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Abstract. The k-xor (or generalized birthday) problem is a widely stud-
ied question with many applications in cryptography. It aims at finding k
elements of n bits, drawn at random, such that the xor of all of them is 0.
The algorithms proposed by Wagner more than fifteen years ago remain
the best known classical algorithms for solving them, when disregarding
logarithmic factors.

In this paper we study these problems in the quantum setting, when con-
sidering that the elements are created by querying a random function (or
k random functions) H : {0, 1}n → {0, 1}n. We consider two scenarios:
in one we are able to use a limited amount of quantum memory (i.e. a
number O(n) of qubits, the same as the one needed by Grover’s search
algorithm), and in the other we consider that the algorithm can use an
exponential amount of qubits. Our newly proposed algorithms are of
general interest. In both settings, they provide the best known quantum
time complexities.

In particular, we are able to considerately improve the 3-xor algorithm:
with limited qubits, we reach a complexity considerably better than what
is currently possible for quantum collision search. Furthermore, when
having access to exponential amounts of quantum memory, we can take
this complexity below O(2n/3), the well-known lower bound of quantum
collision search, clearly improving the best known quantum time com-
plexity also in this setting.

We illustrate the importance of these results with some cryptographic
applications.

Keywords: quantum algorithms, generalized birthday problem, quantum crypt-
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1 Introduction

In this paper we consider a generic algorithmic problem with numerous applica-
tions in cryptography: the k-xor problem. We study it when considering elements
generated by a random function (or k random functions) H : {0, 1}n → {0, 1}n,
and we provide the best known quantum algorithms for solving it, taking into
account two possible scenarios regarding quantum memory.



In this section we first introduce the studied problem and provide some ex-
amples of applications. Second, we recall the scenario of post-quantum cryptog-
raphy; and finally, we summarize our contributions, that propose the best known
quantum time complexities and, in most of the cases, give considerable quantum
speedups over the best classical algorithms.

1.1 Generalized Birthday Problem

The birthday problem is a widely used cryptanalytical tool.

Birthday Problem. Given two lists L1, L2 of elements drawn at random from
{0, 1}n, find x1 ∈ L1 and x2 ∈ L2 such that x1 ⊕ x2 = 0 (where ⊕ denotes the
bitwise exclusive-or, below xor, operation).

A solution of this problem exists with high probability once |L1| × |L2| � 2n

holds, and it can be found in O(2n/2) time by e.g. sorting and then scanning L1

and L2.
The birthday problem has many applications, the most used one being per-

haps the research of a collision for a hash function h(·) : {0, 1}? → {0, 1}n. The
application to this case is simple. First of all, one constructs the list Li by defin-
ing the j−th element of Li as h(i|j) (where i|j denotes i concatenated with j).
Assuming that h behaves like a random function, the lists contain values dis-
tributed uniformly and independently at random, so the premises of the problem
statement will be met. Consequently, one may expect to find a solution to the
corresponding problem, and a collision for the hash function, with O(2n/2) work.

A generalization of this problem – called generalized birthday problem (GBP)
or k-list problem – has been introduced by Wagner [54].

Generalized Birthday Problem. Given k lists L1, L2, . . . , Lk of elements
drawn at random from {0, 1}n, find x1 ∈ L1, x2 ∈ L2, . . .xk ∈ Lk such that

x1 ⊕ x2 ⊕ . . .⊕ xk =
⊕k

i=1 xi = 0.

Obviously, if |L1| × |L2| × . . . × |Lk| ≥ 2n, then with a high probability the
solution exists. The real challenge, however, is to find it efficiently. When k = 2t,
Wagner’s algorithm requires classical time and space O(2n/(t+1)).

Applications. Even if the GBP may not appear very natural at first sight,
it has been applied successfully to the cryptanalysis of various systems. In the
following, we recall the most relevant applications for symmetric cryptography.

XHASH and the (R)FSB SHA-3 Candidate. XHASH [8] has been introduced as
a plausible candidate for an incremental collision-free hash function, defined as

H(x) :=

k⊕
i=1

h(i|xi),

2



where each xi is a b-bit block and h(·) : {0, 1}l → {0, 1}n. The size l =
b + log2(k) is chosen to be large enough to accommodate the block plus an
encoding of its index, by dint of making k larger than the number of blocks in
any message to be hashed. As showed e.g. in [8, 22], it is possible to set up an
attack based on GBP that easily finds collisions in XHASH.

Among other designs, this construction appears in the “fast syndrome-based”
hash function (R)FSB [4], a candidate of the SHA-3 competition. It uses a com-
pression function in a Merkle–Damgȧrd construction and it, is based on xoring
the columns of a random binary matrix and has the advantages to be fast, in-
cremental and parallelizable. In particular, this candidate can be rewritten as

FSB(H,m) :=

k⊕
i=1

hi(mi).

As showed in [22, 12, 13, 35, 47], the previous GBP attack applies as well also in
this case.

AdHash, NASD Incremental Hashing and the SWIFFT SHA-3 Candidate. One
proposal for network-attached secure disks (NASD) [27] uses the following hash
function for integrity purposes [8]:

H(x) :=

k∑
i=1

h(i|xi) mod 2256,

where x = 〈x1, ..., xk〉 denotes a padded k-block message. By simple observation,
inverting this hash corresponds to a k-sum problem over the additive group
(Z/2256Z,+).

This may be viewed as a special case of a general incremental hashing con-
struction proposed by Bellare et al. [8], where the sum is computed modulo m
and where the modulus m is public and chosen randomly.

Among other designs, such a construction has been exploited in the SWIFFT
hash function [42], one candidate of the SHA-3 competition. SWIFFT is a col-
lection of provably secure hash functions, based on the fast Fourier transform
(FFT). The SWIFFT function can be described as a simple algebraic expression
over some polynomial ring R = Zp[α]/(αn + 1), that is

SWIFFT (a, x) =

m∑
i=1

f(xi) mod (αn + 1) =

m∑
i=1

(ai · xi) mod (αn + 1)

where the m fixed elements a1, ..., am ∈ R – called multipliers – specify the hash
function, and each xi is an element of R. Examples of attacks on the SWIFFT
hash function based on the k-sum problem over the additive group (Z/2256Z,+)
are given in [35, 47, 5].
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The PCIHF Hash. Another hash construction that can be attacked using a sim-
ilar strategy is the PCIHF hash function [28], proposed for incremental hashing
and defined as

H(x) :=

k∑
i=1

SHA(xi|xi+1) mod 2160 + 1.

With respect to the previous case, the main difference is that each xi affects
two terms. To overcome this problem and apply an attack based on the GBP,
it is sufficient to choose (and fix) x2j = 0 for each j. In this case, the hash
computations takes the form

H(x) :=

b(k+1)/2c∑
j=1

h(x2j−1) mod 2160 +1 where h(x) = SHA(x|0)+SHA(0|x).

CAESAR Candidates and the 3-xor Problem. The GBP has been as well ap-
plied to the cryptanalysis of authenticated encryption schemes proposed at the
ongoing CAESAR competition [18]. To process the final incomplete blocks of
messages, some of these schemes use the XLS construction proposed by Risten-
part and Rogaway [49].

Even if XLS was initially proven secure, Nandi [44] pointed out flaws in the
security proof and showed a very simple attack that requires three queries to
break the construction. Actually, the CAESAR candidates that rely on XLS do
not allow this trivial attack as the required decryption queries are not permitted
by the schemes. A possible way to overcome this limitation has been proposed
by Nandi in [44], whose forgery attack requires only encryption queries. As a
result, it is possible the design flaw of XLS can be reduced to the 3-xor problem.

The CAESAR schemes based on XLS are – the COPA modes of – the finalist
Deoxys [23], Joltik [32], KIASU [33] and SHELL [55]. As a result, any 3-xor
algorithm that goes below the birthday bound results in a slight weakness of
some of these candidates. We refer to [45, 48] for concrete examples of attacks.

Fast Correlation Attacks. Finally, the k-xor problem (especially for k ≥ 4) is
interesting for searching parity check relations in fast correlation attacks [51, 52,
21], whose main targets are synchronous stream ciphers.

A synchronous stream cipher is a stream cipher where the ciphertext is
produced by bitwise adding the plaintext bits to a stream of bits called the
keystream, which is independent of the plaintext, only produced from the secret
key and the initialization vector. A large number of stream ciphers use Linear
Feedback Shift Registers (LFSR) as building blocks, the initial state of these
LFSRs being related to the secret key and to the initialization vector. In nonlin-
ear combination generators, the keystream bits are then produced by combining
the outputs of these LFSRs through a nonlinear boolean function. Examples –
among many others – of stream ciphers based on the previous construction are
the hardware oriented finalists of the eSTREAM project [24], e.g. Grain-v0 [31].
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A fast correlation attack targets nonlinear combination keystream genera-
tors. In particular, it requires the existence of linear correlations between LFSR
internal stages and the nonlinear function output. GBP can be used to find such
correlations – which is the hardest part of the job.

Remark. Though the GBP could be defined with many operations other than
XOR, like modular additions (the k-sum problem then), and the algorithms
proposed by Wagner would still apply, in this paper we concentrate for the sake of
simplicity, on solving the k-xor problem, i.e. the case of having a XOR operation.
In general, our algorithms can be easily adapted to other settings.

1.2 Cryptography in the Quantum World

Post-quantum cryptography (or quantum-resistant cryptography) is a whole new
line of research that aims at developing new cryptographic primitives that would
(hopefully) withstand attackers equipped with quantum computers. It is now
a well-known fact that the existence of sufficiently large quantum computers
would severely impact the security of many cryptographic schemes in use today.
In particular, the seminal work of Shor [50] showed that such computers would
allow to factor numbers and compute discrete logarithms in abelian groups in
polynomial time. As almost all public key schemes currently in use are build
upon the assumption that those problems are intractable, the advent of quantum
computers has motivated the rise of quantum-resistant public-key cryptography.

Post-quantum Symmetric Cryptography. At first sight, the situation seems less
critical for symmetric primitives: Grover’s algorithm [54] for searching in an un-
structured database finds a marked element among 2n in time O(2n/2), providing
a quadratic speedup compared to the classical exhaustive search, essentially op-
timal. Hence doubling the key length of block ciphers seems sufficient to counter
that attack, and achieve the same security against quantum attackers.

However, recent works have shown that Grover’s algorithm might not be the
only threat for symmetric cryptography. One of the most relevant works is the
one by Kuwakado and Morii [36, 37], who first showed that the Even-Mansour
construction [25] could be broken in polynomial time in the quantum CPA set-
ting. Briefly, the Even-Mansour construction consists of a public permutation P
on n bits and of two secret keys k1 and k2 that are used as pre- (resp. post-)
whitening keys for the encryption EncEM (m) := k2⊕P (m⊕k2) of some message
m. The main idea of [36, 37] was to consider the function

f(x) := EncEM (x)⊕ P (x) = P (x⊕ k1)⊕ k2 ⊕ P (x).

Since such a function has period k1, it is possible to exploit Simon’s quantum
algorithm [15, 53] to compute the (unknown) period in polynomial time.

Many other works have since appeared in the literature – such as attacks
on symmetric cryptosystems based on quantum period finding [34], a quantum
attack of the FX-construction [38], . . . – showing that the post-quantum security
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of some symmetric primitives, depending on the quantum adversary model, could
fall largely below the limit provided by the Grover’s algorithm.

As we are trying to build quantum-safe primitives, understanding and im-
proving quantum algorithms, as well as designing new quantum attacks is of
main importance: only this way can we know what are the needs in order to
resist to the mentioned attacks.

1.3 Our Contributions

How can we solve the k-xor problem in the quantum setting? We answer this
question by proposing new quantum algorithms. We consider two different set-
tings, of separate interest: (1st) the case in which the adversary has access to a
big amount of quantum memory and (2nd) the case in which she has access to
small quantum memory, say O(n). How one should treat classical vs. quantum
memory is an open problem (e.g. can quantum memory become as cheap as
classical memory?) that we do not attempt to fix here. Instead, we consider sep-
arately the two cases and take both classical and quantum memory into account
in the cost of our algorithms.

About the 2-xor problem, Brassard et al. [17] provide a quantum algorithm
that requires O(2n/3) time and O(2n/3). When “only” O(n) qubits of memory
are allowed, Grover’s algorithm provides a solution in time O(2n/2). Chailloux
et al. [19] showed that the problem can be solved in quantum time O(22n/5) and
using O(2n/5) classical memory.

While the quantum query complexity of the k-xor problem is well-known,
and can be attained by a modification of the algorithm in [3], there has been -
to the best of our knowledge - no previous attempt at systematic time-efficient
quantum algorithms (apart from the 2-xor case above).

Parallelized Algorithms. While the k-xor algorithms using O(n) quantum mem-
ory that we develop are first intended to be used by “small” quantum comput-
ers, we further remark that they can be efficiently parallelized. Even with the
most restrictive (and debatable) benchmark on “total cost” (which counts to-
gether the number of processors and the memory consumption, and multiplies
this “hardware cost” by the time complexity), we show that our parallelized
3-xor algorithm reaches below the classical product O(2n/2). We conclude that
it attains a range of effectiveness unreached by all collision search algorithm
previously known.

Our Results. In this paper, we present the first analysis of the k-xor problem
in the quantum world for generic k ≥ 3 with competitive quantum time with
respect to both algorithms in the classical and in the quantum setting present in
the literature. Our results – compared to others in the literature – are provided
in Table 1.
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Table 1. Complexity of k-xor quantum algorithms (without logarithmic factors). Our
results are in bold. When referring to Ambainis’ work [3], we hint at our own quantum
time complexity analysis from Section 3.

k (collision)
Quantum Superposition Quantum Classical

Reference
Time Queries Memory Memory

2 2n/2 2n/2 O(n) - [29]

2 2n/3 2n/3 2n/3 - [17]

2 22n/5 22n/5 O(n) 2n/5 [19]

3 25n/14 25n/14 O(n) 2n/7 Theorem 1

3 2n/2 2n/4 2n/4 - [3]

3 23n/10 23n/10 2n/5 - Theorem 2

4 2n/3 2n/3 O(n) 2n/9 Theorem 1

4 2n/2 2n/5 23n/10 - [3]

4 2n/4 2n/4 2n/4 - Theorem 4

5 27n/22 27n/22 O(n) 2n/11 Theorem 1

5 2n/2 2n/6 21/3 - [3]

5 2n/4 2n/4 2n/4 - Theorem 4

6 24n/13 24n/13 O(n) 2n/13 Theorem 1

6 2n/2 2n/7 25n/14 - [3]

6 2n/4 2n/4 2n/4 - Theorem 4

7 23n/10 23n/10 O(n) 2n/15 Theorem 1

7 2n/2 2n/8 23n/8 - [3]

7 2n/4 2n/4 2n/4 - Theorem 4

k ≥ 8 2n/2 2n/(k+1) 2
n(k+1)
2(k+1) - [3]

k ≥ 8 2n/(2+blog2(k)c) 2n/(2+blog2(k)c) 2n/(2+blog2(k)c) - Theorem 4

Linear – Quantum Memory. For the case in which the adversary can use only
O(n) quantum memory, we propose solutions with better time complexity than
classical algorithms up to k < 8. We use building blocks from [19] (initially used
for collision search) and ideas from [46], inspired for instance from the parallel
matching techniques.

Exponential – Quantum Memory. When the adversary might use big amounts
quantum memory, we propose a strategy that improves k-xor problems for all
k ≥ 3. For k ≥ 4, we use the well-known quantum walk framework. Our attack
requires time O(2n/(2+blog2(k)c)) and O(2n/(2+blog2(k)c)), giving an exponential
quantum speedup over Wagner’s algorithm. For the 3-xor problem, we specially
design an algorithm with time O(23n/10) and O(2n/5) quantum memory.

We highlight that, in the two cases above, the 3-xor algorithm has an exponen-
tial acceleration over collision search, which was not the case classically.
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Organization. In the next section, we detail some basic notions of quantum
computing and building blocks for our new algorithms. In Sect. 3, we recall the
algorithms present in the literature to solve the k-xor problem both in the classi-
cal and in the quantum setting. New quantum algorithms for the 3-xor problem
– both for the linear and the exponential quantum memory – are proposed in
Sect. 4, while in Sect. 5 we describe algorithms for the k-xor problem for k ≥ 4.
We emphasize again that our goal is to set up algorithms with optimal time and
memory complexities (rather than query complexity). We give insights on par-
allelization in Section 6. We conclude in Sect. 7 with implications of our results
and some open problems for future research.

2 Preliminaries

In this section, we recall some definitions and simple quantum algorithmic tech-
niques that will be used throughout the paper. We stress that most of our al-
gorithms, and the design principles thereof, can be understood with only some
basic notions of quantum computing, which we provide below.

2.1 Quantum Algorithms

For a comprehensive introduction into quantum algorithms, we suggest the text-
books of Mermin [41] and Lipton, Regan [39].

Quantum Circuit Model. We only work in the standard quantum circuit model.
A quantum circuit is an abstract representation of a quantum algorithm running
on a universal quantum computer. Given a number of qubits, put in an arbitrary
initial state (say |0〉), we apply a succession of quantum gates, analog to classical
boolean gates. After, the state of the qubits is measured. The final measurement
should contain the result of the algorithm. The quantum computing literature
also often considers that a quantum algorithm can run in a number of successive
steps, which we will do below. The sequence of gates of a step can depend on
the results of the previous measurements.

Superposition Oracles. When solving k-xor instances, if the elements in the lists
are produced by a random function H (or multiple random functions) – which
we safely assume below, then instead of mere classical query access to H, we
require access to a superposition oracle:

OH : |x〉 |0〉 → |x〉 |H(x)〉

which, as a linear operator, acts on superposition of states:

OH :
(∑

αi |xi〉
)
|0〉 →

∑
αi |xi〉 |H(xi)〉 .

This implies that H has been implemented as a quantum circuit.
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Quantum Complexities. We adopt the following usual definitions of complexities:

• The quantum query complexity is the number of superposition oracle calls
performed.

• The time complexity is the gate count of the quantum circuit. In all algo-
rithms in this paper, it will turn out to be equal to the circuit depth, up to
a logarithmic factor.

• The memory complexity is the number of qubits (including ancillas) on which
it runs. Our memory complexities hide the constant overhead induced by
running an oracle OH .

Conventions. Hereafter, we count oracle queries and n-qubit register operations
such as comparisons between n-bit numbers as a single time unit O(1), in order

to make the complexities more readable. We use the notation Õ when the time
or memory complexity contains additional factors due to the management of
quantum data structures, since the details of such implementations remain out
of the scope of our work.

2.2 Grover’s Algorithm and Amplitude Amplification

Alongside Shor’s, Grover’s algorithm [29] is one of the most widely known quan-
tum algorithms. While a complete description - for which we refer to the quantum
computing literature - would be outside the scope of this work, we recall that
this algorithm speeds up quadratically exhaustive search.

More precisely, given a search space, e.g {0, 1}n, and a function f : {0, 1}n →
{0, 1} for which there are 2t preimages of 1, such a preimage can be found
in quantum time O(2(n−t)/2), assuming that a superposition oracle Of can
be efficiently implemented. Grover’s algorithm first constructs the uniform su-
perposition over the whole search space, then repeatedly applies an operator
(O(2(n−t)/2) times) which moves the current state towards the superposition of
all preimages of 1. There are some errors, which can in turn be corrected if the
exact number of preimages is known. Such errors will not impact our algorithms
below.

Amplitude Amplification [16] is a generalization of Grover’s algorithm where
the search space has some structure. If (1st) there are 2t solutions among a
search space of size 2n, (2nd) this search space is constructed using a quantum
algorithm A and (3rd) the test uses the oracle Of , then Amplitude Amplification
returns (up to some error) the superposition of all preimages of 1 in time:

c · 2(n−t)/2 (|A|+ |Of |)

where c is a constant, and |A| and |Of | are the respective quantum time com-
plexities of A and Of .

More precisely, the procedure starts in an initial state |s〉, the uniform su-
perposition over the whole search space, and applies c2(n−t)/2 iterations. Each
iteration contains a reflection through the search space (applying the operator
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2 |s〉 〈s| − I) and another through the “good” subspace (the uniform superpo-
sition over all wanted solutions). The first reflection requires to recompute |s〉,
the second to apply Of and flip the phase of the good elements. After c2(n−t)/2

iterations, the state is the uniform superposition over the good subspace.

2.3 Quantum Algorithms with Small Quantum Space

While constant progress has been made towards quantum fault-tolerant compu-
tation, the number of qubits seems to be, to date, a more challenging limitation
on the realizability of universal quantum computers. Indeed, a quantum com-
puter acting on S qubits needs to maintain a coherent superposition over this
whole system during the computation. In light of this potential caveat, some
time-efficient quantum algorithms may reveal themselves costly. This was al-
ready argued by Grover and Rudolph regarding collision search in [30].

This is why we are interested in reducing at most the quantum time com-
plexity while working with a limited number of qubits. “Limited”, in the rest of
this paper, means O(n) (the same number as Grover’s algorithm).

A technique helping to turn quantum memory requirements into classical ones
is used in [19] for collision search: if one is interested in collision search with few
qubits, the best time complexity manageable is O(22n/5) (instead of the lower
bound O(2n/3)), using distinguished points.

Given a random function H : {0, 1}n → {0, 1}n, the query-optimal BHT
algorithm for collision search [17] works in two steps:

• Query 2n/3 arbitrary inputs;
• With Grover, search for a collision on one of these inputs: there are 2n/3

solutions among 2n, hence 2n/3 Grover iterations.

In order to perform each iteration in time O(1), this algorithm needs superposi-
tion query access to the memory that holds the 2n/3 results of the first step. In
other terms, this algorithm requires O(n2n/3) qubits.

Sequential Membership Testing. To overcome this cost, Chailloux et al. first
remark that testing membership in a set of size 2t, without quantum memory,
can be done in time O(2t) (even in superposition). Indeed, given an input x,
it suffices to compare sequentially x against all 2t elements. This replaces the
initial need for quantum memory by classical storage, as performing this test
amounts to go through the whole set in a sequential manner.

Now, since this would bring the time complexity of BHT’s algorithm to the
heights of 22n/3, we reduce the size of the list, and we now replace the arbitrary
inputs by distinguished points: the list now contains only inputs x such that
H(x) is distinguished (say, by a zero-prefix of some size).

Since the collision we are looking for happens on a distinguished point, the
search space is more structured: we use amplitude amplification instead of a
simple Grover search. Assume that the list has size v and the distinguished points
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have all the same prefix of length u. The first step costs 2v+u/2, as each element
now needs to be constructed using Grover search. The second step has 2(n−u−v)/2

iterations, as there are 2v solutions among all distinguished points (2n−u). Inside
each iteration, the set of distinguished points needs to be constructed (time 2u/2)
and membership to the intermediate list needs to be tested (time 2v). This gives:

2v+u/2 + 2(n−u−v)/2(2u/2 + 2v)

optimized to O(22n/5) by taking u = 2n/5 and v = n/5.

3 State-of-the-Art: Known Results for the k-xor Problem

3.1 Classical Algorithms for the k-xor Problem

In [54], Wagner analyses the k-xor problem between k lists L1, . . . Lk of elements
drawn uniformly at random from {0, 1}n. The goal is to find a k-tuple of elements
x1 ∈ L1, . . . , xk ∈ Lk which xor to 0. Alternatively, one may consider a random
function H : {0, 1}n → {0, 1}n; the elements of the lists are created by querying
H and the goal is to find x1, . . . xk such that H(x1)⊕ . . .⊕H(xk) = 0.

Problem 1 (k-xor, with a random function). Given query access to a random
function H : {0, 1}n → {0, 1}n, find x1, . . . xk such that H(x1)⊕. . .⊕H(xk) = 0.

Problem 2 (k-xor, with k random functions). Given query access to k random
functions H1, . . . ,Hk : {0, 1}n → {0, 1}n, find x1, . . . xk such that H1(x1)⊕ . . .⊕
Hk(xk) = 0.

Both problems will remain equivalent throughout this paper. All algorithms
studied and developed below have the same time and memory complexities in
either formulation.

Wagner gives an algorithm that requires O
(
k · 2n/(blog2(k)c+1)

)
time and space.

The design principle is to construct a binary tree whose leafs are the k initial
lists. We number these levels from 1 (leafs) to blog2(k)c + 1 (root). Level i, for
i ≤ blog2(k)c, contains lists of 2i-tuples which xor to 0 on the n

blog2(k)c+1 × i first

bits, of size 2
n

blog2(k)c+1 each. The root of the tree contains the expected k-xor
instance. We omit constant factors in the analysis.

The base operation of Wagner’s k-tree algorithm is merging two lists in order
to obtain their parent in the tree. Merging two lists at level i − 1 costs time
O(2

n
blog2(k)c+1 ) (the size of the lists). The resulting list at level i contains all

pairs of 2i−1-tuples (hence 2i-tuples) which collide on n
blog2(k)c+1 more bits. This

explains why the parent list has (up to a constant) the same size as its children.

Remark 1. The information-theoretic query lower bound for the k-xor (alterna-
tively, the k-sum) problem is O(2n/k). Using a simple time-memory tradeoff, a
trivial algorithm for this problem runs in time and memory O(2n/2) if k ≥ 3.
(When k = 2, we fall back on collision search).

11



Wagner’s algorithm offers classically the best time complexity exponent. In
particular, by taking k = 2

√
n, finding a k-xor can be done in time O(22

√
n).

Various improvements have proposed [12, 43, 48, 14] but, as they target the
logarithmic factors in the k-tree algorithm, study specific instances or concern
time-memory tradeoffs, they remain out of scope of this paper.

`-xor is easier than k-xor for ` ≥ k. Classically and quantumly, an algorithm
for the k-xor problem can also be applied to the `-xor problem for ` ≥ k, with
the same time complexity. This reduction was outlined by Wagner [54]. Using a
formulation such as Problem 2, one can remark that given an instance H1, . . . ,H`

it suffices to call the k-xor algorithm with functions G1 = H1, . . . , Gk−1 = Hk−1,
Gk = Hk ⊕ . . .⊕H`.

3.2 Quantum Algorithms for the k-xor Problem

In this section, we review known quantum algorithms that can be applied to the
k-xor problem or some of its instances. As we turn ourselves towards quantum
algorithms, instead of considering lists of elements drawn at random (as Wagner
does in his work), we consider these lists to be produced by random functions
that we can query in superposition (Problem 1 or 2).

Ambainis [3] presented a quantum algorithm for element distinctness and ex-
tended it to k-distinctness. With this algorithm, deciding k-distinctness among
2n elements can be done with O(2nk/(k+1)) queries and Õ(2nk/(k+1)) quantum
time, using the same amount of quantum memory (i.e, qubits), by a quantum
random walk on the Johnson graph. It was later noticed [20] that this algorithm
works as well for the k-sum problem, or any k-relation, giving a good query
complexity. In [9], Belovs and Spalek proved this upper bound to be optimal,
using an adversary method.

Lemma 1 ([20] and [9]). The quantum query complexity of k-xor for a random
function is O(2n/(k+1)), the bound is tight.

A Problem with Time. While no best method is currently known for general k
when limited to O(2n/(k+1)) superposition queries, the algorithm derived from
Ambainis’ is highly uncompetitive with respect to time. We estimate that it
needs at least Õ(2n/2) operations, for any k. In a sense, this method can be seen
as the quantum equivalent of classically taking the cross-product of k lists of
size 2n/k.

Grover Search. Using Grover’s algorithm [29] in a “raw” manner seems also a
poor idea. If the search space spans all k-tuples in input to H, looking for one
whose images xors to 0, the probability that this happens is 2−n. Hence a k-xor
will be found in time O(2n/2). This complexity is trivially beaten by classical
algorithms for k > 2 and does not perform better than classical collision search
when k = 2. Grover is known to be parallelized on 2s quantum processors with
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a 2s/2 time speedup. Improvements of this speedup have been obtained for some
search problems (see [6] for preimage search) but we choose to focus primarily
on single-processor algorithms.

Collision Search. As mentioned above, any k-xor instance can be reduced to a `-
xor instance for ` ≤ k. From the point of view of time complexity alone, the best
quantum algorithm for collision search (2-xor) runs in time and queries O(2n/3)
for an n-bit to n-bit random function [17]. This has been proven to be optimal
[1, 2, 56]. In return, this means that there exists a quantum algorithm for the
k-xor problem, for any k, running with the same time complexity. As Wagner’s
algorithm already obtains time O(2n/3) for k = 4, this seems only relevant for
collision and 3-xor search.

Subset-sum Problem. In the subset-sum problem, one is given a set of elements
and looks for a subset which xors (or sums) to zero. The k-xor problem can be
seen as a simpler case where the size of the sum is fixed. This problem has been
widely studied classically and the quantum walk framework has been successfully
applied to it [11], but these works remain, to our knowledge, unrelated to ours.

4 Quantum Algorithms for the 3-xor Problem

We now present our new quantum algorithms for the 3-xor problem. Further
results for the k-xor problem for k ≥ 4 are left to the next section. In Section
3, we saw that 3-xor was at least easier than collision search; while there is no
exponential gap in the classical setting, we find better quantum algorithms for
3-xor than the current best known algorithms for collision search:

• First with O(n) memory, improving on the time complexity of O(22n/5) [19];
• Second, with an exponential number of qubits, improving on O(2n/3) [17],

which is optimal for quantum collision search.

4.1 First Approach

We consider a first approach to the 3-xor problem, formulated as Problem 1, with
a single random function H : {0, 1}n → {0, 1}n, to which we have superposition
query access via a quantum oracle OH . The algorithm obtained below gives an
overview of the techniques that enable us to overcome the complexity of collision
search. In the rest of this paper, when storing the results of queries of H, we
will often omit that we keep track of the antecedents of these queries. We put
the focus on outputting a k-xor of images H(x1), . . . ,H(xk) while disregarding
the x1, . . . xk.

Algorithm Description. Let S be the set of all x ∈ {0, 1}n such that H(x) has a
prefix of u zeroes.

Our algorithm runs in two mains steps:
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L1 u n− u

2v

0 . . . 0 α1

...
...

0 . . . 0 αi

...
...

0 . . . 0 α2v

L2 u n− u

2v

0 . . . 0 β1
...

...

0 . . . 0 βi
...

...

0 . . . 0 β2v

Fig. 1. Structure of the lists L1 and L2, of size 2v. In the rest of this paper, the elements
of the lists and their structures refer only to H(x), while we may keep x alongside in
order to output the antecedents of our final k-xor tuple.

1. Build two lists L1 and L2 of size 2v, where v is a parameter to be set later,
which have the form in Fig. 1. That is, they contain images H(x) ∈ {0, 1}n
such that H(x) has a prefix of u zeroes (for example, in the first u bits).3

2. Using Amplitude Amplification [16], look for an element x ∈ S (the search
space of this subprocedure) such that H(x) ⊕ z1 ⊕ z2 = 0 for some z1, z2 ∈
L1 × L2.

Algorithm Analysis: First Step. Finding an element of S can be done using
Grover’s algorithm in O(2u/2) iterations, as there is a proportion 1

2u of “good
elements” to find, the prefix condition being a u-bit condition. This gives in
total 2v × 2u/2 calls to OH (for simplicity, we dismiss constant factors in the
complexity analyses).

Algorithm Analysis: Second Step. The second step is an Amplitude Amplification
instance. It starts from the initial state |s〉, which is a uniform superposition over
the whole search space S, and applies a sequence of iterations. Inside each iter-
ation, we must recompute the initial state and check (in superposition) whether
elements are good or not (see Section 2 for more details).

Checking Step. Given x ∈ {0, 1}n, checking if there exists z1 ∈ L1 and z2 ∈ L2

such that H(x) ⊕ z1 ⊕ z2 = 0 can be done in time 22v via sequential testing.
More precisely, given a precomputed list L of 2t elements in {0, 1}n, it is easy to
build a quantum oracle which tests if an input x appears in L. On input |x〉 |0〉,
the oracle returns |x〉 |1〉 if x ∈ L and |x〉 |0〉 otherwise. It runs in quantum time
O(n · 2t), without any quantum memory requirement: this amounts to control a
sequence of n-bit comparisons against x (see Section 2 for a reminder of [19]).

The fact that L is known beforehand introduces a cost in classical storage.
This storage is read sequentially (it only instructs which operations to perform)
and does not need random-access. In our case, the list L contains the sums of all

3 At first sight, the parameters already seem over-restricted: nothing prevents us to
use lists L1 and L2 of different sizes. We considered this situation and did not find
any advantage.
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pairs z1 ∈ L1, z2 ∈ L2. It is produced on the fly and does not need to be stored
itself. As it has 22v elements, the checking step costs 22v comparisons.

Initial State. The initial state of this Amplitude Amplification is the uniform
superposition over the search space S (elements whose image has a prefix of u
zeroes). It can be produced in 2u/2 time and queries using Grover’s algorithm.

Number of Iterations. The search space S is of size 2n−u. A “good element” in
this search space gives a solution to the 3-xor problem. As it must collide with
some sum z1 ⊕ z2 in L1 × L2 and there are 22v such sums, the number of good

elements is 22v. Hence the number of iterations is O
(√

2n−u/22v
)

. In each of

these iterations, the initial state is computed and uncomputed, and the current
superposition goes through the checking step.

All in all, the second step costs a quantum time:

2(n−u−2v)/2
(

2u/2 + 22v
)

Optimizing both parameters u and v gives v = n
8 and u = 4v, which yields a

time complexity O(23n/8). The classical memory complexity is O(2n/8). All of
this analysis is average-case. With a random function H, the fluctuations (e.g, in
the size of Su) cannot, with overwhelming probability, yield more than constant
variations in the total time complexity.

Remark 2. Although the obtained time complexity is higher than the collision
query lower bound O(2n/3), it improves on O(22n/5), the current best known
collision query and time complexity with O(n) quantum memory.

Another Consequence of this Approach. If we disregard quantum memory con-
sumption, the lists L1 and L2 may be stored using qubits. More precisely, to
perform the checking step more efficiently, one may store L1 in a quantum mem-
ory and then, given x, try every element y in L2 sequentially and test whether
x⊕y ∈ L1 efficiently (even when x is given in superposition). This decreases the
cost of this test from 22v to 2v. As a consequence, the time complexity becomes:

2u/2+v + 2(n−u−2v)/2
(

2u/2 + 2v
)

which implies 2u = v as best parameters and v = n
6 . We obtain a time complexity

of O(2n/3) using O(2n/6) quantum memory, improving on [17] w.r.t quantum
memory.

4.2 Second Approach

In order to improve over the previous algorithm, we modify the structure of the
lists (Fig. 2). This new algorithm is inspired from the list-merging ones from [46].
We introduce not two, but three parameters v, u, t such that:
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L1 n− 2u− t u u t

2v

0 . . . 0 0 . . . 0 x1 β1
...

...
...

...

0 . . . 0 0 . . . 0 xi βi
...

...
...

...

0 . . . 0 0 . . . 0 x2v β2v

L2 n− 2u− t u u t

2v

0 . . . 0 y1 0 . . . 0 α1

...
...

...
...

0 . . . 0 yi 0 . . . 0 αi

...
...

...
...

0 . . . 0 y2v 0 . . . 0 α2v

Fig. 2. Structure of the lists L1 and L2 of size 2v.

• Both lists4 have size 2v;
• The “completely free” part has size t;
• Elements of L1 take 0 on u bit positions;
• Elements of L2 take 0 on u different bit positions;
• Elements of both L1 and L2 take 0 on the n − 2u − t remaining bits (a

common prefix, as before).

We first consider the case v ≥ u.

Algorithm Design. As above, we consider the set S of “distinguished” elements
x such that H(x) has zeroes in the first n−2u− t bits. We build the lists L1 and
L2 and look for a 3-xor instance H(x)⊕ z1 ⊕ z2 = 0 with z1 ∈ L1, z2 ∈ L2. But
the new structure of the lists L1 and L2 makes the checking step more efficient:
there will be no need to go through the whole product L1 × L2.

Our algorithm runs in two main steps:

1. Build the lists L1 and L2;
2. Using Amplitude Amplification, look for x ∈ S (the search space) such that
H(x)⊕ z1 ⊕ z2 = 0.

Analysis: First Step. The first step builds two lists of 2v elements with zeroes
in u+ n− 2u− t positions. Each of these elements is produced separately using
Grover search. The total time complexity, without constant factors, is:

2v × 2
n−u−t

2 .

Analysis: Second Step. In the second step, the search space is S, and it contains
22u+t elements among 2n. The initial state

∑
x∈S |x〉 can be constructed using

Grover’s algorithm in 2
n−2u−t

2 time and queries. To estimate the number of
iterations, we have to find the number of good elements, that is, the number of

4 As before, we seem to over-restrict the parameters, since both lists could have differ-
ent sizes. We found that it gave no improvement: intuitively, we wish to maximize
a certain number of “good elements” given by a cross-product of L1 and L2, whose
size is maximized w.r.t the cost of producing L1 and L2 when both have equal size.
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x ∈ S such that there exists z1 ∈ L1, z2 ∈ L2, H(x) ⊕ z1 ⊕ z2 = 0. For x ∈ S,
there are on average 2v−u elements z1 in L1 that collide with H(x) on the third
column and 2v−u elements z2 in L2 that collide with H(x) on the second column.
Each of these 22(v−u) pairs z1, z2 yields a 3-xor to 0 on the three first columns.
For each of these pairs, there are t remaining bits to cancel (the last column).

Hence the probability that x yields a solution is 22(v−u)

2t , which gives 2
t−2(v−u)

2

iterations.

Checking Step. We now detail how to check quantumly whether x ∈ S yields a
solution or not, in 22v−u comparisons only (with minor constants). Since v ≥ u,
we can cut the list L1 in sublists of size 2u and expect each of these sublists to
contain an element z1 which collides partially with H(x) on the third column. We
will simply assume that there is exactly one. If there are more, these additional
solutions will be dismissed. If there is none, we will skip this sublist and go
directly to the next one.

We can build a unitary that, given x in input, does for each sublist L′1:

1. Go through L′1 and retrieve z1 which yields the partial collision. This requires
2u comparisons, since this is the size of L′1, and no additional quantum
memory, since these comparisons are performed sequentially as above;

2. After retrieving z1 and storing it, go through L2 and find z2 which yields a
3-xor, if it exists. This requires 2v comparisons.

3. If a solution is found, return it, if not, return None.

As there are 2v−u sublists to analyze, there are in total 2v−u(2u + 2v) = 22v−u

comparisons performed (since v ≥ u). The output gives whether x is a good
element or not and if so, the corresponding 3-xor instance.

Reduction of the Solution Space. Keeping only one partially colliding z1 where
there could be more has the consequence of reducing the actual set of good
elements of the Amplitude Amplification procedure (the test function drops some
good elements). We show that this has no asymptotic consequence.

Let x be a fixed element of the search space. There are 2v−u sublists L′1,
from which (1 − e−1)2v−u contain at least one solution z1 (the others yield no
solution). We bound probabilistically the total number of z1 that will be dropped.
Let Z(x) be the total number of z1 over all these sublists, then Z(x) is the sum
of (1 − e−1)2v−u independent random variables of expectation 1. An additive
Chernoff bound applies. For any 0 < δ ≤ 1:

Pr
(
Z(x) ≥ (1 + δ)(1− e−1)2v−u

)
≤ e−δ

2(1−e−1)2v−u/3 .

Where
(
Z(x)− (1− e−1)2v−u

)
represents the total number of z1 lost for x.

We can do a union bound with x spanning the whole search space (of size
22u+t):

Pr
(
∃x, Z(x) ≥ (1 + δ)(1− e−1)2v−u

)
≤ 22u+te−δ

2(1−e−1)2v−u/3 .
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By taking an appropriate δ, we find that with high and constant probability,
for all x simultaneously, the number of z1 dropped is negligible w.r.t the total
amount. Assume now that x should have been a solution. Some z1 yields a 3-xor
instance: with our test, it may or not be dropped. We see that the probability
for it to be dropped is negligible. With high probability, x remains a solution;
the same goes for any x. Hence the final solution space is only negligibly smaller
than the previous one, with no consequence on the time complexity.

Total Time. The time complexity rewrites:

2v+
u
2 +n−2u−t

2 + 2
t−2(v−u)

2

(
2

n−2u−t
2 + 22v−u

)
= 2

n
2 +v−u+t

2 + 2
n
2−v + 2

t
2+v .

To find the right point of optimization, let us write the partial derivative in
v and nullify it:

2
n
2 +v−u+t

2 − 2
n
2−v + 2

t
2+v = 0 .

This gives an equality between the exponents: n2 − v = t
2 + v i.e t = n− 4v and

n
2 + v − u+t

2 = n
2 − v i.e u = 8v − n.

Optimization. The final complexity is 2
n
2−v with an (apparently) free parameter

v. Let us have a look at the conditions on the range of v: first, we have considered
the case v ≥ u, i.e v ≥ 8v − n⇒ v ≤ n

7 . Second, we must have t− 2(v − u) ≥ 0
(the Amplification Amplitude procedure needs a positive number of iterations,
1 means that all elements of the initial space are solutions), i.e v ≥ n

10 . Finally,
we must have u ≥ 0, i.e 8v − n ≥ 0 i.e v ≥ n

8 . This means that this technique
works only in the range v ∈

[
n
8 ; n7

]
where it gives a quantum time complexity

2
n
2−v and a classical memory complexity 2v.

Case u > v. When u > v, the probability that an element x ∈ S in the search
space yields a partial collision with z ∈ L1 is 2v−u < 1. The checking procedure
needs to be reconsidered with this point of view: we now go through the whole
list L1 sequentially (and computationally, by performing comparisons) and find
the element z1, if it exists, which collides with H(x) on the u bits of the third
column. If it does not exist, we return 0 immediately (not a good element).
Otherwise, we go through L2 and find the element z2, if it exists, which collides
with H(x) on the u bits of the second column. The number of comparisons
performed by this checking step is now 2v. The other terms in the total time
complexity are unchanged. It rewrites:

2v+
u
2 +n−2u−t

2 + 2
t−2(v−u)

2

(
2

n−2u−t
2 + 22v−u

)
= 2

n
2 +v−u+t

2 + 2
n
2−v + 2

t
2+u .

Optimizing gives t = 10v − n and u = n− 6v, but u ≥ v enforces the condition
n− 6v ≥ v i.e v ≤ n

7 , which means that we fall back in the complexity range of
above.
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L1
2n
7

n
7

n
7

3n
7

2n/7

0 . . . 0 0 . . . 0 x1 β1
...

...
...

...

0 . . . 0 0 . . . 0 xi βi
...

...
...

...

0 . . . 0 0 . . . 0 x2n/7 β2n/7

L2
2n
7

n
7

n
7

3n
7

2n/7

0 . . . 0 y1 0 . . . 0 α1

...
...

...
...

0 . . . 0 yi 0 . . . 0 αi

...
...

...
...

0 . . . 0 y2n/7 0 . . . 0 α2n/7

Fig. 3. Structure of the lists L1 and L2 of size 2n/7.

This leads to a few remarks:

• When v is minimal in this range, v = n
8 leads to u = 0: we obtain the first

approach as above.

• When v is maximal, v = n
7 leads to u = v, and the best time complexity,

in O(25n/14). This is very close to 2n/3, but does not yet reach the quantum
collision bound (optimal number of queries).

Details of the Best Method. The case v = n
7 and u = v - represented in Figure 3

- gives the best quantum time complexity. Given an element x ∈ {0, 1}n such
that H(x) has the according zero-prefix, we expect it to collide on average with
one element of L1 on the third column and with one element of L2 on the second
column. Finding these elements takes time 2 × 2v to go through both lists. It
remains to verify if H(x)⊕ z1 ⊕ z2 sums to zero in the last t bits.

To build the lists L1 and L2, one needs time 2n/7+n/7+n/14 = 25n/14. To find
a 3-xor, one needs time:

23n/14
(

2n/7 + 2n/7
)

since, given an element of the 2n/7-zero prefix space, there exists a match on the
intermediate n/7 bits of L1 and L2 with high probability; then the probability
that it is the good one only depends on the 3n/7 remaining degrees of freedom
(hence 23n/14 iterations are necessary).

Theorem 1 (Quantum 3-xor Algorithm with Small Number of Qubits).
There exists a quantum algorithm for the 3-xor problem running in quantum time
O(25n/14), using O(n) qubits and O(2n/7) classical memory.

It is worth to notice that this algorithm, as the others in this paper, is
inherently quantum: although we can write a classical counterparts (by replacing
Grover search steps with classical exhaustive searches), trying to optimize the
classical time complexity gives a time O(2n/2) and O(2n/4) classical memory (we
get u = v = t = n

4 ).

19



4.3 Using Exponential Quantum Memory

If we allow an exponential amount of qubits to be used, we can also take the
time complexity of the 3-xor problem below the best quantum time for collision
search. This time, it is more surprising, since we go below the optimal query
complexity for collision search.

Theorem 2 (Quantum 3-xor Algorithm). There exists a quantum algorithm

for the 3-xor problem running in time Õ(23n/10) and using O(2n/5) qubits.

Proof. This procedure is inspired from the low-memory one. Since we authorize
quantum memory, the 2n/7 common prefix of zeroes is not necessary anymore
(it has been used to amortize the cost of the membership oracle in the amplitude
amplification procedure).

As before, building two lists of different sizes does not give better results, nor
does building lists of size 2v with v ≤ u, where u is the number of inner zeroes
in the intermediate columns. So we take v ≥ u and write the time complexity:

2v+
u
2 + 2

n−2v
2

(
2v−u

)
= 2v+

u
2 + 2

n−2u
2 .

Since we store the lists in quantum memory, testing membership now costs a
logarithmic overhead which we dismiss. The 2v−u factor stems from the fact
that there are approximately 2v−u partial collisions on L1, each of which yields
a membership test to L2.

Optimization now yields v + u
2 = n

2 − u i.e u = n
3 −

2v
3 . The complexity is

2
2v
3 +n

6 . We also need v ≥ u, hence v ≥ n
5 . ut

We cannot reduce v below n
5 , but there is also no interest in increasing it, since

this would increase both the time and memory complexity. Taking v = n
5 also

implies u = v = n
5 .

5 Quantum Algorithms for the k-xor Problem, k ≥ 4

In this section, we present new algorithms for the k-xor problem, with k ≥ 4.
Again, we propose algorithms in two different models. When using exponential
quantum memory, we propose a general quantum algorithm for the k-xor prob-
lem which gives a speedup over Wagner’s k-tree method for any k. With O(n)
qubits, we find quantum speedups for specific values of k.

Table 2 gives a summary of our k-xor quantum algorithms with exponential
quantum memory, while Table 3 gives a summary of k-xor quantum algorithms
with O(n) quantum memory. In both cases, complexities given are those of the
best algorithms available, with respect to the time (in particular, there can be
memory-efficient algorithms with higher time complexity).

A graphical comparison between these cases is provided in Fig. 4.
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Table 2. k-xor quantum algorithms with exponential quantum memory. Complexities
C are given as log2(C)/n. The complexities of the classical algorithms are given by
Pollard’s rho algorithm for collisions, and by [54].

k
Classical Classical Quantum Quantum

Reference
Time Memory Time Memory

2 1/2 0 1/3 1/3 [17]

3 1/2 0 3/10 1/5 Theorem 2

4 1/3 1/3 1/4 1/4 Theorem 4

5 1/3 1/3 1/4 1/4 Theorem 4

6 1/3 1/3 1/4 1/4 Theorem 4

7 1/3 1/3 1/4 1/4 Theorem 4

8 1/4 1/4 1/5 1/5 Theorem 4

... ... ... ... ... ...

k (1 + blog2(k)c)−1 (1 + blog2(k)c)−1 (2 + blog2(k)c)−1 (2 + blog2(k)c)−1 Theorem 4

... ... ... ... ... ...

Table 3. k-xor quantum algorithms with polynomial quantum memory. Complexities
C are given as log2(C)/n. The complexities of the classical algorithms are given by
Pollard’s rho algorithm for collisions, and by [54].

k
Classical Classical Quantum Classical

Reference
Time Memory Time Memory

2 1/2 0 2/5 1/5 [19]

3 1/2 0 5/14 1/7 Theorem 1

4 1/3 1/3 1/3 1/9 Theorem 3

5 1/3 1/3 7/22 1/11 Theorem 3

6 1/3 1/3 4/13 1/13 Theorem 3

7 1/3 1/3 3/10 1/15 Theorem 3

5.1 Quantum k-xor Algorithms With Low Quantum Memory

We propose an algorithm that enables us to find better-than-classical quantum
time complexities, when using O(n) qubits only. The result can be applied suc-
cessfully for k = 5, 6, 7. Its complexity is given by the following theorem:

Theorem 3. For each k, there exists a quantum algorithm for solving the k-xor

problem running in time O
(

2
(k+2)n
2(2k+1)

)
and using O

(
2n/(2k+1)

)
classical storage.

Proof. We take k−1 lists L1, . . . , Lk−1, each of size 2u and containing elements
with t+ (k − 2)u zeroes, a prefix of size t and k − 2 ranges of size u (Figures 5
and 6). Of these ranges in list Lj , they all contain zeroes, except column j + 1
(see Figures 5 and 6).
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Fig. 4. Time and memory complexities of some k-xor algorithms. Blue: algorithm with
classical time and classical memory (CT+CM), as provided in Pollard’s rho algorithm
for collisions, and by [54]. Red : algorithm with quantum time and exponential quantum
memory (QT+QM), as provided in Theorem 2 and Theorem 4. Green: algorithm with
quantum time and O(n) quantum memory (QT+CM), as provided in Theorem 1 and
Theorem 3.

Given x ∈ {0, 1}n, it collides on average with one element in L1 on its
corresponding non-zero column of size u, the same for L2, etc. It remains to
obtain 0 in n− (k − 2)u− t bits. The time is:

2u+(k−2)u/2+t/2 + 2
n−(k−1)u−t

2

(
2t/2 + 2u

)
(1)

which gives u = n
2k+1 , t = 2u and a complexity exponent (k+2)n

2(2k+1) . ut

When k = 4, we fall back on complexity 2n/3, but the memory complexity is
better than Wagner’s 2n/3: it drops to 2n/9.

When 4 < k < 8, this gives better-than-classical time complexities in the
bounded quantum memory setting5. In particular, setting k = 7 gives O(23n/10)
time.

For k ≥ 8, the cost of the Grover search step fails to decrease enough to be
competitive against Wagner’s algorithm, which is why Table 3 stops at k = 7.

5 Note that 2
(k+2)n
2(2k+1) ≥ 2

n
1+blog2 kc for each k ≥ 8, since

k + 2

4k + 2
≥ 1

1 + blog2 kc
⇔ (1 + blog2 kc)(k + 2) ≥ 4(k + 2) ≥ 4k + 2.
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L1 t u u . . . u n− (k − 1)u− t

2u

0 . . . 0 x1 0 . . . 0 0 . . . 0 0 . . . 0 α1

...
...

...
...

...
...

0 . . . 0 xi 0 . . . 0 0 . . . 0 0 . . . 0 αi

...
...

...
...

...
...

0 . . . 0 x2u 0 . . . 0 0 . . . 0 0 . . . 0 α2u

Fig. 5. Structure of the list L1 of size 2u.

Lj t u . . . u (column j + 1) . . . u n− (k − 1)u− t

2u

0 . . . 0 0 . . . 0 0 . . . 0 y1 0 . . . 0 0 . . . 0 β1
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0 yi 0 . . . 0 0 . . . 0 βi
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0 y2u 0 . . . 0 0 . . . 0 β2u

Fig. 6. Structure of the list Lj of size 2u.

With k ≥ 8, no quantum speedup for k-xor, with polynomial quantum memory,
is known.

5.2 A Quantum Walk 4-xor Algorithm

In this subsection and the next one, we present a quantum walk algorithm for
the general k-xor problem. First, we focus on the 4-xor case; a generalization of
this method to any power of 2 will be presented later. Our algorithm uses the
framework of quantum walks as described in [40]. It is inspired by [3] in that it
also walks on the Johnson graph.

We formulate the 4-xor problem as following: given superposition query access
to a random function H : {0, 1}n → {0, 1}n, finding 4 or less distinct elements
x1, x2, x3, x4 such that H(x1) ⊕ H(x2) ⊕ H(x3) ⊕ H(x4) = 0. This algorithm
adapts when we consider 4 random functions instead of one, when we consider
quantum random memory accesses instead of oracle calls and when we enforce
exactly 4 outputs (and refuse “smaller” collisions).

We define the Johnson graph J(2n, 2r), where vertices are subsets of 2r elements
in {0, 1}n. This is the same graph as used by Ambainis’ element-distinctness
algorithm in [3]; its spectral gap is approximately δ = 2−r.

We add additional information to a vertex in the graph: we maintain the
list of all r-collisions (collisions on the first r bits) within this set. There are
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approximately 2r such collisions. A vertex in the graph is marked if two of
these r-collisions collide. Hence, a random vertex in the graph has probability
22r−(n−r) of being marked, as there are approximately 22r pairs of r-collisions
to construct and n− r bit conditions to check.

Remark 3. In the way we mark vertices, we are losing information: indeed, there
are vertices which contain a 4-sum to zero, but are not marked. Any method
to efficiently mark more vertices would improve the complexity of our quantum
walk, but it would also have consequences on the classical complexity of k-xor.

There is actually no need to perform this check on the fly; in the data struc-
ture representing a vertex, we store the list of r-collisions in a sorted manner
(using e.g a skip list, as in [3], which adds logarithmic overhead) and keep up-
dated a “flag” bit which indicates whether the vertex is marked.

Using this data structure, the cost of an update (constructing the superposition
of all neighbors) is constant. Indeed, we only need to perform one query and
update the list of r-collisions: on average, a given element appears in 1 of these
collisions; we remove this one and add the potential new collision (which is found
in constant time, since the list of elements is also sorted).

The time complexity of this quantum walk is, by [40]:

S +
1√
ε

(
C +

1√
δ
U

)
where U is the update cost (constant), C the checking cost (constant), S the
setup cost (equal to 2r, as there are 2r initial queries to perform), ε the proportion
of marked vertices and δ the spectral gap. In our case, this gives:

2r + 2
n−3r

2

(
2r/2

)
= 2r + 2

n
2−r .

As it appears, the optimal time complexity is Õ(2n/4) (there are logarithmic
factors to take into account while updating the quantum data structures) with

a quantum memory complexity of Õ(2n/4). Besides, this gives a quantum time-
quantum memory trade-off curve T × S = 2n/2 for the 4-xor problem.

Lemma 2. For any quantum memory size S ≤ 2n/4, there exists a quantum
algorithm for the 4-xor problem running in time T = 2n/2/S.

Remark 4. There are some possible caveats to this method, which we address in
the next subsection. First, it is possible that the final 4-xor is a sum of the form
H(x1)⊕H(x2)⊕H(x3)⊕H(x4) = 0 where H(x1) = H(x3) and H(x2) = H(x4),
giving a trivial result. This kind of failure happens infrequently. Furthermore, we
did not bound precisely the cost of a vertex update: such an update is performed
in superposition on all vertices. When we remove and add an element of a vertex,
although there would be on average only one r-collision to remove and add, the
“average case” is not enough, since we are considering all vertices at the same
time. This may incur another quantum time overhead.
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5.3 A Quantum Walk 2k-xor Algorithm

The technique used successfully for the 4-xor problem can be applied for the
2k-xor, in a similar manner as Wagner’s classical k-tree technique. We perform a
quantum walk on the Johnson graph J(2n, 2r). Marked (“good”) vertices contain
a 2k-xor, but most of the vertices with a 2k-xor are actually not marked: this is
where we lose the most against the quantum query lower bound.

Our quantum data structure for vertices stores much additional information,
multiplying the quantum memory by a factor k. There are k sorted lists on k
levels:

• On the first level, we store the 2r elements of the vertex (L1);
• On the second level, we store the 2r r-collisions expected from these elements

(and store, for each collision, a pair of pointers towards the elements which
produced it) (L2);
• On the third level, we store the 2r 2r-4-xor (4-xor on 2r bits) expected from

the collisions above (collisions of collisions) (L3);
• . . .
• On the k-th level, we store the (approximately) 2r (k−1)r-2k−1-xor expected

(Lk).

What remains is, from pairs of these 2r (k − 1)r-2k−1-xor, to obtain a collision
on the n− (k− 1)r remaining bits. Such a collision is easy to find, since the list
at the k-th level is sorted.

Updating the vertex data structure (i.e, removing an element and adding an-
other) should be done in time O(k), as we have k levels to go through and to
update. The time (and memory) complexity of this walk then amounts to:

k × 2r + 2
n−(k−1)r−2r

2 (2r/2 × k)

which we optimize using r = n
k+2 to O

(
k2

n
k+2
)
. A number of technicalities

remain to be handled.

The Diminution of the Number of Collisions. Suppose that at level i, the 2r

bit-strings corresponding to the non-colliding part of the (i − 1)r-2i−1-xor of
this level take exactly 2r different values (i.e, |Li| = 2r). At level i + 1, they
make take strictly less values (i.e, |Li+1| < |Li|). This could make the number
of distinct elements stored at level i + 2 decrease further, and so on. If we
authorize non-distinct elements in the 2k-xor instance in output, this is not
an issue. Indeed, |Li+1| < |Li| happens only if a pair of elements at level i
already completely collides. We can check this while computing or updating Li
and immediately mark the vertex: a full collision at level i + 1 corresponds to
a 2i-xor instance, which in turn corresponds trivially to a 2k-xor instance with
non-distinct elements. If this is not authorized, then the average size of the lists
indeed decreases. We will handle this below.
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Increasing the Number of Collisions. On the contrary, there may be too much
collisions at level i and Li+1 may increase in size. This is an issue for all vertices,
since the quantum memory used stores the data structures in superposition for
all. We must ensure that Li is bounded for all i and for all vertices. But this is
trivially done: if there are too much collisions, we dismiss them. Recall that the
goal of our marking procedure is to mark efficiently some vertices containing a
2k-xor, not all of them.

Outputting the 2k-xor Result. At the end of the quantum walk, we perform a
measurement and get the whole data structure of a vertex. We make sure to store,
for each partial collision or xor at level i, the two elements of level i − 1 which
produced it (this introduces only a constant overhead). Hence, outputting the
whole 2k-xor instance amounts to the traversal of a tree of pointers, performed
in time O(2k). This adds to the complexity of our algorithm.

The Real Cost of an Update. Updating the data structure is done when we
remove, and then add an element to the vertex (going to one of its neighbors). We
then have to go through the k levels. We expect “on average” O(1) computations
to be performed at each level, as each element on level i intervenes “on average”
in one collision at level i + 1 (collision which we have to remove, or to add,
depending on the situation). Classically, we may consider such an average case,
but quantumly, we are studying all elements in superposition.

Suppose that x ∈ {0, 1}n intervenes in multiple collisions of a random func-
tion H : {0, 1}n → {0, 1}n. This means that f(x)⊕f(yi) = 0 for multiple values:
y1, . . . y`−1. This means, in turn, that x is actually involved in a `-collision for
some ` > 2.

The average number of `-collisions in a random n-bit to n-bit function is
e−12n

`! ([26], Theorem 4). At each level, computing the next collisions is done by
sorting a list of 2r values; this enables us to select only 2-collisions and avoid
any element to appear twice. That way, only one update has to be propagated
towards the next levels. Besides, some of the branches die out, as the number of
collisions is below 2r: we expect 2re−1/2 ' 0.184× 2r.

This seems to be a caveat of our technique: as the number of levels grows
higher, the number of collisions at the k-th level is of the order 2r

(2e)k
. The number

of marked vertices, in turn, is smaller than our first estimation.

Adapted Time Complexity. The remarks above make us rewrite the time com-
plexity by taking k into account more precisely:

k × 2r + 2
n−(k−1)r−2r

2 (2e)k(2r/2 × k) + 2k = k2r + k2
n−kr

2 +k(1+1/ ln 2) + 2k

which optimizes to (k+ 2)r = n+ 2k
(
1 + 1

ln 2

)
. Notice that 22k(1+

1
ln 2 )/(k+2) ≤

4e2, a constant.

General Case. We studied the case of a power of 2, but generally, the K-xor
problem may be solved using a similar quantum walk as the 2blog2Kc-xor.
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Theorem 4 (Quantum Walk K-xor Algorithm). For any integer K, there
exists a quantum algorithm that, given superposition oracle access to a random
function H : {0, 1}n → {0, 1}n, solves the K-xor problem in quantum time and
memory (asymptotic in K and with additional factors in r due to data structure
management):

Õ
(
K2

n
blog2 Kc+2

)
.

At first, the time complexity could have been with a factor Kc with c =
1 + 1

ln 2 slightly greater than 1, coming from the way we propagate the update
in the log2K-leveled data structure. We correct this time complexity by slightly
increasing the size of the lists stored in the structure, which in turn increases the
number of partial collisions we get, and makes the time and memory complexities
equal.

When querying K independent oracles instead of one (alternatively, when we
have K independent lists), the complexities are the same. Since the lists are
independent, we consider K levels instead of log2K; level i contains increasing
partial collisions between elements from L1 . . . Li.

Multiple K-xor. Let blog2Kc = k. Using Wagner’s algorithm, [54], one can
output 2c K-xor instances in time O

(
K2

n
k+1 × 2

c
k+1
)
, provided that c ≤ n

k .
Using our quantum walk algorithm, it is possible to obtain a similar result. We
use more quantum memory. The initialization step is performed as above. The
march is then divided in 2c steps, each of which corresponds to a new K-xor
instance, that we may store until the end. First, we march on the Johnson graph
and marked vertices are those which contain at least a K-xor; second, we march
on vertices that contain a K-xor and marked vertices are those which contain
at least two K-xors, and so on. The end of each subwalk is the beginning of the
next one. The quantum time complexity becomes approximately:

K × 2r + 2c × 2
n−(k−1)r−2r

2 (2r/2 ×K)

with a final r = 2c+n
k+2 and a time complexity: Õ

(
K2

2c+n
k+2

)
. This is legitimate

as long as n ≥ (k + 1)r (positive number of iterations), i.e n ≥ 2c+n
k+2 (k + 1), i.e

c ≤ n
2(k+1) .

6 Quantum k-xor Parallel Algorithms

While an involved discussion on all respective parallelization strategies for clas-
sical and quantum algorithms for the k-xor problem would be outside the scope
of our work, we can make a few remarks on the cost of parallelized versions of
our algorithms.

First of all, we consider as “quantum parallel algorithm” a quantum algo-
rithm written in the circuit model, with an adapted definition of time complexity :
instead of merely counting the number of quantum gates, we authorize up to 2s
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of them, if there are 2s “quantum processors” available, to be applied in a single
time step. Such a definition, which puts away possible communication overheads
between quantum processors, has been extensively justified in [7].

Parallelization of quantum algorithms seems sometimes to give more negative
than positive results: as an example, although Grover’s algorithm can be paral-
lelized, it cannot gain more than a factor 2s/2 in time when using 2s processors,
while classical exhaustive search does not suffer from this issue.

Quantum Parallel 3-xor Algorithm. Consider our 3-xor algorithm of Section 4,
running on one processor in time O(25n/14) with classical storage of size O(2n/7).
We distribute it over 2s quantum processors, in the following way: both the
computation of intermediate lists and the final step (amplitude amplification)
are shared among these processors; the former more efficiently (a factor 2−s)
than the latter (2−s/2). Rewriting the time complexity and performing a similar
optimization process, we obtain a time O

(
2

n
2−v−

s
2

)
for v ≤ n+s

7 .
By taking v = n+s

7 , i.e increasing the classical resources6, we get a time

Õ
(

2
5n
14−

9s
14

)
, with a more significant parallelization speedup compared to Grover’s

algorithm.

Although trading quantum memory for classical storage seems advantageous,
many alternative and debatable benchmarks can be used to quantify the overall
cost of running algorithms. One of these benchmarks (used in [10] against the
quantum collision algorithm of [19]) binds together the memory and the num-
ber of processors used as hardware resources. Using this particular benchmark,
single-processor Pollard rho costs O(2n/2), while 2s-processor parallelized rho
costs O(2n/2−s × 2s) = O(2n/2), and no quantum collision search (because of
their memory usage) outperforms the classical ones.

Even with this benchmark, our new 3-xor algorithm performs efficiently. Sup-
pose that we equalize the number of processors and the memory used (which

remains single-access): s = n+s
7 gives s = n

6 . This gives a time Õ
(
2n/4

)
. The

product time-resources is Õ
(
25n/12

)
and improves over the best classical com-

plexity.

7 Conclusion

In this work, we have studied quantum k-xor algorithms, proposing new ones
with the lowest known time complexity.

6 Notice also that, although all 2s processors seem to require concurrent accesses to the
classical intermediate storage, we can do better if communication overheads between
processors are negligible, as advocated by [7]. All processors perform the sequential
membership oracle at the same time and in exactly the same manner. Hence, lists
elements need only to be sent to one of them and broadcasted to the others with
logarithmic overhead.
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The previous best known quantum attacks could only rely on collision search
for k = 3 and did not outperform Wagner’s algorithm for k ≥ 4. Even though
the optimal quantum query complexity could be attained, there was virtually
no quantum time-efficient method for the k-xor problem.

We filled this gap in two settings, depending on the status of quantum mem-
ory (see Fig. 4 for more details).

• If quantum memory is considered as cheap as classical memory, we authorize
the adversary to use exponential amounts of it. We obtain an improvement
over quantum collision search for the 3-xor problem (Õ(23n/10) instead of

Õ(2n/3), with significantly reduced quantum memory). For general k, we
also improve Wagner’s time and memory complexities of O(2n/(1+blog2(k)c))
towards O(2n/(2+blog2(k)c)) quantum time and memory.

• If quantum memory is reduced to O(n), we obtain quantum speedups for
k-xor up to k = 7. In particular, 3-xor search can be performed in time
O(25n/14), which is better than the current state of the art for low-qubits
quantum collision search.

In particular, contrary to classical algorithms, we have clearly shown that
the quantum 3-xor problem is exponentially easier to solve than the quantum
collision finding problem, which was not an intuitive conclusion. In contrast, clas-
sical time improvements of the 3-xor problem have concerned only logarithmic
factors.

Parallelization. Our algorithms for k-xor running with O(n) qubits give rise to
efficient parallel versions. In particular, our quantum parallelized 3-xor algorithm
attains, using 2n/6 processors and the same amount of classical storage, a time-
hardware product of Õ(25n/12), effectively below classical algorithms.

7.1 Implications of Our Results

Our results, in particular for small k, can be used to improve quantumly crypt-
analysis results of particular hash constructions or authenticated encryption
schemes.

In the following, we give some practical examples:

XHASH and the (R)FSB SHA-3 Candidate: we are able to improve the
best GBP attack on the SHA-3 candidate (R)FSB. Referring to [4], the
parameters for FSBlength (the SHA-3 proposal contains five versions of FSB,
that is FSB160, FSB224, FSB256, FSB384 and FSB512) are given by r – i.e.
the output size in bits – and n – i.e. the size of the message to be hashed,
where the message is split in ω blocks of size u = 2a. Given the FSB hash
function

FSB(H,m) :=

k⊕
i=1

hi(mi),

to set up the GBP the idea is to construct l = 2 log2(u)− 1 lists (see [22] for
details), where each list is given by the xor-sum of ω/l values hi(mi). The
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complexity of a classical GBP is well estimated 2n/(1+blog2(l)c). A Wagner-
type attack (see [4, Table 7]) against FSB160 finds a 16-xor between 16 lists
which contain elements of size 632. Time and memory, up to smaller constant
factors, are given by Wagner’s 16×2127. If we are able to query the elements
of these lists in superposition, in other words, to produce them quantumly
on-the-fly, the quantum time and memory complexities of this operation
decrease to 2105.
Similar results can be obtained also for the SWIFFT hash function previously
recalled.

Authenticated Encryption Schemes - CAESAR: we are able to improve
the best forgery attacks on the CAESAR schemes based on XLS. Let us
focus on the 128-bit CAESAR candidates Deoxys and KIASU (64 bits of –
claimed – security level). The 3-xor problem for XLS in these candidates has
the parameter n = 128. According to Table 1, the 3-xor can be produced in
quantum time 245.7 and 218.3 classical memory (w.r.t. quantum time 251.2

and 225.6 classical memory of [19]) or in quantum time 238.4 and 225.6 quan-
tum memory (w.r.t. quantum time 242.7 and 242.7 quantum memory of [17]).

Similar results can be obtained for the other applications previously discussed.

7.2 Open Questions

There are still some open questions and further lines of research that would
be interesting to investigate. Most of them concern k-xor algorithms with O(n)
qubits:

1. Does there exist such a 3-xor algorithm reaching below the quantum collision
bound of O(2n/3)?

2. Is it possible to find a 4-xor quantum algorithm with O(n) quantum memory
giving a quantum time speedup over Wagner’s method?

3. Still with O(n) quantum memory, can we give a quantum speedup over
Wagner’s method for a general k?

4. How to adapt our algorithms to the k-sum case? The evolved ones will have
a certain overhead that should be computed.

Another question that we believe to be of interest is the fact that classi-
cal algorithms for solving the 3-xor problem had a comparable complexity to
collision-finding algorithms. With our new quantum algorithm, the 3-xor prob-
lem is clearly easier to solve, and might therefore imply that new applications
of this problem can appear, as for instance for building bricks of attacks.
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32. Jean, J., Nikolić, I., Peyrin, T.: ELmD, https://competitions.cr.yp.to/round2/joltikv13.pdf
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