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Abstract. This paper is devoted to analyzing the variant of Regev’s
learning with errors (LWE) problem in which modular reduction is omit-
ted: namely, the problem (ILWE) of recovering a vector s ∈ Zn given
polynomially many samples of the form (a, 〈a, s〉 + e) ∈ Zn+1 where a
and e follow fixed distributions. Unsurprisingly, this problem is much
easier than LWE: under mild conditions on the distributions, we show
that the problem can be solved efficiently as long as the variance of e
is not superpolynomially larger than that of a. We also provide almost
tight bounds on the number of samples needed to recover s.

Our interest in studying this problem stems from the side-channel attack
against the BLISS lattice-based signature scheme described by Espitau et
al. at CCS 2017. The attack targets a quadratic function of the secret
that leaks in the rejection sampling step of BLISS. The same part of
the algorithm also suffers from a linear leakage, but the authors claimed
that this leakage could not be exploited due to signature compression: the
linear system arising from it turns out to be noisy, and hence key recovery
amounts to solving a high-dimensional problem analogous to LWE, which
seemed infeasible. However, this noisy linear algebra problem does not
involve any modular reduction: it is essentially an instance of ILWE, and
can therefore be solved efficiently using our techniques. This allows us
to obtain an improved side-channel attack on BLISS, which applies to
100% of secret keys (as opposed to ≈ 7% in the CCS paper), and is also
considerably faster.

1 Introduction

Learning with errors. Regev’s learning with errors problem (LWE) is the
problem of recovering a uniformly random vector s ∈ (Z/qZ)n given polynomi-
ally many samples of the form (a, 〈a, s〉+ e mod q), with a uniform in (Z/qZ)n,
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and e sampled according to a fixed distribution over Z/qZ (typically a dis-
crete Gaussian). Regev showed [43] that for suitable parameters, this prob-
lem is as hard as worst-case lattice problems, and is polynomial-time equiva-
lent to its decision version, which asks to distinguish the distribution of tuples
(a, 〈a, s〉 + e mod q) as above from the uniform distribution over (Z/qZ)n+1.
These results are a cornerstone of modern lattice-based cryptography, which is
to a large extent based on LWE and related problems.

Many variants of the LWE problem have been introduced in the literature,
mostly with the goal of improving the efficiency of lattice-based cryptography.
For example, papers have been devoted to the analysis of LWE when the error e
has a non-Gaussian distribution and/or is very small [6, 38, 16], when the secret
s is sampled from a non-uniform distribution [5, 12, 3, 7, 2], or when the vectors a
are non-uniform [20, 23]. A long line of research has considered variants of LWE
in which auxiliary information is provided about the secret s [21, 15, 12, 31].
Extensions of LWE over more general rings have also been extensively studied,
starting from the introduction of the Ring-LWE problem [36, 46, 37, 29]. Yet
another notable variant of LWE is the learning with rounding (LWR) problem [8,
4, 9], in which the scalar product 〈a, s〉 is partly hidden not by adding some noise
e, but by disclosing only its most significant bits.

Recently, further exotic variants have emerged in association with schemes
submitted to the NIST postquantum cryptography standardization process. One
can mention for example Compact-LWE [33, 34], which has been broken [11, 48,
30]; learning with truncation, considered in pqNTRUSign [24]; and Mersenne
variants of Ring-LWE, introduced for ThreeBears [22] and Mersenne–756839 [1].

The ILWE problem. In this paper, we introduce a simpler variant of LWE
in which computations are carried out over Z rather than Z/qZ, i.e. without
modular reduction. More precisely, we consider the problem which we call ILWE
(“integer LWE”) of finding a vector s ∈ Zn given polynomially many samples of
the form (a, 〈a, s〉+ e) ∈ Zn+1, where a and e follow fixed distributions on Z.

This problem may occur more naturally in statistical learning theory or nu-
merical analysis than it does in cryptography; indeed, contrary to LWE, it is
usually not hard. It can even be solved efficiently when the error e is much
larger than the inner product 〈a, s〉 (but not superpolynomially larger), under
relatively mild conditions on the distributions involved.

The fact that standard learning techniques like least squares regression should
apply to this problem can be regarded as folklore, and is occasionally mentioned
in special cases in the cryptographic literature (see e.g. [20, §7.6]). The main
purpose of this work is to give a completely rigorous treatment of this question,
and in particular to analyze the number of samples needed to solve ILWE both
in an information-theoretic sense and using concrete algorithms.

ILWE and side-channel attacks on BLISS. Our main motivation for study-
ing the ILWE problem is a side-channel attack against the BLISS lattice-based
signature scheme described by Espitau et al. at CCS 2017 [19].
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BLISS [17] is one of the most prominent, efficient and widely implemented
lattice-based signature schemes, and it has received significant attention in terms
of side-channel analysis. Several papers [13, 40, 19] have pointed out that, in
available implementations, certain parts of the signing algorithm can leak sensi-
tive information about the secret key via various side-channels like cache timing,
electromagnetic emanations and secret-dependent branches. They have shown
that this leakage can be exploited for key recovery.

We are in particular interested in the leakage that occurs in the rejection
sampling step of BLISS signature generation. Rejection sampling is an essential
element of the construction of BLISS and other lattice-based signatures follow-
ing Lyubashevsky’s “Fiat–Shamir with aborts” framework [35]. Implementing it
efficiently in a scheme using Gaussian distributions, as is the case for BLISS, is
not an easy task, however, and as observed by Espitau et al., the optimization
used in BLISS turns out to leak two functions of the secret key via side-channels:
an exact, quadratic function, as well as a noisy, linear function.

The attack proposed by Espitau et al. relies only on the quadratic leakage,
and as a result uses very complex and computationally costly techniques from
algorithmic number theory (a generalization of the Howgrave-Graham–Szydlo
algorithm for solving norm equations). In particular, not only does the main,
polynomial-time part of their algorithm takes over a CPU month for standard
BLISS parameters, technical reasons related to the hardness of factoring make
their attack only applicable to a small fraction of BLISS secret key (around
7%; these are keys satisfying a certain smoothness condition). They note that
using the linear leakage instead would be much simpler if the linear function
was exactly known, but cannot be done due to its noisy nature: recovering the
key then become a high-dimensional noisy linear algebra problem analogous to
LWE, which should therefore be hard.

However, the authors missed an important difference between that linear al-
gebra problem and LWE: the absence of modular reduction. The problem can
essentially be seen as an instance of ILWE instead, and our analysis thus shows
that it is easy to solve. This results in a much more computationally efficient
attack taking advantage of the leakage in BLISS rejection sampling, which more-
over applies to all secret keys.

Our contributions. We propose a detailed theoretical analysis of the ILWE
problem and show how it can be applied to the side-channel attack on BLISS.
We also provide numerical simulations showing that our proposed algorithms
behave in a way consistent with the theoretical predictions.

On the theoretical side, our first contribution is to prove that, in an information-

theoretic sense, solving the ILWE problem requires at least m = Ω
(
(σe/σa)

)2
samples from the ILWE distribution when the error e has standard deviation σe,
and the coefficients of the vectors a in samples have standard deviation σa. We
show this by estimating the statistical distance between the distributions arising
from two distinct secret vectors s and s′. In particular, the ILWE problem is
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hard when σe is superpolynomially larger than σa, but can be easy otherwise,
including when σe exceeds σa by a large polynomial factor.

We then provide and analyze concrete algorithms for solving the problem
in that case. Our main focus is least squares regression followed by rounding.
Roughly speaking, we show that this approach solves the ILWE problem with m
samples when m ≥ C ·

(
σe/σa)2 log n for some constant C (and is also a constant

factor larger than n, to ensure that the noise-free version of the corresponding
linear algebra problem has a unique solution, and that the covariance matrix
of the vectors a is well-controlled). Our result applies to a very large class of
distributions for a and e including bounded distributions and discrete Gaussians.
It relies on subgaussian concentration inequalities.

Interestingly, ILWE can be interpreted as a bounded distance decoding prob-
lem in a certain lattice in Zn (which is very far from random), and the least
squares approach coincides with Babai’s rounding algorithm for the approximate
closest vector problem (CVP) when seen through that lens. As a side contribu-
tion, we also show that even with a much stronger CVP algorithm (including
an exact CVP oracle), one cannot improve the number of samples necessary to
recover s by more than a constant factor. And on another side note, we also
consider alternate algorithms to least squares when very few samples are avail-
able (so that the underlying linear algebra system is not even full-rank), but the
secret vector is known to be sparse. In that case, compressed sensing techniques
using linear programming [14] can solve the problem efficiently.

After this theoretical analysis, we concretely examine the noisy linear algebra
problem arising from the linear part of the BLISS rejection sampling leakage, and
show that is strongly resembles an ILWE problem, which allows us to estimate
the number of side-channel traces needed to recover the secret key.

Simulation results both for the vanilla ILWE problem and the BLISS attack
are consistent with the theoretical predictions (only with better constants). In
particular, we obtain a much more efficient attack on BLISS than the one in [19],
which moreover applies to 100% of possible secret keys. The only drawback is
that our attack requires a larger number of traces (around 20000 compared to
512 in [19] for BLISS–I parameters), and even that is to a large extent coun-
terbalanced by the fact that we can easily handle errors in the values read off
from side-channel traces, whereas Espitau et al. need all their leakage values to
be exact.

2 Preliminaries

2.1 Notation

For r ∈ R, we denote by drc the nearest integer to r (rounding down for half-
integers), and by brc the largest integer less or equal to r. For a vector x =
(x1, . . . , xn) ∈ Rn, the p-norm ‖x‖p of x, p ∈ [1,∞), is given by ‖x‖p =

(
|x1|p +

· · · + |xn|p
)1/p

, and the infinity norm by ‖x‖∞ = max
(
|x1|, . . . , |xn|

)
. For a

matrix A ∈ Rm×n, the operator norm ‖A‖op
p of A with respect to the p-norm,
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p ∈ [1,∞], is given by:

‖A‖op
p = sup

x∈Rn\{0}

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p.

For any random variable X, we denote by E[X] its expectation and by Var(X) =
E[X2] − E[X]2 its variance. We write X ∼ χ to denote that X follows the
distribution χ. If χ is a discrete distribution over some set S, then for any
s ∈ S, we denote by χ(s) the probability that a sample from χ is equal to s. In
particular, if f : S → R is any function and X ∼ χ, we have:

E[f(s)] =
∑
s∈S

f(s) · χ(s).

Similarly, the statistical distance ∆(χ, χ′) of two distributions χ, χ′ over the set
S is:

∆(χ, χ′) =
1

2

∑
s∈S

∣∣χ(s)− χ(s′)
∣∣.

Let ρ(x) = exp(−πx2) for all x ∈ R. We define ρc,σ(x) = ρ
(
(x − c)/σ

)
the

Gaussian function of parameters c, σ. For any subset S ⊂ R such that the sum
converges, we let:

ρc,σ(S) =
∑
s∈S

ρc,σ(s).

The discrete Gaussian distribution Dc,σ centered at c and of parameter σ is the
distribution on Z defined by

Dc,σ(x) =
ρc,σ(x)

ρc,σ(Z)
=

exp
(
− π(x− c)2/σ2

)
ρc,σ(Z)

for all x ∈ Z. We omit the subscript c in ρc,σ and Dc,σ when c = 0.

2.2 LWE over the Integers

It is possible to define a variant of the LWE problem “over the integers”, i.e.
without modular reduction. We call this problem ILWE(“integer-LWE”), and
define it as follows. The problem arising from the scalar product leakage in the
BLISS rejection sampling is essentially of that form.

Definition 2.1 (ILWE Distribution). For any vector s ∈ Zn and any two
probability distributions χa, χe over Z, the ILWE distribution Ds,χa,χe

associated
with those parameters (which we will simply denote Ds for short when χa, χe are
clear) is the probability distribution over Zn×Z defined as follows: samples from
Ds,χa,χe are of the form

(a, b) =
(
a, 〈a, s〉+ e

)
with a← χna and e← χe.

Definition 2.2 (ILWE Problem). The ILWE problem is the computational
problem parametrized by n,m, χa, χe in which, given m samples {(ai, bi)}1≤i≤m
from a distribution of the form Ds,χa,χe

for some s ∈ Zn, one is asked to recover
the vector s.
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2.3 Subgaussian Probability Distributions

In this paper, the distributions χa, χe we will consider will usually be of mean
zero and rapidly decreasing. More precisely, we will assume that those distribu-
tions are subgaussian. The notion of a subgaussian distribution was introduced
by Kahane in [27], and can be defined as follows.

Definition 2.3. A random variable X over R is said to be τ -subgaussian for
some τ > 0 if the following bound holds for all s ∈ R:

E
[

exp(sX)
]
≤ exp

(τ2s2

2

)
. (2.1)

A τ -subgaussian probability distribution is defined in the same way.

This section collects useful facts about subgaussian random variables; most
of them are well-known, and presented mostly in the interest of a self-contained
and consistent presentation (as definitions of related notions tend to vary slightly
from one reference to the next).

For a subgaussian random variable X, there is a minimal τ such that X is τ -
subgaussian. This τ is sometimes called the subgaussian moment of the random
variable (or of its distribution).

As expressed in the next lemma, subgaussian distributions always have mean
zero, and their variance is bounded by τ2.

Lemma 2.4. A τ -subgaussian random variable X satisfies:

E[X] = 0 and E[X2] ≤ τ2.

Proof. For s around zero, we have:

E[exp(sX)] = 1 + sE[X] +
s2

2
E[X2] + o(s2).

Since, on the other hand, exp(s2τ2/2) = 1 + s2

2 τ
2 + o(s2), the result follows

immediately from (2.1). ut

Many usual distributions over Z or R are subgaussian. This is in particular
the case for Gaussian and discrete Gaussian distributions, as well as all bounded
probability distributions with mean zero.

Lemma 2.5. The following distributions are subgaussian.

(i) The centered normal distribution N (0, σ2) is σ-subgaussian.
(ii) The centered discrete Gaussian distribution Dσ of parameter σ is σ√

2π
-

subgaussian for all σ ≥ 0.283.
(iii) The uniform distribution Uα over the integer interval [−α, α] ∩ Z is α√

2
-

subgaussian for α ≥ 3.
(iv) More generally, any distribution over R of mean zero and supported over

a bounded interval [a, b] is
(
b−a

2

)
-subgaussian.
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Moreover, in the cases (i)–(iii) above, the quotient τ ≥ 1 between the subgaussian
moment and the standard deviation satisfies:

(i) τ = 1;
(ii) τ <

√
2 assuming σ ≥ 1.85;

(iii) τ ≤
√

3/2

respectively.

Proof. See the full version of this paper [10]. ut

The main property of subgaussian distributions is that they satisfy a very
strong tail bound.

Lemma 2.6. Let X be a τ -subgaussian distribution. For all t > 0, we have

Pr[X > t] ≤ exp
(
− t2

2τ2

)
. (2.2)

Proof. Fix t > 0. For all s ∈ R we have, by Markov’s inequality:

Pr[X > t] = Pr[exp(sX) > est] ≤ E[exp(sX)]

est

since the exponential is positive. Using the fact that X is τ -subgaussian, we get:

Pr[X > t] ≤ exp
(s2τ2

2
− st

)
and the right-hand side is minimal for s = t/τ2, which exactly gives (2.2). ut

The following result states that a linear combination of independent subgaus-
sian random variables is again subgaussian.

Lemma 2.7. Let X1, . . . , Xn be independent random variables such that Xi is
τi-subgaussian. For all µ1, . . . , µn ∈ R, the random variable X = µ1X1 + · · · +
µnXn is τ -subgaussian with:

τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n.

Proof. Since the Xi’s are independent, we have, for all s ∈ R:

E[exp(sX)] = E
[

exp
(
s(µ1X1 + · · ·+ µnXn)

)]
= E

[
exp(µ1sX1) · · · exp(µnsXn)

]
=

n∏
i=1

E
[

exp(µisXi)
]
.

Now, since Xi is τi-subgaussian, we have

E
[

exp(µisXi)
]
≤ exp

(s2(µiτi)
2

2

)
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for all i. Therefore:

E[exp(sX)] ≤
n∏
i=1

exp
(s2(µiτi)

2

2

)
= exp

(s2τ2

2

)
with τ2 = µ2

1τ
2
1 + · · ·+ µ2

nτ
2
n as required. ut

The previous result shows that the notion of a subgaussian random variable
has a natural extension to higher dimensions.

Definition 2.8. A random vector x in Rn is called a τ -subgaussian random
vector if for all vectors u ∈ Rn with ‖u‖2 = 1, the inner product 〈u,x〉 is a
τ -subgaussian random variable.

It clearly follows from Lemma 2.7 that ifX1, . . . , Xn are independent τ -subgaussian
random variables, then the random vector x = (X1, . . . , Xn) is τ -subgaussian.
In particular, if χ is a τ -subgaussian distribution, then a random vector x ∼ χn
is τ -subgaussian. A nice feature of subgaussian random vectors is that the image
of such a random vector under any linear transformation is again subgaussian.

Lemma 2.9. Let x be a τ -subgaussian random vector in Rn, and A ∈ Rm×n.
Then the random vector y = Ax is τ ′-subgaussian, with τ ′ = ‖AT ‖op

2 · τ .

Proof. Fix a unit vector u0 ∈ Rm. We want to show that the random variable
〈u0,y〉 is τ ′-subgaussian. To do so, first observe that:

〈u0,y〉 = 〈ATu0,x〉 = µ〈u,x〉

where µ = ‖ATu0‖2, and u = 1
µA

Tu0 is a unit vector of Rn. Since x is τ -

subgaussian, we know that the inner product 〈u,x〉 is a τ -subgaussian random
variable. As a result, by Lemma 2.7 in the trivial case of a single variable, we
obtain that 〈u0,y〉 = µ〈u,x〉 is

(
|µ|τ

)
-subgaussian. But by definition of the

operator norm, |µ| ≤ ‖AT ‖op
2 , and the result follows. ut

3 Information-Theoretic Analysis

A first natural question one can ask regarding the ILWE problem is how hard it
is in an information-theoretic sense. In other words, given two vectors s, s′ ∈ Zn,
how close are the ILWE distributions Ds,Ds′ associated to s and s′, or equiva-
lently, how many samples do we need to distinguish between those distributions?

In this section, we show that, at least when the error distribution χe is
either uniform or Gaussian, the statistical distance between Ds and Ds′ admits
a bound of the form O

(
σa

σe
‖s− s′‖

)
. In particular, distinguishing between those

distributions with constant success probability requires

Ω

(
1

‖s− s′‖2
(σe
σa

)2
)

samples, and the distributions are statistically indistinguishable when σe is su-
perpolynomially larger than σa. To see this, we first give a relatively simple
expression for the statistical distance.
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Lemma 3.1. The statistical distance between Ds and Ds′ is given by:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)

]
,

where χe + t denotes the translation of χe by the constant t, and the expectation
is taken over a← χna .

Proof. By definition of the statistical distance, we have:

∆(Ds,Ds′) =
1

2

∑
(a,b)∈Zn+1

∣∣Pr
[
(a, b)← Ds

]
− Pr

[
(a, b)← Ds′

]∣∣ .
Now to sample from Ds, one first samples a according to χna , independently
sample e according to χe, and returns (a, b) with b = 〈a, s〉+ e. Therefore:

Pr
[
(a, b)← Ds

]
= χna(a) · χe(b− 〈a, s〉),

and similarly for Ds′ . Thus, we can write:

∆(Ds,Ds′) =
1

2

∑
(a,b)∈Zn+1

χna(a) · |χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)|

=
∑
a∈Zn

χna(a) · 1

2

∑
b∈Z
|χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)|

=
∑
a∈Zn

χna(a) · 1

2

∑
x∈Z
|χe(x)− χe(x+ 〈a, s− s′〉)|

where the last equality is obtained with the change of variables x = b − 〈a, s〉.
We now observe that the expression

1

2

∑
x∈Z
|χe(x)− χe(x+ 〈a, s− s′〉)|

is exactly the statistical distance ∆(χe, χe − 〈a, s − s′〉), and therefore we do
obtain:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)

]
as required. ut

Thus, we can bound the statistical distance ∆(Ds,Ds′) using a bound on the
statistical distance between χe and a translated distribution χe + t. We provide
such a bound when χe is either uniform in a centered integer interval, or a
discrete Gaussian distribution.

Lemma 3.2. Suppose that χe is either the uniform distribution Uα in [−α, α]∩
Z for some positive integer α, or the centered discrete Gaussian distribution
Dσ with parameter σ ≥ 1.60. In either case, let σe =

√
E[χ2

e] be the standard
deviation of χe. We then have the following bound for all t ∈ Z:

∆(χe, χe + t) ≤ C · |t|/σe
where C = 1/

√
12 in the uniform case and C = 1/

√
2 in the discrete Gaussian

case.
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Proof. See the full version of this paper [10]. ut

Combining Lemma 3.1 and Lemma 3.2, we obtain a bound of the form an-
nounced at the beginning of this section.

Theorem 3.3. Suppose that χe is as in the statement of Lemma 3.2. Then, for
any two vectors s, s′ ∈ Zn, the statistical distance between Ds and Ds′ is bounded
as:

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2,

where C is the constant appearing in Lemma 3.2.

Proof. Lemma 3.1 gives:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)

]
,

and according to Lemma 3.2, the statistical distance on the right-hand side is
bounded as:

∆(χe, χe + 〈a, s− s′〉) ≤ C

σe
·
∣∣〈a, s− s′〉

∣∣.
It follows that:

∆(Ds,Ds′) ≤
C

σe
· E
[∣∣〈a, s− s′〉

∣∣] ≤ C

σe

√
E
[
〈a, s− s′〉2

]
where the second inequality is a consequence of the Cauchy–Schwarz inequality.
Now, for any u ∈ Zn, we can write:

E
[
〈a,u〉2

]
= E

[ ∑
1≤i,j≤n

uiujaiaj

]
=

∑
1≤i,j≤n

uiujE[aiaj ] = σ2
a‖u‖22

since E[aiaj ] = σ2
aδij . As a result:

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2

as required. ut

As discussed in the beginning of this section, this shows that distinguishing

between Ds and Ds′ requires Ω

(
1

‖s−s′‖2

(
σe

σa

)2
)

samples. In particular, recov-

ering s (which implies distinguishing Ds from all Ds′ for s′ 6= s) requires

m = Ω
(
(σe/σa)2

)
(3.1)

samples. In what follows, we will describe efficient algorithms that actually re-
cover s from only slightly more samples than this lower bound.

Remark 3.4. Contrary to the results of the next section, which will apply to ar-
bitrary subgaussian distributions, we cannot establish an analogue of Lemma 3.2
using only a bound on the tail of the distribution χe. For example, if χe is sup-
ported over 2Z, then ∆(χe, χe + t) = 1 for any odd t! One would presumably
need an assumption of the small-scale regularity of χe to extend the result.
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4 Solving the ILWE Problem

We now turn to describing efficient algorithms to solve the ILWE problem. We
are given m samples (ai, bi) from the ILWE distribution Ds, and try to recover
s ∈ Zn. Since s can a priori be any vector, we, of course, need at least n samples
to recover it; indeed, even without any noise, fewer samples can at best reveal an
affine subspace on which s lies, but not its actual value. We are thus interested
in the regime when m ≥ n.

The equation for s can then be written in matrix form:

b = As + e (4.1)

where A ∈ Zm×n is distributed according to χm×na , e ∈ Zm is distributed as χme ,
A,b are known and e is unknown.

The idea to find s will be to use simple statistical inference techniques to
find an approximate solution s̃ ∈ Rn of the noisy linear system (4.1) and to
simply round that solution coefficient by coefficient to get a candidate ds̃c =
(ds̃1c, . . . , ds̃nc) for s. If we can establish the bound:

‖s− s̃‖∞ < 1/2 (4.2)

or, a fortiori, the stronger bound ‖s − s̃‖2 < 1/2, then it follows that ds̃c = s
and the ILWE problem is solved.

The main technique we propose to use is least squares regression. Under
the mild assumption that both χa and χe are subgaussian distributions, we will
show that the corresponding s̃ satisfies the bound (4.2) in the linear programming
setting with high probability when m is sufficiently large. Moreover, the number
m of samples necessary to establish those bounds, and hence solve ILWE, is only
a log n factor larger than the information-theoretic minimum given in (3.1) (with
the additional constraint that m should be a constant factor larger than n, to
ensure that A is invertible and has well-controlled singular values).

We also briefly discuss lattice reduction as well as compressed sensing tech-
niques based on linear programming. We show that even an exact-CVP oracle
cannot significantly improve upon the log n factor of the least squares method.
On the other hand, if the secret is known to be very sparse, compressed sensing
techniques can recover the secret even in cases when m < n, where the least
squares method is not applicable.

4.1 Least Squares Method

The first approach we consider to obtain an estimator s̃ of s is the linear, un-
constrained least squares method: s̃ is chosen as a vector in Rn minimizing the
squared Euclidean norm ‖b − As̃‖22. In particular, the gradient vanishes at s̃,
which means that s̃ is simply a solution to the linear system:

ATAs̃ = ATb.
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As a result, we can compute s̃ in polynomial time (at most O(mn2)) and it is
uniquely defined if and only if ATA is invertible.

It is intuitively clear that ATA should be invertible when m is large. Indeed,
one can write that matrix as:

ATA =

m∑
i=1

aia
T
i

where the ai’s are the independent identically distributed rows of A, so the
law of large numbers shows that 1

mA
TA converges almost surely to E

[
aaT

]
as

m→ +∞, where a is a random variable in Zn sampled from χna . We have:

E
[
(aaT )ij

]
= E[aiaj ] = δijσ

2
a,

and therefore we expect ATA to be close to mσ2
aIn for large m.

Making this heuristic argument rigorous is not entirely straightforward, how-
ever. Assuming some tail bounds on the distribution χa, concentration of mea-
sure results can be used to prove that, with high probability, the smallest eigen-
value λmin(ATA) is not much smaller than mσ2

a (and in particular ATA is invert-
ible) for m sufficiently large, with a concrete bound on m. This type of bound on
the smallest eigenvalue is exactly what we will need in the rest of our analysis.

More precisely, when χa is bounded, one can apply a form of the so-called
Matrix Chernoff inequality, such as [47, Cor. 5.2]. However, we would prefer a
result that applies to e.g. discrete Gaussian distributions as well, so we only
assume a subgaussian tail bound for χa. Such result can be derived from the
following lemma due to Hsu et al. [26, Lemma 2] (for simplicity, we specialize
their statement to ε0 = 1/4 and to the case of jointly independent vectors).

Lemma 4.1. Let χ be a τ -subgaussian distribution of variance 1 over R, and
consider m random vectors x1, . . . ,xm in Rn sampled independently according
to χm. For any δ ∈ (0, 1), we have:

Pr

[
λmin

( 1

m

m∑
i=1

xix
T
i

)
< 1− ε(δ,m) or λmax

( 1

m

m∑
i=1

xix
T
i

)
> 1 + ε(δ,m)

]
< δ

where the error bound ε(δ,m) is given by:

ε(δ,m) = 4τ2

(√
8 log 9 · n+ 8 log(2/δ)

m
+

log 9 · n+ log(2/δ)

m

)
.

Using this lemma, one can indeed show that for χa subgaussian, λmin(ATA)
is within an arbitrarily small factor of mσ2

a with probability 1 − 2−η for m =
Ω(n+ η) (and similarly for λmax).

Theorem 4.2. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be
an m×n random matrix sampled from χm×na . There exist constants C1, C2 such
that for all α ∈ (0, 1) and η ≥ 1, if m ≥ (C1n+ C2η) · (τ4/α2) then

Pr
[
λmin

(
ATA

)
< (1− α) ·mσ2

a or λmax

(
ATA

)
> (1 + α) ·mσ2

a

]
< 2−η. (4.3)
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Furthermore, one can choose C1 = 28 log 9 and C2 = 29 log 2.

Proof. Let ai be the i-th row of A, and xi = 1
σa

ai. Then the coefficients of xi
follow a τ -subgaussian distribution of variance 1, and every coefficient of any of
the xi is independent from all the others, so the xi’s satisfy the hypotheses of
Lemma 4.1. Now:

1

m

m∑
i=1

xix
T
i =

1

mσ2
a

m∑
i=1

aia
T
i =

1

mσ2
a

ATA.

Therefore, Lemma 4.1 shows that:

Pr
[
λmin

(
ATA

)
<
(
1−ε(2−η,m)

)
·mσ2

a or λmax

(
ATA

)
>
(
1+ε(2−η,m)

)
·mσ2

a

]
< 2−η

with ε(δ,m) defined as above. Thus, to obtain (4.3), it suffices to take m such
that ε(2−η,m) ≤ α.

The value ε(δ,m) can be written as 4τ2 · (
√

8ρ + ρ) where ρ =
(

log 9 · n +

log(2/δ)
)
/m. For the choice of m in the statement of the theorem, we necessarily

have ρ < 1 since σa ≤ τa, and hence τ4 ≥ 1. As a result, ε(δ,m) ≤ 16τ2 · √ρ.
Thus, to obtain the announced result, it suffices to choose:

m ≥ 28τ4

α2

(
log 9 · n+ log 21+η

)
,

which concludes the proof. ut

Remark 4.3. The ratio τ between the subgaussian moment τa of χa and the
actual standard deviation σa is typically small (e.g. 1 for Gaussians,

√
3 for

uniform distributions in a centered interval, etc.), so it isn’t the important factor
in the theorem.

The asymptotic bound saying that m = Ω
(
(n + η)/α2

)
suffices to ensure

that λmin(ATA) is within a factor α of the limit mσ2
a is a satisfactory result,

but the implied constant in our theorem is admittedly rather large. This is an
artifact of our reliance on Hsu et al.’s lemma. A more refined analysis is carried
out by Litvak et al. in [32], and can in principle be used to reduce the constant
C1 in our theorem to 1 + o(1) for sufficiently large n. The authors omit concrete
constants, however, and making [32, Th. 3.1] explicit is nontrivial.

From now on, let us suppose that the assumptions of Theorem 4.2 are satisfied
for some α ∈ (0, 1), and η equal to the “security parameter”. In particular, ATA
is invertible with overwhelming probability, and we can thus write:

s̃ = (ATA)−1 ·ATb.

As discussed in the beginning of this section, we would like to bound the distance
between the estimator s̃ and the actual solution s of the ILWE problem in the
infinity norm, so as to obtain an inequality of the form (4.2). Since by definition
b = As + e, we have:

s̃− s = (ATA)−1 ·AT
(
As + e

)
− s = (ATA)−1 ·ATe = Me,
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where M is the matrix (ATA)−1 · AT . Now suppose that all the coefficients
of e are τe-subgaussian. Since they are also independent, the vector e is a τe-
subgaussian random vector in the sense of Definition 2.8. Therefore, it follows
from Lemma 2.9 that s̃− s = Me is τ̃ -subgaussian, where:

τ̃ = ‖MT ‖op
2 · τe = τe

√
λmax(MMT ) = τe

√
λmax

(
(ATA)−1AT ·A(ATA)−1

)
= τe

√
λmax

(
(ATA)−1

)
=

τe√
λmin(ATA)

.

As a result, under the hypotheses of Theorem 4.2, s̃−s is a τe

σa

√
(1−α)m

-subgaussian

random vector, except with probability at most 2−η on the randomness of the
matrix A.

This bound on the subgaussian moment can be used to derive a bound with
high probability on the infinity norm as follows.

Lemma 4.4. Let v be a τ -subgaussian random vector in Rn. Then:

Pr
[
‖v‖∞ > t

]
≤ 2n · exp

(
− t2

2τ2

)
.

Proof. If we write v = (v1, . . . , vn), we have ‖v‖∞ = max(v1, . . . , vn,−v1, . . . ,−vn).
Therefore, the union bound shows that:

Pr
[
‖v‖∞ > t

]
≤

n∑
i=1

Pr[vi > t] + Pr[−vi > t]. (4.4)

Now each of the random variables v1, . . . , vn,−v1, . . . ,−vn can be written as
the scalar product of v with a unit vector of Rn. Therefore, they are all τ -
subgaussian. If X is one of them, the subgaussian tail bound of Lemma 2.6

shows that Pr[X > t] ≤ exp
(
− t2

2τ2

)
. Combined with (4.4), this gives the desired

result. ut

This is all we need to establish a sufficient condition for the least squares ap-
proach to return the correct solution to the ILWE problem with good probability.

Theorem 4.5. Suppose that χa is τa-subgaussian and χe is τe-subgaussian, and
let (A,b = As+e) the data constructed from m samples of the ILWE distribution
Ds,χa,χe

, for some s ∈ Zn. There exist constants C1, C2 > 0 (the same as in the
hypotheses of Theorem 4.2) such that for all η ≥ 1, if:

m ≥ 4
τ4
a

σ4
a

(C1n+ C2η) and m ≥ 32
τ2
e

σ2
a

log(2n)

then the least squares estimator s̃ = (ATA)−1ATb satisfies ‖s− s̃‖∞ < 1/2, and
hence ds̃c = s, with probability at least 1− 1

2n − 2−η.
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Proof. Applying Theorem 4.2 with α = 1/2 and the same constants C1, C2 as

introduced in the statement of that theorem, we obtain that for m ≥ τ4
a

σ4
a

(4C1n+

4C2η), we have

Pr
[
λmin

(
ATA

)
< mσ2

a/2
]
< 2−η. (4.5)

Therefore, except with probability at most 2−η, we have λmin

(
ATA

)
≥ mσ2

a/2.
We now assume that this condition is satisfied.

We have shown above that s̃ − s is a τ̃ -subgaussian random vector with
τ̃ = τe/

√
λmin(ATA). Applying Lemma 4.4 with t = 1/2, we therefore have:

Pr
[
‖s̃− s‖∞ >

1

2

]
≤ 2n · exp

(
− 1

8τ̃2

)
≤ 2n · exp

(
− λmin(ATA)

8τ2
e

)
≤ exp

(
log(2n)− mσ2

a

16τ2
e

)
.

Thus, if we assume that m ≥ 32
τ2
e

σ2
a

log(2n), it follows that:

Pr
[
‖s̃− s‖∞ >

1

2

]
≤ exp

(
log(2n)− 2 log(2n)

)
=

1

2n
.

This concludes the proof. ut

In the typical case when τa and τe are no more than a constant factor larger
than σa and σe, Theorem 4.5 with η = log(2n) says that there are constants
C,C ′ such that whenever

m ≥ Cn and m ≥ C ′ · σ
2
e

σ2
a

log n (4.6)

one can solve the ILWE problem with m samples with probability at least 1−1/n
by rounding the least squares estimator. The first condition ensures that ATA
is invertible and to control its eigenvalues: a condition of that form is clearly
unavoidable to have a well-defined least squares estimator. On the other hand,
the second condition gives a lower bound of the form (3.1) on the required
number of samples; we see that this bound is only a factor log n worse than the
information-theoretic lower bound, which is quite satisfactory.

We also note that the cost of this approach is equal to the complexity of
computing (ATA)−1ATb, hence at most O(n2 · m). This is quite efficient in
practice (see §6 for concrete timings). In practice, arithmetic operations can be
implemented using standard floating point instructions, since the almost scalar
nature of ATA ensures that the computations are numerically very stable.

4.2 An Exact-CVP Oracle Will Not Help

One can interpret this approach to solving ILWE by computing a least squares
estimator and rounding it as an application of Babai’s rounding algorithm for
the closest vector problem (CVP).
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More precisely, consider the sublattice L = ATA · Zn of Zn, which is full-
rank when ATA is invertible (i.e. m large enough). Then, the ILWE problem
can be seen as the problem of recovering the lattice vector v = ATAs ∈ L given
the close vector ATb = v + ATe (which is essentially an instance of bounded
distance decoding in L). Closeness in this setting is best measured in terms of
the infinity norm. Now, since for large m, the matrix ATA is almost scalar,
and hence the corresponding lattice basis of L is somehow already reduced, one
can try to solve this problem by applying a CVP algorithm like Babai rounding
directly on this basis. It is easy to see that this approach is identical to our least
squares approach.

One could ask whether applying another CVP algorithm such as Babai’s
nearest plane algorithm could allow solving the problem with asymptotically
fewer samples (e.g. reduce the log n factor in (4.6)). The answer is no. In fact,
a much stronger result holds: one cannot improve Condition (4.6) using that
strategy even given access to an exact-CVP oracle for any p-norm, p ∈ [2,∞].
Given such an oracle, the secret vector v can be recovered uniquely if and only
if the vector of noise ATe lies in a ball centered on v and of radius half the first
minimum of L in the p-norm, λ

(p)
1 (L) = minx∈L ‖x‖p, that is:

‖ATe‖p ≤
λ

(p)
1 (L)

2
. (4.7)

To take advantage of this condition, we need to get sufficiently precise estimates
of both sides.

Estimation of the first minimum. Due to the quasi-scalar shape of the

matrix ATA, one can estimate accurately the λ
(p)
1 (L). Indeed, ATA has a low

orthogonality defect, so that it is in a sense already reduced. Hence, the shortest
vector of this basis constitutes a very good approximation of the shortest vector
of L.

Lemma 4.6. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be
an m × n random matrix sampled from χm×na . Let L be the lattice generated
by the rows of the matrix ATA. There exist constants C1, C2 (the same as in
Theorem 4.2) such that for all α ∈ (0, 1), p ≥ 2 and η ≥ 1, if m ≥ (C1n+C2η) ·
(τ4/α2) then

Pr
[
λ

(p)
1 (L)

(
ATA

)
> mσ2

a(1 + α)
]
≤ 2−η. (4.8)

Proof. Remark first that by norm equivalence in finite dimension, x ∈ Rn we

have ‖x‖p ≤ ‖x‖2 so that λ
(p)
1 (L) ≤ λ

(2)
1 (L), this bound being actually sharp.

Without loss of generality it then suffices to prove the result in 2-norm. From
Theorem 4.2, we can assert that except with probability at most 2−η, ‖ATA‖op

2 ≤
mσ2

a(1 + α); for any integral vector x ∈ Zn we therefore have by definition of
the operator norm:

‖ATAx‖2 ≤ mσ2
a‖x‖2(1 + α).
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In particular, for any x ∈ Zn of unit 2-norm, λ
(2)
1 (L) ≤ ‖ATAx‖2 ≤ (1+α)mσ2

a.
ut

Estimation of the p-norm of AT e. Suppose that χe is a centered Gaussian
distribution of standard deviation σe. The distribution of ATe for e ∼ χne is then
a Gaussian distribution of covariance matrix σ2

eA
TA ≈ mσ2

aσ
2
eIn. We deal with

the cases p =∞ and p ≤ ∞ separately.

Case p <∞: The expected p-th power of the p-norm of ATe satisfies:

E
[
‖ATe‖pp

]
= nE[xp] = n(2m)p/2σpeσ

p
a ·

Γ
(
p
2 + 1

2

)
√
π

,

where x is drawn under the centered gaussian distribution of variancemσ2
eσ

2
a,

and Γ is classically the Euler’s Gamma function. But by the partial converse
of Jensen’s inequality for norms of Stadje [44] we have:

E
[
‖ATe‖pp

]
≤ 2pΓ

(
p

2
+

1

2

)√
π

(p−1)E
[
‖ATe‖p

]p
so that:

n1/pσeσa

√
m

2π
≤ E

[
‖ATe‖p

]
Case p =∞: The estimate is obtained by the order statistic theory of Gaussian

distributions (see e.g. [42]):

C∞σeσa
√
m log n ≤ E

[
‖ATe‖∞

]
,

where C∞ = 3
2

(
1− 1

e

)
− 1√

2π
≈ 0.23

Now that we have access to the expected value of the random variable
‖ATe‖p, we are going to use the concentration of its distribution around its
expected value. Explicitly by the random version of Dvoretzky’s theorem proven
in [39], there exist absolute constants K, c > 0 such that for any 0 < ε < 1:

Pr
[∣∣∣ATe− E

[
‖ATe‖p

]∣∣∣ > εE
[
‖ATe‖p

]
≤ Ke−cβ(n,p,ε) (4.9)

with

β(m, p, ε) =


ε2n if 1 < p ≤ 2

max(min(2−pε2n, (εn)2/p), εpn2/p) if 2 < p ≤ c0 log n

ε log n if p > c0 log n

,

for 0 < c0 < 1 a fixed absolute constant.
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Summing up. Taking ε = 1/2 in (4.9) ensures that, except with probability
Ke−cβ(n,p,1/2),

1

2
E
[
‖ATe‖p

]
≤ ‖AT e‖p ≤

3

2
E
[
‖ATe‖p

]
. (4.10)

For any fixed p, the probability can be made as small as desired for large enough
n. We can therefore assume that (4.10) occurs with probability at least 1− δ for
some small δ > 0.

In that case, Condition (4.7) asserts that if E
[
‖ATe‖p

]
> λ

(p)
1 (L) then s can’t

be decoded uniquely in L. Now using the result of Lemma 4.6 with α = 1/2 and
the previous estimates, we know that this is the case when:

n1/pσeσa

√
m

2π
>

3

2
mσ2

a, that is, m <

(
σe
σa

)2
2n2/p

9π
,

when p <∞, and

0.23σeσa
√
m log n >

3

2
mσ2

a, that is, m < 0.02

(
σe
σa

)2

log n,

otherwise. In both cases, it follows that we must have m = Ω
(
(σe/σa)2 log n

)
for the CVP algorithm to output the correct secret with probability > δ. Thus,
this approach cannot improve upon the least squares bound 4.5 by more than a
constant factor.

4.3 Sparse Secret and Compressed Sensing

Up until this point, we have supposed that the number m of samples we have
access to is greater than the dimension n. Indeed, without additional information
on the secret s, this condition is necessary to get a well-defined solution to the
ILWE problem even without noise.

Suppose however that the secret s is known to be sparse, with only a small
number S � n of non zero coefficients. Even if the positions of these non zero
coefficients are not known, knowledge of the sparsity S may help in determining
the secret, possibly even with fewer samples than the ambient dimension n with
the sole additional knowledge of its sparsity (though of course more than S
samples are necessary!). Such a recovery is made possible by compressed sensing
techniques, epitomized by the results of Candes and Tao in [14]. The idea is once
again to find an estimator s̃ such that the infinity norm ‖s̃−s‖∞ is small enough
to fully recover the secret s from it. This can be done with the Dantzig selector
introduced in [14], and efficiently computable as a solution s̃ = (s̃1, . . . , s̃n) of
the following linear program with 2n unknowns s̃i, ũi, 1 ≤ i ≤ n:

min

n∑
i=1

ui such that − ui ≤ s̃i ≤ ui and

−σeσa
√

2m log n ≤
[
AAT (ATb−ATAs̃)

]
i
≤ σeσa

√
2m log n.

(4.11)
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Table 1: Maximum value of the ratio σe/σa to recover a S sparse secret in dimension
n with the Dantzig selector

n

(S/n)
0.1 0.3 0.5 0.7 0.9

128 16.2 9.4 7.3 6.1 5.4

256 15.2 8.8 6.8 5.7 5.0

512 14.3 8.3 6.4 5.4 4.8

1024 13.6 7.8 6.0 5.1 4.5

2048 13.0 7.5 5.8 4.9 4.3

In the case when the distributions χe and χa are Gaussian distributions of re-
spective standard deviations σe and σe, the quality of the output of the program
defined by (4.11) is quantified as follows.

Theorem 4.7 (adapted from [14]). Suppose s ∈ Zn is any S-sparse vector
so that log(mσ2

a/n)S ≤ m Then with large probability, s̃ obeys the relation

‖s̃− s‖22 ≤ 2C2
1S log n

(
σe√
mσa

)2

(4.12)

for some constant C1 ≈ 4.

Hence as before, if ‖s̃− s‖22 ≤ 1/4, we have ‖s̃− s‖∞ ≤ 1/2 and one can then
decode the coefficients of s by rounding s̃. This is satisfied with high probability
as soon as:

2C2
1

S log n

m

(
σe
σa

)2

≤ 1

4
.

Since we aim at solving the ILWE problem in parsimonious sample setting, where
m < n we deduce that the compressed sensing methodology can be successfully
applied when

S ≤ n

8C2
1 log n

(
σa
σe

)2

. (4.13)

Let us discuss the practicality of this approach with regards to the parameters
of the ILWE problem. First of all, note that in order to make Condition (4.13)
non-vacuous, one needs σe and σa to satisfy:

2C1

√
2 log n

n
≤ σa
σe
≤ 2C1

√
2 log n,

where the lower bound follows from the fact that S is a positive integer, and
the upper bound from the observation that the right-hand side of (4.13) must
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be smaller than n to be of any interest compared to the trivial bound S ≤ n.
Practically speaking, this means that this approach is only interesting when the
ratio σe/σa is relatively small; concrete bounds are provided in Table 1 various
sparsity levels and dimensions ranging from 128 to 2048.

We note that the required sparsity is much higher than proposed parameters
for BLISS, for example. Moreover, the complexity of this linear programming
based approach is worse than least squares regression. However, only this method
is applicable when only m < n samples are available.

5 Application to the Side-channel Attack of BLISS

5.1 BLISS Signatures and Rejection Sampling Leakage

The BLISS signature scheme [17] is a lattice-based signature scheme based on the
Ring-Learning With Error (RLWE) assumption. Its signing algorithm is recalled
in Figure 1.

The rejection sampling. The BLISS signature scheme follows the “Fiat–
Shamir with aborts” paradigm of Lyubashevsky [35]. In particular, signature
generation involves a rejection sampling step (Step 8 of function Sign in Fig-
ure 1) which is essential for security: in order to ensure that the distribution of
signatures is independent of the secret key s = (s1, s2), a signature candidate(
z = (z1, z2), c

)
should be kept with probability

1

/(
M exp

(
− ‖sc‖

2

2σ2

)
cosh

(
〈z, sc〉
σ2

))
.

Since it would be impractical to directly compute this expression involving tran-
scendental functions with sufficient precision, all existing implementations of
BLISS [18, 41, 45] rely instead on the iterated Bernoulli trials technique described
in [17, §6]. A signature (z, c) is kept if the function calls SampleBernExp(xexp)
and SampleBernCosh(xcosh) both return 1, where functions SampleBernExp
and SampleBernCosh are described in Figure 2 and the values xexp, xcosh are
given respectively by xexp = logM − ‖sc‖2 and xcosh = 2 · 〈z, sc〉.

Side-channel leakage of the rejection sampling. Based on their description
in Figure 2, it is clear that SampleBernExp and SampleBernCosh do not
run in constant time. In fact, they iterate over the bits of their input, and
part of the code is executed when the bit is 1 and skipped over when the bit
is 0. As a result, as observed by Espitau et al. [19, §3], the inputs xexp, xcosh

of these functions can be read off directly on a trace of power consumption or
electromagnetic emanations, in much the same way as naive square-and-multiply
implementations of RSA leak the secret exponent via simple power analysis [28,
§3.1]. As a result, side-channel analysis allows to reliably recover the squared
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Fig. 1: BLISS signing algorithm. The hash function H is modeled as a RO with values
in the set of polynomials in R with 0/1-coefficient and Hamming weight κ. See [17] for
details regarding notation like ζ, d·cd and p not discussed in this paper.

1: function Sign(µ, pk = v1, sk = s = (s1, s2))
2: y1,y2 ← Dn̄

σ

3: u = ζ · v1 · y1 + y2 mod 2q
4: c← H(ducd mod p, µ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability 1/

(
M exp(−‖sc‖2/(2σ2)) cosh(〈z, sc〉/σ2

)
; other-

wise restart
9: z†2 ← (ducd − du− z2cd) mod p

10: return (z1, z
†
2, c)

norm ‖sc‖2 = ‖s1c‖2 + ‖s2c‖2 and the scalar product 〈z, sc〉 = 〈z1, s1c〉 +
〈z2, s2c〉 from generated signatures.

Espitau et al. show that the norm leakage can be leveraged in practice to
recover the secret key from a little over n̄ signature traces, where n̄ is the exten-
sion degree of the ring R (n̄ = 512 for the most common parameters). However,
the recovery technique is mathematically quite involved and computationally
costly (it is based on the Howgrave-Graham–Szydlo solution to cyclotomic norm
equations [25], and takes over a month of CPU time for typical parameters).
More importantly, it has the major drawback of relying on the ability to factor
this norm and thus only applying to “weak” signing keys satisfying a certain
semismoothness condition (around 7% of BLISS secret keys).

It is natural to think that the scalar product leakage, which is linear rather
than quadratic in the secret key, is a more attractive target to attack. And
indeed, Espitau et al. point out that in a simplified version of BLISS where z2

is returned in full as part of signatures, it is very easy to recover the secret key
from about 2n̄ side-channel traces using elementary linear algebra. However, in
the actual BLISS scheme, the element z2 is returned in a compressed form z†2, so
that the linear system arising from scalar product leakage is noisy. Solving this
linear system amounts to solving a problem analogous to LWE [43] in dimension
about 2n̄, which leads Espitau et al. to conclude that this approach is unlikely
to be helpful. In doing so, however, they overlook a crucial difference between
standard LWE and the problem that actually arises in this way, namely the lack
of modular reduction.

5.2 Description of the Attack

As we have mentioned already, recovering the secret s ∈ Z2n̄ = Zn from the
linear leakage 〈z, sc〉 essentially amounts to an instance of the ILWE problem.
We now describe more precisely in what sense. To do so, we need to write this
inner product in terms of the known ring elements (c, z1, z

†
2) that appear in the
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Fig. 2: Sampling algorithms for the distributions Bexp(−x/2σ2) and B1/ cosh(x/σ2). The

values ci = 2i/f precomputed, and the xi’s are the bits in the binary expansion of
x =

∑`−1
i=0 2ixi. BLISS uses x = K − ‖sc‖2 for the input to the exponential sampler,

and x = 2〈z, sc〉 for the input to the cosh sampler.

1: function SampleBernExp(x)
2: for i = 0 to `− 1 do
3: if xi = 1 then
4: Sample a← Bci
5: if a = 0 then return 0
6: return 1

1: function SampleBernCosh(x)
2: if x < 0 then x← −x
3: Sample a← Bexp(−x/f)

4: if a = 1 then return 1
5: Sample b← B1/2

6: if b = 1 then restart
7: Sample c← Bexp(−x/f)

8: if c = 1 then restart
9: return 0

signature on the one hand, and unknown elements on the other hand. This can
be done as follows:

〈z, sc〉 = 〈z1, s1c〉+ 〈z2, s2c〉 = 〈z1c
∗, s1〉+ 〈2dz†2, s2c〉+ 〈z2 − 2dz†2, s2c〉

= 〈z1c
∗, s1〉+ 〈2dz†2c∗, s2〉+ e = 〈a, s〉+ e,

where we let:

a = (z1c
∗, 2dz†2c

∗) ∈ Z2n̄ = Zn and e = 〈z2 − 2dz†2, s2c〉.

The vector a can be computed from the signature, and is therefore known to the
side-channel attacker, whereas e is some unknown value. In these expressions,
c∗ is the conjugate of c with respect to the inner product (i.e. the matrix of
multiplication by c in the polynomial basis of Z[x]/(xn̄ + 1) is the transpose of
that of c).

Now the rejection sampling ensures that the coefficients of z1 are independent
and distributed according to a discrete Gaussian D of standard deviation σ. On
the other hand, c is a random vector with coefficients in {0, 1} and exactly κ
non zero coefficients; thus, c∗ has a similar shape possibly up to the sign of
coefficients. It follows that the coefficients of z1c

∗ are all linear combinations
with ±1 coefficients of exactly κ independent samples from D and the signs
clearly do not affect the resulting distribution.

Therefore, if we denote by χa the distribution D∗κ obtained by summing κ
independent samples from D, the coefficients of z1c

∗ follow χa. It is not exactly
correct that z1c

∗ as a whole follows χn̄a (as its coefficients are not rigorously
independent), but we will heuristically ignore that subtlety and pretend it does.
Note that χa is a distribution of variance:

σ2
a = Var

(
D∗κ

)
= κ ·Var(D) = κσ2.



23

We have not precisely described how the BLISS signature compression works,
but roughly speaking, z†2 is essentially obtained by keeping the (log q − d) most

significant bits of z2, and therefore the distribution of 2dz†2 is close to that of z2.

The distributions cannot coincide exactly, since all the coefficients of 2dz†2 are
multiples of 2d while this normally does not happen for z2, but the difference
will not matter much for our purposes, and we will therefore heuristically assume
that the entire vector a is distributed as χna .

We now turn our attention to the noise value e, which we write as 〈w,u〉
with w = z2 − 2dz†2 and u = s2c. Now, w is obtained as the difference between

z2 and 2dz†2, where again the latter is roughly speaking obtained by zeroing out
the d least significant bits of z2 in a centered way. We can therefore heuristically
expect that the coefficients of w are distributed uniformly in [−2d−1, 2d−1] ∩ Z,
i.e. w ∼ U n

α with α = 2d−1. In particular, these coefficients have variance
α(α+ 1)/3 ≈ 22d/12.

As for u, its coefficients are obtained as sums of κ coefficients of s2. Now
s2 itself (ignoring the constant coefficient, which is shifted by 1) is obtained
as a random vector with δ1n̄ coefficients equal to ±2, δ2n̄ coefficients equal to
±4 and all its other coefficients equal to zero. This is a somewhat complicated
distribution to describe, but we do not make a large approximation by pretending
that all the coefficients are sampled independently in the set {−4,−2, 0, 2, 4}
with probabilities δ2/2, δ1/2, (1−δ1−δ2), δ1/2 and δ2/2 respectively. Making that
approximation, it follows that the coefficients of u have variance κ · (4δ1 + 16δ2).

Write u = (u1, . . . , un̄) and w = (w1, . . . , wn̄). Under the heuristic approxi-
mations above, since w and u are independent and their coefficients have mean
zero, the error e follows a certain bounded distribution χe of variance σ2

e given
by:

σ2
e = E[e2] = E

[( n̄∑
i=1

wiui

)2
]

= E
[∑
i,j

wiwjuiuj

]
= E

[ n̄∑
i=1

w2
i u

2
i

]

=

n̄∑
i=1

E[w2
i ] · E[u2

i ] = n̄ ·Var
(
Uα

)
· κ(4δ1 + 16δ2) ≈ 22d

3
(δ1 + 4δ2)n̄κ.

With these various approximations, recovering s from the leakage exactly
becomes an ILWE problem with distributions χa and χe, where each side-channel
trace provides a sample. It should therefore be feasible to recover the full secret
key with least squares regression using m = O

(
(σe/σa)2 log n

)
traces.

5.3 Experimental Distributions

The description of the previous section made a number of heuristic approxi-
mations which we know cannot be precisely satisfied in practice. In order to
validate those approximations nonetheless, we have carried out numerical simu-
lations comparing in particular our estimates for the standard deviations σa and
σe of the distributions of a and e with the standard deviations obtained from
the actual rejection sampling leakage in BLISS.
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Table 2: Parameter estimation for ILWE instances arising from the side channel attack

BLISS–0 BLISS–I BLISS–II BLISS–III BLISS–IV

n = 2n̄ 512 1024 1024 1024 1024

σa (theory) 346 1031 513 1369 1692

σe (theory) 1553 49695 49695 38073 24535

σa1 (exp.) 347 1031 513 1370 1691

σa2 (exp.) 349 2009 1418 1782 1814

σe (exp.) 1532 42170 32319 38627 23926

These simulations were carried out in Python using the numpy package.
We used 10000 ILWE samples arising from side channel leaks for each BLISS
parameter set. Results are collected in Table 2; experimental values for σa are
provided separately for the two halves (a1,a2) of the vector a, which we have
seen are computed differently. As we can see, the experimental values match the
heuristic estimates quite closely overall.

6 Numerical Simulations

In this section, we present simulation results for recovering ILWE secrets using
linear regression, first for normal ILWE instances, and then for ILWE instances
arising from BLISS side-channel leakage, as described in §5.2, leading to BLISS
secret key recovery. These results are based on simulated leakage data rather than
actual side-channel traces. However, we note that the leakage scenario for BLISS
is essentially identical to the one described in [19] (namely, a SPA/SEMA setting
where each trace reveals the exact value of a certain function of the secret key—
in our case, the linear function given by the inner product), and was therefore
experimentally validated in that paper.

6.1 Plain ILWE

Recall that the ILWE problem is parametrized by n,m ∈ Z and probability
distributions χa and χe. Samples are computed as b = As + e, where s ∈ Zn,
b ∈ Zm, A ∈ Zm×n with entries drawn from χa, and e ∈ Zm with entries drawn
from χe. Choosing χa and χe as discrete gaussian distributions with standard
deviations σa and σe respectively, we investigated the number of samples, m
required to recover ILWE secret vectors s ∈ Zn for various concrete values of
n, σa and σe. We sampled sparse secret vectors s uniformly at random from the
set of vectors with d0.15ne entries set to ±1, d0.15ne entries set to ±2, and the
rest zero.

We present two types of experimental results for plain ILWE. In our first
experiment, we began by estimating the number of samples m required to recover
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the secret perfectly with good probability, for different values of n, σa, and σe.
Then, fixing m, we measured the probability of recovering s over the random
choices of s, A and e. Our results are displayed in Table 3.

In our second experiment, we investigated the distribution of the minimum
value of m required to recover the secret perfectly, over the random choices of
s, A, and e, when the linear regression method was run to completion. In other
words, for fixed n, σa, and σe, we generated more and more samples until the
secret could be perfectly recovered. Our results for σe = 2000 are plotted in
Figure 3. Additional results and some additional notes may be found in the full
version of this paper [10]. Each figure plots the dimension n against the mean
number of samples m required to recover the secret, for σa = 100, 200, and 500.
Here, ‘mean’ refers to the interquartile mean number of samples. The error bars
show the upper and lower quartiles for the number of samples required.

The results of our second experiment are consistent with the theoretical re-
sults given in §4.1. According to (4.6), we require

m ≥ C ′ · σ
2
e

σ2
a

log n

samples in order to recover the secret correctly. The dimension n on the hor-
izontal axis of each graph is plotted on a logarithmic scale. Therefore, theory
predicts that we should observe a straight line, which the graphs confirm.

The gradient of the graph corresponds to the constant C ′ giving the number
of samples required for secret-recovery in practice. Note that in this case, where
χa and χe follow the discrete Gaussian distribution, Theorem 4.5 gives C ′ = 32
for a small failure probability of 1

2n . However, in this experiment, we are likely
to succeed much sooner, with a smaller number of samples. For example, in any
particular trial, as soon as m is such that the failure probability is at least one
half, we are likely to recover the secret. This explains why the gradient is much
lower than given by Theorem 4.5. Computing the gradients of the lines of best fit
and dividing by (σe/σa)2 gives an estimate for the observed value of the constant
C ′. See the full version of this paper [10] for details.

6.2 BLISS Side-Channel Attack

Having obtained an instance of the ILWE problem from BLISS side-channel
leakage as described in §5.2, we used linear regression to recover BLISS secret
keys. We performed several trials. For each trial, we generated ILWE samples
using side-channel leakage until we could recover the secret key. For BLISS–0, we
simply used regression to recover the entire secret key. For BLISS–I and BLISS–
II, we usually ran into memory issues before being able to successfully recover
the entire secret key. However, we noticed that in practice, we could recover the
first half of the secret key correctly using far fewer samples. Since the two halves
of the secret key are related by the public key, this is sufficient to compute the
entire secret key. Therefore, for BLISS–I and BLISS–II, we stopped generating
samples as soon as the least-squares estimator correctly recovered the first half
of the secret.
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Table 3: Practical results of the experiments on ILWE

n σa σe m Success

100 1000 3300 6/10

100 2000 11500 6/10

100 5000 65000 4/10

200 1000 900 5/10

200 2000 4000 7/10

200 5000 17000 4/10

300 1000 550 10/10

300 2000 1890 8/10

300 5000 9000 7/10

400 1000 350 8/10

400 2000 800 5/10

400 5000 5750 7/10

500 1000 350 10/10

500 2000 700 6/10

1
2
8

500 5000 3300 4/10

100 1000 5600 9/10

100 2000 14500 6/10

100 5000 95000 7/10

200 1000 1300 6/10

200 2000 4700 8/10

200 5000 23000 6/10

300 1000 900 9/10

300 2000 1800 5/10

300 5000 12000 8/10

2
5
6

400 1000 550 10/10

n σa σe m Success

400 5000 6000 5/10

500 1000 450 7/10

500 2000 950 8/10

2
5
6

500 5000 4200 5/10

100 1000 5100 7/10

100 2000 16000 4/10

200 1000 1600 9/10

200 2000 5200 7/10

300 1000 1000 8/10

300 2000 2600 8/10

400 1000 900 10/10

400 2000 1500 4/10

500 1000 800 10/10

5
1
2

500 2000 1250 8/10

100 1000 5950 10/10

100 2000 19000 5/10

200 1000 2250 6/10

200 2000 5900 6/10

300 1000 1550 7/10

300 2000 3350 6/10

400 1000 1350 9/10

400 2000 2300 7/10

500 1000 1500 10/10

1
0
2
4

500 2000 1900 8/10
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Fig. 3: Results for σe = 2000

Table 4: Number of samples required to recover the secret key (minimum, lower
quartile, interquartile mean, upper quartile, maxium)

# Trials Min LQ IQM UQ Max

BLISS–0 12 1203 1254 1359.5 1515 1641

BLISS–I 12 14795 18648 20382.9 21789 24210

BLISS–II 8 19173 20447 22250.3 24482 29800

For these two different scenarios, we obtain the results displayed on Table 4,
which gives information on the range, quartiles, and interquartile mean of the
number of samples required. Typical timings for the side-channel attacks, us-
ing SAGEMath, on a laptop with 2.60GHz processor, are displayed in Table 5.
Timings are in the orders of minutes and seconds. By comparison, some of the
attacks from [19] may take hours, or even days, of CPU time.
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31. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k-LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 315–334. Springer, Heidelberg

32. Litvak, A., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N.: Smallest singular
value of random matrices and geometry of random polytopes. Advances in Math-
ematics 195(2), 491–523 (2005)

http://bliss.di.ens.fr/bliss-06-13-2013.zip
http://bliss.di.ens.fr/bliss-06-13-2013.zip
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://eprint.iacr.org/2017/995
http://eprint.iacr.org/2017/995
https://eprint.iacr.org/2018/020
https://eprint.iacr.org/2018/020


30

33. Liu, D.: Compact-LWE for lightweight public key encryption and leveled IoT au-
thentication. In: Pierpzyk, J., Suriadi, S. (eds.) ACISP 17, Part I. LNCS, vol.
10342, p. xvi. Springer, Heidelberg (Jul 2017).

34. Liu, D., Li, N., Kim, J., Nepal, S.: Compact-LWE (2017), https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

35. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (Dec 2009)

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (May / Jun 2010)

37. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (May 2013).

38. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (Aug 2013).

39. Paouris, G., Valettas, P., Zinn, J.: Random version of Dvoretzky’s theorem in `np .
Stochastic Processes and their Applications 127(10), 3187–3227 (2017)

40. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: Attack-
ing strongSwan’s implementation of post-quantum signatures. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17. pp. 1843–1855. ACM
Press (Oct / Nov 2017)
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