
Simple and Efficient Two-Server ORAM

S. Dov Gordon1, Jonathan Katz2, and Xiao Wang2

1 George Mason University, Fairfax, USA
gordon@gmu.edu

2 University of Maryland, College Park, USA
{jkatz,wangxiao}@cs.umd.edu

Abstract. We show a protocol for two-server oblivious RAM (ORAM)
that is simpler and more efficient than the best prior work. Our con-
struction combines any tree-based ORAM with an extension of a two-
server private information retrieval scheme by Boyle et al., and is able to
avoid recursion and thus use only one round of interaction. In addition,
our scheme has a very cheap initialization phase, making it well suited
for RAM-based secure computation. Although our scheme requires the
servers to perform a linear scan over the entire data, the cryptographic
computation involved consists only of block-cipher evaluations.
A practical instantiation of our protocol has excellent concrete param-
eters: for storing an N -element array of arbitrary size data blocks with
statistical security parameter λ, the servers each store 4N encrypted
blocks, the client stores λ+ 2 logN blocks, and the total communication
per logical access is roughly 10 logN encrypted blocks.

1 Introduction

Protocols for oblivious RAM (ORAM) allow a client to outsource storage of an
array to a server, and then read from/write to that array without revealing to
the server anything about the data itself or the addresses of the data blocks
being accessed (i.e., the client’s memory-access pattern). Since the introduction
of the problem by Goldreich and Ostrovsky [?], it has received a significant
amount of attention [?,?,?,?,?,?,?,?,?,?,?,?]. The main parameters of interest
are the storage at the client and server, as well as the number of communication
rounds and the total client-server bandwidth needed to read or write one logical
position of the array. In classical work on ORAM, the server was only required
to physically read and write elements of some (encrypted) data array; more
recent work [?,?,?,?,?] has considered solutions in which the server performs non-
trivial computation as well. In that case, solutions relying on non-cryptographic
computation, or symmetric-key cryptography alone, are preferable.

Lu and Ostrovsky [?] proposed exploring ORAM in a model where there
are two non-colluding servers storing data on behalf of the client; the client
interacts with the servers to read and write data, but the servers do not need to
interact with (or even know about) each other. The solution by Lu and Ostrovsky
achieves parameters that are asymptotically better than those realized by any

single-server solution: for accessing an N -element array of B-bit data blocks,
the client in their protocol has storage independent of N and B, the servers
each store O(N) encrypted data blocks, and reading/writing has an amortized
communication complexity of O(logN) encrypted data blocks. On the other
hand, like most ORAM constructions with sublinear communication (with a few
exceptions discussed below), the Lu-Ostrovsky protocol requiresO(logN) rounds
of interaction between the client and servers per logical memory access; since it
is based on a hierarchical approach [?] and requires periodic reshuffling, their
scheme is also relatively complex and does not offer good worst-case performance
guarantees. A recent two-server ORAM scheme by Abraham et al. [?] improves
the communication overhead to O(logN/ log logN) when B = Ω(λ log2N), but
still requires O(logN) rounds.

1.1 Summary of Our Results

We show here a construction of a two-server ORAM protocol that improves on
prior work both concretely and theoretically. Our scheme is also very simple to
describe and implement, which we view as an added advantage especially when
applying ORAM to RAM-based secure computation.

Concretely, our scheme is extremely efficient. In one instantiation of our
scheme, the client stores λ + 2 logN data blocks (where λ is a statistical secu-
rity parameter), the servers each store 4N encrypted data blocks, and the total
communication per logical read/write is only roughly 10 logN encrypted blocks.
This can be compared to the Lu-Ostrovsky scheme, which is estimated by the
authors to have server storage 2N +O(log9N) and an amortized bandwidth of
more than 160 logN encrypted data blocks per logical memory access. (Abraham
et al. do not offer concrete estimates of the performance of their scheme, but
we believe our protocol will have better communication overhead for practical
parameters, especially for moderate B.) A drawback of our protocol is that it
requires the servers to perform a linear scan of the entire data, and perform a
linear number of symmetric-key operations.

In a theoretical sense, we improve upon prior work in several respects. Most
importantly, our protocol requires only one round of communication per logical
access; note that achieving logarithmic communication overhead with one round
of interaction is a major open question for single-server ORAM.1 Second, our
communication bound holds in the worst case, in contrast to the Lu-Ostrovsky
scheme for which it holds only in an amortized sense. Finally, in contrast to
the scheme of Abraham et al., our protocol has good communication overhead
regardless of the block size.

Applications to secure computation. Classical work on generic secure com-
putation views the function being computed as a boolean or arithmetic circuit.

1 Known single-server ORAM schemes with sublinear worst-case communication and
one round of interaction [?,?] have communication complexity at least κB log2N
and would be prohibitively inefficient to implement. Other one-round schemes [?,?]
have sublinear communication only in an amortized sense.

More recently, researchers have explored secure-computation protocols that work
directly in the RAM model of computation [?,?,?,?,?,?,?,?,?]. A basic idea in
these works is to leverage ORAM to ensure that the parties’ accesses to (shared)
memory are oblivious. These works all assume either that the shared memory is
initially empty, or that initialization of the ORAM data structure is done during
some trusted preprocessing phase, because initializing a non-empty ORAM as
part of the protocol would be infeasible. For our ORAM protocol, initialization is
essentially “for free” and can be done locally by the servers without any interac-
tion with the client. (To the best of our knowledge, this is not true for any prior
ORAM scheme with sublinear communication overhead.) This makes our pro-
tocol extremely well-suited for applications to RAM-based secure computation
in both the two-party and multi-party settings.

Our scheme has the added advantage that reads from a public address can
be done very efficiently, with communication of only 2 logN encrypted blocks
and negligible computation. This property is also very useful in applications to
secure computation.

1.2 Overview of Our Construction

Our construction can be viewed as combining any tree-based ORAM proto-
col [?,?,?,?] with a two-server private information retrieval (PIR) scheme [?].
(Combining ORAM and PIR was suggested previously by Mayberry et al. [?] in
the single-sever setting, and Abraham et al. [?] in the two-server setting.) We
describe each of these primitives informally, and then provide an overview of
our construction. Section ?? contains formal definitions; a detailed description
of our protocol is given in Section ??.

Tree-based ORAM. At a somewhat informal level, which will be sufficient to
understand the main ideas of our construction, a tree-based ORAM scheme—in
the single-server setting—works in the following way.2 Let D denote the client’s
data array with D[i], for 0 ≤ i < N , denoting the data block stored at address i
of the array. The client maintains a function position (called a position map) that
maps logical memory addresses to leaves in a binary tree of depth L = O(logN)
stored by the server, where each node in the tree can store some bounded number
of data blocks. It will be convenient for us to assume that every node in the tree
stores the same (constant) number of data blocks, with the exception of the root
that can store more items. Instead of being stored on the server, the root is
stored on the client and is also called a stash.

At any point in time, the value D[i] is stored at some node on the path
from the root of the tree to the leaf at position(i) (we call this the path to
position(i)). The client performs a logical read of address i by reading the entire
path to position(i) and taking the value of D[i] that is found closest to the root;
a logical write to address i is done by storing the new value of D[i] in the stash
(replacing any old value of D[i] found there).

2 For simplicity, we ignore encryption of the data blocks in the description that follows.

Executions of an eviction procedure are interspersed with logical reads and
writes. At a high level, during this procedure the client chooses a path P in the
tree and then, for each data block D[i] stored at some node in that path, pushes
that block as far down in P as possible subject to the constraint that D[i] must
lie on the path to position(i). The updated values of the nodes on path P are
then rewritten to the server. The purpose of the eviction procedure is to prevent
nodes in the tree from overflowing.

Note that to ensure obliviousness, the position map must be random (so the
server cannot correlate a particular path being read by the client with a logical
address) and position(i) must be updated each time D[i] is read (so the server
cannot tell when the same logical address is accessed repeatedly). Since the
position map itself has size Θ(N), the client must store the position map on the
server in order to achieve client storage o(N). The position map can be stored
recursively using a tree-based ORAM; note, however, that this induces several
rounds of interaction between the client and server for each logical memory
access, and also increases the server-side storage.

Private information retrieval. Abstractly, a private information retrieval
(PIR) scheme provides a way for a client to obliviously read a data block from
an N -element array of B-bit items stored on a server using o(BN) communi-
cation. For our purposes, the main distinction between PIR and ORAM is that
PIR supports reads only. Historically, PIR schemes have also involved only one
round of interaction.

PIR was first considered in the multi-server setting [?], where information-
theoretic security is possible. Although PIR with computational security is possi-
ble in the single-server setting [?,?,?], constructions of (computationally secure)
PIR in the two-server setting have much better computational efficiency. In par-
ticular, a recent construction of two-server PIR by Boyle et al. [?,?,?] requires
only symmetric-key operations by both the client and the server, uses only one
round, and has communication complexity 2B + O(κ · logN) for κ a computa-
tional security parameter. (In fact, they show that the communication can be
reduced asymptotically to 2B+O(κ · log(N/κ)) but for practical parameters this
does not seem to yield a concrete improvement.)

Our construction. We show how to combine tree-based ORAM with PIR to
obtain an efficient and conceptually simple protocol in the two-server setting.

In existing tree-based ORAM schemes the eviction procedure is already obliv-
ious, as it involves either choosing a random eviction path [?] or choosing eviction
paths according to a deterministic schedule [?,?]. Thus, only reads need to be
made oblivious. As noted earlier, in prior work this is achieved using a random
position map that is updated after each read. Our first conceptual insight is that
we can instead have the client use (two-server) PIR to read the path associated
with a particular data block. As a consequence, we can avoid ever having to up-
date the position map (see below for why we need a position map at all) and so
can use a pseudorandom position map, thereby avoiding recursion and allowing
us to obtain a one-round protocol.

Obliviously reading a path in a tree of depth L can always be done using
L parallel executions of a generic PIR protocol. Our second observation is that
we can do better than this by adapting the specific (two-server) PIR scheme of
Boyle et al. so as to natively support oblivious reading of a path in a tree with
less than L times the communication. Details are given in Section ??.

Since a position map is no longer needed for obliviousness, it is tempting to
think that we can avoid the position map altogether. Unfortunately this is not
the case, as we still need a (pseudo)random mapping of addresses to leaves in
order to ensure correctness—specifically, so that the probability of an overflow
remains negligible. In our case, however, we show that it is sufficient to choose a
random position map once, at the outset of the protocol, and then leave it fixed
for the remainder of the execution. This also means that we can generate the
pseudorandom position map based on a short key chosen at the beginning of the
protocol. Finally, we observe that this allows for extremely efficient initialization
(in settings where the data—perhaps in encrypted form—is initially held by
the server), at least when the memory-access pattern is chosen non-adaptively;
specifically, initialization can be done by sending the key defining the position
map to the server, who then arranges the data blocks as needed.

2 Background

2.1 Oblivious RAM

We use the standard definitions of correctness and security for ORAM [?], re-
peated here for completeness. Readers familiar with these definitions can safely
skip to the next section.

For fixed N,B, we define a memory access to be a tuple (op, i, v) where
op ∈ {read,write}, i ∈ {0, . . . , N − 1}, and v ∈ {0, 1}B . Let D be an N -element
array containing B-bit entries. The result of applying (read, i, v) to D is D[i],
and the array D is unchanged. The result of applying (write, i, v) is ⊥, and D
is updated to a new array D′ that is identical to D except that D′[i] = v.
Given an initial array D and a sequence of memory accesses (op1, i1, v1), . . . ,
(opM , iM , vM), we define correctness for the sequence of results o1, . . . , oM in the
natural way; namely, the sequence of results is correct iff, for all t, the result
ot is equal to the last value written to it (or is equal to D[it] if there were no
previous writes to it).

A two-server, one-round ORAM scheme is defined by a collection of four algo-
rithms ORAM.Init, ORAM.C, ORAM.S, and ORAM.C′ with the following syntax:

– ORAM.Init takes as input 1λ, 1κ and elements D[0], . . . , D[N − 1] ∈ {0, 1}B .
It outputs state st and data T to be stored at the servers.

– ORAM.C takes as input st and a memory access (op, i, v). It outputs updated
state st′ along with a pair of queries q0, q1.

– ORAM.S takes as input data T and a query q. It outputs updated data T ′

and a response r.

– ORAM.C′ takes as input state st and a pair of responses r0, r1. It outputs
updated state st′ and a value o.

We define correctness and security via an experiment Expt. Given an array
D (which defines the parameters N and B) and a sequence of memory ac-
cesses seq = ((op1, i1, v1), . . . , (opM , iM , vM)), experiment Expt(1λ, 1κ, D, seq)
first runs (st0, T0) ← ORAM.Init(1λ, 1κ, D) and sets T0,0 = T0,1 = T0. Then, for
t = 1 to M it does:

1. Run (st′t−1, qt,0, qt,1)← ORAM.C(stt−1, (opt, it, vt)).
2. Run (Tt,b, rt,b)← ORAM.S(Tt−1,b, qt,b) for b ∈ {0, 1}.
3. Run (stt, ot)← ORAM.C′(st′t−1, rt,0, rt,1).

Let viewb = (T0, q1,b, . . . , qM,b). The output of the experiment is (view0, view1,
o1, . . . , oM).

Correctness requires that for any polynomial M there is a negligible function
negl such that for any λ, κ,D, and sequence of M = M(λ) memory accesses seq =
((op1, i1, v1), . . . , (opM , iM , vM)), if we compute (view0, view1, o1, . . . , oM) ←
Expt(1λ, 1κ, D, seq) then the sequence of results o1, . . . , oM is correct (for D and
seq) except with probability negl(λ).

An ORAM protocol is secure if for any λ and ppt adversary A the following
is negligible in κ:∣∣∣∣Pr

[
(D0, seq0, D1, seq1)← A(1λ, 1κ); b← {0, 1};

(view0, view1, o1, . . . , oM)← Expt(1λ, 1κ, Db, seqb)
: A(view0) = b

]
− 1

2

∣∣∣∣
(and analogously for view1), where D0, D1 have identical parameters N,B, and
where seq0, seq1 have the same length. As usual, this notion of security assumes
the servers are honest-but-curious.

We remark that, as is typical in this setting, both correctness and security
are defined with respect to a non-adaptive selection of inputs (in terms of both
the original data and the sequence of memory accesses). Our scheme remains
secure even for adaptively chosen inputs, though in that case we cannot use the
optimized initialization procedure discussed at the end of Section ??.

2.2 Private Path Retrieval

We review the notion of private information retrieval (PIR), and propose an
extension that we call private path retrieval (PPR). We then describe an efficient
construction of a two-server PPR scheme based on a two-server PIR scheme of
Boyle et al.

Abstractly, a PIR scheme allows a client to obliviously learn one value out
of an array of N values stored by a pair of servers. Specialized to XOR-based,
one-round protocols in the two-server setting, we define a PIR scheme as a pair
of algorithms (PIR.C,PIR.S) with the following syntax:

– PIR.C is a randomized algorithm that takes as input parameters 1κ, B,N ,
and an index i ∈ {0, . . . , N − 1}. It outputs a pair of queries q0, q1.

– PIR.S is an algorithm that takes as input D[0], . . . , D[N − 1] ∈ {0, 1}B , and
a query q. It outputs a response r.

Correctness requires that for all κ,B,N, i, and D as above, we have

Pr

[
(q0, q1)← PIR.C(1κ, B,N, i);

{rb := PIR.S(D, qb)}b∈{0,1} : r0 ⊕ r1 = D[i]

]
= 1.

A PIR scheme can be used by a client C and a pair of servers S0, S1 in the natural
way. S0 and S1 each begin holding identical copies of an N -element array D of
B-bit data blocks. When C wants to learn the element located at address i, it
computes (q0, q1)← PIR.C(1κ, B,N, i) and sends qb to Sb. The servers compute
their corresponding responses r0, r1, and send them to the client. The client can
then recover D[i] by computing D[i] = r0 ⊕ r1.

Security requires that neither server learns anything about the client’s desired
address i. In other words, it is required that for all B,N, i, i′, and b ∈ {0, 1}
the following distributions are computationally indistinguishable (with security
parameter κ):

{(q0, q1)← PIR.C(1κ, B,N, i) : qb} and {(q0, q1)← PIR.C(1κ, B,N, i′) : qb} .

Private path retrieval. For our application, we extend PIR to a new primitive
that we call private path retrieval (PPR). Here, we view the data stored by the
servers as being organized in a depth-L binary tree with N = 2L leaves; the
client wishes to obliviously obtain all the values stored on some path in that tree
from the root to a leaf. (In fact, it will be convenient to omit the root itself.)
Formally, and again specializing to XOR-based, one-round protocols in the two-
server setting, we define a PPR scheme as a pair of algorithms (PPR.C,PPR.S)
with the following syntax:

– PPR.C is a randomized algorithm that takes as input parameters 1κ, B,N ,
and an index i ∈ {0, . . . , N − 1} corresponding to a leaf node. It outputs a
pair of queries q0, q1.

– PPR.S is an algorithm that takes as input a tree T of elements T [x] ∈ {0, 1}B ,
for x ∈ {0, 1}≤logN , and a query q. It outputs a response vector r1, . . . , rL.

Representing i ∈ {0, . . . , N − 1} as an L-bit integer in the obvious way, we let
〈i〉t denote the t-bit prefix of i for 1 ≤ t ≤ L. Correctness for a PPR scheme
requires that for all κ,B,N, i, and T as above, and all t ∈ {1, . . . , L}, we have

Pr

[
(q0, q1)← PPR.C(1κ, B,N, i);

{(r1b , . . . , rLb) := PPR.S(1κ, T, qb)}b∈{0,1} : rt0 ⊕ rt1 = T [〈i〉t]

]
= 1.

Security requires that neither server learns anything about the client’s desired
path. That is, we require that for all B,N, i, i′, and b ∈ {0, 1} the following
distributions are computationally indistinguishable (with security parameter κ):

{(q0, q1)← PPR.C(1κ, B,N, i) : qb} and {(q0, q1)← PPR.C(1κ, B,N, i′) : qb} .

Constructing a PPR scheme. It is immediate that any PIR scheme can be
used generically to construct a PPR scheme. Briefly: the servers view the the tree
they store as a collection of L arrays, with the ith level of the tree corresponding
to an array Di containing 2i elements. The client can then obliviously retrieve
a path in the tree by running any underlying PIR protocol L times, once for
each array D1, . . . , DL. This increases both the client-to-server and the server-
to-client communication by roughly a factor of L. This construction is “overkill,”
though, in the sense that it allows the client to retrieve an arbitrary data block
at each level of the tree, whereas a PPR scheme only needs to support retrieval
of data blocks along a path. This suggests that it may be possible to further
optimize the construction.

Indeed, we show that by adapting the specific PIR scheme of Boyle et al.
a better solution is possible. The communication complexity of their basic PIR
scheme is 2B+O(κ logN); thus, the generic construction sketched above would
give a PPR scheme with communication complexity 2B logN +O(κ log2N). We
show how to improve this to 2B logN +O(κ logN).

Rather than give the details of the PIR scheme of Boyle et al., we describe
their scheme abstractly. To retrieve the ith element of an arrayD of lengthN , the
client in their scheme sends each server Sb a query of length κ+1+(κ+2)·logN =
O(κ logN) bits; the query enables that server to compute a sequence of bits
λb[0], . . . , λb[N − 1] with the property that λ0[j]⊕ λ1[j] = 1 iff j = i. Server Sb
then responds with rb =

⊕N−1
j=0 λb[j]·D[j]. It is easily verified that r0⊕r1 = D[i].

To construct a PPR scheme, we leave the client algorithm unchanged. Let
i denote the leaf corresponding to the path the client wishes to retrieve. As
before, server Sb then computes a sequence of bits λb[0], . . . , λb[N − 1] where
λ0[j] ⊕ λ1[j] = 1 iff j = i. Each server then constructs a logical binary tree
of depth L = logN with the λ-values at the leaves, and recursively defines the
values at each internal node of this logical tree to be the XOR of the values of its
children. In this way, each server Sb obtains3 a collection of bits {λb[x]}x∈{0,1}≤L

with the property that λ0[x]⊕ λ1[x] = 1 iff x is a prefix of i (or, in other words,
iff the node corresponding to x is on the path from the root to the ith leaf).
Server Sb then computes the sequence of responses rtb =

⊕
x : |x|=t λb[x] · T [x]

for 1 ≤ t ≤ L. One can verify that rt0 ⊕ rt1 = T [〈i〉t] for all t. Note also that
security of the PPR scheme is implied immediately by security of the original
PIR scheme, which in turn is based on the existence of pseudorandom functions.

Summarizing, we have:

Theorem 1. Assuming the existence of pseudorandom functions, there is a two-
server PPR scheme in which the client sends each server a query of length
O(κ logN), and each server sends back a response of length B · logN .

3 Readers familiar with the construction of Boyle et al. may observe that these values
are already implicitly defined as part of their scheme; we explicitly describe the
computation of these values for self-containment.

3 A Two-Server ORAM Scheme

We now present our two-server ORAM scheme, which can be viewed as being
constructed by adapting the ring ORAM protocol [?] to the two-server setting
and then combining it with the PPR scheme from Section ??. We build on ring
ORAM for concreteness, but our general idea can also be applied to several other
tree-based ORAM schemes from the literature (e.g., [?,?,?]).

3.1 Description of our Scheme

Preliminaries. The client’s data is viewed as a sequence of N = 2L data blocks
D[0], . . . , D[N − 1] ∈ {0, 1}B . Each server stores identical copies of a depth-L,
full binary tree T with N leaves numbered from 0 to N − 1; we number the
levels of the tree from the root at level 0 to the leaves at level L, and refer to
each node of the tree (except the root) as a bucket. (The root will be treated
differently from the other nodes; see further below.)

As in other tree-based ORAM schemes, the client maintains a position map
that maps logical memory addresses to leaves in T . In our case, the position map
will be static and we implement it by a pseudorandom function FK : [N]→ [N],
with K chosen by the client. For pos ∈ {0, . . . , 2L − 1} denoting a leaf in T , we
let P(pos) denote the path consisting of all buckets in the tree from the root to
that leaf.

A record (flag, i, pos, data) ∈ {0, 1}×{0, 1}logN×{0, 1}logN×{0, 1}B contains
four fixed-length fields, encrypted using a key held by the client. (For simplicity
in what follows, we omit explicit mention of encrypting/decrypting these blocks.)
If flag = 1 then the record is real and we have pos = FK(i) and data = D[i]; if
flag = 0 then the record is a dummy record and i, pos, data can be arbitrary (so
long as they are the correct length). Each bucket in the binary tree stored by
the servers contains Z records, where Z is a parameter we fix later.

As an optimization, we have the client store the root of the tree and refer
to the root as the stash. (We stress, however, that when we refer to a path
P = P(pos) in the tree, that path always includes the root/stash.) All records
in the stash are real, and we allow the stash to store more than Z records. Of
course, the records in the stash do not need to be encrypted.

Invariant. In our scheme, the servers store identical copies of the tree T at all
times. As in other tree-based ORAM schemes, we maintain the invariant that,
for all i, there is always a (real) record (1, i, pos, D[i]) located in some bucket
on P(pos). It is possible that multiple real records with the same index appear
in the tree at the same time; in this case, the one closest to the root is always
the most up-to-date copy.

Accessing memory. To read logical address i of its array, the client simply
needs to read the path P(FK(i)) and then find the corresponding record closest
to the root. For obliviousness, reading this path is done using our PPR scheme.
A logical write of the value v to address i of the array is done by storing the

record (1, i, FK(i), v) in the stash (removing from the stash any outdated record
with the same logical address, if necessary).

Eviction. As described, writing to the array will cause the number of records
stored in the stash to grow without bound. We prevent this by performing an
eviction procedure after every A memory accesses, where A is a configurable
parameter. This eviction procedure reads a path P in the tree, updates the
buckets in that path, and then writes the updated path P ′ back to the servers.
To fully specify this process, we need to determine two things: (1) how the paths
to be evicted are chosen and (2) how the chosen paths are updated.

– Following Gentry et al. [?], we choose paths to be evicted according to a
deterministic schedule, namely, in reverse lexicographic order. This is also
the schedule used in ring ORAM. Note that using a deterministic schedule
ensures obliviousness.

– Our update procedure is similar (but not exactly identical) to the one used
in path ORAM [?] and ring ORAM [?]. As in those schemes, we update a
path P by pushing every real record (1, i, pos, v) in that path as far down the
tree as possible, subject to the constraint that it must be located on P(pos)
(and the constraint that each bucket holds at most Z records). In addition,
prior to doing this, we also clear out any stale records in P. That is, if for
any i there are multiple records of the form (1, i, pos, ?) in P, then only the
one closest to the root is kept; the rest are replaced with dummy records.

We give a formal description of our scheme, assuming initialization of the tree
has already been done, in Figure ??. See below for a discussion of initialization.

Parameters. Each record has length exactly 1 + 2 logN +B bits before being
encrypted.4 Encryption adds at most κ additional bits; this can be reduced by
using a global counter keeping track of how many records have been encrypted
thus far. We let R denote the size, in bits, of a record (after encryption). If
κ = O(B) and B ≥ logN (which is typical in practice), we have R = O(B).

As described, the client’s stash can grow arbitrarily large. We show in the
next section that when A = 1 (i.e., eviction is done after every access) and Z = 3
the client’s stash contains at most λ records except with probability negligible
in λ. The servers each hold fewer than 2N buckets, with each bucket containing
Z records; thus, for the parameter settings discussed above, each server’s storage
is at most 2ZNR = O(BN) bits.

The total communication for a logical memory access can be computed as
follows:

1. As part of the PPR scheme, the client sends O(κ logN) bits to each server,
and each server responds with RZ logN bits.

2. For eviction, one server sends RZ logN bits to the client, and then the client
sends RZ logN bits to each server.

4 As a small optimization, FK(i) need not be stored in a record, as the client can
recompute it when needed.

The state of the client includes the stash, a key K, and a counter ctr initialized
to 0 that indicates the next eviction path. The servers store ctr and identical
copies of a tree T . The parameter A determines how often eviction is done.

On input (op, i, v) do:

1. Let pos := FK(i).
2. The client uses PPR to read P(pos) from T .
3. If op = read then scan through P(pos) to find the real record (1, i, pos, vi)

closest to the root, and output vi.
4. If op = write then (1) remove any records of the form (1, i, pos, ?) from

the stash, and (2) add the record (1, i, pos, v) to the stash.
5. Set ctr = ctr + 1 mod A · N . If ctr = 0 mod A then run procedure

Evict(ctr/A).

Evict(ctr):

1. Let P be the path corresponding to ctr under reverse lexicographic order.
Request P from one of the servers.

2. If, for any i, there are multiple (real) records (1, i, pos, ?) in P, then only
the one closest to the root is kept; the rest are replaced with dummy
records.

3. Process the remaining real records one-by-one, starting from the root. For
each such record record = (1, i, pos, v), find the bucket in P furthest from
the root that (1) is on P(pos) and (2) contains fewer than Z real records.
Put record in that bucket in place of a dummy block. (If no such bucket
is found then keep record where it is.) Finally, (re-)encrypt all records in
the updated buckets.

4. The updated path P ′ is then written back to both servers.

Fig. 1. Our two-server ORAM scheme.

Thus, for the parameter settings discussed above, the total communication com-
plexity is O(B logN) even when A = 1. Importantly, the constants are small;
the worst-case communication (for general parameters) is at most

κ+ 1 + (κ+ 2) · logN + 5Z · (κ+ 2 logN +B) · logN

bits, and the amortized communication (in bits) is

κ+ 1 + (κ+ 2) · logN +

(
2Z +

3Z

A

)
· (κ+ 2 logN +B) · logN.

Thus, as in path ORAM, we can trade off Z and A to reduce communication.
As described (and taking A = 1), the protocol uses three messages if we

piggyback the server’s eviction message with its response in the PPR scheme.
However, if we delay the client’s eviction message until the next time the client
initiates the PPR protocol (for the next memory access), then we obtain a one-
round protocol. Since the client must now store the updated path P ′ between
memory accesses, this increases the storage of the client by ZR logN bits.

Initialization. Initialization can be done locally at the client by starting with a
tree consisting only of dummy records and then simulating the process of writing
each data block of the original array; the resulting tree is then uploaded to each
server. We additionally observe that in settings where the servers initially hold
the array (in encrypted form), initialization can be done in essentially the same
way—but locally at each server—by having the client simply send K to the
servers.5

3.2 Analysis

Correctness of our protocol follows by inspection, and obliviousness follows from
obliviousness of the PPR scheme and the fact that a deterministic eviction pro-
cedure is used. Thus, in the remainder of this section we focus on analyzing the
efficiency of the scheme, specifically, the size of the stash stored by the client.
Compared to the similar analysis done for ring ORAM and other tree-based
schemes, there are two differences: first, in our scheme the tree may contain
stale records (i.e., real records (1, i, pos, v) that have been superseded by a more
up-to-date record stored closer to the root on the same path P(pos)); second,
in our scheme the position map is fixed once-and-for-all rather than being up-
dated each time a memory access is done. Careful examination of the proofs
for prior tree-based ORAM schemes, however, shows that both of these changes
have no effect on the final bound. Nevertheless, we include details of the analysis
(following [?]) for completeness.

Recall that we assume eviction is done after every A accesses. We define
the size of the stash after the Mth memory access to be the size of the stash
following the last invocation of the eviction procedure. (In our one-round scheme
the eviction procedure following the Mth memory access is not completed until
the (M + 1)st memory access takes place; this difference can only increase the
size of the stash by a single record.)

During the execution of our ORAM scheme, the resulting tree stored by the
servers can contain two types of real records. We call a real record (1, i, pos, v)
stale if there is another real record (1, i, pos, ?) stored closer to the root (including
at the root itself); otherwise, we call the record fresh. Note that there is exactly
one fresh record stored in the tree at any point in time for each logical memory
address i. An important observation is that stale records have no impact on the
stash. More formally:

Lemma 1. Consider modifying the ORAM protocol (Figure ??), so that in
step 4 of processing a write operation the client also marks any stale records

5 Revealing the key to the servers does not affect the security of our scheme since we
do not rely on secrecy of K for obliviousness. Rather, we rely on pseudorandomness
of FK only for bounding the size of the stash. We remark, however, that our analysis
of the stash size assumes that the client’s sequence of memory accesses is chosen
independently of K. Thus, the optimized initialization (in which the client sends K
to the servers) is only applicable when the client’s sequence of memory accesses is
not under adaptive control of an adversarial server.

corresponding to logical address i as dummy records (without regard for oblivi-
ousness). This modification does not affect the size of the stash, regardless of the
position map or the sequence of memory accesses.

Proof. The only time a stale record can possibly have any effect on the stash
in an execution of the real protocol is if there is a stale record (corresponding
to some logical address i) in a path P being processed in step 3 of the eviction
subroutine. But then the fresh record corresponding to address i is also in P at
that moment, and so the stale record would have been replaced with a dummy
record in step 2 of the eviction subroutine. ut

A consequence of the above is that we may treat stale records as dummy
records in our analysis, and it suffices for us to keep track of the placement of
fresh records.

Fix a memory-access sequence seq of length M . We assume the binary tree T
stored by the servers is initially filled entirely with dummy records; we thus let
seq include the memory accesses done as part of initialization. For the purposes
of proving a bound on the size of the stash, we may assume that all operations in
seq are writes; moreover, the data values being written are irrelevant, and so we
can simply focus on the sequence of logical memory addresses being accessed. If
τ is a subtree of T , then we let n(τ) denote the number of nodes in τ . A subtree
is rooted if it contains the root, and root denotes the root node (which is itself a
rooted subtree).

We treat the position map as a random function f : [N] → [N] chosen
independently of the memory-access sequence. For a subtree τ we let τZ be a
random variable denoting the number of fresh records stored in each node of τ
after our ORAM scheme (with bucket size Z) is used to carry out the sequence
of memory accesses in seq. As in prior work [?,?], we let τ∞ refer to the same
random variable when buckets can hold an unbounded number of records. We let
X(τZ) be a random variable denoting the total number of fresh records stored
in τZ . (Using this notation, we are interested in bounding X(rootZ).) We let
Xi(τZ) be a random variable denoting the number of fresh records corresponding
to logical address i that are in τZ ; note that Xi(τZ) ∈ {0, 1}.

We rely on the following result proved in prior work [?,?] for the same eviction
procedure we use (when focusing on fresh blocks):

Lemma 2. For any Z, S, it holds that

Pr[X(rootZ) > Z + S] ≤
∑
n≥1

4n · max
τ :n(τ)=n

Pr[X(τ∞) > Z · n(τ) + S],

where the maximum is over rooted subtrees τ of T .

The following result depends on the specifics of the eviction procedure and
the position map. Nevertheless, the end result we obtain for our scheme is the
same as what is shown in prior work.

Lemma 3. Set A = 1 in our scheme. If b is a leaf node, Exp[X(b∞)] ≤ 1. If b
is an internal node, Exp[X(b∞)] ≤ 1/2.

Proof. If b is a leaf node, then a fresh record corresponding to logical address i
can only possibly be stored in that node if i is mapped to b by the position
map. Since there are N logical addresses, and each is mapped to b with proba-
bility 1/N , the claimed bound follows.

Say b is a non-leaf node at level `. If b is not on any of the first M eviction
paths (note that this is independent of seq or the position map f), then b will
contain no fresh records. Otherwise, let 1 ≤ ctr1 ≤ M denote the last time b
was on an eviction path, and let ctr0 < M denote the penultimate time b was
on an eviction path (set ctr0 = 0 if there was no such time). By the properties
of reverse lexicographic ordering, we have ctr1 − ctr0 ≤ 2`. The only possible
fresh records that can be in b after all M instructions are executed are those
corresponding to logical write addresses used in time steps ctr0 + 1, . . . , ctr1.
Moreover, each such address causes a fresh record to be placed in bucket b with
probability exactly 2−(`+1). Thus, the expected number of fresh records in b is
at most 2` · 2−(`+1) = 1/2. ut

A corollary is that if τ is a rooted subtree then Exp[X(τ∞)] ≤ 0.8 · n(τ) for
all N ≥ 4 (since in that case at most N/(2N − 1) ≤ 4/7 of the nodes in τ can
be leaves). Following the analysis of Ren et al. [?, Section 4.3] (taking a = 0.8),
we may then conclude that when Z ≥ 3, the probability of overflow decreases
exponentially in S. This implies that the stash will not exceed λ records except
with probability negligible in λ.

In Table ?? we report concrete bounds on the number of blocks in the client’s
stash for different values of the bucket size Z and eviction parameter A. All values
in the table are obtained from our theoretical analysis assuming N is sufficiently
large. Simulations indicate that the stash size is even smaller than what the
theoretical bounds indicate.

Z = 3 Z = 4 Z = 5 Z = 6 Z = 7

A = 1 16 14 13 12 11
A = 2 - 21 18 16 15
A = 3 - 32 24 21 19
A = 4 - - 33 26 23
A = 5 - - - 34 28

Table 1. Bounds on the number of blocks in the client’s stash. These bounds
hold except with probability 2−40 (per operation).

3.3 Optimizations

We briefly mention a few optimizations.

Heuristic parameters. As in the ring ORAM scheme, we experimentally ob-
serve that it suffices to set A = 1 and Z = 2 (giving the parameters mentioned

in the abstract/introduction), or to set A = 3 and Z = 3 (giving slightly better
communication at the expense of increased server storage).

A two-round variant. If we are willing to use one more round, the communi-
cation complexity can be further reduced by first having the client use PPR to
read the indices in the records on the desired path, and then using an execution
of PIR to read the single record of interest.

Acknowledgments

This material is based on work supported by NSF awards #1111599, #1563722,
and #1564088.

