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Abstract. At EUROCRYPT 2013, Garg, Gentry and Halevi proposed a
candidate construction (later referred as GGH13) of cryptographic mul-
tilinear map (MMap). Despite weaknesses uncovered by Hu and Jia (EU-
ROCRYPT 2016), this candidate is still used for designing obfuscators.
The naive version of the GGH13 scheme was deemed susceptible to av-
eraging attacks, i.e., it could su�er from a statistical leak (yet no pre-
cise attack was described). A variant was therefore devised, but it re-
mains heuristic. Recently, to obtain MMaps with low noise and modu-
lus, two variants of this countermeasure were developed by Döttling et
al. (EPRINT:2016/599).
In this work, we propose a systematic study of this statistical leakage
for all these GGH13 variants. In particular, we con�rm the weakness of
the naive version of GGH13. We also show that, among the two variants
proposed by Döttling et al., the so-called conservative method is not so
e�ective: it leaks the same value as the unprotected method. Luckily,
the leakage is more noisy than in the unprotected method, making the
straightforward attack unsuccessful. Additionally, we note that all the
other methods also leak values correlated with secrets.
As a conclusion, we propose yet another countermeasure, for which this
leakage is made unrelated to all secrets. On our way, we also make explicit
and tighten the hidden exponents in the size of the parameters, as an
e�ort to assess and improve the e�ciency of MMaps.

Keywords: Cryptanalysis, Multilinear Maps, Statistical Leakages, Ideal
Lattices.

1 Introduction

Since their introduction in cryptographic constructions by Joux in 2000 [25],
cryptographic bilinear maps, as provided by pairings on elliptic curves, have
enabled the construction of more and more advanced cryptographic protocols,
starting with the Identity-Based Encryption scheme of Boneh and Franklin [8].
More abstractly, a group equipped with an e�cient bilinear map, and on which
some discrete-logarithm like problems are hard (such as the bilinear Di�e-
Hellmann problem), provides foundation for a whole branch of cryptography. A
natural open question is whether it can be generalized to degrees higher than 2



while ensuring hardness of generalizations of the Di�e-Hellmann problem. Such
hypothetical objects are referred to as Cryptographic Multilinear Maps (or, for
short, MMaps).

In 2013, Garg, Gentry and Halevi [17] proposed a candidate construction for
MMaps related to ideal-lattices, yet without a clearly identi�ed underlying hard
lattice problem. It di�ers from the pairing case in the sense that elements in the
low-level groups have no canonical representation, and that the representation is
noisy. Yet, these di�erences are not too problematic on the functionality front.

On the security front, it rapidly turned out that this construction was in-
secure, at least in its original set-up. In particular, the natural one-round k-
partite protocol based on this MMap was broken by the zeroizing attack of Hu
and Jia [24]: this construction fails to securely mimic the tripartite protocol
of [25]. More generally, the mere knowledge of a non-trivial representative of
0 tends to make constructions based on this MMap insecure. Orthogonally, it
has been discovered that solving over-stretched versions of the NTRU problem
(whose intractability is necessary for the security of the GGH MMap) was sig-
ni�cantly easier than previously thought, due to the presence of an unusually
dense sublattice [1,12,26], yet this can be compensated at the cost of increasing
parameters. Also, due to recent algorithms for the Principal Ideal Problem [6,7]
and Short generator recovery [10,14], the GGH MMap can be broken3 in quan-
tum polynomial time, and classical subexponential time exp(Õ(

√
n)), where n

is the dimension of the used ring.

Nevertheless, this candidate MMap was still considered in a weaker form,4 to
attempt realizing indistinguishability obfuscation (or, for short, iO). Several iO
candidates were broken by attacks that managed to build low-level encodings of
zero even if no such encodings were directly given (this is referred to as zeroizing
attacks, see e.g. [11, 13]). To try to capture and prevent such attacks, a Weak
MMap model was devised in [18,34].

Some iO constructions come with a security proof based on assumptions
in the standard model [2, 29, 30], but cannot be securely instantiated with the
GGH13 MMap as they require low-level encodings of 0. Others are proved secure
in a non-standard model (the Generic MMap model [4, 9] or the Weak MMap
Model [15,18]). These models remain not fully satisfactory, as they imply Virtual-
Black-Box Obfuscation [9, 18], a provably impossible primitive [5]. The latest
candidate of Lin and Tessaro [31] did escape these pitfalls by relying on pairings,
but it required special Pseudo-Random Generators that were rapidly proved not
to exist [3, 32].

Statistical leaks in lattice-based cryptography. Early signature schemes based
on lattices [21�23] su�ered from statistical leaks, which led to devastating at-
tacks [20,35]. Those leaks can be �xed in a provably secure way using a Gaussian

3 The secret value h can be recovered exactly, allowing in particular to construct
zero-tester at larger levels.

4 Without providing any low-level encoding of 0, and keeping the order of the multi-
linear group secret.
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Sampling algorithm from Klein [27], as proven in [19]: the samples available to
the adversary are made statistically independent from the secret key.

Similar leaks are a worry in the original construction of [17], and therefore, a
candidate countermeasure was developed, making use of Klein's sampling proce-
dure. Nevertheless, no formal statement was made on what this countermeasure
prevents: the countermeasure is heuristic. This particular countermeasure turned
out to be a di�culty when considering variants of the original scheme, as done
in [15]. This candidate obfuscator aims at reaching polynomially small errors
and modulus (in order to improve both e�ciency and security of the GGH map,
especially in the light of the dense sublattice attacks [1, 12, 26]) and hence can-
not use the original sampling methods from [17]. Two modi�ed versions of [17]
are then proposed in [15], a so-called conservative one, leading to quite e�cient
parameters, and a so-called aggressive one.

Ideally, one wishes to make provable statements about those four variants,
as done in other contexts [19]. Unfortunately, in the context of MMaps, it is not
even clear what the statement should exactly be. The next best guarantee is a
precise understanding of what can be done from a cryptanalytic point of view,
as initiated in [17].

The analysis of the leak of [17] focuses on the covariance of products of
encodings of zero. One can (informally) argue that this analysis captures all
the information of the leakage. Indeed, up to discretization, such a product is
the product of several centered Gaussian distributions (non necessary spherical),
and such a distribution is fully identi�ed by its covariance. The countermeasure
proposed in Section 6.4 of [17] attempts to make this covariance proportional
to the identity matrix (and therefore unrelated to all secrets) by sampling each
element of the product according to a spherical distribution, that is a distribution
whose covariance is proportional to the identity matrix. As we shall see, this
attempt is unsuccessful, as one of the factors of the product (namely, the one
related to the zero-testing parameter) is �xed. Obtaining several independent
multiples of it, with covariance proportional to the identity matrix, then reveals
an approximation of this factor.

Contributions. Our main contribution is to give a systematic study of the sta-
tistical leakage in the GGH13 scheme and its variants, in a simple framework we
de�ne. We �rst suggest a common formalism that encompasses all the variants
at hand, by parametrising the sampling procedure for encodings by an arbitrary
covariance matrix. Following the nomenclature of [15,17], except for the second
one that had no clear name, we consider:

1. The simplistic method: the GGH MMap without countermeasure [17, Sec.
4.1]. This method was only given for simplicity of exposition and was already
highly suspected to be insecure;

2. The exponential method:5 the GGH MMap with countermeasure [17, Sec.
6.4];

5 The naming re�ects the fact that this method leads to a modulus q which is expo-
nential in the number ` of so-called atoms.
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3. The conservative method, proposed in [15] �which we partly revisit to tackle
some of its limitations;

4. The aggressive method, proposed in [15] �we note that this method is spe-
ci�c to the iO construction of [15], and is not applicable to all constructions
over the GGH MMap.

In order to formalize our study of the leakage, we propose a simple setting of
the GGH multilinear map. Indeed, due to the attacks in presence of encodings
of zero, the exact set-up for the analysis of the leakage in [17] is not relevant
anymore. We adjust their setting to not provide low-level encodings of zero
directly. Still, some relations between encodings are needed for the MMaps to
be non-trivial; to ensure that those relations do not allow zeroizing attacks, we
provide a security proof in the weak multilinear map model of [15, 18, 34]. For
ease of exposure, we restrict ourselves to degree κ = 2, yet our analysis easily
extends to higher degrees.

Using this framework, we are able to analyse a particular averaging attack
against the GGH multilinear map. On the one hand, our analysis shows that
Method 3 leads to the same leakage as Method 1. We also prove that with
Method 1, a polynomial-time attack can be mounted using the leakage. Interest-
ingly, it does not require the Gentry-Szydlo algorithm [20], unlike the approach
discussed in [17, Sec. 6.3.2 and Sec. 7.6]. Nevertheless, we did not manage to
extend the attack to Method 3: while the same quantity is statistically leaked,
the number of samples remains too low for the attack to go through completely.
On the other hand, we show that the statistical leakage of Method 4 is similar
to the one of Method 2: perhaps surprisingly the aggressive method seems more
secure than the conservative one.

Finally, having built a better understanding of which information is leaked,
we devise a countermeasure that we deem more adequate than all the above:

5. The compensation method.

This method is arguably simpler, and provides better parameters. More impor-
tantly, applying the same leakage attack than above, one only obtains a distri-
bution whose covariance is independent of all secrets. We wish to clarify that
this is in no way a formal statement of security. The statistical attacks con-
sidered in this work are set up in a minimalistic setting, and extensions could
exist beyond this minimalistic setting. For example, one could explore what can
be done by varying the zero-tested polynomial, or by keeping certain encodings
�xed between several successful zero-tests.

As a secondary contribution, we also make explicit and tighten many hidden
constants present in the previous constructions, in an e�ort to evaluate and
improve the e�ciency of GGH13-like MMaps.

Impact. This result may be useful in pursuit of an underlying hard problem on
which one could based the GGH multilinear map. Indeed, we show here that it is
possible to recover some information about secret elements, for all the previously
proposed sampling methods. Hence, an underlying hard problem (or the security
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reduction) should capture this leak. This enables us to get a bit more insight
into what could be (or could not be) an underlying hard problem for the GGH
map. In that regard, �nding such a hard underlying problem could be easier
with our new method, since one speci�c leak has been sealed. Again, we do not
claim that no other leaks exist.

Further, our analysis shows that the weak multilinear map model does not
capture averaging attacks. This is not surprising, as the weak multilinear map
model only allows to evaluate polynomials in the post-zero-test values, while we
need to average on them for this attack. But proving that averaging cannot be
achieved by evaluating polynomials is not so immediate. Interestingly, our results
prove it. Indeed, using averaging techniques, we were able to mount a polyno-
mial time attack against our setting when using the simplistic sampling method
(Method 1), but we also proved that in the weak multilinear map model, no poly-
nomial time attacks could be mounted. This proves that the weak multilinear
map model does not capture averaging attacks.6

Finally, our new method severely decreases the length of encodings in the
GGH13 multilinear map, which substentially contribute to their practical feasi-
bility.

Outline of the article. In Section 2, we recall some mathematical background
about cyclotomic number �elds and statistics. We also describe the GGH mul-
tilinear map and detail the size of its parameters. In Section 3, we describe
di�erent sampling methods for the GGH multilinear map, which come from [17]
and [15], using a common formalism so as to factor the later analysis. We de-
scribe our simple setting and analyse the leakage in Section 4. The security proof
of this simple setting in the weak multilinear map model can be found in the full
version of this article [16]. Finally, we discuss the design of sampling methods in
Section 5, and propose a design we deem more rational.

Acknowledgments. The authors are grateful to Alex Davidson, Nico Döttling
and Damien Stehlé for helpful discussions. The �rst author was supported by a
Veni Innovational Research Grant from NWO under project number 639.021.645.
The second author was supported by an ERC Starting Grant ERC-2013-StG-
335086-LATTAC.

2 Preliminaries

2.1 Mathematical Background

Rings. We denote by R the ring of integers Z[X]/(Xn + 1) for some n which
is a power of 2 and K = Q[X]/(Xn + 1) its fraction �eld. We denote by σj :
K → C, with 1 ≤ j ≤ n, the complex embeddings of K in C. We also denote

6 The precise component of the attack which is not captured by the weak multilinear
map model is the rounding operation performed at the end.
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KR = R[X]/(Xn+1) the topological closure of K. For x ∈ KR, we denote xi ∈ R
its i-th coe�cient, so that x =

∑n−1
i=0 xiX

i. For g ∈ K (or even KR) we denote
gR the ideal generated by g: gR = {gx|x ∈ R}. The complex conjugation over R
and K is denoted ·̄. It is the automorphism of R sending X to X−1. We denote S
the subring ofKR of symmetric elements, that is S = {x ∈ KR|x = x̄}. We set S+

the subset of symmetric positive elements of S, de�ned by S+ = {xx̄|x ∈ KR}.
Alternatively, S is the completion of the real sub�eld of K, and S+ is (the
completion of) the set of elements of K whose embeddings are all non-negative
real numbers. Note that S+ is closed under addition, multiplication, division,
but not under subtraction. The elements of S+ also admit one and exactly one
square root (resp. k-th root) in S+, which we denote

√
· (resp. k

√
·) . Finally, we

call xx̄ ∈ S+ the autocorrelation7 of x ∈ KR, and denote it A(x). For Σ ∈ S+

it holds that A(
√
Σ) = Σ. We also de�ne equivalence over S+ up to scaling

by reals, and write x ∼ y for invertible elements x, y ∈ S+ if x = αy for some
positive real α > 0. Let q be a prime congruent to 1 modulo 2n. We denote
by Rq the quotient ring R/(qR). For x ∈ R, we denote by [x]q (or [x] when
there is no ambiguity) the coset of the element x in Rq. We will often lift back
elements from Rq to R, in which case we may implicitly mean that we choose
the representative with coe�cients in the range [−q/2, q/2]. To avoid confusion,
we will always write x−1 for the inversion in Rq, and keep the fraction symbols
1/x and 1

x for inversion in K and KR.

Geometry. Because we work in the ring Z[X]/(Xn + 1), the canonical geometry
of the coe�cients embeddings is equivalent, up to scaling, to the geometry of
the Minkowski embeddings. We stick with the former, following the literature
on multilinear maps. More precisely, the inner product of two elements x, y ∈ K
is de�ned by 〈x, y〉 =

∑
xiyi. The Euclidean norm (or `2-norm) is de�ned by

‖x‖ =
√
〈x, x〉. The `∞-norm is noted ‖x‖∞ = max |xi|.

We recall the following inequalities:

‖xy‖ ≤
√
n · ‖x‖ · ‖y‖ (1)

‖x‖∞ ≤ ‖x‖ ≤
√
n · ‖x‖∞ (2)

‖x‖2 ≤ ‖xx̄‖∞ (3)

‖x̄‖ = ‖x‖ and ‖x̄‖∞ = ‖x‖∞. (4)

Statistics. We denote by Pr[E] the probability of an event E. For a random
variable x over KR, we denote by E[x] the expectation of x, and by V[x] =
E[xx̄]−E[x]E[x̄] its variance. It should be noted that V[x] ∈ S+ for any random
variable x overKR. A random variable x is said centered if E[x] = 0, and isotropic
if V[x] ∼ 1. We recall Hoe�ding's inequality.

Theorem 1 (Hoe�ding's inequality). Let Y1, · · · , Ym be independent ran-
dom variables in R with the same mean µ ∈ R and such that |Yi| ≤ B for all i's.

7 In an algebraic context, this would be more naturally described as the norm of x
relative to the maximal real sub�eld of K, yet for our purposes it is more adequate
to use the vocabulary of statistics.
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Then for all t > 0,

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Yi − µ

∣∣∣∣∣ ≥ t
]
< 2e−

mt2

2B2 .

Hoe�ding's inequality, as given above, applies to random variables in R. In this
article, we will be interested in random variables in R. We will then see our
elements in R as vectors in Rn and apply Hoe�ding's inequality coe�cient-wise.

Corollary 1 (Hoe�ding's inequality in R). Let Y1, · · · , Ym be independent
random variables in R with the same mean µ ∈ KR and such that ‖Yi‖∞ ≤ B
for all i's. Let ε > 0, then

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

Yi − µ

∥∥∥∥∥
∞

≥ B
√

2(lnn− ln ε)

m

]
< 2ε.

Proof. For 1 ≤ i ≤ m and 0 ≤ j ≤ n − 1, de�ne Yi,j to be the j-th coe�cient
of the variable Yi ∈ R and µj to be the j-th coe�cient of µ. For a �xed j,
the variables Yi,j (where only i varies) are independent random variables in R
of mean µj . Moreover, as ‖Yi‖∞ ≤ B for all i's, the coe�cients Yi,j are also
bounded by B. We can then apply Hoe�ding's inequality (Theorem 1) to them.
We obtain

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

Yi − µ

∥∥∥∥∥
∞

≥ B
√

2(lnn− ln ε)

m

]

= Pr

[
∃j :

∣∣∣∣∣ 1

m

m∑
i=1

Yi,j − µj

∣∣∣∣∣ ≥ B
√

2(lnn− ln ε)

m

]

≤
n−1∑
j=0

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Yi,j − µj

∣∣∣∣∣ ≥ B
√

2(lnn− ln ε)

m

]

<

n−1∑
j=0

2e−
2mB2(lnn−ln ε)

2B2m =

n−1∑
j=0

2
ε

n
= 2ε.

We used the union bound and Hoe�ding's inequality with t = B
√

2(lnn−ln ε)
m .

ut

Discrete Gaussians. For Σ ∈ S+ and x0 ∈ KR, we de�ne the Gaussian weight
function on KR as

ρ√Σ,x0
: x 7→ exp

(
−1

2

∥∥∥∥x− x0√
Σ

∥∥∥∥2
)
.
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For any shifted ideal I + c, I ⊂ K, c ∈ KR, we de�ne the discrete Gaussian
distribution over I + c of parameter

√
Σ, centered in x0 by:

∀x ∈ I + c, DI+c,
√
Σ,x0

(x) =
ρ√Σ,x0

(x)

ρ√Σ,x0
(I + c)

.

For concision, we write DI+c,
√
Σ instead of DI+c,

√
Σ,0 and ρ

√
Σ instead of ρ√Σ,0.

Theorem 2 (Reformulation of [19, Thm 4.1.]). There exists a PPT al-
gorithm that given g ∈ R, c ∈ KR and a parameter Σ such that ‖g/

√
Σ‖ ≤

o(1/
√

log n), outputs x from a distribution negligibly close to DgR+c,
√
Σ.

This reformulation simply relies on the identity DgR+c,
√
Σ =

√
Σ
σ ·D(gR+c)/

√
Σ,σ.

We also recall that, above the smoothing parameter [33], a discrete Gaussian
resembles the continuous Gaussian, in particular it is almost centered at 0, and
of variance almost Σ.

Lemma 1. For any g ∈ K, Σ ∈ S+, c ∈ KR such that ‖g/
√
Σ‖ ≤ o(1/

√
log n),

if x ← DgR+c,
√
Σ, then ‖E[x]‖ ≤ ε · ‖

√
Σ‖ and ‖V[x] − Σ‖ ≤ ε · ‖Σ‖ for some

negligible function ε(n).

The proof of this result, using [33, Lemma 4.2], can be found in the full
version [16].

2.2 The GGH13 multilinear map

We describe in this section the GGH13 multilinear map [17], in its asymmetric
setting. The GGH13 multilinear map encodes elements of a ring of integers R,
modulo a secret small element g ∈ R. More concretely, an authority generates
the following parameters:

• an integer n which is a power of 2 (serving as the security parameter).
• a (small) element g in R. We denote by I = gR the ideal generated by g
in R.

• a (large) positive integer q such that q ≡ 1 mod 2n. Originally, q was chosen
exponentially large in n [17], but variants were proposed for polynomially
sized q [15, 28].

• ` invertible elements [zi] ∈ R×q , for 1 ≤ i ≤ `, chosen uniformly at random
in R×q .

• a zero-testing parameter [pzt] = [hz∗g−1] where [z∗] = [
∏

1≤i≤` zi] and h is
a random element in R, generated according to a Gaussian distribution of
standard deviation approximately

√
q.

We detail in Section 2.2 the size of the parameters described above (we will
choose them to ensure the correctness of the scheme). The elements n, q and pzt
are public while the parameters h, g and the zi's are kept secret.
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Encoding of an element. The GGH13 multilinear map allows to encode cosets
of the form a+ I for some element a in R. Let v ∈ {0, 1}` be a vector of size `.
An encoding of the coset a+ I at level v is an element of Rq of the form

u =
[
(a+ rg) · z−1v

]
where [zv] = [

∏
i,v[i]=1 zi] and a + rg is a small element in the coset a + I.

We call v the level of the encoding.8 We abuse notation by saying that u is an
encoding of a (instead of an encoding of the coset a+ I).

An encoding generated by the authority is called a fresh encoding, by op-
position to encodings that are obtained by adding or multiplying other encod-
ings. The precise distribution of a + rg for a fresh encoding will be a discrete
Gaussian distribution over the coset a + I, but not necessarily a spherical one:
a + rg ← Da+I,

√
Σv

. The shape Σv of this Gaussian is essentially what distin-
guishes the variants that we will discuss in Section 3.

Adding and multiplying encodings. If u1 and u2 are two encodings of ele-
ments a1 and a2 at the same level v then u1 + u2 is an encoding of a1 + a2 at
level v.

If u1 and u2 are two encodings of elements a1 and a2 at levels v and w with
v[i] ·w[i] = 0 for all 1 ≤ i ≤ `, then u1 ·u2 is an encoding of a1 ·a2 at level v+w
(where the addition is the usual addition on vectors of size `).

Zero-testing. We denote by v∗ = (1, . . . , 1) the maximum level of an encoding.
The zero testing parameter allows us to test if an encoding u at level v∗ is an
encoding of zero, by computing

[w] = [u · pzt].

If w is small compared to q (the literature usually requires its coe�cients to be
less than q3/4), then u is an encoding of zero. Otherwise, it is not.

Size of the parameters and correctness. We de�ne Q such that q = nQ and
L such that ` = nL (the elements Q and L are not necessarily integers). The
bounds below on the size of g and h come from [17]. The secret generator g is
sampled so that:

‖g‖ = O(n), ‖1/g‖ = O(n2). (5)

Remark. There seems to be some inconsistencies in [17] about the size of g,
which is on page 10 sampled with width σ = Õ(

√
n), while on page 13 the

width σ is set to
√
nλ to ensure the smoothing condition σ ≥ η2−λ(Zn) (where

λ = O(n) denote the security parameter). Yet, according to [33, Lemma 3.3], it
holds that η2−λ(Zn) ≤ O(

√
λ + log n), so σ = O(

√
n) is su�cient, and we do

have ‖g‖ ≤ O(n) with overwhelming probability by [33, Lemma 4.4].

8 Remark that we could de�ne encodings of level v even if v is not binary (but still
has non negative integer coe�cients). This is not necessary for a honest use of the
GGH13 map, but we will use it in Section 4 for our attack.
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The numerator c = a+ rg of a fresh encoding of a+ I at level v is sampled
such that

‖c‖ = Θ(nγ+η·‖v‖1+νL), (6)

where γ, η and ν are positive reals, and depend on the sampling method, such
as the ones proposed in [15] (depending on the method, η and ν may be zero).
We describe later the di�erent sampling methods and the values of γ, η and ν
associated to each method. When we do not need to focus on the dependence
on ‖v‖1 and L, we just call E := Θ(nγ+η·‖v‖1+νL) the bound above. For each
sampling method described below, we choose this bound to be as small as possible
under the speci�c constraints that will arise with the sampling method.

The mildly large element h is sampled so that

‖h‖ = Θ(
√
nq). (7)

Remark. In the second variant proposed in [17, Section 6.4] to try to prevent
averaging attacks, the authors generate h according to a non spherical Gaussian
distribution. However, as h is sampled only once, its distribution does not matter
for the attack we analyze in this article. This is why we only specify here the
size of h, and not its distribution.

We now give a condition on the modulus q to ensure correctness of the GGH13
multilinear map. This condition will depend on the number κ of fresh encodings
that we have to multiply in order to obtain a top level encoding. A natural
upper bound for κ is `, the number of levels of the multilinear map. However,
in the following, we will be interested in cases where we are provided with fresh
encodings at a somewhat high level and we only need to multiply a small number
of them (much smaller than `) to obtain a top level encoding. Choosing a small
degree κ is motivated by the fact that we want to obtain a small modulus q.
We will see below that q should be at least exponential in κ. Hence, in order to
achieve a polynomial modulus q, it should be that κ is at most logarithmic in
the security parameter (while ` can be much larger). In the simple setting we
describe in Section 4.1, we choose κ = 2, which enables q to be polynomial (if
we use the good sampling methods).

Correctness of zero-testing a homogeneous polynomial of degree κ, whose ab-
solute sum of the coe�cients is bounded by nB and evaluated in fresh encodings,
is guaranteed if nB · ‖hg

∏κ
i=1 ci‖ ≤ q3/4. It is then su�cient to have

B +
κ+ 1

2
+
Q+ 1

2
+ 2 + κ(γ + νL) + η` ≤ 3

4
Q. (8)

The term κ+1
2 appears from applying inequality (1) κ+1 times. One should also

note that
∑κ
i=1 ‖vi‖1 = ‖v∗‖1 = `, because we can only zero test at level v∗

(where vi is the level of encoding ci). More compactly, correctness holds if:

B + 3 + κ(1/2 + γ + νL) + η` ≤ Q/4. (9)

In our simple setting of the GGH multilinear map de�ned in Section 4.1, we
will only query the zero-testing procedure on encodings of this form, with κ = 2
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and B = log(m)/ log(n), for some constant m we will de�ne later. Hence, taking
4 + 2γ + 2νL + η` + log(m)/ log(n) ≤ Q/4 will be su�cient in our setting to
ensure correctness of the zero-testing procedure.

Remark. We note that the bound q3/4 for positive zero-tests is somewhat ar-
bitrary and could very well be replaced by q/4, allowing to square-root the
parameter q. Indeed, the probability of a false positive during zero-testing would
remain as small as 2−n. This would have a serious impact on concrete e�ciency
and security.

3 Sampling methods

We describe in this section di�erent sampling methods that can be used to
generate the fresh encodings of the GGH multilinear map and we give the values
of γ, η and ν that correspond to these methods. As said above, we will be
interested in cases where (at least some of) the fresh encodings have a somewhat
high degree and we just have to multiply a constant number of them (say 2) to
obtain an encoding at maximal level v∗. We denote by A the set of �atoms�, that
is the set of levels v ∈ {0, 1}` at which we want to encode fresh encodings. In our
simple setting of the GGH multilinear map (see Section 4.1 for a full description
of our setting), we will chose A to be the set of levels v ∈ {0, 1}` that have
weight exactly 1 or ` − 1, where the weight of v is the number of its non-zero
coe�cients. For all v ∈ A, we denote by ṽ = v∗ − v the complement of v. We
note that A is closed by complement.

In all the following sampling methods except the �rst one, one chooses a
representative zv ∈ R of [zv] ∈ Rq for all v ∈ A. This representative will not
necessarily be the canonical one, with coe�cients in [−q/2, q/2]. Then, we will
take Σv = σ2

vzv z̄v, with σv = Θ(n2‖1/zv‖). Using Inequalities (3) and (4), we
can see that ‖1/

√
Σv‖ ≤ 1/σv · n1/4 · ‖1/zv‖. Hence, with our choice of σv and

the fact that ‖g‖ = O(n), we obtain∥∥∥∥ g√
Σv

∥∥∥∥ ≤ √n · ‖g‖ · ∥∥∥∥ 1√
Σv

∥∥∥∥ = O

(
1

n1/4

)
= o

(
1√

log n

)
.

We can therefore apply Theorem 2 to sample the numerators of fresh en-
codings at level v, according to a Gaussian distribution of parameter Σv. Using
tail-cut of Gaussian distributions, we have that if c is the numerator of a fresh
encoding, then ‖c‖ ≤ n‖

√
Σv‖ ≤ n1.5σv‖zv‖ with overwhelming probability.

This means that we can take

E ≤ Θ(n3.5 · ‖1/zv‖ · ‖zv‖). (10)

Hence, in the following methods (except the simplistic one), we will focus on
the size of ‖1/zv‖ · ‖zv‖ to get a bound on the value of E.

Remark. Inequality (10) above is not tight. We could at least improve it to
E ≤ Θ(n3+ε · ‖1/zv‖ · ‖zv‖) for any ε > 0, by taking σv = Θ(n1.75+ε‖1/zv‖) (it

11



still satis�es the condition of Theorem 2) and by noticing that ‖c‖ ≤ n‖
√
Σv‖ ≤

n1.25σv‖zv‖ for the numerator of a fresh encoding. This ensures statistical close-
ness to the desired distribution up to exp(−n2ε). Considering that there are
already classical attacks in time exp(Õ(

√
n)) (namely, using [6, 14] to recover h

from the ideal hR), one may just choose ε = 1/4.

3.1 The simplistic method

The simplistic method consists in always choosing Σv ∼ 1, independently of v
and zv. This is done by applying Klein's algorithm [27], and requires for cor-
rectness [19, Thm 4.1] that Σv = σ2 for a positive scalar σ ∈ R, where σ ≥
‖g‖ · ω(

√
log n). So by taking σ = Θ(n1+ε) with ε > 0, one may have E =

Θ(
√
nσ) = Θ(n1.5+ε), that is γ = 1.5 + ε and η = ν = 0.
This method was deemed subject to averaging attacks and hence less secure

than the following one in [17], but the authors claim that their attack attempts
failed because all recovered elements were larger that

√
q, and that averaging

attacks would need super-polynomially many elements.9 We make explicit an
attack, and will show that this attack is possible even for exponential q, as
long as Eκ remains polynomial: in other words, the presence of the mildly large
factor h (of size

√
q) can be circumvented.

3.2 The exponential method

We present here the countermeasure of [17, Sec. 6.4], generalized to multi-
dimensional universe, as done in [15, Sec. 2.1]. For 1 ≤ i ≤ `, set zi to be the
canonical representative of [zi] in R (with coe�cients in the range [−q/2, q/2]).
Using rejection sampling when choosing zi, assume that ‖zi‖·‖1/zi‖ ≤ Z; this is
e�cient for Z as small as n5/2 using [15], and can even be improved to Z = n3/2

using Lemma 3 below and its corollary.
For v in A, set zv =

∏
zvii over R. Recall that Inequality (10) gives us: E ≤

Θ(n3.5‖1/zv‖ · ‖zv‖). But we have ‖zv‖ ≤ n(‖v‖1−1)/2
∏
i∈v ‖zi‖ and ‖1/zv‖ ≤

n(‖v‖1−1)/2
∏
i∈v ‖1/zi‖. Hence we can take

E = Θ(n2.5+‖v‖1 · Z‖v‖1) = Θ(n2.5+2.5‖v‖1).

This means that we have γ = 2.5, η = 2.5 and ν = 0.
Correctness is guaranteed for q ≥ nΩ(`) (because η 6= 0), and because ` is

much larger than the constant degree κ in [15], this is not a satisfying solution,
as we aim at decreasing q to polynomial. Two alternatives (conservative and
aggressive) are therefore developed in [15].

9 Recall that the original proposal was setting E and therefore q to be super-
polynomial even for bounded degree ` because of the drowning technique for publicly
sampling encodings. Since then, attacks using encodings of zero [13, 24, 34] have re-
stricted encodings to be private, allowing polynomially large E.
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3.3 The conservative method [15]

The �rst alternative suggested is to do as above, but reducing the zv modulo q,
that is, set zv to be the representative of [

∏
zvii ] with coe�cients in [−q/2, q/2].

One then ensures, by rejection of all the zi's together, that ‖zv‖ · ‖1/zv‖ ≤ n2.5
for all v ∈ A. This leads to E = Θ(n3.5 · n2.5) = Θ(n6) (i.e., γ = 6, η = ν = 0)
and therefore allows correctness for q as small as nO(κ), which is polynomial for
constant degree κ.

Using [15, Lemma 8] restated below, the authors conclude that this method
is quite ine�cient because for the above bound to hold simultaneously for all
v ∈ A with good probability, n must increase together with `. Indeed, using
Lemma 2, we can bound the probability that one of the zv does not satisfy
‖zv‖·‖1/zv‖ ≤ n2.5 by 2|A|/n = 4`/n. So if we want this probability to be small
(say less than 1/2) in order for the sampling procedure to be e�cient, we should
increase n with `.

Lemma 2 (Lemma 8 from [15]). Let [z] be chosen uniformly at random in
Rq and z be its canonical representative in R (i.e., with coe�cients in [−q/2, q/2]).
Then it holds that

Pr
[
‖1/z‖ ≥ n2/q

]
≤ 2/n.

In the following section, we revisit the conservative method by generalizing this
lemma.

3.4 The conservative method revisited

In the following lemma, we introduce an extra degree of freedom c compared to
the lemma of [15], but also improve the upper bound from O(n1−c) to O(n1−2c).

Lemma 3. Let [z] be chosen uniformly at random in Rq and z be its repre-
sentative with coe�cients between −q/2 and q/2. Then, for any c ≥ 1, it holds
that

Pr [z = 0 ∨ ‖1/z‖ ≥ nc/q] ≤ 4/n2c−1.

Corollary 2. Let [z] be chosen uniformly at random in R×q and z be its repre-
sentative with coe�cients between −q/2 and q/2. Then, for any c ≥ 1, it holds
that

Pr [‖1/z‖ ≥ nc/q] ≤ 8/n2c−1.

We can use this corollary to compute the probability that one of the zv does
not satisfy ‖1/zv‖ ≤ nc/q when the [zi]'s are independent and chosen uniformly
at random in R×q . Indeed, the [zv]'s are uniform in R×q because they are a product
of uniform invertible elements, and, by union bound, we have

Pr [∃v ∈ A s.t. ‖1/zv‖ > nc/q] ≤
∑
v∈A

Pr [‖1/zv‖ > nc/q]

≤ 8|A|
n2c−1

.
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If we want this probability to be less than 1/2, in order to re-sample all the zi's
only twice on average, we should take

|A| ≤ n2c−1

16
. (11)

But we also have ‖zv‖ ≤
√
n‖zv‖∞ ≤

√
nq, hence ‖1/zv‖ · ‖zv‖ ≤ nc+0.5. In

order to minimize E, we wish to minimize c, under (11). By taking the minimal
value of c that satis�es this constraint, and recalling that |A| = 2`, we obtain

E = Θ(n4.5+L/2).

This means that γ = 4.5, ν = 0.5 and η = 0. This conservative method
revisited is the same as the original one, except that we improve on the encodings
size bound E.10 In the following, we will then only focus on the conservative
method revisited and not on the original one.

Proof (Proof of Lemma 3). The proof of this lemma uses the same ideas as the
one of [36, Lemma 4.1], but here, the element z is sampled uniformly modulo q
instead of according to a Gaussian distribution. Let [z] be chosen uniformly at
random in Rq and z be its representative with coe�cients between −q/2 and q/2.
Recall that we denote σj : K → C the complex embeddings of K in C, with
1 ≤ j ≤ n. We know that the size of z is related to the size of its embeddings.
Hence, if we have an upper bound on the |σj(1/z)|, we also have an upper bound
on ‖1/z‖. Moreover, the σj 's are morphisms, so σj(1/z) = 1/σj(z), and it su�ces
to have a lower bound on |σj(z)|.

Let j ∈ {1, · · · , n}, there exists a primitive 2n-th root of unity ζ such that

σj(z) =

n−1∑
i=0

aiζ
i,

where the ai's are the coe�cients of z, and so are sampled uniformly and in-
dependently between −q/2 and q/2. As ζ is a primitive 2k-th root of unity for
some k, there exists i0 such that ζi0 = I, where I is a complex square root of −1.
So we can write

σj(z) = a0 + Iai0 + z̃,

for some z̃ ∈ C that is independent of a0 and ai0 . Now, we have that

Pr
[
|σj(z)| <

q

nc

]
= Pr

[
a0 + Iai0 ∈ B(−z̃, q

nc
)
]

≤
Vol(B(−z̃, qnc ))

q2

≤ 4

n2c
,

10 We also change a bit the point of view by �xing n �rst and then obtaining an upper
bound on ` (which will appear because ν 6= 0 in E), while the authors of [15] �rst
�x ` and then increase n consequently.
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where B(−z̃, q/nc) is the ball centered in −z̃ of radius q/nc. A union bound
yields that

Pr
[
∃j, |σj(z)| <

q

nc

]
≤ n · 4

n2c
=

4

n2c−1
.

Which in turns implies

Pr

[
∀j,

∣∣∣∣σj (1

z

)∣∣∣∣ ≤ nc

q

]
≥ 1− 4

n2c−1
.

To complete the proof, we use the fact that for cyclotomic �elds of power-of-
two order, we have ‖1/z‖ ≤ maxj(|σj(1/z)|). This gives the desired result. ut

Proof (Proof of Corollary 2). First, note that sampling [z] uniformly in R×q is
the same as sampling [z] uniformly in Rq and re-sampling it until [z] is invertible.
We denote by U(Rq) (resp. U(R×q )) the uniform distribution in Rq (resp. R

×
q ).

We then have that

Pr
[z]←U(R×

q )
[‖1/z‖ ≥ nc/q] = Pr

[z]←U(Rq)
[‖1/z‖ ≥ nc/q | [z] ∈ R×q ].

But using the de�nition of conditional probabilities, we can rewrite

Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×q ] =
Pr[z]←U(Rq)[[z] ∈ R×q and ‖1/z‖ ≥ nc/q]

Pr[z]←U(Rq)[[z] ∈ R
×
q ]

.

The numerator of this fraction is less than Pr[z]←U(Rq)[‖1/z‖ ≥ nc/q], which

is less than 4
n2c−1 using Lemma 3. And at least half of the elements of Rq are

invertible (if q is prime, we can even say that the proportion of non invertible
elements is at most n/q, because q ≡ 1 mod 2n). Hence, Pr[z]←U(Rq)[[z] ∈
R×q ] ≥ 1/2 and we obtain the desired result

Pr
[z]←U(R×

q )
[‖1/z‖ ≥ nc/q] ≤ 8

n2c−1
.

ut

3.5 The aggressive method

This aggressive method was proposed by Döttling et al. in [15] in order to in-
stantiate the GGH multilinear map for their obfuscator. This method cannot be
used for any set of atoms A, as it relies on the fact that the levels at which we
encode fresh encodings have a speci�c structure. Indeed, for each v ∈ A, we have
either [zv] = [zi] for some i ∈ {1, · · · , `} or [zv] = [z∗ · z−1i ]. Using this remark,
the secret [zi]'s are generated in the following way.

For i from 1 to ` do:

� sample a uniformly random invertible element [zi] in Rq. Let zi be the rep-
resentative of [zi] in R with coe�cients between −q/2 and q/2, and z̃i be the
representative of [z−1i ] in R with coe�cients between −q/2 and q/2.
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� until both following conditions are satis�ed, re-sample [zi]:

‖1/zi‖ ≤ n3/q (12)

‖1/z̃i‖ ≤ n/q. (13)

� if i = `, we also re-sample [zi] until this third condition is met

‖1/z∗‖ ≤ n/q, (14)

where z∗ is the representative of [
∏

1≤i≤` zi] with its coe�cients between
−q/2 and q/2.

Remark. As we sample the [zi]'s from i = 1 to `, when we generate [z`] all other
[zi]'s are already �xed, so we can de�ne [z∗].

Note that with this method, we re-sample each zi an expected constant num-
ber of times, independently of `. Indeed, all [zi]'s for i ≤ ` − 1 are sampled
independently. And the two conditions we want are satis�ed except with prob-
ability at most 8

n for each condition (using Corollary 2 with [zi] and [z−1i ] that
are uniform in R×q and with c = 3 or c = 1). So, applying a union bound, the

probability that we have to re-sample [zi] is at most 16
n , which is less than 1/2

if n ≥ 32. The idea is the same for [z`] except that we also want ‖1/z∗‖ to be
small. But all [zi] for i < ` are already �xed, so [z∗] only depends on [z`] and is
uniform in R×q . Hence this last condition is also satis�ed except with probability
8
n from Corollary 2. And the probability that the three conditions are met for
[z`] is at least 1/2 as long as n ≥ 48.

To conclude, if n ≥ 48, the procedure described above will sample each [zi]
at most twice in average, independently of the choice of `. So we can choose `
arbitrarily large and the sampling procedure will take time O(`) · poly(n).

It remains to choose our representative zv ∈ R of [zv] ∈ Rq and to get a
bound on ‖1/zv‖ · ‖zv‖ for all v ∈ A, in order to get the value of E. We will
show that ‖zv‖ · ‖1/zv‖ ≤ n4 for some choice of the representative zv we detail
below.

First case. If v has weight 1, that is [zv] = [zi] for some i, then we take
zv = zi. With our choice of [zi], we have that ‖1/zv‖ ≤ n3/q. And as ‖zv‖
has its coe�cients between −q/2 and q/2 we have that ‖zv‖ ≤

√
nq and hence

‖zv‖ · ‖1/zv‖ ≤ n3.5 ≤ n4.

Second case. If v has weight ` − 1, then there exists i ∈ {1, · · · , `} such that
[zv] = [z∗ ·z−1i ]. We choose as a representative of [zv] the element zv = z∗ ·z̃i ∈ R,
with z∗ and z̃i as above (with coe�cients between −q/2 and q/2). We then have

‖1/zv‖ = ‖1/z∗ · 1/z̃i‖ ≤
√
n · ‖1/z∗‖ · ‖1/z̃i‖ ≤ n2.5/q2.

Further, we have that ‖zv‖ = ‖z∗ · z̃i‖ ≤
√
n ·
√
nq ·
√
nq = n1.5q2. This �nally

gives us
‖zv‖ · ‖1/zv‖ ≤ n4.
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To conclude, this method gives us

E = Θ(n7.5).

This means that γ = 7.5 and both η and ν are zero.

Remark. For all methods with Σv ∼ zv z̄v (i.e., all methods except the simplistic
one), if c ← DI+a,

√
Σv

is sampled using a Gaussian distribution of standard

deviation
√
Σv, we can rewrite c = c∗zv with c∗ ← D I+a

zv
,σv

for some σv ∈ R.
Note that c∗ is now a following a spherical Gaussian distribution but its support
depends on zv. In addition to this remark, one can observe that in all the methods
described above, there exists a real σ such that σvσṽ = σ for all v ∈ A (in fact,
σv only depends on the weight of v in all the methods above). This means
that for every fresh encodings [cvz

−1
v ] and [cṽz

−1
ṽ ] at level v and ṽ generated

independently, we have an element c∗ ∈ K, following an isotropic distribution11

of variance σ2 such that cvcṽ = c∗zvzṽ in R. Again, we note that the support
of c∗ depends on zv and zṽ, but as σ is larger than the smoothing parameter,
this has no in�uence on the variance of c∗ (by Lemma 1).

A summary of the di�erent values of γ, η and ν for the di�erent sampling meth-
ods can be found in Table 1, page 25.

4 Averaging attack

4.1 Our simple setting of the GGH multilinear map

To study the leakage of the GGH multilinear map, we need to make reasonable
assumptions on what is given to the adversary. It has been shown in [24] that
knowing low level encodings of zero for the GGH13 multilinear map leads to
zeroizing attacks that completely break the scheme. So our setting should not
provide any, yet we will provide enough information for some zero-tests to pass.
To this end, we will prove our setting to be secure in the weak multilinear map
model, which supposedly prevents zeroizing attacks.

This setting is inspired by the use of multilinear maps in current candidate
obfuscator constructions, and more precisely the low noise candidate obfuscator
of [15]. Yet, for easier analysis, we tailored this setting to the bare minimum.
We will assume the degree of the multilinear map to be exactly κ = 2, and will
provide the attacker with elements that pass zero-test under a known polynomial.
The restriction κ = 2 can easily be lifted but it would make the exposition of
the model and the analysis of the leakage less readable.

More precisely, we �x a number m > 1 of monomials, and consider the
homogeneous degree-2 polynomial:

H(x1, y1, . . . , xm, ym) =
∑

xiyi.

11 c∗ is isotropic as it is the product of two independent isotropic Gaussian variables.
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Recall that we chose the set of �atoms� A to be the set of levels v ∈ {0, 1}` that
have weight exactly 1 or `−1, where the weight of v is the number of its non-zero
coe�cients. For all v ∈ A, we let ṽ = v∗ − v (we say that ṽ is the complement
of v). We assume that for each v ∈ A of weight 1, the authority reveals encodings
uv,1, . . . , uv,m at level v of random values av,1, . . . , av,m modulo I, and encodings
uṽ,1, . . . , uṽ,m at level ṽ of random values aṽ,1, . . . , aṽ,m modulo I, under the only
constraint that

H(av,1, aṽ,1, . . . , av,m, aṽ,m) = 0 mod I.

We remark that generating almost uniform values a·,· under the constraint above
is easily done, by choosing all but one of them at random, and setting the last
one to

aṽ,m = −a−1v,m

m−1∑
i=1

av,iaṽ,i mod I.

In the weak multilinear map model [15, 18, 34], we can prove that an at-
tacker that has access to this simple setting of the GGH multilinear map cannot
recover a multiple of the secret element g, except with negligible probability.
The de�nition of the weak multilinear map model and the proof that an at-
tacker cannot recover a multiple of g can be found in the full version [16].12 This
weak multilinear-map model was used to prove security of candidate obfuscators
in [15,18], as it is supposed to capture zeroizing attacks, like the ones of [11,34].
In the weak multilinear map model, recovering a multiple of g is considered to
be a successful attack. This is what motivates our proof that no polynomial time
adversary can recover a multiple of g in our simple setting, under this model.

4.2 Analysis of the leaked value

We describe in this section the information we can recover using averaging at-
tacks, depending on the sampling method. We will see that depending on the
sampling method, we can recover an approximation of A(z∗h/g), or an approxi-
mation of A(h/g) or even the exact value of A(h/g). In order to unify notation,
we introduce the leakage L, which will refer to A(z∗h/g) or A(h/g) depending the
method. We explain below what is the value of L for the di�erent methods, and
how we can recover an approximation of it. In the case of the simplistic method,
we also explain how we can recover the exact value of L from its approximation
and how to use it to create a zero-testing parameter at level 2v∗.

Statistical leakage. Let v ∈ A be of weight 1. We denote by [uv] the encod-
ing [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)]. Recall that we have [ui,v] = [ci,vz

−1
v ], where

ci,v = ai,v + ri,vg for some ri,v ∈ R. So using the de�nition of H and the fact
that [uv] passes the zero test, we can rewrite

12 The idea of the proof is the same as in [15, 18], in a much simpler context (this is
based on a generalized version of the Schwartz-Zippel lemma from [34]).
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[uvpzt] = [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m)(zvzṽ)−1 · z∗hg−1]

= [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · hg−1]

= H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · h/g.

Note that the product of the last line is in R, as it is a product of small
elements compared to q. Also, the �rst term is a small multiple of g so we can
divide by g. We denote by wv ∈ R the value above (i.e., the representative of
[uvpzt] with coe�cients in [−q/2, q/2]). The term h/g of the product is �xed,
but the �rst factor H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) depends on v: we can average
over it. We now analyze this �rst factor, depending on the method we choose
for generating the fresh encodings of the GGH map. We will denote by Yv the
random variable H(cv,1, cṽ,1, . . . , cv,m, cṽ,m).

By de�nition of the polynomial H, we know that Yv =
∑
ci,vci,ṽ. Moreover,

all the ci,v are independent when i or v vary. So the ci,vci,ṽ are centered random
variables of variance ΣvΣṽ (observe that the variance of a product of indepen-
dent centered variables is the product of their variances) and Yv is a centered
random variable of variance mΣvΣṽ (recall that H is a sum of m monomials).
We now consider several cases, depending on the choice of Σv.

Case 1 (the simplistic method). In this case, we have Σv = σ2 for all v ∈ A,
for some σ ∈ R. This means that the Yv are centered isotropic random variables
with the same variance. Let us call µ := E[A(Yv)] = mσ2 ∈ R+ this variance. If
we compute the empirical mean of the A(Yv), this will converge to µ and we can
bound the speed of convergence using Hoe�ding's inequality. Going back to the
variables wv = Yv · h/g, we have that E [A(wv)] = µ ·A(h/g) for some µ in R+.
Furthermore, all the A(wv), with v of weight 1, are independent variables with
the same mean, so we can apply Hoe�ding's inequality.

Case 2 (the conservative method). In this case, we chose Σv ∼ zvzṽ. We do not
know the variance of the Yv (because the zv are secret) but we will be able to
circumvent this di�culty, by averaging over the zv's.

First, using the remark we made at the end of Section 3, we have that
Yv =

∑
ci,vci,ṽ =

∑
c∗i,vzvzṽ, with the c∗i,v being independent centered isotropic

random variables with the same variance σ2 ∈ R+. Hence, we can rewrite
Yv = Xvzvzṽ with Xv a centered isotropic variable of variance mσ2 (which
is independent of v). Unlike the previous case, we now have some zvzṽ that
contribute in Yv. However, we will be able to remove them again by averaging.

Indeed, even if all the zv satisfy [zvzṽ] = [z∗] in Rq, this is not the case
in R, and that individually each zv is essentially13 uniform in the hypercube
[−q/2, q/2]n, in particular it is isotropic. For our analysis, let us treat the zvzṽ
as random variables in R, that are isotropic and independent when v varies.

13 Up to the invertibility condition in Rq

19



The isotropy follows from the fact that the two factors are isotropic. The inde-
pendence assumption is technically incorrect, yet as the only dependence are of
arithmetic nature over Rq and that the elements in question are large, one does
not expect the correlation to be geometrically visible.

We will call µz := E [A(zvzṽ)] their variance. Recall that as the zvzṽ are
isotropic, µz is in R+. While the independence assumption may be technically
incorrect, experiments con�rm that the empirical mean E [A(zvzṽ)] does indeed
converge to some µz ∈ R+ as the number of sample grows, and more precisely
it seems to converge as µz · (1 + ε) where ε ∈ KR satis�es ‖ε‖∞ = Õ(

√
1/|A|),

as predicted by the Hoe�ding bound (results of the experiments are given in the
full version [16]).

Assuming that the Xv are independent of the zvzṽ,
14 we �nally obtain

E[A(Yv)] = E[A(Xv)]E[A(zvzṽ)] = mσ2µz.

We denote by µ = mσ2µz this value. As in the previous case, the variables
A(wv) are independent (when v has weight 1) and have the same mean

E [A(wv)] = µ ·A(h/g),

with µ ∈ R+.

Case 3 (the exponential and aggressive methods). In these methods, we can again
write Yv = Xvzvzṽ with Xv a centered isotropic variable of variance mσ2 for
some σ ∈ R+, independent of v. However, unlike the previous case, the zvzṽ are
not isotropic variables anymore and therefore the z's do not �average-out�.

In the exponential method, the identity zvzṽ = z∗ holds over R (where
z∗ =

∏
i zi ∈ R is a representative of [z∗]), hence, zvzṽ is constant when v

varies, and we have

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.

In the aggressive method, we have zvzṽ = z∗ ·z̃i ·zi for some 1 ≤ i ≤ `, with z∗
the representative of [z∗], zi the representative of [zi] and z̃i the representative
of [z−1i ] with coe�cients in [−q/2, q/2]. The element z∗ is �xed, but, as in the
conservative case, we can see the z̃i · zi as isotropic variables. Assuming they are
independent, we then have E [A(zvzṽ)] = µzA(z∗) for some scalar µz ∈ R+. And
we again have

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.

14 We can view the variables c∗i,v as being independent of the variables zv because
the standard deviation of the Gaussian distribution is larger than the smoothing
parameter (see Lemma 1).
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Conclusion on the average. To conclude, we have argued that in all methods,

E [A(wv)] = µ · L

for some scalar µ ∈ R+, where the leaked variable L depends on the sampling
method in the following way:

• L = A(h/g) for the simplistic and the conservative methods.
• L = A(hz∗/g) for the exponential and the aggressive methods.

Now, using the fact that the random variables A(wv) are independent for
di�erent v ∈ A of weight 1, we can compute their empirical mean and Hoe�ding's
inequality will allow us to bound the distance to the theoretical mean. In the
following we assume that we know µ. 15

Relative error of the leakage. Compute

W =
2

|A|
∑
v∈A

v of weight 1

A(wv)

the empirical mean of the random variables A(wv). This is an approximation of
µ · L. We know that the coe�cients of the random variable wv are less than q,
so the coe�cients of A(wv) are less that nq2. By applying Hoe�ding's inequality
in R (Corollary 1) with ε = 1/n, B = nq2 and m = |A|/2, we have that ‖W −
µ · L‖∞ < nq2

√
8 lnn√
|A|

(except with probability at most 2/n). As the coe�cients

of µL are of the order of nq2, we have a relative error δ <
√

8 lnn/|A| for each
coe�cient of µL. As µ is known, this means that we know L with a relative error
at most

√
8 lnn/|A|. 16

Unfortunately, we cannot directly recover the exact value of L because its
coe�cients are not integers. When L = A(hz∗/g), i.e., for the exponential and
aggressive methods, we do not know how to use this approximation of L to
recover the exact value of L.17 When L = A(h/g), i.e., for the simplistic and
conservatives methods, we can circumvent this di�culty. The idea is to trans-
form our approximation of L into an approximation of an element r ∈ R, with
coe�cients that are integers of logarithmic bit-size. Indeed, if we have an approx-
imation of r with error less that 1/2 we can round its coe�cients and recover
the exact value of r. And we can get such an approximation using a polynomial

15 The value of the scalar µ can be obtained from the parameters of the multilinear
maps. If we do not want to analyze the multilinear map, we can guess an approxi-
mation of µ with a su�ciently small relative error, by an exhaustive search.

16 Again, if we do not know µ, we can guess an approximation of µ with relative error
at most

√
8 lnn/|A| (so that it has no in�uence on our approximation of L), with

an exhaustive search.
17 Note that if we recover the exact value ofA(hz∗/g), then its denominator is a multiple

of g and this is considered as a success of the attacker in the weak multilinear map
model.
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number of samples because the coe�cients we want to recover have logarithmic
bit-size. This is what we explain in next subsection. Unfortunately, we will see
that for the conservative method, the number of samples we need to be able to
round r to its exact value is not compatible with the constraint we had on |A|
for being able to generate the zv.

From the leakage to a complete attack against the GGH map. In
this section, we explain how we can recover the exact value of A(h/g), when
L = A(h/g) and we have enough samples. We then show how we can use this
exact value to construct a zero-testing parameter at level 2v∗.

Recovering L exactly when L = A(h/g). In the following, we assume that we have
an approximation of A(h/g) with relative error δ <

√
8 lnn/|A| and we want

to recover the exact value of A(h/g). Let u be any encoding at level v∗ that passes
the zero test (we can take u to be one of the [uv] = [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)]).
We have that [u · pzt] = c · h/g ∈ R for some small multiple c of g. In particular,
the coe�cients of c are somehow small18 and are integers. Using our approxi-
mation W of µ · A(h/g) with relative error δ plus the fact that we know µ and
c ·h/g, we can recover an approximation of A(c) with relative error at most δ ·n2
by computing A(c · h/g) · µ ·W−1.

The coe�cients of A(c) are integers and are less than m2n2E4. Indeed, c =
H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) for some v and we have ‖cv,i‖ ≤ E for all v's and i's.
So we know that ‖c‖ ≤ mn1/2E2 and we get the desired bound on ‖A(c)‖∞.
Hence, if we have an approximation of the coe�cients of A(c) with relative
error at most 1

2m2n2E4 , the absolute error is less that 1/2 and we can round
the coe�cients to recover A(c) exactly. We can then recover A(h/g) exactly by
computing A(c · h/g)/A(c).

Putting together the conditions we got on the parameters, we have δ <√
8 lnn
|A| and we want δ ·n2 < 1

2m2n2E4 to be able to recover A(c). This is satis�ed

if
√

8 lnn
|A| <

1
2m2n4E4 , i.e., |A| > 32E8m4n8 lnn.

To conclude, if |A| > 32E8m4n8 lnn, we can recover A(g/h) ∈ K exactly.19

In Section 4.3, we compare this constraint to the ones we had for the samplings
methods. We will see that for the simplistic method, our constraints are compat-
ible, so we can perform the attack. But this is not the case with the conservative
method.

Using A(h/g) to create a zero testing parameter at a forbidden level. We present
here a possible way of using the recovered value A(h/g). Note that in current
obfuscation model (for instance the weak multilinear map model of [18] or [15]),
recovering A(h/g) is already considered as a success for the attacker. Indeed,

18 Recall that q may be exponentially large but we assumed that the numerator of a
top level encoding remains polynomial in n.

19 Note that this bound does not depends on q but only on E. This is why our attack
still works even if q is exponential in n, as long as E remains polynomial in n.
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its denominator is a multiple of A(g) = gḡ so in particular we have recovered a
multiple of g, which is considered as a success of the attacker in these models.20

Moreover, even if we do not consider that recovering a multiple of g is bad news,
we present here a way of using A(h/g) to create a zero-testing parameter at a
higher level than v∗ (here we create a zero-testing parameter at level 2v∗).

First, note that the complex conjugation ·̄ in R is compatible with Rq. Indeed,
let c, r ∈ R, we have c+ qr = c + qr = c + qr (because ·̄ is R-linear). So
c+ qr ≡ c mod q and we can de�ne the operation ·̄ in Rq by [r] = [r]. We will
use this to construct our zero-testing parameter. Let again [u] be an encoding
of zero at level v∗ and write [u] = [c · (z∗)−1] where c is a small multiple of g.
Compute

p′zt = [u · p2zt · pzt ·A(h/g)−1]

=

[
c

z̄∗
· (z∗)2h2

g2
· z̄
∗h

g
· gg
hh

]
=

[
(z∗)2 · (hc̄)

g

]
.

As hc̄ is small compared to q, this is likely to give us a zero-testing parameter at
level 2v∗. To be sure that we can indeed zero-test at level 2v∗, we should check
that the noise obtained at that level, when multiplied by hc̄, does not become
larger than q.

A su�cient condition for this attack to succeed is that

B + 3 + 3κ(1/2 + γ + νL) + η` ≤ Q/4 (15)

which is a variation on Inequality (9) where κ has been replaced by 3κ.
Note that the typical choice of q in [15,17] includes quite some extra margin

compared to our condition (9). But even if q is chosen tightly following Inequal-
ity (9), it is not clear that the attack is prevented. Indeed, these conditions (9)
and (15) are derived from the worst case inequality (1) (‖xy‖ ≤

√
n · ‖x‖ · ‖y‖),

and may therefore be far from tight in the average case. In fact, ‖xy‖/(‖x‖ ·‖y‖)
can be arbitrarily small for well chosen x and y.

Determining whether there exist parameters that guarantee that legitimate
zero-tests at level v∗ almost always succeed while fraudulent zero-tests at level
2v∗ almost always fail would require a quite re�ned analysis of the distributions
at hand, which is beyond the scope of this work. Indeed, we �nd it preferable to
block this type of attacks by more robust means.

4.3 Noise analysis of the leakage

We sum up in this section the leakage that we can obtain and with which pre-
cision, depending on the sampling methods presented in Section 3.

20 For this to be true, we need h and g to be co-prime. But as the ideal 〈g〉 is prime,
this will be true unless h is a multiple of g. And the case where h is a multiple of g
is not a problem, as we can easily recover multiples of h (and so multiples of g).
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The simplistic method. In this method, we have L = A(h/g). Recall that in
this case, we can recover the exact value of L if ` > 16E8m4n8 lnn (using the
fact that |A| = 2`). But in this method, we had E = O(n1.5+ε), for any ε > 0.
Hence, taking ` = Θ(n20+8εm4 lnn) satis�es the conditions for generating the
parameters plus our condition ` > 16E8m4n8 lnn. To conclude, when using
the simplistic method with some choice of the parameters, we can recover the
exact value A(h/g) and use it to construct a forbidden zero-testing parameter at
level 2v∗. Note that recovering A(h/g) also means that we recovered a multiple
of g. However, we proved that in the weak multilinear map model, no polynomial
time attacker could recover a multiple of g. This proves that the averaging attack
described above is not captured by the weak multilinear map model.

Remark. For this sampling method, as Σv ∼ 1, we do not need to average over
the v, so we could also have ` = 2 as long as we have enough samples for each v.

The exponential method. In this method, we have L = A(z∗h/g). We can recover

an approximation of µL with relative error at most
√

8 lnn
|A| . We do not know if

it is possible to recover L exactly.

The conservative method revisited. In this method, we have L = A(h/g), we

can recover an approximation of µL with relative error at most
√

8 lnn
|A| accord-

ing to our heuristic analysis. While the independence condition between the
A(zvzṽ) for applying Hoe�ding's bound may not be satis�ed, we show that this
rate of convergence seems correct in practice (see the experiments in the full
version [16]).

Recall that if ` > 16E8m4n8 lnn, then we can recover A(h/g) exactly. But
for the sampling method to work, we need to take E = Θ(n4.5

√
`). Hence, the

condition ` > 16E8m4n8 lnn can be rewritten

` > Θ(n44`4m4 lnn).

This condition cannot be satis�ed, so we cannot have enough samples for our
attack when using this sampling method. And all we get is an approximation of
µA(h/g). Nevertheless, the only thing that prevents the full attack is the size
of the parameters we have to choose in order to be able to generate the fresh
encodings.

The aggressive method. In this method, we have L = A(z∗h/g). We can recover

an approximation of µL with relative error at most
√

8 lnn
|A| . We do not know if

it is possible to recover L exactly.

4.4 Conclusion

We give in Table 1 a summary of the parameters used for the di�erent sampling
methods, and of the resulting leakage. The column 'constraints' speci�es possible
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constraints on the parameters or on the atoms set A, that arise when using this
sampling method. Recall that due to the correctness bound (9), there is always a
constraint on the modulus q, so we do not mention it in the column `constraints'.
This constraint on q can be obtained from the columns γ, η and ν, using the
formula log q ≥ 4 log(n)(3 + κ/2 + κγ + κνL+ η`) + 4 log(m).

Sampling method γ η ν leakage L full attack? constraints

Simplistic [17] 1.5 + ε 0 0 A(h/g) yes none
Exponential [17] 2.5 2.5 0 A(z∗h/g) no none
Conservative [15] 6 0 0 A(h/g) no n ≥ 4`
Conservative (revisited) 4.5 0 0.5 A(h/g) no none
Aggressive [15] 7.5 0 0 A(z∗h/g) no structure of A
Compensation (Sec. 5) 1.5 + 1/κ+ ε 0 0 1 no none

Table 1. Summary of the leakage analysis, depending on the sampling method. This
includes our new method, sketched in Section 5. We recall that, according to correctness
bound (9), the modulus q must satisfy log q ≥ 4 log(n)(3+κ/2+κγ+κνL+η`)+4 log(m).

We have seen that the leakage obtained in the conservative method is the
same as the one of the unprotected scheme (the simplistic method). However,
in the case of the conservative method, the number of available samples is not
su�cient to complete the attack, as it is the case in the simplistic method.
This limitation on the number of samples comes from some constraints in the
sampling procedure and seems a bit accidental, we do not �nd this version of
the countermeasure fully satisfactory.

We can also question the security of the other methods (exponential and
aggressive), which leak an approximation of A(hz∗/g), related to secret values.
More precisely, one could wonder whether this noisy leakage could be combined
with the knowledge of pzt = [hz∗g−1] to mount an attack. As this problem does
not look like any traditional (ideal) lattice problem, we fail to conclude beyond
reasonable doubt that it should be intractable. We would �nd it more rational
to make the leakage unrelated to secret parameters. In the following section, we
propose such a design, which is simple, and leads to better parameters.

5 The compensation method

In this section, we propose a new sampling method which is designed so that the
leakage L that an attacker can recover by using the averaging attack described
above, reveals no information about secret parameters of the GGH map. Never-
theless, we note that even if the attack described above does not apply directly
to this method, other averaging attacks may be able to leak secret information.
An idea could be to �x some encodings and average over the others.
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Discussion on design. We have seen that choosing di�erent covariance parame-
ters Σv at di�erent levels v can in fact make the leak worse, as the attacker can
choose to average them out. We also remark that the parameters [zv] can be pub-
licly re-randomized without a�ecting anything else, in particular without a�ect-
ing the covariance Σv of the numerator of the encodings. Indeed, we can choose
random invertible elements [ẑi] ∈ R×q , and apply the following transformation
to all encodings ev at level v, as well as to the zero-testing parameter [pzt]:

[ev] 7→

[∏
i∈v

ẑ−1i

]
· [ev], [pzt] 7→

[∏
i∈v?

ẑi

]
[pzt].

This means that the relation between the covariance Σv and the denominators
zv can be publicly undone while maintaining functionality.

The compensation method. We therefore proceed to set Σv = Σ for all levels v,
and to choose Σ independently of the zv. Doing so, we observe that the leakage
L will generically be:

L ∼ Σκ ·A(h/g). (16)

We then choose Σ ∼ A(g/h)
1/κ

, ensuring L ∼ 1: the leakage is made constant,
unrelated to any secret. We insist nevertheless that, as the previous methods,
this method comes with no formal security argument. We also warn that we have
not thoroughly explored more general leakage attacks, varying the zero-tested
polynomials or keeping some encodings �xed.

It remains to see how short one can e�ciently sample encodings following this
choice. To get tighter bounds, we look at the conditioning number (or distortion)

δ(
√
Σ) = max(σi(

√
Σ))

min(σi(
√
Σ))

, where σi runs over all embeddings. One easily veri�es the

following properties:

δ(A(x)) = δ(x)2 (17)

δ(xk) = δ(x)|k| for any k ∈ R, (18)

δ(xy) ≤ δ(x)δ(y). (19)

If a variable x ∈ KR has independent continuous Gaussian coe�cients of
parameter 1, then its embeddings are (complex) Gaussian variables of parameter
Θ(
√
n), and it holds with constant probability that

∀i, Ω(1) ≤ |σi(x)| ≤ O(
√
n log n). (20)

Indeed, the right inequality follows from classic tail bounds on Gaussian. For the
left inequality, consider that |σi(x)| ≥ max(|<(σi(x))|, |=(σi(x))|), where both
the real and imaginary parts are independent Gaussian of parameter Θ(

√
n):

each part will be smaller than Θ(1) with probability at most 1/
√

2n. By inde-
pendence, |σi(x)| ≤ Θ(1) holds with probability at most 1/2n for each i, and
one may conclude by the union bound.
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By scaling (and plausibly ignoring discreteness issues since g and h are sam-
pled above the smoothing parameter of Zn) we can therefore assume, using
rejection sampling over h and g, that δ(g), δ(h) ≤ O(

√
n log n) , and therefore

δ(
√
Σ) = δ(A(g/h))1/2κ ≤ (δ(g)δ(h))1/κ ≤ O(n log n)1/κ.

This allows us to scale Σ so that:

• ‖g/
√
Σ‖ ≤ o(1/

√
log n), so that we can sample e�ciently via Theorem 2.

• E =
√
n · ‖
√
Σ‖ ≤

√
n · ‖g‖ · δ(

√
Σ) · ω(

√
log n) = O(n1.5+1/κ+ε): the size

of the numerators of the encodings is barely worse than in the simplistic
method, and signi�cantly better than in all other methods.

References

1. M. R. Albrecht, S. Bai, and L. Ducas. A sub�eld lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In
M. Robshaw and J. Katz, editors, Advances in Cryptology � CRYPTO 2016, Part

I, volume 9814 of Lecture Notes in Computer Science, pages 153�178. Springer,
Heidelberg, Aug. 2016.

2. P. Ananth and A. Sahai. Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint
Archive, Report 2016/1097, 2016. http://eprint.iacr.org/2016/1097.

3. B. Barak, Z. Brakerski, I. Komargodski, and P. K. Kothari. Limits on low-degree
pseudorandom generators (or: Sum-of-squares meets program obfuscation). Cryp-
tology ePrint Archive, Report 2017/312, 2017. http://eprint.iacr.org/2017/

312.
4. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation

against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, Advances
in Cryptology � EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer

Science, pages 221�238. Springer, Heidelberg, May 2014.
5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor, Ad-
vances in Cryptology � CRYPTO 2001, volume 2139 of Lecture Notes in Computer

Science, pages 1�18. Springer, Heidelberg, Aug. 2001.
6. J.-F. Biasse, T. Espitau, P.-A. Fouque, A. Gélin, and P. Kirchner. Computing

generator in cyclotomic integer rings. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques, pages 60�88. Springer, 2017.
7. J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups

and solving the principal ideal problem in arbitrary degree number �elds. In Pro-

ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 893�902. Society for Industrial and Applied Mathematics, 2016.
8. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In

J. Kilian, editor, Advances in Cryptology � CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213�229. Springer, Heidelberg, Aug. 2001.

9. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Y. Lindell, editor, TCC 2014: 11th Theory of Cryptog-

raphy Conference, volume 8349 of Lecture Notes in Computer Science, pages 1�25.
Springer, Heidelberg, Feb. 2014.

27

http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/2017/312
http://eprint.iacr.org/2017/312


10. P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale. In ETSI

2nd Quantum-Safe Crypto Workshop, pages 1�9, 2014.
11. Y. Chen, C. Gentry, and S. Halevi. Cryptanalyses of candidate branching program

obfuscators. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 278�307. Springer, 2017.
12. J. H. Cheon, J. Jeong, and C. Lee. An algorithm for ntru problems and crypt-

analysis of the ggh multilinear map without a low level encoding of zero. Mh, 1:0,
2016.

13. J.-S. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova,
A. Sahai, and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In R. Gennaro and M. J. B. Robshaw, editors, Advances in
Cryptology � CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer

Science, pages 247�266. Springer, Heidelberg, Aug. 2015.
14. R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators

of principal ideals in cyclotomic rings. In M. Fischlin and J.-S. Coron, editors,
Advances in Cryptology � EUROCRYPT 2016, Part II, volume 9666 of Lecture
Notes in Computer Science, pages 559�585. Springer, Heidelberg, May 2016.

15. N. Döttling, S. Garg, D. Gupta, P. Miao, and P. Mukherjee. Obfuscation from
low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599, 2016.
http://eprint.iacr.org/2016/599.

16. L. Ducas and A. Pellet-Mary. On the statistical leak of the GGH13 multilinear
map and some variants. Cryptology ePrint Archive, Report 2017/482, 2017. http:
//eprint.iacr.org/2017/482.

17. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology � EURO-

CRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1�17.
Springer, Heidelberg, May 2013.

18. S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and M. Zhandry. Se-
cure obfuscation in a weak multilinear map model. In M. Hirt and A. D. Smith,
editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume
9986 of Lecture Notes in Computer Science, pages 241�268. Springer, Heidelberg,
Oct. / Nov. 2016.

19. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In R. E. Ladner and C. Dwork, editors, 40th
Annual ACM Symposium on Theory of Computing, pages 197�206. ACM Press,
May 2008.

20. C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme.
In L. R. Knudsen, editor, Advances in Cryptology � EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 299�320. Springer, Heidelberg,
Apr. / May 2002.

21. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lat-
tice reduction problems. In B. S. Kaliski Jr., editor, Advances in Cryptology �

CRYPTO'97, volume 1294 of Lecture Notes in Computer Science, pages 112�131.
Springer, Heidelberg, Aug. 1997.

22. J. Ho�stein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In M. Joye, editor, Topics
in Cryptology � CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 122�140. Springer, Heidelberg, Apr. 2003.

23. J. Ho�stein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattice-based signature
scheme. In B. P�tzmann, editor, Advances in Cryptology � EUROCRYPT 2001,

28

http://eprint.iacr.org/2016/599
http://eprint.iacr.org/2017/482
http://eprint.iacr.org/2017/482


volume 2045 of Lecture Notes in Computer Science, pages 211�228. Springer, Hei-
delberg, May 2001.

24. Y. Hu and H. Jia. Cryptanalysis of GGH map. In M. Fischlin and J.-S. Coron,
editors, Advances in Cryptology � EUROCRYPT 2016, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 537�565. Springer, Heidelberg, May
2016.

25. A. Joux. A one round protocol for tripartite di�e�hellman. In International

Algorithmic Number Theory Symposium, pages 385�393. Springer, 2000.
26. P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched ntru

parameters. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 3�26. Springer, 2017.
27. P. N. Klein. Finding the closest lattice vector when it's unusually close. In

D. B. Shmoys, editor, 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 937�941. ACM-SIAM, Jan. 2000.

28. A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More e�cient multilinear maps
from ideal lattices. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology

� EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
239�256. Springer, Heidelberg, May 2014.

29. H. Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology � EU-

ROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science, pages
28�57. Springer, Heidelberg, May 2016.

30. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In Annual International Cryptology Conference, pages 599�629. Springer,
2017.

31. H. Lin and S. Tessaro. Indistinguishability obfuscation from bilinear maps and
block-wise local prgs. Cryptology ePrint Archive, Report 2017/250, 2017. http:

//eprint.iacr.org/2017/250.
32. A. Lombardi and V. Vaikuntanathan. On the non-existence of blockwise 2-

local prgs with applications to indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2017/301, 2017. http://eprint.iacr.org/2017/301.

33. D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaus-
sian measures. In 45th Annual Symposium on Foundations of Computer Science,
pages 372�381. IEEE Computer Society Press, Oct. 2004.

34. E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In M. Robshaw and
J. Katz, editors, Advances in Cryptology � CRYPTO 2016, Part II, volume 9815
of Lecture Notes in Computer Science, pages 629�658. Springer, Heidelberg, Aug.
2016.

35. P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. In S. Vaudenay, editor, Advances in Cryptology � EURO-

CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 271�288.
Springer, Heidelberg, May / June 2006.

36. D. Stehlé and R. Steinfeld. Making NTRUEncrypt and NTRUSign as secure as
standard worst-case problems over ideal lattices. Cryptology ePrint Archive, Re-
port 2013/004, 2013. http://eprint.iacr.org/2013/004.

29

http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/301
http://eprint.iacr.org/2013/004

	On the Statistical Leak of the  GGH13 Multilinear Map and some Variants

