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Abstract. The Blockwise-Korkine-Zolotarev (BKZ) lattice reduction
algorithm is central in cryptanalysis, in particular for lattice-based cryp-
tography. A precise understanding of its practical behavior in terms of
run-time and output quality is necessary for parameter selection in cryp-
tographic design. As the provable worst-case bounds poorly reflect the
practical behavior, cryptanalysts rely instead on the heuristic BKZ sim-
ulator of Chen and Nguyen (Asiacrypt’11). It fits better with practical
experiments, but not entirely. In particular, it over-estimates the norm
of the first few vectors in the output basis. Put differently, BKZ performs
better than its Chen–Nguyen simulation.

In this work, we first report experiments providing more insight on this
shorter-than-expected phenomenon. We then propose a refined BKZ sim-
ulator by taking the distribution of short vectors in random lattices into
consideration. We report experiments suggesting that this refined simula-
tor more accurately predicts the concrete behavior of BKZ. Furthermore,
we design a new BKZ variant that exploits the shorter-than-expected
phenomenon. For the same cost assigned to the underlying SVP-solver,
the new BKZ variant produces bases of better quality. We further illus-
trate its potential impact by testing it on the SVP-120 instance of the
Darmstadt lattice challenge.

1 Introduction

A (full-rank) lattice L of dimension n can be generated by a basis B made of
linearly independent vectors b1, · · · ,bn ∈ Rn via integer combinations: L(B) =∑
i≤n Zbi. Lattice reduction aims to compute a basis made of relatively short

vectors from an arbitrary input basis. Quantitatively, one measure of quality
is the so-called Hermite factor HF(B) = ‖b1‖/|det B|1/n = ‖b1‖/(detL)1/n.
Understanding the practical behavior and limits of reduction algorithms is im-
portant for setting parameters in lattice-based cryptography. Indeed, the best
known attacks against lattice-based schemes typically consist in finding short
vectors/bases of lattices provided by publicly available data [APS15].

In [SE94], Schnorr and Euchner proposed a practical lattice reduction al-
gorithm, named the Block Korkine-Zolotarev (BKZ) algorithm. It is parame-



terized by a block-size β ≥ 2: the larger the block-size β, the more expen-
sive in terms of running-time, but the smaller the output Hermite factor. This
is because it internally relies on an algorithm that solves the Shortest Vector
Problem (SVP) in dimension β, i.e., which can find a shortest non-zero vec-
tor in any β-dimensional lattice. Since then, several optimizations of BKZ have
been investigated, such as early termination [HPS11] and progressive reduc-
tion [CN11,AWHT16]. In [HPS11] (see also [Neu17]), it was shown that in the
worst case, BKZβ (with early termination) achieves a Hermite factor of βO(n/β)

within a polynomial number of calls to the SVP solver, for β = o(n) and n grow-
ing to infinity. It was shown in [HS08] that there exist bases with such Hermite
factors (up to a constant factor in the exponent) which are left unchanged when
given as inputs to BKZβ . Unfortunately, these worst-case bounds are quantita-
tively very far from experimental data.

The BKZ algorithm proceeds by improving the Gram–Schmidt orthogonal-
ization B∗ = (b∗1, · · · ,b∗n) of the current basis B = (b1, · · · ,bn). More precisely,
it aims at updating B such that the norms ‖b∗1‖, · · · , ‖b∗n‖ of the Gram–Schmidt
vectors do not decrease too fast. In [Sch03], Schnorr presented a heuristic on the
shape of the Gram–Schmidt norms of the output basis, named the Geometric Se-
ries Assumption (GSA). It states that there exists a constant r > 1 such that the
output basis satisfies ‖b∗i ‖/‖b∗i+1‖ ≈ r for all i < n. Among others, this implies

that HF(B) ≈ r(n−1)/2. It was argued in [CN11] (see also [Che09, Ch. 4]) that

for β small compared to n, one should have r ≈ ( β
2πe (πβ)

1
β )

1
β−1 . The latter value

is derived by relying on the Gaussian heuristic1 to estimate the smallest non-zero
norm in a β-dimensional lattice L by GH(L) := ((detL)/vβ)1/β , where vβ de-
notes the volume of the β-dimensional unit ball. It was experimentally observed
that the GSA is a good first approximation to the practical behavior of BKZ.
Nevertheless, it does not provide an exact fit: for β & 30, the typical BKZ out-
put basis has its first few Gram–Schmidt norms and its last ≈ β Gram–Schmidt
norms violate this assumption. These first and last Gram–Schmidt norms are
respectively called the head and the tail, the rest being the body. In [CN11],
Chen and Nguyen refined the sandpile model from [HPS11] and provided a BKZ
simulator based on the Gaussian heuristic (with a modification for the tail, see
Subsection 2.3). Their BKZ simulator captures the body and tail behaviors of
the Gram–Schmidt norms very precisely [CN11,YD17]. However, as investigated
in [CN11,AWHT16,YD17], the Chen–Nguyen simulator fails to capture the head
phenomenon: the head almost follows the GSA in the simulations, whereas, in
the experiments, the logarithmic Gram–Schmidt norms form a concave curve
(instead of a line). Put plainly, BKZ finds shorter vectors than predicted by
the Chen–Nguyen simulator. Refer to Figures 1–2 for an example: we run BKZ
with block-size 45 on 100-dimensional lattices (generated by the Darmstadt lat-
tice challenge generator)2 and record the Gram–Schmidt norms of the reduced
bases after 2000 tours (each data is averaged over 100 trials). This inaccuracy

1 The Gaussian heuristic states that a measurable S ⊆ Rn should contain
≈ vol(S)/ det(L) points of L.

2 https://www.latticechallenge.org/svp-challenge/
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may lead to overestimated security evaluations in cryptographic design. Under-
standing the head concavity phenomenon was put forward as an important open
problem in [YD17], for assessing the bit-security of concrete lattice-based cryp-
tosystems.
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Fig. 1: Gram–Schmidt log-norms for
BKZ45 at tour 2, 000.
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Fig. 2: Same as left hand side, but
zoomed in.

Contributions. Our first main contribution is the design of a more accurate
BKZ simulator, relying on a probabilistic version of the Gaussian heuristic. More
precisely, we take into account the fact that the norm of a shortest non-zero vec-
tor of a random lattice is not a fixed quantity driven by the Gaussian heuristic,
but a random variable. Concretely, we use a distribution derived from the result
on the distribution of short vectors in random lattices by Södergren [Söd11]. We
compare our probabilistic simulator and experimental BKZ, and observe that
our simulator provides accurate predictions of the head region, while maintain-
ing a good approximation on both body and tail regions. If we focus on the head
region, the new simulator is always more precise than the Chen–Nguyen simu-
lator, and similarly accurate for body and tail. Therefore, the Hermite factors
estimated by the new simulator are more accurate and fit the experimental re-
sults more precisely. This is established through extensive experiments designed
to measure the head concavity phenomenon. Such understanding also allows to
efficiently assess how it scales for larger block-sizes: when β increases, the head
phenomenon decreases, i.e., the GSA is followed more closely.

Our second main contribution is an algorithmic exploitation of the fact that
BKZ performs better than the GSA for its first output vectors. We propose a
new variant of BKZ, pressed-BKZ, that aims to exploit the head phenomenon
everywhere in the graph of Gram–Schmidt norms. To do so, we proceed itera-
tively: we run BKZ between indices 1 and n, then we freeze the first basis vector
and run BKZ between indices 2 and n (i.e., on the appropriately projected ba-
sis), then we freeze the first two basis vectors and run BKZ between 3 and n,
etc. The bonus of being at the start of the basis is exploited at every position.
The output basis tightly follows the GSA in the head and body regions. The
gain is that the logarithmic Gram–Schmidt slope is better than that from the
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original BKZ. Overall, for the same block-size as in BKZ, pressed-BKZ produces
lattice bases of improved quality. We adapt our BKZ simulator to pressed-BKZ,
and again, the simulation seems quite accurate, giving further confidence that
our simulation correctly captures the head phenomenon.

Another way to exploit the head phenomenon was suggested in [AWHT16].
As the first BKZ blocks are more reduced, solving the corresponding SVP in-
stances is easier. In [AWHT16], Aono et al. propose using a larger block-size in
the head region than in the rest of the basis. The purpose is to make the head
region even better, without increasing the overall cost significantly. We combine
this “adaptive block-size” strategy with pressed-BKZ. This allows to accelerate
the convergence of pressed-BKZ towards its typical output quality.

Finally, we demonstrate the usefulness of the BKZ variant by testing it on
an SVP-120 instance obtained with the Darmstadt lattice challenge generator.
We also compare the quality of pressed-BKZ60 reduced bases with standard
BKZβ-reduced bases for various block-sizes β.

Impact. For concrete lattice-based cryptosystems with parameters set using the
Chen–Nguyen simulator (or the corresponding GSA ratio), the head phenomenon
is a potential security risk: as BKZ performs better than what has been taken
into account while setting parameters, the parameters were potentially set too
low for the targeted bit-security levels. Our simulator, which accurately predicts
the head phenomenon, suggests that the head phenomenon vanishes when the
block-size becomes large. We conjecture this is because the distribution of the
first minimum in random lattices has a standard deviation that decreases to 0
relatively quickly when the lattice dimension increases (this lattice dimension
corresponds to the BKZ block-size β). Quantitatively, the phenomenon has al-
most fully disappeared for β ≈ 200. It is also less important when n is much
larger than β. Concrete figures are provided at the end of Subsection 4.4.

The lattice-based submissions to the NIST post-quantum standardization
process3 use conservative security estimates. In particular, they rely on lower
bounds for the cost of solving SVP in dimension β, which are significantly below
what can currently be achieved in practice (we refer to [ACD+18] for concrete
figures). Note that this seems unrelated to the head phenomenon: the BKZ
block-sizes needed to break the scheme are often in the hundreds, a range of
block-sizes for which the head phenomenon has already vanished. The NIST
candidates most impacted are those that were more aggressive in setting their
parameters, though the impact remains limited even for them.

Oppositely, for block-sizes that can be handled in practice (e.g., β . 100),
the head concavity phenomenon is non-negligible, and can be exploited. Our
work can then help make concrete cryptanalysis more accurate. By allowing one
to solve SVP in larger dimensions β using pressed-BKZβ′ with β′ < β as a pre-
processing, our work should allow one to perform BKZ in larger block-sizes β. It
is well-known that for small block-sizes (say β . 35), the BKZ output quality is
inaccurately predicted by the Gaussian Heuristic (see [CN11], for example). This
phenomenon vanishes when the block-size becomes higher. But then BKZβ ben-

3 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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efits from the head concavity phenomenon. As a result, extrapolating concrete
experiments in such block-sizes to draw conclusions in much larger block-sizes
seems to amount to wild guessing. On the other hand, we have a better simula-
tion of the head phenomenon for BKZ with practical block-sizes. By exploiting
the head phenomenon, we can hope to reach higher block-sizes, for which such
small block-size effects do not occur anymore. In this smoother regime, extrap-
olating experiments should become sounder.

Related works. The first simulator for predicting the Gram–Schmidt norms
of a BKZ-reduced basis was proposed by Chen and Nguyen in [CN11]. It relies
on the assumption that each SVP-solver in the projected local block finds a lat-
tice vector whose norm exactly matches its Gaussian heuristic estimate for that
local block, except for a few blocks at the end of the basis. It is a good first
approximation, but remains inaccurate in two ways. First, it does not capture
the head concavity phenomenon (which is reported nevertheless in the exper-
iments of [CN11]). Second, it does not take into account that in practice it is
preferable to use heuristic SVP-solvers which may miss the optimal solutions.
The main such heuristic SVP-solver is pruned enumeration, introduced in [SE94]
and refined and improved in [GNR10]. It consists of pruning the enumeration
tree by keeping only the nodes that are most likely to lead to interesting leaves.
As a result, only a subset of lattice points are enumerated within the required
radius, and the optimal solution may be missed. Extreme pruning [GNR10] goes
even further: it decreases the probability of finding a shortest non-zero vec-
tor to lower the time/probability ratio, and runs the process several times to
boost the success probability. Each time, the lattice basis is re-randomized and
reduced with a lower block-size to prepare for the enumeration. An alterna-
tive approach for solving SVP is lattice sieving. The fast sieving variants, such
as [NV08,MV10,Duc18,BDGL16], are also not guaranteed to return a shortest
non-zero lattice vector.

In [AWHT16], Aono et al. described the so-called progressive-BKZ. The main
new ingredient is that the latter tries to avoid the re-randomization/preprocessing
overheads by using a single enumeration in any SVP call. For this, the authors
increase the search radius in the enumeration, aiming to find a short vector but
not necessarily a shortest one by pruning the enumeration tree. This search ra-
dius is adaptively derived from the current basis quality. Since the authors are
not in the regime of finding a shortest non-zero vector, to estimate the success
probability, the authors model lattice points of norm below the search radius as
random points in the ball of that radius (see [AWHT16, Lemma 1]). This pruned
enumeration with increased search radius heuristically produces a non-zero vec-
tor in lattice Λ of norm β

β+1 · α · GH(Λ) for some α ≥ 1, using their random
point model. For α = 1, we obtain an expectation for the first minimum that is
lower than the Gaussian heuristic. Aono et al. also adapted the Chen–Nguyen
simulator by modifying the expected norm found by the SVP-solver using the
random points model rather than the Gaussian heuristic value. Note that the up-
dated simulator takes some probabilistic phenomenon into account but remains
deterministic. In particular, it does not capture the head concavity phenomenon.
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Finally, as mentioned earlier, Aono et al. also experimentally observed the head
concavity phenomenon, and proposed to exploit it by using BKZ with larger
block-size on the first few blocks.

Yu and Ducas [YD17] ran extensive experiments to assess the practical be-
havior of BKZ. They have two main experimental observations. First, the distri-
bution of differences vi := log ‖b∗i ‖− log ‖b∗i+1‖ between two consecutive Gram–
Schmidt log-norms, varies as a function of the index i when i belongs to the head
and tail regions (and it does not in the body region). Second, the covariance be-
tween vi and vi+2 is 0 for all i, but vi and vi+1 are negatively correlated: in the
head and tail regions, their covariance depends on both i and the block-size β,
but in the body region only the block-size β contributes to their covariance.
These observations quantify the head concavity phenomenon more precisely.

Software. The BKZ experiments were run using the fplll [dt16] (version 5.2.0)
and fpylll [dt17] (version 0.4.0dev) open-source libraries. The efficiency of these
libraries for large block sizes β ≥ 50 was essential for obtaining useful statistics.
Our simulator, coded in Python, and the BKZ variants, coded in C++, are freely
available.

As mentioned earlier, we report experiments on pressed-BKZ with an adap-
tive block-size strategy, for the SVP-120 challenge. We expect our BKZ improve-
ments to be useful in larger dimensions as well (e.g., SVP-150), if given sufficient
computational resources. We want to stress that our primary goal is to model,
predict and exploit the head phenomenon, the SVP-120 experiment being an
illustration of its relevance.

Auxiliary material. We provide a significant amount of material to make our
results reproducible and to report experimental observations in more details.
Concretely, we provide codes (as mentioned above), experimental raw data,
graphs that could not fit within the page limit and video files. Data and links
are provided on the authors’ webpages.

2 Preliminaries

In this section, we recall some basic facts on lattices and lattice reduction. We
refer the reader to the survey [NV09] for more background. We first introduce
the notations used throughout the paper.

Notations. We let lower-case bold letters denote (column) vectors and upper-
case bold letters denote matrices. For a vector x, we use ‖x‖ to denote its `2-
norm. Similarly, a matrix B = (b1, · · · ,bn) is also parsed column-wise. For n ≥ 1
and r > 0, we let Vn(r) denote the volume of an n-dimensional ball with radius r
and vn the volume of an n-dimensional unit ball. Correspondingly, we let cn
denote the radius of an n-dimensional ball of unit volume. Logarithms are in
base 2. For λ > 0, we let Expo(λ) denote the exponential distribution with
density function proportional to x 7→ λe−λx, up to a normalization factor. We
let log denotes the natural logarithm with base e.
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2.1 Euclidean lattices

Let B ∈ Rn×n be full rank. The lattice L generated by B is L(B) = {Bx | x ∈
Zn}, and the matrix B is called a basis of L. We let B∗ = (b∗1, · · · ,b∗n) denote
the Gram–Schmidt orthogonalization of B. The determinant of a lattice L with
basis B is defined as det(L) =

∏
i≤n ‖b∗i ‖. The norm of a shortest non-zero vector

in L is denoted by λ1(L) and called the minimum of L. Minkowski’s theorem

asserts that λ1(L) ≤ 2 · v−1/nn · det(L)1/n. For i ≤ n, we let πi denote the
orthogonal projection onto the linear subspace (b1, · · · ,bi−1)⊥. For i < j ≤ n,
we let B[i,j] denote the local block (πi(bi), · · · , πi(bj)), and L[i,j] denote the
lattice generated by B[i,j].

Lattice reduction. A lattice basis B is called size-reduced, if it satisfies |µi,j | ≤
1/2 for j < i ≤ n where µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉. A basis B is HKZ-reduced if it
is size-reduced and further satisfies:

‖b∗i ‖ = λ1(L[i,n]), ∀i ≤ n.

A basis B is BKZ-β reduced for block size β ≥ 2 if it is size-reduced and satisfies:

‖b∗i ‖ = λ1(L[i,min(i+β−1,n)]), ∀i ≤ n.

Heuristics. Lattice reduction algorithms and their analyses often rely on heuris-
tic assumptions. Let L be an n-dimensional lattice and S a measurable set in
the real span of L. The Gaussian Heuristic states that the number of lattice
points in S, denoted |L ∩ S|, is about vol(S)/ det(L). In particular, taking S
as a centered n-ball of radius R, the number of lattice points contained in the
n-ball is about Vn(R)/ det(L). Furthermore, by setting Vn(R) ≈ det(L), we see

that λ1(L) is about GH(L) := v
−1/n
n · det(L)1/n. Note that this is a factor

of 2 smaller than the rigorous upper bound provided by Minkowski’s theorem.
In [Sch03], Schnorr introduced the Geometric Series Assumption (GSA), which
states that the Gram-Schmidt norms {‖b∗i ‖}i≤n of a BKZ-reduced basis behave
as a geometric series, i.e., there exists r > 1 such that ‖b∗i ‖/‖b∗i+1‖ ≈ r for
all i < n.

Random lattices. We use Γn = {L ∈ Rn | vol(L) = 1} to denote the set of
all full-rank lattices of rank n with unit volume. The distribution of short(est)
vectors in random lattices uniformly chosen in Γn was studied, among others,
in [Rog56,Sch59,Söd11]. In [Che09], Chen proposed the following statement as
a direct corollary of [Söd11, Thm. 1].

Theorem 1. [Che09, Cor. 3.1.4] Sample L uniformly in Γn. The distribution
of vn · λ1(L)n converges in distribution to Expo(1/2) as n→∞.

If we set λ1(L) as a random variable Y = X1/n · GH(L), with X sampled
from Expo(1/2), then the expected value of λ1 is

E(λ1(L)) = 21/n · Γ (1 + 1/n) ·GH(L).
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In lattices of unit volume, the GH(L) term can be replaced by v
−1/n
n . In the rest

of this paper, we refer to this quantity as the minimum expectation. For large n,
this is ≈ (1 + 0.116/n+ o(1/n)) ·GH(L). It can be also seen that the variance is

V(λ1(L)) = 22/n ·
(
Γ (1 + 2/n)− (Γ (1 + 1/n))2

)
·
(
GH(L)

)2
,

which is ≈ π2

6n2 (1 + o(1)) · (GH(L))2 for large n.

2.2 The BKZ algorithm

The Schnorr-Euchner BKZ algorithm [SE94] takes as inputs a block-size β and
a basis B = (b1, · · · ,bn) of a lattice Λ, and outputs a basis which is “close”
to being BKZβ-reduced (up to numerical inaccuracies, as the underlying Gram–
Schmidt orthogonalization is computed in floating-point arithmetic, and up to
the progress parameter δ < 1). BKZ can be seen as a practical variant of
Schnorr’s algorithm from [Sch87]. BKZ starts by LLL-reducing the input ba-
sis, then calls an SVP-solver on consecutive local blocks B[k,min(k+β−1,n)] for
k = 1, · · · , n − 1. This is called a BKZ tour. After each execution of the SVP-
solver, if we have λ1(Λ[k,min(k+β−1,n)]) < δ · ‖b∗k‖, then BKZ updates the block
B[k,min(k+β−1,n)] by inserting the vector found by the SVP-solver between in-
dices k − 1 and k, and LLL-reducing the updated block (in this case, the input
is a generating set instead of a basis). Otherwise, we LLL-reduce the local block
directly, without any insertion. The procedure terminates when no change oc-
curs at all during a tour. We refer to Algorithm 1 for a complete description of
the BKZ algorithm.

Algorithm 1 The Schnorr and Euchner BKZ algorithm

Input: A basis B = {b1, · · · ,bn}, a block size β ≥ 2 and a constant δ < 1.
Output: A BKZβ-reduced basis of Λ(B).
1: repeat
2: for k = 1 to n− 1 do
3: Find any b such that ‖πk(b)‖ = λ1(Λ[k,min(k+β−1,n)])
4: if δ · ‖b∗k‖ > ‖b‖ then
5: LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)).
6: else
7: LLL-reduce(b1, · · · ,bmin(k+β,n)).
8: end if
9: end for

10: until no change occurs.

For practical reasons, there are diverse BKZ variants.

• Early-abort. The BKZ reduction aborts when a selected number of tours are
completed or when a desired output quality has been reached [HPS11].

• SVP-solver. BKZ could be run with any SVP solver; in practice for typical
block sizes, the fastest one is lattice enumeration [Kan83,FP83]; the latter
can be significantly accelerated with tree pruning [SE94] and even further
with extreme pruning [GNR10]. In the case of enumeration with pruning,
the SVP solver is not guaranteed to return a shortest non-zero vector in
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its input lattice. Furthermore, one can set the enumeration radius to either
‖b∗i ‖ or Gaussian heuristic (whichever is smaller). In the experiments of Sec-
tions 3 and 4, we use the enumeration radius 0.99 · ‖b∗i ‖, which is the default
choice in the implementation of BKZ in fplll [dt16]. In the experiments
of Section 5.4, we set the enumeration radius to be 1.05 times the Gaus-
sian heuristic of the local block. In all these cases, the SVP solver is not
guaranteed to return a shortest non-zero vector.

• Pre-processing and post-processing. Pre-processing is performed before the
call to the SVP solver. In the pre-processing step, some strategies (e.g.,
BKZ with a smaller block size) are chosen to further improve the basis.
Post-processing is executed after the call to the SVP-solver, e.g., running
LLL on indices 1 to min(k + β − 1, n), in order to propagate the progress
made at index k.

2.3 The Chen–Nguyen simulator

In [CN11], Chen and Nguyen proposed a simulator to capture the practical be-
havior of BKZ with relatively large block size (e.g., β ≥ 45). The goal was
to estimate the practical behavior of BKZ for hard-to-solve instances. Overall,
the simulation proceeds closely to BKZ. It considers successive tours. For each
tour, it computes new Gram-Schmidt log-norms ˆ̀

1, . . . , ˆ̀
n from current Gram-

Schmidt log-norms `1, . . . , `n. At the beginning of each BKZ tour, a boolean flag
τ is initialized to be true. To update each local block, the simulator first (deter-
ministically) compute the Gaussian heuristic value GH(B[k,min(k+β−1,n)]) as an
estimation of first miminum, by looking at the Gram–Schmidt norms of the cur-
rent local block (except for small blocks in the end). This corresponds to Line 8

of Algorithm 2, we recall that the vd denotes the volume of d-dimensional unit
ball. The computed Gaussian heuristic value is then used to update the current
local block, if it is smaller than the current ‖b∗k‖ (as written in Line 10--11).
Else, the local block is kept unchanged. To update, the first Gram–Schmidt norm
is replaced by the selected value, and the boolean flag τ is flipped once such an
update occurs (as written in Line 12). Once the boolean flag τ is changed, all
the remaining Gram–Schmidt norms, of indices k′ ∈ [k + 1, n− 45] are updated
one by one to GH(B[k′,min(k′+β−1,n)]), independently of whether the current
‖b∗k‖ is already small enough or not (as written in Line 15). At the end of each
tour, there is an additional update of the tail block of length 45 (as written in
Line 19--21). The Gram–Schmidt norms in this tail block are simulated with
the experimental Gram–Schmidt norms of HKZ-reduced bases of 45-dimensional
unit-volume lattices. The experimental Gram–Schmidt norms are prepared in
Line 1--2 of Algorithm 2. This length of 45 was chosen because the minimum
of blocks of dimension ≥ 45 within BKZ follows the Gaussian heuristic quite well
(as observed by the extensive experiments of [CN11]). This special treatment on
the tail block also make the simulator more precise for capturing the practical
behavior of BKZ compared to GSA assumption.
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Algorithm 2 The Chen–Nguyen BKZ simulator

Input: The Gram–Schmidt log-norms {`i = log ‖b∗i ‖}i≤n and an integer N ≥ 1.

Output: A prediction of the Gram–Schmidt log-norms {̂̀i = log ‖b∗i ‖}i≤n after N tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗k‖ : B HKZ-reduced basis of Λ← Γ45]
2: end for
3: for j = 1 to N do
4: τ ← true
5: for k = 1 to n− 45 do
6: d← min(β, n− k + 1); e← k + d− 1

7: log vol(Λ[k,e])←
∑e
i=1 `i −

∑k−1
i=1

̂̀
i

8: g ←
(
log vol(Λ[k,e] − log vd

)
/d

9: if τ = true then
10: if g < `k then

11: ̂̀
k ← g

12: τ ← false
13: end if
14: else
15: ̂̀

k ← g
16: end if
17: end for
18: log vol(Λ[k,e])←

∑n
i=1 `i −

∑n−45
i=1

̂̀
i

19: for k′ = n− 44 to n do

20: ̂̀
k′ ←

log vol(Λ[k,e])

45 + rk′+45−n
21: end for
22: {`1, · · · , `n} ← {̂̀1, · · · , ̂̀n}
23: end for

3 Measuring the head concavity

In this section, we describe in detail the concavity phenomenon in the leading
Gram–Schmidt log-norms. In particular, we report experiments on the quality
of bases output by BKZβ and on the evolution of Gram–Schmidt norms during
the execution of the algorithm.

In our experiments, we consider the knapsack-type lattice bases generated by
the Darmstadt lattice challenge generator. In dimension n, the generator selects
a prime p of bitsize 10 ·n and sets the first basis vector as (p, 0, · · · , 0). For i > 1,
the i-th basis vector starts with a uniformly chosen integer modulo p, and all
other entries are 0 except the i-th entry which is 1. When using the generator
file, the seed is from the set {0, · · · , k − 1}, where k is total number of samples
in the experiment, which enables reproducibility. We always run LLL reduction
before a BKZ reduction. We use the default LLL in fplll of parameter δ = 0.99.

3.1 BKZ output quality

In our first set of experiments, we measure the output quality of the BKZ al-
gorithm. We consider the final reduced basis, for increasing block sizes β. We
let BKZ run until it fully stops and use a full enumeration as SVP-solver (with-
out pruning), to avoid side-effects. We then measure the Gram–Schmidt log-
norms {log ‖b∗i ‖}i≤n of the reduced basis B. In particular, when BKZ completes,
the vector b∗i is a shortest non-zero vector of the lattice Λ[i,i+min(i+β−1,n)] (up
to the 0.99 factor), for every i (see Subsection 2.2).
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As we use BKZ until exhaustion with full enumeration, the experiments are
quite lengthy. We restricted them to dimension n = 100, with selected block
sizes β ranging from 4 to 40. For each choice of β, we conduct the experiment 100
times using input lattices generated with different seeds. For each experiment,
we normalize the log ‖b∗i ‖’s of the reduced basis by substracting one hundredth
of the logarithmic determinants of its input lattice, such that the summation of
the new logarithmic Gram–Schmidt norms is normalized to be 0. This step helps
eliminate the small differences of determinants of all generated lattices. We then
average log ‖b∗i ‖ for each i over the 100 samples.

We plotted the results for the various block sizes in Figures 3–8. The x-
axis corresponds to the basis vector at index i and the y-axis is the Gram–
Schmidt log-norm. Each figure contains several plots: the red dots are the (aver-
aged) experimental log ‖b∗i ‖’s; the brown dots are obtained by applying the
first Minkowski’s theorem to each one of the experimentally obtained local
blocks B[i,i+min(i+β−1,n)] of the output basis; the purple dots are the values
obtained by replacing Minkowski’s theorem by the Gaussian heuristic value
GH(Λ[i,i+min(i+β−1,n)]), and the blue dots are the expected λ1(Λ[i,i+min(i+β−1,n)])
(see Subsection 2.1).
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Fig. 3: Output of BKZ4.
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Fig. 4: Output of BKZ8.
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Fig. 5: Output of BKZ16.
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Fig. 6: Output of BKZ20.
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Fig. 7: Output of BKZ30.
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Fig. 8: Output of BKZ40.

The experiments highlight that the Gaussian heuristic and expected value of
first minimum are not very accurate for predicting the output of the BKZ algo-
rithm (and neither is Minkowski’s theorem, but that is less surprising). For small
block sizes, the experimental Gram–Schmidt log-norms are above the Gaussian
heuristic values. Notice this even appears to happen for the tail blocks for large β.
When the block size increases, the Gaussian heuristic and first minimum expecta-
tion get closer to each other (except in the tail region), but still do not accurately
predict the genuine BKZ output. In particular, the experimental Gram–Schmidt
log-norms are concave in the head region (the other curves are also somewhat
concave, but less so, as they are smoothed versions of the experimental curve).
This is essentially the same as the phenomenon we already observed in Section 1,
which we refer to as head concavity. It starts being quite noticeable with β ≈ 30.

3.2 Enumeration costs in local blocks

The enumeration cost for SVP in each local block is also an interesting quantity
for evaluating the extent of the head concavity of a BKZ-reduced basis. As
explained in [HS07], under the Gaussian heuristic, the full enumeration cost (in
terms of number of nodes enumerated, denoted by “# nodes”) of a d-dimensional
lattice using enumeration radius ‖b∗1‖ can be estimated by

d∑
k=1

1

2
· Vk(‖b∗1‖)∏d

i=d−k+1 ‖b∗i ‖
. (1)

We take the (averaged) BKZ40 preprocessed basis from the previous subsec-
tion and compute the local SVP costs of BKZ50 and BKZ60 on the BKZ40-
preprocessed basis. We also compute the local SVP costs of BKZ40 which can
be considered as the cost for checking that the basis is indeed BKZ40-reduced.
In Figure 9, we plot the logarithm of the quantity above for each local block
of SVP40, SVP50 and SVP60. It can be seen that the local SVP costs in the
first few blocks are cheaper. The enumeration costs keep increasing until the
last β − 1 blocks. These last blocks are of smaller dimensions, explaining why
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their enumeration costs become lower. As cheaper enumeration reflects stronger
reducedness, Figure 9 hints at a concavity of the log ‖b∗i ‖’s in the head.
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Fig. 9: Estimated enumeration costs (of each local block) for BKZ40, BKZ50 and
BKZ60 on a BKZ40 reduced basis.

3.3 Evolution of the Gram–Schmidt norms during the execution

The previous experiments suggest that the Gaussian heuristic may be inaccu-
rate for a BKZ-reduced basis in the head region. Below, we further investigate
the evolution of the accuracy of the Gaussian heuristic for each local block
Λ[i,min(i+β,n)] during the running of the BKZ algorithm. We focus on the evo-
lution of the BKZ40 experiments from Subsection 3.1. After each BKZ tour, we
record {b∗i }i∈[n] for each experiment. Again we use a full enumeration as SVP-
solver (without pruning), to avoid side-effects and wait until BKZ completes.

In Figure 10, we plot the Gram–Schmidt log-norms after each tour (for the
first 1000 tours, plus those of the initial LLL-reduced input). For each BKZ40

experiment, we normalize the log-norms after each tour as in Subsection 3.1.
Furthermore, we take the average of the log-norms for the 100 experiments (one
individual graph would be less smooth). Finally, we plot the log-norms for the
first 1000 tours (one BKZ instance completes before 1000 tours; and after this
one completes, for a given tour number, we take the average over the BKZ
experiments that are running for more than 1000 tours). The dots corresponding
to the earlier tours are colored in blue, and those corresponding to the later tours
are colored in red (the color changes gradually).

The plot shows the evolution of the log-norms across tours. However, it does
not clearly highlight the evolution of the relation between the ‖b∗i ‖’s and the
Gaussian heuristic values. Hence we further compute the quantities

‖b∗i ‖
GH(Λ[i,min(i+β,n)])

for i ≤ n.

Note that this should be expected to be close to 1 for a random lattice, under the
Gaussian heuristic. For each tour, for all indices i, we record all the (averaged)
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quantities at i’s across the 100 experiments. We plot a line for each tour and
hence Figure 11 contains 1001 lines. In Figure 11, the x-axis corresponds to the
index i; the y-axis corresponds to the quantities above. Note that for each i,
there are 1001 dots vertically, corresponding to the number of BKZ tours plus
the initial LLL-reduced input.

Fig. 10: Evolution of the Gram–
Schmidt log-norms during BKZ40’s
execution.

Fig. 11: Evolution of the
‖b∗i ‖/GH’s during BKZ40’s execu-
tion.

As observed in prior works, BKZ distorts the distribution of the projected
lattices: the first projected sublattices are denser (the minimum is smaller) and
the last projected sublattices are sparser. This can be seen from Figure 11 since
the red points are significantly lower than 1 in the first indices. Further, this
distortion occurs often quickly during the execution of BKZ, sometimes within
a few tours.

3.4 Evolution of root Hermite factor of the basis

We now consider the asymptote of the root Hermite factor of the basis being
BKZ-reduced, as the number of BKZ tours increases. A similar experiment was
done in [HPS11]. We compare the experimental behavior to the Chen–Nguyen
simulator. Note that the root Hermite factor only measures the head concavity
phenomenon for the first basis vector. We fix the block size at β = 45 and run
BKZβ on 100 random instances. After each tour, we record the average root
Hermite factor. In Figure 23 (we also duplicate it here for convenience), we plot
the averaged root Hermite factors over all experiments. The root Hermite factor
δ is computed as:

δ = (‖b∗1‖/ (detΛ)
1/n

)1/n.

It can be seen that the evolution of the root Hermite factor does not match with
its prediction by the Chen–Nguyen simulator. Indeed, the root Hermite factor
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obtained with the Chen–Nguyen simulator does not further improve after the
first few tours; while it keeps improving in the actual experiments. It should also
be noted that in the first few tours, the root Hermite factors in the actual experi-
ments are worse than those of the Chen–Nguyen simulation. In the experiments,
we do not use pruned enumeration nor early-abort. One potential reason is that
the local SVP solver used only attempts to find a vector slightly smaller than
‖b∗i ‖ (instead of the Gaussian heuristic value). As the number of tours increases,
the root Hermite factors in experiments become smaller than those obtained by
the Chen–Nguyen simulator.

0 10 20 30 40 50

1.012

1.014

1.016

1.018

i-th tour

R
o
o
t
H
e
rm

it
e
fa
c
to

rs

Experiments

Chen–Nguyen simulator

Fig. 12: Evolution of Root Hermite factors during the execution of BKZ45.

3.5 BKZ with pruning

All of the previous experiments used BKZ without pruning to avoid side-effects
on the quality. The purpose of this subsection is to show that using extreme
pruning within the enumeration indeed affects the behavior of BKZ to some
extent (this was also observed in [YD17]). Nevertheless, the head concavity phe-
nomenon remains visible even in pruned-enumeration BKZ. Again we run the
BKZ experiments until they fully complete (i.e., no early-abort).

We consider two experiments. First, we run BKZ40 with pruned enumeration
and compare it with standard BKZ40.We used the default pruning strategy of
fplll. We note that there is no known canonically best way to prune, and the
experimental results may vary a little across different pruning strategies. We
see by comparing Figure 13 (with pruned enumeration) with Figure 8 (without)
that the extent of the head concavity phenomenon is less than without pruned
enumeration. In the second experiment, we run BKZ with pruned enumeration
with larger block size, which is also more relevant to cryptanalysis. In particular,
we run BKZ60 with pruned enumeration and then plot the evolution of the
corresponding ‖b∗i ‖/GH’s (for the first 500 tours) in Figure 14. This is to be
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compared with Figure 11. We can conclude that the head concavity phenomenon
still exists for practical versions of BKZ with larger block sizes.
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Fig. 13: Output Gram–Schmidt log-
norms for BKZ40 with pruning.

Fig. 14: Evolution of the ‖b∗i ‖/GH’s
during the execution of BKZ60 with
pruning.

4 A refined BKZ simulator

In this section, we describe a refined BKZ simulator, and report on experiments
indicating that the simulation is quite accurate, in particular in capturing the
head concavity phenomenon.

4.1 The refined simulator

Our probabilistic BKZ simulator aims to provide a more accurate simulation
of the experimental behavior of the BKZ algorithm. Our simulator has similar
structure as the Chen–Nguyen simulator (refer to Subsection 2.2), in particular,
we also consider the Gram–Schmidt log-norms. There are several differences with
the Chen–Nguyen simulator.

The main difference is the emulation of the probabilistic nature of the min-
imum in random lattices. Theorem 1 provides the distribution of the mini-
mum of a uniform unit-volume lattice. The new BKZ simulator, given as Al-
gorithm 3, is probabilistic. It takes this distribution into consideration when
updating each local block. In more detail, suppose that we are updating the
local block Λ[k,e] = Λ(B[k,e]) for some k ≤ n − 45 and e = min(k + β − 1, n)
with dimension d = min(β, n − k + 1). Let us assume this is a random lattice.
By Theorem 1, we have that λ1(Λ[k,e]) is distributed as

λ1(Λ[k,e]) =

(
X · vol(Λ[k,e])

vd

)1/d

,
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where X is sampled with distribution Expo[1/2]. Recall that vd is the volume of
n-dimensional unit ball. Now we can take the logarithm to obtain

log λ1(Λ[k,e]) =
logX + log vol(Λ[k,e])− log vd

d
.

This explains Line 14 in Algorithm 3. In Line 15, the simulator checks whether
a value sampled as above, e.g., log ‖b∗k‖, is smaller than the current log ‖b∗k‖. If
it is indeed smaller, then the value of log ‖b∗k‖ is updated. Else the former one is
kept. This is corresponding to the main step in the BKZ algorithm (Line 4--7):
once the found vector (in the SVP call) is shorter than current b∗i in current
local block, then the found vector will be used to replace bi, thus b∗i is updated.
Otherwise the found vector will be discarded, and the simulation assumes that
b∗i is not changed during the LLL-reduction.

A further difference with the Chen–Nguyen simulator is the way we han-
dle the remaining Gram–Schmidt log-norms in the current local block in case
log ‖b∗k‖ has been updated. In the Chen–Nguyen simulator, after updating the
first Gram–Schmidt log-norms log ‖b∗k‖ in the current local block, all the re-
maining log-norms log ‖b∗i ‖ for i > k will be updated by using the Gaussian
heuristic directly without further checking whether the estimated value gives
an improvement or not (refer to Algorithm 2). In our simulator, we consider
a refined update of the remaining log ‖b∗i ‖’s of the block. Concretely, we up-
date all the remaining indices in the current local block by increasing them by
a common amount chosen so that the volume of current block is preserved (it
compensates for the decrease of log ‖b∗k‖). There is one further subtlety in the
actual update applied by the simulator. For the second Gram–Schmidt log-norm
of the block, it sets ̂̀k+1 ← `k + log(

√
1− 1/d) rather than increasing it by the

same amount as for the d − 2 remaining log-norms. The quantity
√

1− 1/d is
used to simulate the change in norm for the old vector b∗k after being projected
with respect to a new vector (the shortest vector of the local block inserted).
We assume that the coefficients of the shortest vector in terms of the normalized
Gram–Schmidt basis (b∗1/ ‖b∗1‖ ,b∗2/ ‖b∗2‖ , · · · ,b∗n/ ‖b∗n‖) looks like a uniformly
distributed vector of the same norm. This twist also occurs in experiments: the
updated second Gram–Schmidt norm is almost always a bit smaller than the
old first Gram–Schmidt norm of the block. Such a strategy also makes the sim-
ulator more flexible. In the new simulator, it is not necessary to update all the
remaining blocks with the value estimated by the Gaussian heuristic once we
have an update: the simulator makes an update only when needed, i.e., when an
improving Gram–Schmidt norm is sampled.

We also use two sets of boolean values {t(i)0 }i≤n and {t(i)1 }i≤n, to record if
there is a change of log ‖b∗i ‖ in the last and the current tours, respectively. If we
know there was no change at all in current local block during the last tour, we
simply skip the current block and go to the next one. Correspondingly, in BKZ,
it means that the found shortest vector in current block in this tour will be the
same as the one in current block in last tour. As it was not used to make an
update during the last tour, so will it not be used in this tour.

17



Algorithm 3 The probabilistic BKZ simulator

Input: The Gram–Schmidt log-norms {`i = log ‖b∗i ‖}i≤n and an integer N ≥ 1.
Output: A prediction of the Gram–Schmidt log-norms after N tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗k‖ : B HKZ-reduced basis of Λ← Γ45]
2: end for
3: t

(i)
0 ← true, ∀i ≤ n

4: for j = 1 to N do

5: t
(i)
1 ← false, ∀i ≤ n

6: for k = 1 to n− 45 do
7: d← min(β, n− k + 1); e← k + d
8: τ ← false

9: for k′ = k to e do τ ← τ‖t(k
′)

0
10: end for
11: log vol(Λ[k,e])←

∑e−1
i=1 `i −

∑k−1
i=1

̂̀
i

12: if τ = true then
13: X ←↩ Expo[1/2]
14: g ← (logX + log vol(Λ[k,e])− log vd)/d
15: if g < `k then

16: ̂̀
k = g

17: ̂̀
k+1 ← `k + log(

√
1− 1/d)

18: γ ← (`k + `k+1)− (̂̀k + ̂̀k+1)
19: for k′ = k + 2 to e do
20: ̂̀

k′ ← `k′ + γ/(d− 2)

21: t
(k′)
1 ← true

22: end for
23: τ ← false
24: end if
25: end if
26: {`k, · · · , `e−1} ← {̂̀k, · · · , ̂̀e−1}
27: end for
28: log vol(Λ[k,e])←

∑n
i=1 `i −

∑n−45
i=1

̂̀
i

29: for k′ = n− 44 to n do

30: ̂̀
k′ ←

log vol(Λ[k,e])

45 + rk′+45−n

31: t
(k′)
1 ← true

32: end for
33: {`1, · · · , `n} ← {̂̀1, · · · , ̂̀n}
34: {t(1)0 , · · · , t(n)

0 } ← {t
(1)
1 , · · · , t(n)

1 }
35: end for

As the Chen–Nguyen simulator is deterministic, it terminates relatively fast,
within a few hundreds of tours typically. Oppositely, our probabilistic simulator
may perform far more tours and continue making further (though smaller and
smaller) Gram–Schmidt progress. Another difference between the behaviors of
the simulators comes from the fact that the expectation of a given sample (g in
Line 14 of Algorithm 3) for updating each local block in our simulator is slightly
larger than the one used in the Chen–Nguyen simulator that uses the Gaussian
heuristic (but they are closer to each other as the block size increases). As a
result, the sampled value for the first minimum of a local block can be slightly
larger than in the Chen–Nguyen simulator. However (and more importantly), the
chosen value can also be smaller than the Gaussian heuristic, and in fact smaller
than the current value even if that one is already quite small. This is exactly
what makes the Gram–Schmidt log-norms progress further in the simulations
and makes the simulations closer to the practical behavior of BKZ.
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4.2 Heuristic justification

We now give a heuristic explanation as to why the probabilistic simulator (and
BKZ) keeps making progress even after some significant amount of time. Every
time it considers a block, it keeps trying to find a shorter vector than the current
first vector of the block, thanks to fresh random sampling. Let X ←↩ Expo(1/2)
and Y = X1/n. Assume for simplicity that there is only one block (i.e., n = β)
and that the lattice Λ has been scaled so that the volume of the lattice is 1,
which implies that λ1(Λ) has the same distribution as Y . The CDF of Y is

F (y) = 1− e−y
n/2.

Let Ymin,K be the minimum among K independent Yi’s. Its CDF and PDF are

Fmin,K(y) = 1− e−Ky
n/2 and fmin,K(y) = Knyn−1e−Ky

n/2/2,

respectively. We can hence compute the expected value

E(YK,min) = (2/K)1/n · Γ (1 + 1/n) = E(λ1(Λ))/K1/n.

One sees that the expectancy keeps decreasing, although much more slowly as
K increases. Notice that K here can be regarded as proportional to the number
of tours in our probabilistic simulator. We conjecture that BKZ is enjoying a
similar phenomenon.

This simple model does not work for explaining BKZ with a single block
(because for a single block, once the SVP instance has been solved, it cannot
be improved further). In the more interesting case where β < n, the fact there
are many intertwined blocks helps as an improvement for one block ‘refreshes’
the neighbouring blocks, which then have a chance to be improved. In this case,
however, this simple model does not capture the impact of one block on the
neighbouring blocks, nor the fact that the SVP instances across blocks are not
statistically independent (in particular, the blocks overlap).

4.3 Quality of the new simulator

In this subsection, we describe experiments aiming to assess the accuracy of
our probabilistic BKZ simulator. We measure the quality of our simulator by
comparing with the practical BKZ and the Chen–Nguyen simulator using two
quantities: the Gram–Schmidt log-norms after certain tours and the root Hermite
factors. We then describe some limitations of our simulator.

(a) Graph of Gram–Schmidt log-norms. In practice, the full sequence of
Gram–Schmidt log-norms is important for evaluating the quality of a basis. For
example, if we extrapolate the log-norms by a straight line, the slope of the line
can be used to indicate whether the basis is of good quality or not. For this
reason, we are interested in how accurately the simulator predicts the evolution
of the full sequence of Gram–Schmidt log-norms during the BKZ execution.
We consider the following two experiments: (1) The input lattices are SVP-100
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instances and we use BKZ45 without pruned enumeration up to 2, 000 tours. For
this experiment, the setup is the same as the one used in Subsection 3.4. We
plot the averaged Gram–Schmidt log-norms at tours 50 and 2, 000. (2) The input
lattices are SVP-150 instances and we use BKZ60 with pruned enumeration up to
20, 000 tours. Note some experiments (and simulation) completes before 20, 000
tours. In such cases, we take the Gram–Schmidt log-norms of the basis obtained
at completion. We plot the averaged Gram–Schmidt log-norms at tours 50 and
20, 000 (or the last Gram–Schmidt log-norms if it completes before 20, 000 tours).
We record the full log-norm sequences at the end of selected tours. As shown in
Figures 15–22, after a few tours, both the new BKZ simulator and the Chen–
Nguyen simulator approach the experimental behavior of BKZ. As the number
of BKZ tours increases, both the experimental BKZ and the probabilistic BKZ
simulator evolve, and the corresponding log-norms eventually become concave
in the head region. However, the Chen–Nguyen simulator stops making progress
after a few tours. By comparison, the new simulator fits the experimental results
quite accurately in both situations.
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Fig. 15: Gram–Schmidt log-norms for
BKZ45 at tour 50.
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Fig. 16: Same as left hand side, but
zoomed in.
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Fig. 17: Gram–Schmidt log-norms for
BKZ45 at tour 2, 000.
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Fig. 18: Same as left hand side, but
zoomed in.
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Fig. 19: Gram–Schmidt log-norms for
BKZ60 at tour 50.
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Fig. 20: Same as left hand side, but
zoomed in.
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Fig. 21: Gram–Schmidt log-norms for
BKZ60 at tour 20, 000.
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Fig. 22: Same as left hand side, but
zoomed in.

(b) Root Hermite factor. In Subsection 3.4, we have seen that the asymp-
totes (for a large number of tours) of the root Hermite factors obtained with
the genuine BKZ algorithm and the Chen–Nguyen simulator diverge. Here in
Figures 23 and 24, we investigate the behavior of the root Hermite factor ob-
tained with the new probabilistic simulator, when the number of tours increases.
One can observe that, after a few tours, the probabilistic simulator predicts the
experimental data more closely. One can also observe that, in the very first sev-
eral tours, neither the Chen–Nguyen simulator nor the probabilistic simulator
is very accurate. In the case of pruned enumeration, the experimental root Her-
mite factors seem to drop faster than in the simulators; while with non-pruned
enumeration, the root Hermite factors in experiments evolve more slowly. This
may be due to the algorithmic and implementation complications brought by
the pre-processing, the SVP solver, pruning and post-processing.
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mite factor during the execution of
BKZ60 (with pruned enumeration)
on SVP-150.

(c) Limitations of the new simulator. The probabilistic simulator does not
fully match with the experimental behavior of BKZ in the first few tours. In
particular, the progress of the real Gram–Schmidt log-norms with BKZ with
non-pruned enumeration is slower than the simulator’s (refer to Figure 23). One
potential reason is the local SVP solver only attempts to find a vector slightly
smaller than ‖b∗i ‖ (instead of the Gaussian heuristic value). On the other hand,
it may be observed that the progress of the real Gram–Schmidt log-norms is a bit
faster than the simulated log-norms in the very first BKZ tours, for BKZ with
pruned enumeration (refer to Figure 24) in these experiments. One potential
reason could be that the pruned enumeration uses extensive pre-processing in a
local block (which is not captured by the simulator), and this helps to lower the
root Hermite factor in the beginning of the execution. However, as soon as the
number of tours increases, the probabilistic phenomenon seems to weigh more
and the new simulator becomes accurate.

Next, we verify if the preprocessing indeed helps make the experimental root
Hermite factor decrease faster than the corresponding quality in the simulator.
To verify the impact of preprocessing in pruned enumeration, we run BKZ60

(with pruned enumeration) without pre-processing on SVP150 instances. We plot
the root Hermite factor of the basis after each tours (up to 100 tours). Each data
is taken averaged over 100 results. As shown in Figure 25, the BKZ variant with-
out pre-processing makes progress no faster than the simulator. This suggests
that pre-processing indeed accelerates the progress made by BKZ. On the other
hand, we can also observe that without preprocessing, the root Hermite factor
decrease slower than the corresponding quality in the simulator. One possible
reason for this could be that the vector found by extreme pruning in each local
block may be longer than the minimum of the local lattice.

In conclusion, it seems quite difficult to use the simulator to estimate the
precise evolution of Gram–Schmidt log-norms for the first few tours due to the
following two reasons: (1) we are not clear about how much improvement is
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Fig. 25: Comparison of Gram–Schmidt log-norms obtained by the simulators and
BKZ60 (no pre-processing) on SVP-150, after 4,000 tours.

provided by the pre-processing; (2) we do not have a precise understanding on
the distribution of norms of vectors output by the enumeration (ideally with
pruning). On other other hand, after the first few tours, the simulator seems to
be more accurate when estimating the Hermite factors, which is important for
cryptographic applications.

4.4 Predicting the root Hermite factor for large block sizes

As our proposed simulator predicts real BKZ quite well for the range of block
sizes for which such experiments can be run, we expect that our simulator keeps
this accuracy for larger block sizes. This is in particular relevant in cryptanalysis
and for security analyses of concrete lattice-based cryptosystems. Indeed, many
of the existing security analyses rely on the root Hermite factor predicted by
the Chen–Nguyen simulator (see [ACD+18] and the references therein), which,
as we have seen, is an over-estimate. We thus run the simulators for large block
sizes and large dimensions, to assess how the discrepancy scales.

In this experiment, we consider two cases:

(1) the dimension n is much larger than the block-size β.
(2) the dimension n is a small constant times larger than the block-size β.

The Case (1) is a scenario often considered to assess the quality of BKZ-type
algorithms (see, e.g., [CN11]). On the other hand, in practice, we are also inter-
ested in Case (2) where the dimension/block-size ratio is small. This is a typical
situation for the lattice-based NIST candidates (see [ACD+18]). Concretely, in
the first case, we run our simulator of BKZ with block-size β ∈ [50, 250] on 1000-
dimensional lattices and our simulator on BKZ with block-size β ∈ [260, 300] in
2000-dimensional lattices, both with 20,000 tours. In the second case, we run
the same experiment as above except with a fixed ratio of 3 between dimension
and block-size. Each data point is averaged over 10 samples. We plot the root
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Fig. 27: Root Hermite factor for se-
lected β ∈ {50, 60, · · · , 300}. Here
the dimension is 3 · β.

Hermite factor corresponding to the Gram–Schmidt log-norms output by our
simulator.

As can be seen in Figures 26–27, for large block sizes, the discrepancy van-
ishes: both simulators converge to the same root Hermite factors. This may be ex-
plained by considering the distribution of the minimum of a uniform unit-volume
lattice, used in the probabilistic simulator. The expectation is 21/β ·Γ (1 + 1/β),
which converges to 1, the Gaussian heuristic value (when β grows to infinity).
Further, as we have seen in Subsection 2.1, the variance of the selected value is

22/β ·
(
Γ (1 + 2/β) − (Γ (1 + 1/β))2

)
· v−2/ββ , which decreases to 0 as O(1/β2),

making the distribution “more concentrated” and lowering the chance of being
“lucky” in finding unexpectedly short vectors in local lattices.

5 Pressing the concavity

In this section, we propose a new BKZ variant. For practical purposes, we further
twist this new algorithm with several different strategies. We also quantify the
quality of the obtained lattice bases.

5.1 Pressed-BKZ

Below, we first describe the new BKZ variant, pressed-BKZ, and then explain
why it provides an improvement. Pressed-BKZ is described as Algorithm 4.

The pressed-BKZ algorithm runs standard BKZ on block Λ[s,n] with an in-
crementally increased starting index s ∈ [1, n− β + 1]. In particular, in the case
of s = 1, pressed-BKZ executes standard BKZ. Note that in Line 12, “no change
occurs” means that no local block was updated during the last tour (from k = s
to k = n − 1). The difference between pressed-BKZ and standard BKZ starts
with s > 1. At that stage, it does not run BKZ on the full lattice basis anymore.
Instead, it freezes the first s − 1 lattice vectors {bi}i∈[1,s−1] and re-randomizes

24



Algorithm 4 The pressed-BKZ algorithm

Input: A basis B = {b1, · · · ,bn}, a block-size β ≥ 2 and a constant δ < 1.
Output: A basis of Λ(B).
1: for s = 1 to n− β + 1 do // progressive starting point
2: Re-randomize the projected lattice Λ[s,n].
3: repeat
4: for k = s to n− 1 do
5: Find b such that ‖πk(b)‖ = λ1(Λ[k,min(k+β−1,n)])
6: if δ · ‖b∗k‖ > ‖b‖ then
7: LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)).
8: else
9: LLL-reduce(b1, · · · ,bmin(k+β,n)).

10: end if
11: end for
12: until no change occurs (or other condition).
13: end for

the projected lattice Λ[s,n], then runs stardard BKZ on the projected lattice.
Note that the re-randomization is necessary, otherwise after the BKZ reduction
on Λ[1,n], no improvement will happen in BKZ reduction on Λ[2,n] in the second
iteration and either in the following iterations. In particular, in the second iter-
ation, the re-randomization helps randomize the basis vectors of the projected
lattice Λ[2,n], thus gives a chance of generating a denser leading block of Λ[2,n]

via BKZ reduction. The re-randomization on the projected lattice is done via
tranforming the basis of the projected lattice with a unimodular matrix. Here,
we use the unimodular matrix generated in the fplll library.

The design rationale is as follows. Suppose BKZ creates a head concavity
for the Gram–Schmidt log-norms. Then the first iteration with s = 1 will help
to lower log ‖b∗1‖. The iteration with s = 2 will preserve log ‖b∗1‖ and help to
lower log ‖b∗2‖, etc. This explains the name of the algorithm.

5.2 On the behavior of pressed-BKZ

The goal of pressed-BKZ is to further improve the quality of bases obtained by
the original BKZ algorithm without a block-size increase. In order to illustrate
the idea, we run standard BKZ60 on 120-dimensional random lattices (generated
in the same way as mentioned at the start of Section 4) with 500 tours (i.e., with
early-abort) first, and then run pressed-BKZ with the same number of tours in
each iteration with start index s = 2. Each data point is averaged over 100
samples. As shown in Figure 28, pressed-BKZ successfully presses the “head
concavity” that was produced by the standard BKZ algorithm.

From the experiment above, we can already see that pressed-BKZ produces a
basis with better quality, as its corresponding Gram–Schmidt log-norms achieve
a smaller slope. Next, we try to assess by how much pressed-BKZ improves stan-
dard BKZ in this respect. We first adapt the simulator for BKZ from Section 4
in the direct way to simulate pressed-BKZ. Before we go further, we check the
accuracy of our simulator when simulating the behavior of pressed-BKZ by run-
ning the same experiment above, but with the simulator. As shown in Figure 29,
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our simulator produces a result that is close to the one experimentally obtain
with pressed-BKZ.

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

Index i

lo
g
‖b

∗ i
‖

BKZ60

pressed-BKZ60

Fig. 28: Full sequences of Gram–
Schmidt log-norms of bases returned
by BKZ60 and pressed-BKZ60.
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by BKZ60, pressed-BKZ60 and simu-
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Now we have an accurate simulator for pressed-BKZ, we can proceed to check
the behavior of pressed-BKZ further. For this, we run our simulator of pressed-
BKZ for block-sizes between 50 and 300, with many tours. We again consider
two cases: (1) the dimension n is much larger than the block-size β; (2) the
dimension n is a small constant times larger than the block-size β. In the first
case, we simulate pressed-BKZ with block-size β ∈ [50, 250] on 1,000-dimensional
lattices with 5,000 tours for each iteration, and pressed-BKZ with block-size
β ∈ [260, 300] on 2,000-dimensional lattices with 10,000 tours. Each data is
averaged over 10 samples. In the second case, we run the same experiment as
above except with the dimension/block-size ratio set to 3. Further, we recall the
Chen–Nguyen simulator for a comparison. Note that we can also adapt the Chen–
Nguyen simulator for pressed-BKZ, which however, gives a same result as the
simulation for standard BKZ. Here, we use the extrapolated slope to evaluate the
quality of a reduced basis. To compute the slope, we fit the Gram–Schmidt log-
norms with a line using the least square method of fplll and fpylll. Note that
the default implementation in fplll and fpylll computes the slope using the
Gram–Schmidt log-norms multiplied by 2. Here we compute the slope using the
Gram–Schmidt log-norms only. As we can see in Figure 30, there is a difference
between our simulator for pressed-BKZ and the Chen–Nguyen simulator (for
standard BKZ), which means our simulator for pressed-BKZ may be used to
make a severer cryptanalysis on lattice-based cryptography compared to the
Chen–Nguyen simulator.

As can be seen in Figure 31, when the dimension is relatively close to the
block-size, our simulator for pressed-BKZ outputs the Gram–Schmidt norms
with slope more significantlly better than the one output by the Chen–Nguyen
simulator. In particular, for small block-size β = 50, our simulator for pressed-
BKZ can produce Gram–Schmidt norms with slope almost equal to the one
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produced by the Chen–Nguyen simulator for standard BKZ with block-size 85.
Thus we earn almost 35 dimensions while only relying on an SVP solver in
dimension 50. The difference becomes very small when the block-size considered
is larger than 200.
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Fig. 30: Comparison of the slopes
of Gram–Schmidt log-norms be-
tween our simulator for pressed-BKZ
and the Chen–Nguyen simulator for
standard BKZ for selected β ∈
{50, 60, · · · , 300}. Here the dimen-
sion is 1000 for β ∈ [50, 250] and 2000
for β ∈ [260, 300].
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Fig. 31: Comparison of the slopes
of Gram–Schmidt log-norms be-
tween our simulator for pressed-BKZ
and the Chen–Nguyen simulator for
standard BKZ for selected β ∈
{50, 60, · · · , 300}. Here the dimen-
sion is 3 · β.

5.3 Variable block-size strategy

Pressed-BKZ helps improve the quality of the basis such that its Gram–Schmidt
log-norms approximate a line. However, the concavity phenomenon may still ex-
ist within each iteration during pressed-BKZ. Concretely, in the BKZβ reduction
for each projected sub-lattice Λ[s,n] for s ∈ [1, · · · , n−β+1], one can still observe
the head concavity phenomenon after a few tours of the BKZ algorithm. As a
result, the costs of solving SVP instances in the leading blocks become less than
those for the middle blocks (we refer to Subsection 3.2 for the correspondence
between quality of basis and enumeration cost for SVP).

We adapt the variable block-size strategy from [AWHT16]. The principle of
the variable block-size strategy is to adaptively use larger block-sizes for the
leading blocks, so that their enumeration costs match the enumeration costs for
the middle blocks. We use the following simple variant: for the case of BKZβ
on the projected (n− s+ 1)-dimensional sub-lattice, we always take the specific
block Λ[k,e] in the middle with k = bn/2c − bβ/2c+ bs/2c+ 1 and e = bn/2c+
bβ/2c + bs/2c as the standard SVP cost for comparison. When the estimated
SVP cost for any leading block is smaller than the cost of this middle block, we
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progressively increase the block-size of the current leading block until its SVP
cost matches the standard SVP cost. Correspondingly, we only use the variable
block-size strategy for those leading blocks, with starting index not exceeding k
(the starting index of the selected middle block).

Note that if such variable block-size strategy improves standard BKZ, then it
is likely to improve pressed-BKZ: if the variable block-size strategy can decrease
the first Gram–Schmidt norm of the projected lattice Λ[k,n] (for k from 1 to
n − β + 1) a little more (compared to standard BKZ without such a strategy),
then the improvement from each iteration will eventually contribute to the final
pressed-BKZ reduced basis. Thus we will only consider such variable block-size
strategy with standard BKZ. As our simulator seems to be precise on the quality
of BKZ, we first compare BKZ with and without such a variable block-size
strategy using our simulator.

We run the simulation (100 instances) for BKZ60 (with and without the
variable block-size strategy) and plot the average root Hermite factor after each
tour. As shown in Figures 32 and 33, BKZ with variable block-size makes the
root Hermite factor decrease slightly faster. It seems that the difference becomes
smaller when the number of tours increases. However, we also notice that after
sufficiently many tours, such a difference reoccurs as shown in Figure 33. One
can observe that the largest gap in Figure 33 is less than 0.0001. Thus we may
conclude that the variable block-size strategy helps improve the root Hermite
factor faster. However, it does not seem to give a significant improvement on the
root Hermite factor itself.
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Fig. 32: Comparison of root Hermite
factors of simulated BKZ with and
without variable block-size. The sim-
ulation is performed with our new
simulator up to 40 tours.
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Fig. 33: Comparison of root Hermite
factors of simulated BKZ with and
without variable block-size. The sim-
ulation is performed with our new
simulator up to 2,000 tours.

Next, we run experiment to verify if the variable block-size strategy indeed
helps decreasing the root Hermite factor faster (and check if this matches the
simulated results). We run standard BKZ60 with and without variable block-
size on an SVP-120 instance from the Darmstadt lattice challenge. We plot the
average root Hermite factor (over 100 samples) after each tour. As can be seen in

28



Figure 34 and 35, the convergence of root Hermite factor of basis output by the
standard BKZ60 with variable block-size is slightly better than the one output
by BKZ60 without such strategy.
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Fig. 34: Comparison of root Hermite
factors of standard BKZ60 with and
without variable block-size within 40
tours.
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Fig. 35: Comparison of root Hermite
factors of standard BKZ60 with and
without variable block-size within
2,000 tours.

5.4 Solving SVP-120 with pressed-BKZ

In this subsection, we use pressed-BKZ for the preprocessing phase to solve an
SVP-120 challenge, to demonstrate its practical relevance. We are interested in
the quality of pressed-BKZ-reduced bases as reflected by the total enumeration
cost, i.e., the sum the preprocessing and enumeration costs, divided by the suc-
cess probability. In the experiment, we consider an SVP challenge of dimension
120 (generated using the Darmstadt lattice challenge generator) and preprocess
it using pressed-BKZ60 with the adaptive block-size strategy described in the
previous subsection. The preprocessing took a total 5× 105 seconds on an Intel
Xeon processor of 2.67GHz (the enumeration speed is 2× 107 nodes per second
and hence the runtime corresponds to an enumeration tree of 1× 1013 nodes).

Comparison with standard BKZ. We first investigate the quality of the
pressed-BKZ60-reduced basis in terms of BKZ-reducedness. The aim is to find
the block-sizes β (and the number of tours) for which the output of standard
BKZβ would be of similar quality. This suggests that the bases produced by
pressed-BKZ60 and standard BKZβ have similar full enumeration cost.

We have to determine some criterion for the quality of bases. Essentially, one
wants to compare the pruned enumeration cost of the pressed-BKZ60-reduced
basis with the pruned enumeration cost of the standard BKZβ-reduced basis. As
a first approximation, we compute the full enumeration cost of BKZβ-reduced
basis (right after each BKZ tour) and stop as soon as it is close to the full
enumeration cost for the pressed-BKZ-reduced basis. This also gives us roughly
the number of tours needed for BKZ with the corresponding block-size to achieve
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a similar quality as our basis reduced by pressed-BKZ60. A better approach,
which we did not implement, would be to invoke the pruning optimizer right
after each local SVP to estimate the enumeration cost and stop as soon as it is
close to the pruned enumeration cost for the pressed-BKZ reduced basis.

Instead of doing the actual BKZβ experiment for all candidate blocksizes, we
first use simulation to find the most competitive blocksizes. As investigated in
Section 4, the probabilistic simulator seems quite precise after the first few tours:
if the number of tours involved in the simulation is tiny, we conduct true BKZ
experiments for confirmation. After we have determined the most appropriate
blocksizes β, we conduct true BKZ experiments for these blocksizes to double-
check their quality and run-time (as opposed to simulation).

To start with, we have to determine some suitable searching range for the
block-size β. As we already saw, in the case where the dimension is not much
larger than the block-size, the quality of a basis reduced by pressed-BKZ60 can
be quite superior to that obtained by using BKZβ for β > 60. Thus we try sev-
eral larger blocksizes starting for β = 70, 75, 80, 85, 90. For each blocksize β, the
Gram–Schmidt norms of standard BKZβ are simulated by the probabilistic sim-
ulator. We start with the LLL-reduced basis of the SVP-120 input and average
over the 100 simulations for each β. We set a maximum of 50, 000 tours in the
simulator but break as soon as (if possible) the full enumeration cost is smaller
than the full enumeration cost of our reduced pressed-BKZ60.

0 20 40 60 80 100 120

6

7

8

Index i

lo
g
‖b
∗ i
‖

Pressed-BKZ60

Sim. BKZ70 (50000 tours)

Sim. BKZ75 (50000 tours)

Sim. BKZ80 (7408 tours)

Sim. BKZ85 (6 tours)

Sim. BKZ90 (2 tours)
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of experimental pressed-BKZ60 and
BKZ90 (28 tours).

For blocksizes 70 and 75, the full enumeration cost cannot beat the full enu-
meration cost of pressed-BKZ60 reduced basis within the limit of 50, 000 tours
and therefore terminates. For other blocksizes, after the simulator terminates,
we compute the (average) minimum number of tours needed. They are listed in
the legend of Figure 36. In Figure 36, we also plot the Gram–Schmidt log-norms
of the pressed-BKZ60-reduced basis along with the average simulated Gram–
Schmidt log-norms of the output bases of standard BKZβ (for the relevant num-
bers of tours). One can observe that, at the point of termination, the simulated
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Gram–Schmidt log-norms have comparable shape as the pressed-BKZ60 reduced
basis. We confirm this by examining their full enumeration cost in Table 1. The
full enumeration cost is tabulated for each (averaged) simulated basis. As a con-
clusion, it can be seen that the most competitive blocksizes are 85 and 90: the
number of tours involved for blocksizes 70, 75, 80 are too large.

So far, we have only judged the quality of the preprocessed basis using simu-
lation. It should be noted that the probabilistic simulator may not to be accurate
when the number of tours involved are tiny (see Subsection 4.3). This is the case
for blocksizes 85 and 90. Therefore, instead of simulation, we conduct actual
BKZ85 and BKZ90 experiments with the LLL-reduced basis as input: we used a
parallel implementation of the BKZ algorithm implemented in fpylll and ran
BKZ90 on the LLL-reduced basis with 280 cores. The local SVP solver attempts
to find a vector smaller than 1.05 times the Gaussian heuristic of the local block.
Also, if too many trials have been attempted without a success, then it moves
to the next block. Therefore, the number of tours in experiments could be larger
than in simulations (but each local SVP takes less time).

Table 1: Estimated enumeration cost to solve the SVP-120 instance. The row
“Full of Sim.” records the full enumeration cost (number of nodes) based on the
simulated preprocessed basis. The row “Full of Exp.” records the full enumera-
tion cost on BKZ85 and BKZ90-reduced bases (from experiments) after 100 tours
and 28 tours respectively. The row “Prune of Exp.” records the cost for pruned
enumeration for Pressed-BKZ60 and BKZ90 reduced basis (from experiments): it
includes the costs of all trial enumerations and the cost of preprocessing before
each trial enumeration (but excludes the initial preprocessing cost).

Pressed-BKZ60 BKZ70 BKZ75 BKZ80 BKZ85 BKZ90

Full of Sim. n/a 6.83× 1027 3.21× 1027 1.17× 1027 1.15× 1027 0.83× 1027

Full of Exp. 1.21× 1027 n/a n/a n/a 2.64× 1027 1.35× 1027

Prune of Exp. 5.9× 1013 n/a n/a n/a n/a 6.3× 1013

In the experiments, we aborted the BKZ90 execution right after the full enu-
meration cost of the current basis is similar to (if possible) that of the pressed-
BKZ60-reduced basis. Then we used the previous BKZ tour (where the full enu-
meration cost was slightly larger than that of the pressed-BKZ60-reduced basis).
BKZ90 took 28 tours to reach a similar full enumeration cost and the overall
run-time was 5 × 106 seconds (the number of cores is taken into account). In
Figure 37, we plot the Gram–Schmidt log-norms of this BKZ90-reduced basis
and compare it with pressed-BKZ60. This confirms that their qualities are anal-
ogous. For BKZ85, we aborted the computation after 100 tours as the the overall
run-time was already 8 × 106 seconds. Note that both are already much larger
than the cost we spent on the pressed-BKZ60 preprocessing, of 5× 105 seconds.
The full enumeration costs of BKZ90 and BKZ85-reduced bases is computed in
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Table 1. Note that the experiments for BKZ90 (and BKZ85) took much more
tours to achieve the same quality (if possible) compared to simulation. This
might be due to the facts that our implementation is greedy as mentioned above
and does not always solve the local SVP problem.

So far, we have only used the full enumeration cost to measure the quality.
We confirm this using a pruner to estimate the enumeration cost (for Pressed-
BKZ60 and BKZ90-reduced bases). A pruner optimizes the pruning coefficients
to minimize the overall run-time of preprocessing plus enumeration divided by
the success probability. The general strategy in extreme pruning [CN11] is to
preprocess the basis using BKZ and then run the enumeration with a certain
success probability p. If the enumeration fails, it rerandomizes the basis and
then conducts the preprocessing and enumeration again. The expected number
of repetitions to succeed in the enumeration is ≈ 1/p. It remains to determine
the preprocessing time before each enumeration. It should be noted if the first
enumeration fails, one usually runs a mild re-randomization before the next pre-
processing, thus the next preprocessing will be faster than the first preprocessing,
since it still benefits from the BKZ reduction in last preprocessing.

We determine the preprocessing time with the following experiment. For the
BKZ90-reduced basis, after re-randomization, the full enumeration cost increases
from 1.35 × 1027 to 1.56 × 1027. We re-preprocess the randomized basis using
BKZ80 until the full enumeration cost decreases to around 1.35 × 1027. Here
we just used BKZ80 for simplicity (there could be other strategies). The re-
preprocessing took 1.7×105 seconds (i.e., 3.4×1012 nodes). We use this prepro-
cessing cost (the preprocessing before each trial enumeration except the initial
preprocessing) as input to the pruner (for both Pressed-BKZ60 and BKZ90-
reduced bases). The total pruned enumeration cost estimate in fpylll, tabu-
lated in Table 1, confirms that Pressed-BKZ60 and BKZ90-reduced bases indeed
have similar quality as they all admit similar total pruned enumeration costs.
In general, the pruner seems to be quite precise in practice (hence so are the
estimates in Table 1). Thus it suffices to compare the initial preprocessing cost
between Pressed-BKZ60 and BKZ90: pressed-BKZ60 (5× 105 seconds) took less
time compared to BKZ90 (28 tours in 5× 106 seconds).

In this subsection, we have only considered a straightforward strategy, BKZ
plus enumeration, for solving the SVP-120 instance. In the following we will
further compare with progressive-BKZ[AWHT16].

Comparison with progressive-BKZ. The main idea of progressive-BKZ is to
preprocess the basis using BKZ with progressively increased blocksizes and use
local enumeration with high success probability to avoid the overheads brought
in by the preprocessing. Furthermore, a progressive blocksize strategy (optimized
based on their adaptation of the Chen–Nguyen simulator for their progressive-
BKZ algorithm) was used for preprocessing before a final enumeration. In par-
ticular, [AWHT16, Table 4] gives the cost of solving SVP challenges using their
blocksize strategy: this table is to be understood as the cost of an idealized algo-
rithm and is hence optimistic compared to current algorithms. We re-investigate
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the estimates in that table by combining their progressive-BKZ method with our
pressed-BKZ algorithm.

Given the pressed-BKZ60 reduced basis, we use the progressive-BKZ method
in the bkz2 sweet spot4 branch in fplll. Note that it implements a variant of
progressive-BKZ: the progressive strategy differs from that of [AWHT16] but it
suffices for our comparison. It should be noted that our pressed-BKZ60 reduced
basis is already quite reduced so we start progressive-BKZ with blocksize ≈ 75 to
avoid a superfluous re-computation. We used 80 cores for the computation on the
pressed-BKZ60 reduced basis. We spent 5.78 core days (5× 105 seconds) on the
initial pressed-BKZ60 and 1.21 core days for the progressive-BKZ to complete
the SVP instance. In total, we completed the computation in a total of 6.99
core days (with enumeration speed of ≈ 2× 107 nodes per second), faster than
the 14.94 lower bound (with enumeration speed of 6 × 107 nodes per second)
in [AWHT16, Table 4].

For further comparison, we also ran the same experiment using an LLL-
reduced basis instead of pressed-BKZ60 reduced basis in the beginning. The
overall run-time was 8.75 core days. This implies that bkz2 sweet spot is faster
than the estimates in [AWHT16]. Compared to this LLL-based experiment, the
pressed-BKZ60-reduced basis helps to reduce the overall run-time by about 20%.

It should be noted that we only provide one such strategy that lowers the
estimates in [AWHT16, Table 4] and demonstrate the usefulness of the pressed-
BKZ algorithm. It is quite possible that this is far from an optimal strategy,
which could combine variants of progressive preprocessing, extreme pruning and
adaptive choices based on simulation. For instance, it may be better to also use
pressed-BKZ inside progressive-BKZ (recursively for any preprocessing) to bet-
ter maintain the shape of the pressed-BKZ preprocessed basis. Also, we only
conducted two SVP-120 experiments, which is not statistically significant. We
leave the question of how to optimize the strategy based on the existing ap-
proaches open for future work.
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