently
large κ it holds that µ(κ) ≥ 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial-time. We further denote by a← A the uniform sampling of a from a set A,
and by [d] the set of elements {1, . . . , d}. We often view bit-strings in {0, 1}k as vectors
in Fk2 , depending on the context, and denote exclusive-or by “⊕” or “+”. If a, b ∈ F2

then a · b denotes multiplication (or AND), and if c ∈ Fκ2 then a · c ∈ Fκ2 denotes the
product of a with every component of c.

Security and Communication Models. We use the universal composability (UC)
framework [Can01] to analyse the security of our protocols. We assume all parties
are connected via secure, authenticated point-to-point channels, as well as a broadcast
channel which is implemented using a standard 2-round echo-broadcast. The adversary
model we consider is a static, active adversary who corrupts up to t out of n parties at
the beginning of the protocol. We denote by A the set of corrupt parties, and Ā the set
of honest parties.

Regular Syndrome Decoding Problem. We recall that the regular syndrome decoding
(RSD) problem is to recover a secret error vector e = (e1‖ · · · ‖eh), where each ei ∈
{0, 1}m/h has Hamming weight one, given only (H,He), for a randomly chosen binary
r ×m matrix H. In [HOSS18] it was shown that the search and decisional versions of
this problem are equivalent and even statistically secure when h is big enough compared
to r. In this work we use an interactive variant of the problem, where the adversary is
allowed to try to guess a few bits of information on the secret e before seeing the
challenge; if the guess is incorrect, the game aborts. We conjecture that this ‘leaky’
version of the problem, defined below, is no easier than the standard problem. Note that
on average the leakage only allows the adversary to learn 1 bit of information on e,
since if the game does not abort he only learns that

∧
Pi(e) = 1.

The ‘leaky’ part of the assumption is introduced as a result of an efficient instantia-
tion of random correlated OTs on short strings (Section 4). Once the adversary has tried
to guess these short strings, which act as short MAC keys in the authentication protocol
(Section 5), a DRSD challenge is presented to him during the protocol computing the
cross terms of multiplication triples (Section 7.1). As in [HOSS18], the appearance of
the DRSD instance is due to the fact of ‘hashing’ the short MAC keys of at least h
honest parties during said multiplications.

Definition 2.1 (Decisional Regular Syndrome Decoding with Leakage) Let r, h, ` ∈
N and m = h · 2`. Consider the game L-DRSDb

r,h,` for b ∈ {0, 1}, defined between a
challenger and an adversary:

1. Sample H← Fr×m2 and a random, weight-h vector e ∈ Fm2 .
2. Send H to the adversary and wait for the adversary to adaptively query up to
h efficiently computable5 predicates Pi : Fm2 → {0, 1}. For each Pi queried, if
Pi(e) = 0 then abort, otherwise wait for the next query.

5 By efficiently computable, we mean that the adversary sends a description of a polynomially-
sized circuit that computes P .
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3. If b = 0, sample u ← Fr2 and send (H,u) to the adversary. Otherwise if b = 1,
send (H,He).

The DRSD problem with leakage with parameters (r, h, `) is to distinguish between
L-DRSD0

r,h,` and L-DRSD1
r,h,` with noticeable advantage.

2.1 Resharing

At several points in our protocols, we have a value x =
∑
i∈X x

i that is secret-shared
between a subset of parties {Pi}i∈X , and wish to re-distribute this to a fresh sharing
amongst a different set of parties, say {Pj}j∈Y . The naive method to do this is for every
party Pi to generate a random sharing of xi, and send one share to each Pj . This costs
|X| · |Y | ·m bits of communication, wherem is the bit length of x. Whenm is large, we
can optimize this using a pseudorandom generator G : {0, 1}κ → {0, 1}m, as follows:

1. For i ∈ X , party Pi does as follows:
(a) Pick an index j′ ∈ Y 6

(b) Sample random keys ki,j ← {0, 1}κ, for j ∈ Y \ j′
(c) Send ki,j to party Pj , and send xi,j

′
=
∑
j G(ki,j) + xi to party Pj′

2. For j ∈ Y , party Pj does as follows:
(a) Receive ki,j from each Pi who sends Pj a key, and a share xi,j from each Pi

who sends Pj a share. For the keys, compute the expanded share xi,j = G(ki,j)
(b) Output xj =

∑
i∈X x

i,j .

Now each Pi only needs to send a single share of sizem bits, since the rest are com-
pressed down to κ bits using the PRG. This gives an overall communication complexity
of O(|X| · |Y | · κ+ |X| ·m) bits.

3 Information-Theoretic MACs with Short Keys

We now describe our method for authenticated secret-sharing based on information-
theoretic MACs with short keys. Our starting point is the standard information-theoretic
MAC scheme on a secret x ∈ {0, 1} given by m = k + x ·∆, for a uniformly random
key (k, ∆), where k ∈ {0, 1}` is only used once per message x, whilst ∆ ∈ {0, 1}` is
fixed. Given the message x, the MAC m and the key k, verification consists of simply
checking the linear equation holds. It is easy to see that, given x and m, forging a valid
MAC for a message x′ 6= x is equivalent to guessing ∆. In a nutshell, we adapt this
basic scheme for the multi-party, secret-shared setting, with the guarantee that forging
a MAC to all parties can only be done with probability 2−λ, even when the key length `
is much smaller than λ, by relying on the fact that at least h parties are honest.

Our scheme requires choosing two (possibly overlapping) subsets of parties P(h),
P(1) ⊆ P , such that P(h) has at least h honest parties and P(1) at least 1 honest party.
To authenticate a secret value x, we first additively secret-share x between P(1), and

6 This can be chosen at random, or in some pre-agreed deterministic manner to load-balance
communication among the parties.
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then give every party in P(1) a MAC on its share under a random MAC key given to
each party in P(h), as follows:

Pi ∈ P(h) : ∆i, {ki,j [xj ]}j∈P(1),j 6=i

Pj ∈ P(1) : xj , {mj,i[xj ]}i∈P(h),i6=j

such that x =
∑
j

xj and mj,i[xj ] = ki,j [xj ] + xj ·∆i.

where ki,j [xj ] is a key chosen by Pi from {0, 1}` to authenticate the message xj that
is chosen by Pj whereas mj,i[xj ] is a MAC on a message xj computed using the keys
∆i and ki,j [xj ]. We denote this representation by [x]

P(h),P(1)

∆ . Note that sometimes we
use representations with a different set of global keys ∆ = {∆i}i∈P(h)

, but when it is
clear from context we omit ∆ and write [x]P(h),P(1) .

We remark that a special case is when P(h) = P(1) = P , which gives the usual
n-party representation of an additively shared value x = x1 + · · · + xn, as used
in [BDOZ11, BLN+15]:

[x] = {xi, ∆i, {mi,j ,ki,j}j 6=i}i∈[n], mi,j = kj,i + xi ·∆j ,

where each party Pi holds the n − 1 MACs {mi,j} on xi, as well as the keys ki,j on
each xj , for j 6= i, and a global key ∆i.

The idea behind our setup is that to cheat when opening x to all parties would require
guessing at least h MAC keys of the honest parties in committee P(h). In Figure 1 and
Figure 2 we describe our protocols for opening values to a subset P̄ ⊆ P and to a
single party, respectively, and checking MACs. First each party in P(1) broadcasts its
share xj to P(h), and then later, when checking MACs, Pj sends the MAC mj,i to Pi
for verification. To improve efficiency, we make two optimizations to this basic method:
firstly, instead of sending the individual MACs, when opening a large batch of values
Pj only sends a single, random linear combination of all the MACs. Secondly, the
verifier Pi does not check every MAC equation from each Pj , but instead sums up all
the MACs and performs a single check. This has the effect that we only verify the sum
x was opened correctly, and not the individual shares xj .

Overall, to open x to an incorrect value x′ requires guessing the ∆i keys of all
honest parties in P(h), so can only be done with probability ≤ 2−h`. This means we
can choose ` = λ/h to ensure security. Note that it is crucial when opening [x]P(h),P(1)

that the shares xj are broadcast to all parties in P(h), to ensure consistency. Without
this, a corrupt Pj could open, for example, an incorrect value to a single party in P(h)

with probability 2−`, and the correct share to all other parties.
More details on the correctness and security of our open and MACCheck protocols

are given in the full version of this paper.

Efficiency Savings From Short Keys. Note that the reason for taking this approach is
not to obtain a more efficient MAC scheme, but to design a scheme allowing more effi-
cient creation of the MACs. Setting up the MACs typically requires oblivious transfer,
with a communication cost proportional to the key length, so a smaller ` gives us direct
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Protocol Π
P(h),P(1)

[Open]

PARAMETERS: P(h),P(1), P̄ ⊆ P three (possibly overlapping) subsets of parties, such that
P(h) has at least h honest parties and P(1) has at least one honest party; ` = key length ;m =
number of authenticated bits
Open: To open [x]P(h),P(1) to a set of parties P̄ ⊆ P:

1. Each party Pj ∈ P(1) broadcasts its share xj to P̄ .
2. All parties in P̄ locally compute x =

∑
j∈P(1)

xj .

Single Check: To check the MAC on the opened value x:

1. Each Pj ∈ P(1) sendsmj,i[x] to every Pi ∈ P(h) \ {Pj}.
2. Each party in P̄ broadcasts the previously received x to P(h).
3. Each Pi ∈ P(h) checks that∑

j∈P(1)\Pi

(
mj,i[x] + ki,j [x]

)
+ (x+ xi) ·∆i = 0

where xi = 0 if Pi /∈ P(1). If any check fails, abort.

Batch Check: To check the MACs on a batch of opened values x1, . . . , xm:

1. Parties in P̄,P(h),P(1) sample m random values χ1, . . . , χm ← FRand(F2λ).
2. Each party in P̄ locally computes y =

∑m
k=1 χk ·xk ∈ F2λ and broadcasts this to P(h).

3. If parties in P(h) receive inconsistent values, then abort.
4. Each Pi ∈ P(h) ∩ P(1) computes yi =

∑m
k=1 χk · x

i
k.

5. Parties in P(h) ∪ P(1) locally compute [y]P(h),P(1) =
∑m
k=1 χk · [xk]P(h),P(1) (with

multiplication over F2λ ).
6. Each Pj ∈ P(1) sendsmj,i[y] to every Pi ∈ P(h) \ {Pj}.
7. Each Pi ∈ P(h) has received values {y} and MACs {mj,i[y]}, j ∈ P(1) \ {Pi}, and

checks that ∑
j∈P(1)\{Pi}

(
mj,i[y] + ki,j [y]

)
+ (y + yi) ·∆i = 0,

where yi = 0 if Pi /∈ P(1). If any check fails, abort.

Fig. 1. Protocols for opening and MAC-checking on (P(h),P(1))-authenticated secret shares

efficiency improvements to the preprocessing phase, which is by far the dominant cost
in applications (see Section 5 for details). Regarding the scheme itself, notice that this
is actually less efficient, in terms of storage and computation costs, than the distributed
MAC scheme used in the SPDZ protocol [DKL+13], which only requires each party to
store λ+ 1 bits per authenticated Boolean value. However, it turns out that these over-
heads are less significant in practice compared with the communication cost of setting
up the MACs, where we gain a lot.
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Protocol Π
P(h),P(1),Pi0
PrivateOpen

Private Open: To open a value [x]P(h),P(1) towards Pi0 :

1. Each Pj ∈ P(1) sends their share xj to Pi0 , who locally reconstructs x =
∑
j∈P(1)

xj .

Batch Check: To check the MACs on a batch of opened values x1, . . . , xm:

1. Parties in P(h),P(1) call FP(h),P(1)

aBit to obtain λ random authenticated values

[r1]
P(h),P(1)

∆ , . . . , [rλ]
P(h),P(1)

∆

2. Each Pj ∈ P(1) sends rj1, . . . , r
j
λ to Pi0 .

3. Sample λ random values χk ← F2λ using FRand, k ∈ [m]
4. Pi0 locally computes

y =

m∑
k=1

χk · xk +

λ∑
k=1

Xk−1 · rk,

and broadcasts the result to P(h).
5. Each Pi ∈ P(h) ∩ P(1) computes

yi =

m∑
k=1

χk · xik +

λ∑
k=1

Xk−1 · rik

6. Parties in P(h) ∪ P(1) locally compute

[y]
P(h),P(1)

∆ =

m∑
k=1

χk · [xk]
P(h),P(1)

∆ +

l∑
k=1

Xk−1 · [rk]
P(h),P(1)

∆ ,

where multiplication is performed over the finite field F2λ .
7. Each Pj ∈ P(1) privately sendsmj,i

∆ [y] to every Pi ∈ P(h) \ Pj .
8. Each Pi ∈ P(h) has received MACs {mj,i

∆ [y]}j∈P(1)\Pi , and checks that∑
j∈P(1)\Pi

(
mj,i
∆ [y] + ki,j∆ [y]

)
+ (y + yi) ·∆i = 0

where yi = 0 if Pi /∈ P(1). If any check fails, abort and notify all parties in P .

Fig. 2. Protocol for privately opening (P(h),P(1))-party authenticated secret shares to a single
party Pi0 and MAC-checking

Extension to Arithmetic Shares. The scheme presented above can easily be extended
to the arithmetic setting, with shares in a larger field instead of just F2. To do this with
short keys, we simply choose the MAC keys ∆i to be from a small subset of the field.
For example, over Fp for a large prime p, each party chooses ∆i ∈ {0, . . . , 2`−1}, and
will obtain MACs of the form mj,i = ki,j + xj · ∆i over Fp, where ki,j is a random
element of Fp. This allows for a reduced preprocessing cost when generating MACs
with the MASCOT protocol [KOS16] based on oblivious transfer: instead of requiring
k OTs on k-bit strings between all n(n−1) pairs of parties, where k = dlog2 pe, we can
adapt our preprocessing protocol from Section 5 to Fp so that we only need to perform
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` OTs on k-bit strings between (n − 1)(t + 1) pairs of parties to set up each shared
MAC.

3.1 Operations on [·]P(h),P(1) -Shared Values

Recall that P(h) ∩ P(1) is not necessarily the empty set.

Addition and multiplication with constant: We can define addition of [x]
P(h),P(1)

∆ with
a public constant c ∈ {0, 1} by:

1. A designated Pi∗ ∈ P(1) replaces its share xi
∗

with xi
∗

+ c.
2. Each Pi (for i ∈ P(h), i 6= i∗) replaces its key ki,1[x] with ki,1[x] + c · ∆i. (All

other values are unchanged.)

We also define multiplication of [x]
P(h),P(1)

∆ by a public constant c ∈ {0, 1} (or in
{0, 1}`) by multiplying every share xi, MAC mi,j [x] and key ki,j [x] by c.
Addition of shared values: Addition (XOR) of two shared values [x]

P(h),P(1)

∆ , [y]
P(h),P(1)

∆

is straightforward addition of the components. Note that it is possible to compute the
sum [x]

P(h),P(1)

∆ + [y]
P(h),P(h)

∆ of values shared within different committees in the same
way, obtaining a [x+ y]

P(h),P(h)∪P(1)

∆ representation.

3.2 Converting to a More Compact Representation

We can greatly reduce the storage overhead in our scheme by “compressing” the MACs
into a single, SPDZ-like sharing in only committee P(1) with longer keys. Recall that
the SPDZ protocol MAC representation [DPSZ12, DKL+13] of a secret bit x held by
the parties in P(1) is given by

JxK = {xj ,mj [x]}j∈P(1)

where each party Pj in P(1) holds a share xj , a MAC share mj [x] ∈ Fλ2 and a global
MAC key share ∆j ∈ Fλ2 , such that

x =
∑
j∈P(1)

xj ,
∑
j∈P(1)

mj = (
∑
j∈P(1)

xj) · (
∑
j∈P(1)

∆j)

Using this instead of the previous representation gives a much simpler and more ef-
ficient MAC scheme in the online phase of our MPC protocol, since each party only
stores λ + 1 bits per value, instead of up to |P(h)| · ` + 1 bits with the scheme using
short keys. Therefore, to obtain both the efficiency of generating MACs in the previous
scheme, and using the MACs with SPDZ, below we show how to convert an inefficient,
pairwise sharing [x]P(h),P(1) into a more compact SPDZ sharing JxK. This procedure is
shown in Figure 3.

Note that with the SPDZ representation, the parties in P(1) can perform linear com-
putations and openings (withinP(1)) in just the same way. For completeness, we present
the opening and MAC check protocols in the full version of this paper.
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Protocol Π
P(h),P(1),m,`

MACCompact

PARAMETERS: P(h),P(1) ⊆ P two (possibly overlapping) subsets of parties, such that P(h)

has at least h honest parties and P(1) has at least one honest party; ` = key length; m =
number of authenticated bits.
On input [x1]

P(h),P(1)

∆ , . . . , [xm]
P(h),P(1)

∆ , do as follows:

1. Each Pi ∈ P(h) samples and broadcasts ri ← F2λ .
2. For ι ∈ [m]:

(a) Each Pi ∈ P(h) computes ri ·
∑
j∈P(1)

ki,j [xι], then reshares the resulting value

to the parties in Pj ∈ P(1), each of which obtains random shares {k̃i,j [xι]}i∈P(h)
.

(b) Each Pi ∈ P(h) reshares∆i ·ri ∈ F2λ to the parties in P(1), each of which obtains
{∆̃i,j}i∈P(h)

.
(c) Each Pj ∈ P(1) outputs its part of JxιK by computing the MAC share

m̃j [xι] =
∑
i∈P(h)

(k̃
i,j

[xι] +mj,i[xι] · ri) ∈ F2λ

and key share ∆̃j =
∑
i∈P(h)

∆̃i,j ∈ F2λ .

Fig. 3. Protocol for transforming [x]P(h),P(1) representations to JxK representations

To see correctness, first notice that from step 2a, we have that
∑
j k̃

i,j = ri·
∑
j k

i,j .
So each party in P(1) holds a share xj and a MAC share m̃j ∈ F2λ , which satisfy:

∑
j

m̃j =
∑
j

∑
i

(k̃
i,j

+ mj,i · ri)

=
∑
i,j

(ki,j + mj,i) · ri =
∑
i,j

xj ·∆i · ri = x · ∆̃.

The security of this scheme now depends on the single, global MAC key ∆̃ =∑
i∆

i · ri, instead of the concatenation of ∆i for i ∈ P(h). Since at least h of the
short keys ∆i ∈ F2` are unknown and uniformly random, from the leftover hash
lemma [ILL89] it holds that ∆̃ is within statistical distance 2−λ of the uniform dis-
tribution over {0, 1}λ as long as h` ≥ 3λ. This gives a slightly worse bound than the
previous scheme, but allows for a much more efficient online phase of the MPC pro-
tocol since, once the SPDZ representations are produced, only parties in P(1) need to
interact, and they have much lower storage and local computation costs. Note that in
our instantiation of this scheme for the overall MPC protocol, we also need to choose
the parameters h, ` such that the L-DRSD assumption is hard; it turns out that all of our
parameter choices (see Section 8) for this already satisfy h` ≥ 3λ, so in this case using
more compact MACs does not incur any extra overheads.

Improved Analysis for 1-bit Keys When the key length is 1, we can improve upon the
previous bound from the leftover hash lemma with a more fine-grained analysis. Notice
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that we can write the new key ∆̃ as ∆̃ = R ·∆, where R ∈ {0, 1}λ×n is a matrix with
ri as columns. Since at least h positions of ∆ are uniformly random, from randomness
extraction results for bit-fixing sources (as used in, e.g. [NST17, Theorem 1]) it holds
that since every honestly sampled row of R is uniformly random, ∆̃ is within statistical
distance 2λ−h of the uniform distribution. We therefore require h ≥ 2λ, instead of
h ≥ 3λ as previously.

Optimization with Vandermonde Matrices Over Small Fields If we choose each of
the ∆i keys to come from a small finite field F, with |F| ≥ n, then we can optimize the
compact MAC scheme even further, so that there is no overhead on top of the previous
pairwise scheme. The idea is to use a Vandermonde matrix to extract randomness from
all parties’ small MAC keys in a deterministic fashion, instead of using random vectors
ri as before. This technique is inspired by previous applications of hyper-invertible
matrices to MPC in the honest majority setting [BTH08].

Let v1, . . . , vn be distinct points in F, where F is such that h · |F| ≥ λ. Now let
V ∈ Fn×h be the Vandermonde matrix given by

V =


1 v1 . . . v

h−1
1

1 v2 . . . v
h−1
2

...
. . . . . .

...
1 vn . . . v

h−1
n


Party Pi defines the new MAC key share ∆̃i = vi · ∆i, where vi is the i-th row

of V. This results in a new global key given by ∆̃ = (∆1, . . . ,∆n) · V ∈ Fh. From
the fact that at least h components of ∆ are uniformly random, and the property of the
Vandermonde matrix that any square matrix formed by taking h rows of V is invertible,
it follows that ∆̃ is a uniformly random vector in Fh. More formally, this means that
if n − h components of ∆ are fixed and we define ∆H to be the h honest MAC key
components, then the mapping ∆H 7→ ∆ ·V is a bijection, so ∆̃ is uniformly random
as long as ∆H is. Therefore we can choose h ≥ λ/|F| to obtain ≤ 2−λ cheating
probability in the resulting MAC scheme.

Allowing leakage on the MAC keys. In our subsequent protocol for generating MACs,
to obtain an efficient protocol we need to allow some leakage on the individual MAC
keys ∆i ∈ {0, 1}`, in the form of allowing the adversary to guess a single bit of infor-
mation on each ∆i. For both the pairwise MAC scheme and the compact, SPDZ-style
MACs, this leakage does not affect an adversary’s probability of forging MACs in our
actual protocols, since the entire MAC key still needs to be guessed to break security —
allowing guesses on smaller parts of the key does not help, as a single incorrect guess
causes the protocol to abort. We analyse the security of this for our compact MAC
representation in the full version.
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4 Correlated OT on Short Strings

As a building block, we need a protocol for random correlated oblivious transfer (or
random ∆-OT) on short strings. This is a 2-party protocol, where the receiver inputs
bits x1, . . . , xm, the sender inputs a short string ∆ ∈ {0, 1}`, and the receiver obtains
random strings ti ∈ {0, 1}`, while the sender learns qi = ti + xi · ∆. The ideal
functionality for this is shown in Figure 4.

The protocol we use to realise this (shown in in the full version of this paper) is
a variant of the OT extension protocol of Keller et al. [KOS15], modified to produce
correlated OTs (as done in [NST17]) and with short strings. The security of the protocol
can be shown similarly to the analysis of [KOS15]. That work showed that a corrupt
party may attempt to guess a few bits of information about the sender’s secret ∆, and
will succeed with probability 2−c, where c is the number of bits. In our case, since ∆ is
small, a corrupt receiver may actually guess all of ∆ with some noticeable probability,
in which case all security for the sender is lost. This is modelled in the functionality
F∆-ROT, which allows a corrupt receiver to submit such a guess. This leakage does not
cause a problem in our multi-party protocols, because an adversary would have to guess
the keys of all honest parties to break security, and this can only occur with negligible
probability.

Communication complexity. Recall that λ is the statistical security parameter and κ
the computational security parameter. The initialization phase requires ` random OTs,
which costs `κ bits of communication when implemented using OT extension. The
communication complexity of the Extend phase, to createm∆-ROTs, is `(m+λ) bits
to create the OTs, and κ+ 2λ bits for the consistency check (we assume PS only sends
a κ-bit seed used to generate the χi’s). This gives an amortized cost of `+ (κ+ 3λ)/m
bits per ∆-ROT, which is less than `+ 4 bits when m > κ.

Functionality F`∆-ROT

Initialize: Upon receiving (Init,∆), where ∆ ∈ {0, 1}` from PS and (Init) from PR, store
∆. Ignore any subsequent (Init) commands.
Extend: Upon receiving (extend, x1, . . . , xm) from PR, where xi ∈ {0, 1}, and (extend)
from PS , do the following:

– Sample ti ∈ {0, 1}`, for i ∈ [m]. If PR is corrupted then wait for A to input ti.
– Compute qi = ti + xi ·∆, for i ∈ [m].
– If PS is corrupted then wait forA to input qi ∈ {0, 1}` and recompute ti = qi+xi ·∆.
– Output ti to PR and qi to PS , for i ∈ [m].

Key queries: If PR is corrupt then on receiving an efficiently computable predicate P :
{0, 1}` → {0, 1} from the adversary, send 1 to the adversary if P (∆) = 1. If P (∆) = 0
then the functionality aborts.

Fig. 4. Functionality for oblivious transfer on random, correlated strings.
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5 Bit Authentication with Short Keys

Functionality FP(h),P(1),m,`

aBit

PARAMETERS: m number of authenticated bits; ` key length.

Initialize: On receiving (Init,∆i) from Pi ∈ P(h) and (Init) from Pj ∈ P(1), store all
∆i ∈ {0, 1}`.
aBit: On receiving (aBit,m) from Pi ∈ P(h) and (aBit,xj = (xj1, . . . , x

j
m)) from every

Pj ∈ P(1):

1. Run (P(h),P(1))-Bracket({xjh}j∈P(1)
) (see below), for every h ∈ [m].

2. Output ∆i, {ki,j [xjh]}j∈P(1)\{i} to every Pi ∈ P(h) and xjh, {m
j,i[xjh]}i∈P(h)\{j} to

every Pj ∈ P(1).

Key queries: Upon receiving (i, P ) from the adversary, where P is an efficiently com-
putable predicate P : {0, 1}` → {0, 1} and i ∈ P(h), output 1 to the adversary if
P (∆i) = 1. Otherwise, abort.

Fig. 5. Functionality for authenticated bits

In this section we describe our protocols for authenticating bits with short MAC
keys. To capture the short keys used for authentication we need to define a series of
different functionalities.

5.1 Authenticated Bit Functionality FaBit

We begin with the description of the ideal functionality FaBit described in Figure 5 that
formalises the MACs we create. Each party Pi ∈ P(h) chooses a global ∆i ∈ {0, 1}`,
then FaBit calls the subroutine (P(h),P(1))-Bracket (Figure 6) that uses these global
MAC keys {∆i}i∈P(h)

stored by the functionality to create pairwise MACs of the same
length, as illustrated in Section 3.

5.2 Bit Authentication Protocol

We now present our bit authentication protocolΠaBit, described in Figure 7, implement-
ing the functionality FaBit (Figure 5). The protocol first runs the ∆-OT protocol with
short keys between every pair of parties in P(h) × P(1) to authenticate the additively
shared inputs, in a standard manner. We then need to adapt the consistency check from
the TinyOT-style authentication protocol presented by Hazay et al. ([HSS17]) to our
setting of MACs with short keys distributed between two committees, to ensure that all
parties input consistent values in all the COT instances.

Taking a closer look at the consistency checks in Step 3f, the first check verifies the
consistency of the∆i values, whereas in the second set of checks we test the consistency
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Macro (P(h),P(1))-Bracket

On input {xj}j∈P(1)
, authenticate the share xj ∈ {0, 1}, for each j ∈ P(1), as follows:

Pj CORRUPT: Receive a MACmj,i ∈ F`2 fromA and compute the keys {ki,j = mj,i+xj ·
∆i}i∈(P(h)\{Pj}).
OTHERWISE:

1. Sample honest parties’ keys ki,j ← F`2, for Pi ∈ P(h) \ (A ∪ {Pj}).
2. Receive keys ki,j ∈ F`2, for each Pi ∈ A ∩ P(h), from the adversary.
3. Compute the MACsmj,i = ki,j + xj ·∆i, where Pi ∈ P(h).

Output [x]
P(h),P(1)

∆ .

Fig. 6. Macro used by FaBit to authenticate bits

of the individual shares xj . To see correctness when all parties are honest, notice that in
the first check, for i ∈ P(h) we have:

zi +
∑

j∈(P(1)\{Pi})

zj,i = 0

⇐⇒ (yi + y) ·∆i +
∑

j∈(P(1)\{Pi})

(ki,j [y] + mj,i[y]) = 0

⇐⇒ (yi + y) ·∆i +
∑

j∈(P(1)\{Pi})

(yj ·∆i) = 0 ⇐⇒ y ·∆i + y ·∆i = 0.

For a corrupt party who misbehaves during the protocol, there are two potential devia-
tions:

1. A corrupt Pi, i ∈ PA(h) provides an inconsistent ∆i,j when acting as a sender in

Fm,`∆-ROT with different honest parties, i.e. ∆i 6= ∆i,j for some j ∈ P(1) \A.
2. A corrupt Pj , j ∈ PA(1) provides an inconsistent input xi,jι when acting as a receiver

in Fm,`∆-ROT with different parties, i.e. xiι 6= xi,jι , for some j ∈ P(h) \A.

Note that in the above, the ‘correct’ inputs ∆i, xjι for a corrupt Pi ∈ P(h) or Pj ∈
P(1) are defined to be those in the F∆-ROT instance with some fixed, honest party Pi1 ∈
P(1) or Pj1 ∈ P(h), respectively. We now prove the following two claims.

Claim 5.1 Assuming a non-abort execution, then for every corrupted party Pi, i ∈
PA(h), all ∆i are consistent.

Proof: In order to ensure that all ∆i are consistent we use the first check. More pre-
cisely, we fix Pj ∈ PA(h) and check that

∑
i∈[n] z

i,j = 0,∀j. Since we require that
y ∈ {0, 1}λ, the probability to pass the check is 1/2λ. More formally, let us assume
that a corrupt P ∗j uses inconsistent ∆j,i in F∆-ROT with some i 6∈ PA(h), then to pass
the check P ∗j can send adversarial values in step 3c, i.e. when it broadcasts values ȳj ,
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or in step 3d, when committing to the values zj,i. Let ey ∈ {0, 1}λ denote an additive
error so that

∑
i∈[n] ȳ

i = y + ey , and let ez ∈ {0, 1}λ denote an additive error so that∑
j∈PA

(h)
ẑj,i =

∑
j∈PA

(h)
zj,i + ez . Finally, let δj,i = ∆j + ∆j,i. Then if the check

passes, it holds that:

0 =
∑
i

zi,j = ez + zj +
∑
i6=j

zi,j = ez + (y + ey + yj) ·∆j +
∑
i6=j

yi ·∆j,i

⇐⇒ ez + ey ·∆j =
∑
i 6=j

yi · δj,i,

which implies that the additive errors ez and ey , that make the above equation equal
to zero, depend on the yi values, and that the adversary has to guess at least one of
them in order to pass the check. This event happens with probability 2−λ since the only
information the adversary has about these values is that they are uniform additive shares
of y, due to the randomization in step 3c. �

Claim 5.2 Assuming a non-abort execution, then for every corrupted party Pj , j ∈
PA(1), all xi,jι are consistent.

Proof: We need to check that a corrupt P ∗j cannot input inconsistent xj,i to different
honest parties without being caught. For every ordered pair of parties (Pi, Pj), we can
define Pj’s MAC mj,i[y] and Pi’s key ki,j [y] respectively as

m∑
ι=1

χι ·mj,i[xι] +

λ∑
k=1

Xk−1 ·mj,i[rk] and

m∑
ι=1

χι · ki,j [xι] +

λ∑
k=1

Xk−1 · ki,j [rk] .

A corrupt Pj can commit to incorrect MACs ẑj,i, so that ẑj,i = zj,i + ej,iz and ŷj =
yj,i + ej,iy . In order to have the check passed, we have:

zj,i + ej,iz = k[y]i,j + (yj,i + ejy) ·∆i,

Which happens if and only if:

ej,iz + (yj,i + ejy) ·∆i = mj,i[y] + ki,j [y]

=
( m∑
ι=1

χι · (xjι + δj,iι ) +

λ∑
k=1

Xk−1 · (rjk + δ′j,ik )
)
·∆i

⇐⇒ ej,iz =
(
yj,i + ejy +

m∑
ι=1

χι · (xjι + δj,iι ) +

λ∑
k=1

Xk−1 · (rjk + δ′j,ik )
)
·∆i

= (ejy +

m∑
ι=1

χι · δj,iι +

λ∑
k=1

Xk−1 · δ′j,ik ) ·∆i.

Then there are two cases for which the adversary can pass the check:
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1. In case ej,iz = (ejy+
∑m
ι=1 χι ·δj,iι +

∑λ
k=1X

k−1 ·δ′j,ik )·∆i 6= 0 the adversary needs
to guess∆i, which can only happen with probability 2−`. Note that in order to pass
this check the adversary needs to guess all honest parties’ keys. This is due to the
fact that a corrupted Pj opens the same ŷj to all parties, so if it cheats and provides
an inconsistent value then it must pass the above check with respect to all honest
parties. Therefore, the overall probability of passing this check is 2−`h ≤ 2−λ.

2. In case ej,iz = 0 and ejy =
∑m
ι=1 χι ·δj,iι +

∑λ
k=1X

k−1 ·δ′j,ik ,∀i 6∈ PA(1). Assuming
that there is at least one i 6∈ PA(h) s.t. δj,iι = δi = 0 (recall that we view the inputs
of Pj in the interaction with party Pj1 as the ‘correct’ inputs, then there must be at
least one party for which this condition holds). This implies that ejy = 0 as well.
Thus, for every i /∈ PA(h) ∪ j1 it needs to holds that

0 =
m∑
ι=1

χι · δj,iι +
λ∑
k=1

Xk−1 · δ′j,ik .

Since each χι is uniformly random in F2λ and independent of the δj,iι , δ
′j,i
ι values,

it is easy to see that this only holds with probability 2−λ if any δj,iι is non-zero.

�
In the full version we prove the following theorem.

Theorem 5.1 ProtocolΠ
P(h),P(1),m,`

aBit securely implements the functionalityFP(h),P(1),m,`

aBit

in the (Fm,`∆-ROT,FRand,FCommit)-hybrid model.

5.3 Efficiency Analysis

We now analyse the efficiency of our protocol and compare it with the previous best
known approach to secret-shared bit authentication. When there are n parties with h
honest, the previous best approach would be to use the standard TinyOT-style MAC
scheme (as in [WRK17b, HSS17]) inside a committee of size n − h + 1 parties, to
guarantee at least one honest party. Here, the MACs must be of length at least λ, and
the amortized communication complexity can be around λ(n− h+ 1)(n− h) bits per
authenticated bit. In contrast, in our scheme we have two committees of sizes n1 and
n2, with h and 1 honest party, respectively. If we suppose the committees are deter-
ministically chosen from a set of n parties with h honest, then we get n1 = n and
n2 = n − h + 1. To ensure security of the MAC scheme we need MACs of length
` ≥ λ/h, for statistical security λ. This gives an amortized complexity for creating a
MAC of around `n1n2 = λn(n− h+ 1)/h bits. Compared with the TinyOT approach,
this gives a reduction in communication of h(n − h)/n times in our protocol. This is
maximized when h = n/2, with a n/4 times reduction in communication cost over
TinyOT, and for smaller h we still have savings for all h > 1.
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Protocol Π
P(h),P(1),m,`

aBit

PARAMETERS: m, number of authenticated bits; `, key length.

Initialize: On input ∆i from each Pi ∈ P(h), every pair of parties (Pi, Pj) ∈ P(h) ×
P(1), i 6= j calls F`∆-ROT functionality with input (Init,∆i) from Pi and (Init) from Pj .
aBit: On input (xj1, . . . , x

j
m) ∈ {0, 1}m from each Pj ∈ P(1):

1. Each Pj ∈ P(1) samples λ random bits rjk, k ∈ [λ].
2. Call F`∆-ROT with inputs (xjι , r

j
k) from Pj , so Pj gets tj,i and Pi gets qi,j , such that for

ι ∈ [m], k ∈ [λ],

tj,iι + qi,jι = xjι ·∆i tj,ik + qi,jk = rjk ·∆
i

For ι ∈ [m], define [xι]
P(h),P(1) as follows.

Each Pi ∈ P(h) sets ki,j [xι] = qi,jι for j ∈ (P(1) \ {Pi}) and each Pj ∈ P(1) sets
mj,i[xι] = tj,iι for i ∈ (P(h) \ {Pj}).
For k ∈ [s], the parties define [rk]P(h),P(1) : Each Pi ∈ P(h) sets ki,j [rk] = qi,jk for
j ∈ (P(1) \ {Pi}) and each Pj ∈ P(1) setsmj,i[rk] = tj,ik for i ∈ (P(h) \ {Pj}).

3. Check consistency of the inputs as follows:
(a) Call FRand to obtain m field elements χι ∈ Fλ2 , ι ∈ [m].
(b) Locally compute, over F2λ , the shares

[y]P(h),P(1) =

m∑
ι=1

χι · [xι]P(h),P(1) +

λ∑
k=1

Xk−1 · [rk]P(h),P(1) ,

so that each Pj ∈ P(1) holds a share yj ∈ Fλ2 , and MACs {mj,i[y]}i∈P(h)\Pj and
each Pi ∈ P(h) holds keys {ki,j [y]}j∈P(1)\Pi .

(c) The parties in P(1) call F`Zero so that each Pj ∈ P(1) obtains a zero-share ρj ∈
{0, 1}`. Pj then broadcasts ȳj := yj + ρj , and reconstructs y =

∑
j∈P(1)

ȳj .
(d) Each Pi ∈ P(h) defines and commits, to all parties in P(h), the following values.

Note that yi = 0 if Pi /∈ P(1):

zi = (yi + y) ·∆i +
∑

j∈P(1)\Pi

ki,j [y].

(e) Each Pj ∈ P(1) defines and commits, to all parties in P(h):

yj , {zj,i = mj,i[y]}i∈P(h)\Pj .

(f) Each party in P(h) ∪ P(1) opens its commitments and parties in P(h) check that:

∀i ∈ P(h), zi +
∑

j∈P(1)\Pi

zj,i = 0

and
∀j ∈ P(1), i ∈ P(h) \ Pj , zj,i = ki,j [y] + yj ·∆i.

If any of these checks fails, abort.
4. Output [x1], . . . , [xm].

Fig. 7. Protocol for authentication of random shared bits using committees
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6 Actively Secure MPC Protocol with Short Keys

Similarly to prior constructions such as [DPSZ12, NNOB12, FKOS15, KOS16], our
protocol is in the pre-processing model where the main difference is that the computa-
tion is carried out via two random committees P(h) and P(1). The preprocessing phase
is function and input independent, and provides all the correlated randomness needed
for the online phase where the function is securely evaluated .

6.1 The Online Phase

Our online protocol, shown in Figure 8, runs mostly as that of [DPSZ12, DKL+13]
within a small committee P(1) ⊆ P with at least 1 honest party. The main difference is
that we need the help of the bigger P(h) ⊆ P committee with at least h honest parties
to authenticate the inputs of any Pi ∈ P using the [·]P(h),P(1) -representation before
converting them to the more compact J·K-representation described in Section 3.2.

The Boolean MPC Protocol - ΠBBB

Prep: Parties call FPreprocessing with (Prep,m,M) to generate m random [·]P(h),P(1) bits
and M random multiplication triples with compact MACs.

Input: To authenticate an input x of Pi ∈ P:
1. Call the Private Open command in Π

P(h),P(1),Pi
PrivateOpen on an unused bit

([r]P(h),P(1) , Pi) from Prep, so only Pi learns r.
2. Call the Batch Check command inΠ

P(h),P(1),Pi
PrivateOpen on all the privately opened values

in the previous step. If the check fails, abort.
3. Pi broadcasts d = x+ r to P(1), who compute [x]P(h),P(1) = [r]P(h),P(1) + d.
4. Call ΠMACCompact on input [x]P(h),P(1) to obtain JxK.

Add: On input (JxK, JyK), locally compute Jx+ yK = JxK + JyK.
Multiply: On input JxK, JyK, parties in P(1) do the following:

1. Pick an unused random multiplicative triple from Prep (JaK, JbK, JcK).
2. Compute JεK = JxK + JaK, and JρK = JyK + JbK and call ΠJOpenK on these to reveal
ε, ρ to P(1).

3. Parties set Jx · yK = JcK + ε · JbK + ρ · JaK + ε · ρ.
Output: To output a value JxK to P or a subset of it, do the following:

1. Call BatchCheck on ΠJOpenK for all J·K values opened so far. If the check fails,
abort.

2. Call commands Open and Single Check ofΠJOpenK on input JxK. If the check fails,
abort, otherwise accept x as a valid output.

Fig. 8. The Boolean MPC Protocol

6.2 The preprocessing Phase

The task of FPreprocessing is to create random authenticated bits under the [·]P(h),P(1) -
representation and random authenticated triples under the compact J·K-representation.
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7 Triple Generation

Here we present our triple generation protocol implementing the functionality described
in Figure 9. First, protocolΠHalfAuthTriple (Figure 11) implements the functionalityFHalfAuthTriple

(Figure 10) to compute cross terms in triples: each party Pi ∈ P(h) inputs random
shares yik, k ∈ [m], and committees P(h),P(1) obtain random representations [xk]∆ as
well as shares of the cross terms defined by

∑
i∈P(h)

∑
j 6=P(1)\{Pi} x

j
k · yik, k ∈ [m].

Given this intermediate functionality, protocolΠTriple (Figure 12) implementsFm,`Triple

(Figure 9) computing correct authenticated and non-leaky triples (JxkK, JykK, JzkK) such
that (

∑
j∈P(1)

xjk) · (
∑
j∈P(1)

yjk) =
∑
j∈P(1)

zjk. Checking correctness and removing
leakage is achieved using classic cut-and-choose and bucketing techniques. Note that
even though the final triples are under the compact J·K-representation we produce them
first using [·]P(h),P(1) -representations in order to generate MACs more efficiently and
having an efficient implementation of FHalfAuthTriple.

It is crucial to note that the security of ΠHalfAuthTriple is based on the hardness of
RSD, and for this reason the number of triples r generated by this protocol depends
on the security RSD. So while essentially an unlimited number of random correlated
OTs and random authenticated bits can be produced as described on previous sections,
a naive use of short keys would actually result in an upper bound on the number of
triples that can be produced securely. To fix this issue, during ΠHalfAuthTriple we make
the parties ‘switch the correlation’ on representations [x]∆, so they output a new repre-
sentation under an independent correlation [x]∆̃, with ∆ 6= ∆̃ being the relevant value
for the RSD assumption. Finally, the fact that ∆̃ is short combined with the adversarial
possibility of querying some predicates about it requires the reduction to use an inter-
active version of RSD, which we denote by L-DRSD as in Definition 2.1.

Functionality Fm,`Triple

PARAMETERS: m, number of multiplications; `, key length.
This functionality runs in committee P(1) only.

On input (Triples,m, `) from all parties, generate m random authenticated triples as follows.
Initialize: Receive ∆i from the adversary for each corrupt Pi ∈ PA(1) and sample ∆i ← Fλ2
for each Pi ∈ P(1) \ PA(1).
Honest parties:

1. Sample random sharings JxkK, JykK, JzkK, with xk, yk, zk ← {0, 1} such that zk =
xk · yk, k ∈ [m].

Corrupt parties: Corrupt parties choose their own randomness in the MAC shares.

Fig. 9. Functionality for triples generation.
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7.1 Half Authenticated Triples

Here we show how Π
P(h),P(1),r,`

HalfAuthTriple securely computes cross terms in triples. The main
difficulty arises from modelling the leakage due to using short keys in the real world,
and proving that it cannot be distinguished from uniformly random. Looking at indi-
vidual parties, security relies on the fact that on step 6a of the protocol si,jk is a fresh,
random sharing of zero and hence yi,jk is perfectly masked. Nevertheless, when consid-
ering the joint leakage from all honest parties, the L-DRSD assumption kicks in and
requires a more thoughtful consideration.

Functionality for Half Authenticated Triples - FP(h),P(1),r,`

HalfAuthTriple

PARAMETERS: r, number of multiplications; `, key length. The functionality runs between a
set of parties P = {P1, . . . , Pn}, containing two (possibly overlapping) subsets P(h),P(1),
such that P(h) has at least h honest parties and P(1) has at least one honest party and an
adversary A.

1. The functionality receives correlations ∆i from each Pi ∈ P(h), picks random

[xk]
P(h),P(1)

∆ for k ∈ [r] and sends the relevant part of the representation to the rele-
vant parties.

2. The functionality receives bits {yi,jk }j∈(P(1)\{Pi}),k∈[r] from each Pi ∈ P(h). Then it
samples random bits {vτk}τ∈(P(h)∪P(1)),k∈[r], such that:∑

τ∈(P(h)∪P(1))

vτk =
∑
i∈P(h)

∑
j∈(P(1)\{Pi})

xjk · y
i,j
k ,

and sends vτk , k ∈ [r], to Pτ ∈ (P(h) ∪ P(1)).

Global Key Queries: Upon receiving (i, P ) from A, where P is an efficiently computable
predicate P : {0, 1}` → {0, 1}, output 1 to A if P (∆i) = 1. Otherwise, output 0 to A
and abort.

Fig. 10. Functionality for Half Authenticated Triples

Security is showed in the following theorem, proved in the the full version.

Theorem 7.1. Protocol Π
P(h),P(1),r,`

HalfAuthTriple securely implements FP(h),P(1),r,`

HalfAuthTriple in the
(FaBit,FZero)-hybrid model as long as L-DRSDr,h,` is secure.

7.2 Correct Non-Leaky Authenticated Triples

Here we describe the protocol ΠTriple (Figure 12) to create m correct random authenti-
cated triples with compact MACs JxkK, JykK, JzkK, k ∈ [m].

First, parties in P(h) ∪ P(1) call FaBit obtaining m′ = m · B2 + c random au-
thenticated bits {[yk]P(h),P(1)}k∈m′ , where B and c are parameters of the sub-protocol
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Protocol Π
P(h),P(1),r,`

HalfAuthTriple

REQUIRE: r, number of multiplications; `, key length. The protocol runs between a set of
parties P = {P1, . . . , Pn}, containing two (possibly overlapping) subsets P(h),P(1), such
that P(h) has at least h honest parties and P(1) has at least one honest party.
INPUT: From all Pi ∈ P(h): ∆i ∈ F`2 and yi,j = (yi,j1 , . . . , yi,jr ) ∈ Fm2 , where j ranges for
every Pj ∈ P(1) \ {Pi}.
COMMON INPUT: Random functions Hi,j : [r] × {0, 1} × {0, 1}` → {0, 1} for Pi ∈
P(h), Pj ∈ P(1).

OUTPUT: Values [x1]
P(h),P(1)

∆ , . . . , [xr]
P(h),P(1)

∆ and shares vj1, . . . , v
j
r for Pj ∈ P(1).

1. Parties call FP(h),P(1),m,`

aBit on input random {xjk}k∈[r] from Pj ∈ P(1) to obtain

[xk]
P(h),P(1)

∆ , k ∈ [r].

2. Parties initialize a new FP(h),P(1),r,`

aBit instance with ∆i + ∆̃i, and then call this on input

the shares (xj1, . . . , x
j
r) to obtain [x1]

P(h),P(1)

∆+∆̃
, . . . , [xr]

P(h),P(1)

∆+∆̃
.

3. Each Pi ∈ P(h) sets ki,j
∆̃

[xk] = ki,j∆ [xk] + ki,j
∆+∆̃

[xk] for k ∈ [r], j ∈ {P(1) \ Pi}.
4. Each Pj ∈ P(1) setsmj,i

∆̃
[xk] = mj,i

∆ [xk] +mj,i

∆+∆̃
[xk] for k ∈ [r], i ∈ {P(h) \ Pj}.

5. Parties Pi ∈ P(h) call FZero so that each Pi obtains shares {(si,j1 , . . . , si,jr )}j∈P(1)
s.t.∑

i∈P(h)
si,jk = 0, ∀k ∈ [r].

6. For each k ∈ [r], Pi ∈ P(h) and Pj ∈ P(1):
(a) Pi ∈ P(h) computes:

di,jk = Hi,j(k, 0,k
i,j

∆̃
[xk]) + Hi,j(k, 1,k

i,j

∆̃
[xk] + ∆̃i) + yi,jk + si,jk ,

and privately sends it to Pj , for each Pj ∈ (P(1) \ {Pi}).
(b) Each Pj ∈ P(1) computes, for i ∈ (P(h) \ {Pj}):

tj,ik = Hi,j(k, x
j
k,m

j,i

∆̃
[xk]) + xjk · d

i,j
k .

(c) Each Pi ∈ P(h) computes (where xik = si,ik = 0 if Pi /∈ P(1)):

ti,ik =
∑

j∈(P(1)\{Pi})

Hi,j(k, 0,k
i,j

∆̃
[xk]) + xik · si,ik .

7. Parties in P(h) ∪ P(1) call FZero so that each Pτ obtains shares (ρτ1 , . . . , ρ
τ
r ) such that∑

τ∈(P(h)∪P(1))
ρτk = 0, ∀k ∈ [r].

8. For k ∈ [r], each Pj ∈ P(1) computes vjk =
∑
i∈P(h)

tj,ik + ρjk and each Pi ∈ (P(h) \
P(1)) sets vik = ti,ik + ρik.

Fig. 11. Protocol for Half Authenticated Triples

ΠTripleBucketing (Figure 13). Then, each Pj ∈ P(1) reshares their values yjk to parties in

P(h) obtaining [ŷk]
P(h),P(h)

k∈m′ such that
∑
i∈P(h)

ŷik = yk, k ∈ [m].

This allowsP(h)∪P(1) to callFP(h),P(1),r,`

HalfAuthTriple m̂ = m/r times, on inputs {ŷ(ι−1)·r+k}k∈[r],
for each ι ∈ m̂. The outputs of each of these calls are the sharings vτ(ι−1)·r+k, τ ∈
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P(h) ∪ P(1) and k ∈ [r], of r cross terms products, i.e.∑
τ∈P(h)∪P(1)

vτ(ι−1)·r+k =
∑
i∈P(h)

∑
j∈P(1)

xj(ι−1)·r+k · ŷ
i
(ι−1)·r+k.

Notice that the number r of cross terms computed by FP(h),P(1),r,`

HalfAuthTriple depends on the
leaky DRSD problem, and for this reason the protocol needs to call the functionality m̂
times to obtain all the m′ outputs it needs.

After this, parties in P(h) reshare all the vik, k ∈ m′ to P(1), so that each Pj ∈ P(1)

gets v̂jk, k ∈ [m′], where∑
j∈P(1)

v̂jk =
∑
j∈P(1)

xjk

∑
i∈P(1)\j

yik =
∑

τ∈P(h)∪P(1)

vτk , (1)

so that parties in P(1) can locally add shares xjk · y
j
k to v̂jk obtaining zjk, k ∈ [m′].

Finally, P(h) ∪ P(1) call FaBit to obtain [zk]P(h),P(1) , and run the ΠTripleBucketing

subprotocol. This subprotocol is similar to the bucket-based cut-and-choose technique
introduced by Larraia et al. [LOS14] and optmized by Frederiksen et al. [FKOS15],
but adapted to run with two committees. It takes as input m′ = B2 · m + c triples.
First, in Step I and II, it ensures that all the triples are correctly generated sacrificing
B ·m · (B − 1) + c triples, and then (Step III) it uses random bucketing technique to
remove potential leakage on the xk values obtaining m private and correct triples. All
the MACs on previously opened values are eventually checked (Step IV) calling the
Batch Check commmand inΠ[Open] (Figure 1). Finally, on that last step, the remaining
triples are converted to SPDZ-style triples in P(1) using ΠMACCompact.

Correctness easily follows form the discussion above:∑
j∈P(1)

zjk =
∑
j∈P(1)

xjk · y
j
k + v̂jk, (2)

where v̂jk is the re-sharing inside P(1) of FP(h),P(1),r,`

HalfAuthTriple’s output. More precisely, using
Equation 1 we can rewrite Equation 2 as follows:∑

j∈P(1)

zjk =
∑
j∈P(1)

xjk · y
j
k +

∑
j∈P(1)

xjk ·
∑

i∈P(1)\j

yik

=
∑
j∈P(1)

xjk ·
(
yjk +

∑
i∈P(1)\j

yik
)

=
( ∑
j∈P(1)

xjk
)
·
( ∑
j∈P(1)

yjk
)
.

Security is showed in the following theorem, proved in the full version.

Theorem 7.2. Protocol ΠTriple securely implements Fm,`Triple in the

(FRand,FaBit,F
P(h),P(1),r,`

HalfAuthTriple)-hybrid model.

Parameters: Based on the analysis from previous works [FKOS15, FLNW17, WRK17a],
we choose B = 3 and 4, to guarantee security except with probability 2−64 in our esti-
mations. The additional cut-and-choose parameter c can be as low as 3, so is insignifi-
cant as we initially need m′ = B2m+ c triples to produce m final triples.
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Protocol for triples generation - Πm,r
Triple

PARAMETERS: Let B, c be parameters as needed for ΠTripleBucketing and m′ = m · B2 + c.
Let r be as needed for the security of the leaky DRSD problem in FP(h),P(1),r,`

HalfAuthTriple .
Initialize: Parties initialize FaBit which outputs ∆i to each Pi ∈ P(h).
Triple Computation:

1. Parties in P(h) ∪P(1) call FP(h),P(1),m
′,`

aBit on input random {yjk}k∈[m′] from Pj ∈ P(1)

and obtains random authenticated shares {[yk]P(h),P(1)}k∈[m′].
2. Reshare yk, k ∈ [m′] from P(1) to P(h) as follows:

– Each Pj ∈ P(1) \ P(h) secret shares yjk =
∑
i∈P(h)

yi,jk and sends yi,jk to Pi ∈
P(h).

– Each Pi ∈ P(h) sets ŷik = yik +
∑
j∈P(1)

yi,jk , where yik = 0 if Pi /∈ P(1).

3. Let m̂ = dm′/re. For ι ∈ [m̂], the parties call FP(h),P(1),r,`

HalfAuthTriple on input
{ŷi,j(ι−1)·r+k}k∈[r],j∈P(1)

from Pi ∈ P(h), where ŷi,j(ι−1)·r+k = ŷi(ι−1)·r+k, ∀j ∈ P(1),
to obtain random {[x(ι−1)·r+k]P(h),P(1)}k∈[r], and {vτ(ι−1)·r+k}τ∈P(h)∪P(1),k∈[r],
∀ι ∈ [m̂] .

4. Reshare vτk , k ∈ [m′], from P(h) ∪ P(1) to P(1) as follows:
– Each Pi ∈ P(h)\P(1) secret shares vik =

∑
j∈P(1)

vj,ik and sends vj,ik to Pj ∈ P(1).

– Each Pj ∈ P(1) sets v̂jk = vjk +
∑
i∈P(h)\P(1)

vj,ik .

5. For k ∈ [m′] each Pj ∈ P(1) computes zjk = xjk · y
j
k ⊕ v̂

j
k, where yjk = 0 if Pj /∈ P(h).

Parties inP(h)∪P(1) callFP(h),P(1),m
′,`

aBit on input {zjk}k∈[m′] from Pj ∈ P(1) to obtain
{[zk]P(h),P(1)}k∈[m′].

Triple Checking: Run ΠTripleBucketing to output m correct and secure triples.

Fig. 12. Protocol for Triples
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Subprotocol ΠTripleBucketing

The protocol takes as input m′ = B2m + c triples, which may be incorrect and/or have
leakage on the x component, and produces m triples which are guaranteed to be correct and
leakage-free.
B determines the bucket size, whilst c determines the amount of cut-and-choose to be per-
formed.
Input: Start with the shared triples {[xk]

P(h),P(1)

∆ , [yk]
P(h),P(1)

∆ , [zk]
P(h),P(1)

∆ }k∈[m′].
Output: Correct, leakage-free and SPDZ-style triples {JxkK, JykK, JzkK}k∈[m].
I: Cut-and-choose: Using FRand, the parties select at random and open c triples using
Π
P(h),P(1)

[Open] (Figure 1). If any triple is incorrect (i.e. if x · y 6= z), abort.

II: Check correctness: The parties now have B2m unopened triples.

1. Use FRand to sample a random permutation on {1, . . . , B2m}, and randomly assign the
triples into mB buckets of size B, accordingly.

2. For each bucket, check correctness of the first triple in the bucket, say T = ([x], [y], [z]),
by performing a pairwise sacrifice between T and every other triple in the bucket. Con-
cretely, to check correctness of T by sacrificing T ′ = ([x′], [y′], [z′]):
(a) Compute [d] = [x] + [x′] and [e] = [y] + [y′] and call (Open, [d],P(h) ∪ P(1)),

(Open, [e],P(h) ∪ P(1)) in Π
P(h),P(1)

[Open] .
(b) Using the opened values, compute [f ] = [z] + [z′] + d · [y] + e · [x] + d · e.
(c) Call (Open, [f ],P(1)) in Π

P(h),P(1)

[Open] and check that f = 0. Otherwise, the parties
abort.

III: Remove leakage: Taking the first triple in each bucket from the previous step, the parties
are left withBm triples. They remove any potential leakage on the [x] bits of these as follows:

1. Place the triples into m buckets of size B.
2. For each bucket, combine all B triples into a single triple. Specifically, combine the first

triple ([x], [y], [z]) with T ′ = ([x′], [y′], [z′]), for every other triple T ′ in the bucket:
(a) Compute [d] = [y] + [y′] and call (Open, [d],P(h) ∪ P(1)) in Π

P(h),P(1)

[Open] .
(b) Compute [z′′] = d · [x′] + [z] + [z′] and [x′′] = [x] + [x′].
(c) Output the triple [x′′]

P(h),P(1)

∆ , [y]
P(h),P(1)

∆ , [z′′]
P(h),P(1)

∆ .

IV: Check MACs and compact them: Call Batch Check in Π
P(h),P(1)

[Open] for every item that
was opened in Steps I-III. If the batched MAC check fails, abort. Otherwise call ΠMACCompact

on input the first triple from each of the m buckets in the previous stage, which are renamed
and output as {JxkK, JykK, JzkK}k∈[m].

Fig. 13. Checking correctness and removing leakage from triples with cut-and-choose
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8 Complexity Analysis

We now analyse the complexity of our protocol and compare it with the state-of-the-art
actively secure MPC protocols with dishonest majority. As our online phase is essen-
tially the same (even better) than that of SPDZ and TinyOT mixed with committees, we
focus on the preprocessing phase.

Furthermore, since the underlying computational primitives in our protocol are very
simple, the communication cost in the triple generation algorithm will be the overall
bottleneck. We compare the communication cost of our triple generation algorithm with
that of the corresponding multiparty Tiny-OT protocol by Wang et al. [WRK17b].

The main cost for producing m triples in this work, is 3mB2 calls to FaBit using
keys ∆i ∈ {0, 1}`, plus mB2 calls to FaBit using new keys ∆i + ∆̃i ∈ {0, 1}` every
r triples. The latter calls under new keys are more expensive, as the setup costs that
incurs is roughly 128 · ` · |P(h)| · |P(1)| bits and is amortized only across those r triples.
Measuring the cost of FaBit after setup as |P(h)| · |P(1)| · ` bits, we obtain an amortized
communication complexity of B2 · |P(h)| · |P(1)| · ` · (3 + (r + 128)/r) bits per triple.

The main cost for producing m triples in [WRK17b] is 3mB calls to their long-
key equivalent of FaBit with long keys, plus sending 2mB outputs of a hash func-
tion. On the other hand, all their communication is within the smaller committee P(1).
Their main (amortized) cost is then of B · |P(1)|2 · 128 · (3 + 2) bits per triple. De-
fine α = |P(h)|/|P(1)|. We can then conclude that the improvement in communication
complexity of our work w.r.t. WRK is roughly that of a multiplicative factor of:

128 · 5
α ·B · ` · (4 + 128/r)

Given the total number of parties n and honest parties h, we first consider the case of
two deterministic committeesP(h) andP(1) such that |P(h)| = n and |P(1)| = n−h+1,
respectively. To give a fair comparison, we have chosen the parameters in such a way
that n− h+ 1 in our protocol is equal to n in WRK. The estimated amortized costs in
kbit of producing triples are given in Table 1. Notice that given n and h, the key lenght `
and the number of triples r are established according to the corresponding leaky-DRSD
instance with κ bits of security. We consider κ = 128 and bucket size B = 3 and 4.
As we can see from the table, the improvement of our protocol over WRK becomes
greater as (n, h) increase (and ` consequentely decreases). The key lenght greatly influ-
ences the communication cost as a smaller ` reduces significantly the cost of computing
the pairwise OTs needed both for triple generation and authentication.

When n is larger we can use random committees P(h) and P(1) such that, except
with negligible probability 2−λ, P(h) has at least h2 ≤ h honest parties and P(1) has
at least 1 honest party. Let |P(h)| = n2, |P(1)| = n1 and λ = 64, Table 2 compares
the communication cost of our triple generation protocol with random committees with
WRK, where we take n = n1.

Varying the size of the committee P(h), and the number h2 of honest parties within
P(h), we obtain a tradeoff: with a larger committee we obtain a larger committee size
n2 and lower overall communication complexity, but on the other hand there are more
parties interacting, which may introduce bottlenecks in the networking. Figure 14 illus-
trates this with 500 and 1000 parties in total and 350 and 850, respectively, corruptions.
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# parties n (honest) 30 (12) 50 (20) 70 (20) 100 (30) 150 (30) 200 (40)
` 16 16 16 8 (8, 300) (7, 400)

WRK B = 3 656 1785 4896 9542 27878 49959
WRK B = 4 876 2381 6528 12723 37171 65946
Ours B = 3 381 950 2188 2481 6342 9413
Ours B = 4 677 1689 3890 4411 11275 16733

Table 1. Amortized communication cost (in kbit) of producing triples in our protocol and WRK.

(n, h, |P(1)| ) (h2, `) = (20, 11) (h2, `) = (50, 6) (h2, `) = (80, 1) (h2, `) = (110, 1) (h2, `) = (150, 1)
n2 Ours n2 Ours n2 Ours n2 Ours n2 Ours WRK

(300, 100, 89) 167 7141 240 5270 280 4486 15037

(500, 150, 108) 211 10950 316 8420 396 7698 456 4240 50700

(800, 200, 139) 275 18366 417 14301 533 13335 630 7539 733 6397 36829

(1000, 200, 179) 351 30188 531 23451 675 21748 796 12266 922 10363 61175

Table 2. Amortized costs in kbit for triple generation with n parties and h honest parties using
two random committees of sizes n1, n2 with 1 and h2 honest parties.
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Fig. 14. Varying the larger committee size with total number of parties and corruptions (n, t) =
(500, 350) and (1000, 850).
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BTH08. Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC with linear
communication complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 213–230. Springer, Heidelberg, March 2008.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.
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