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Abstract. This paper demonstrates how to achieve simulation-based
strong attribute hiding against adaptive adversaries for predicate encryp-
tion (PE) schemes supporting expressive predicate families under stan-
dard computational assumptions in bilinear groups. Our main result is a
simulation-based adaptively strongly partially-hiding PE (PHPE) scheme
for predicates computing arithmetic branching programs (ABP) on public
attributes, followed by an inner-product predicate on private attributes.
This simultaneously generalizes attribute-based encryption (ABE) for
boolean formulas and ABP’s as well as strongly attribute-hiding PE
schemes for inner products. The proposed scheme is proven secure for any
a priori bounded number of ciphertexts and an unbounded (polynomial)
number of decryption keys, which is the best possible in the simulation-
based adaptive security framework. This directly implies that our con-
struction also achieves indistinguishability-based strongly partially-hiding
security against adversaries requesting an unbounded (polynomial) num-
ber of ciphertexts and decryption keys. The security of the proposed
scheme is derived under (asymmetric version of) the well-studied deci-
sional linear (DLIN) assumption. Our work resolves an open problem
posed by Wee in TCC 2017, where his result was limited to the semi-
adaptive setting. Moreover, our result advances the current state of the
art in both the fields of simulation-based and indistinguishability-based
strongly attribute-hiding PE schemes. Our main technical contribution
lies in extending the strong attribute hiding methodology of Okamoto
and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the frame-
work of simulation-based security and beyond inner products.

Keywords: predicate encryption, partially-hiding, simulation-based adap-
tive security, arithmetic branching programs, inner products

1 Introduction
Functional encryption (FE) is a new vision of modern cryptography that aims to
overcome the potential limitation of the traditional encryption schemes, namely,
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the all or nothing control over decryption capabilities. FE supports restricted
decryption keys which enable decrypters to learn specific functions of encrypted
messages, and nothing else. More precisely, a (public-key) FE scheme for a func-
tion family ℱ involves a setup authority which holds a master secret key and
publishes public system parameters. An encrypter uses the public parameters to
encrypt its message 𝑀 belonging to some supported message space 𝕄, creating
a ciphertext ct. A decrypter may obtain a private decryption key sk(𝐹 ) for
some function 𝐹 ∈ ℱ from the setup authority, provided the authority deems
that the decrypter is entitled for that key. Such a decryption key sk(𝐹 ) can be
used to decrypt ct to recover 𝐹 (𝑀), but nothing more about 𝑀 .

The most intuitive security requirement for an FE scheme is collusion resis-
tance, i.e., a group of decrypters cannot jointly retrieve any more information
about an encrypted message beyond the union of what each of them is allowed to
learn individually. This intuitive notion has been formalized by Boneh et al. [12]
and O’Neill [37] in two distinct frameworks, namely, (a) indistinguishability-based
security and (b) simulation-based security. The former stipulates that distin-
guishing encryptions of any two messages is infeasible for a group of colluders
which do not have a decryption key that decrypts the ciphertext to distinct val-
ues. The latter, on the other hand, stipulates the existence of a polynomial-time
simulator that given 𝐹1(𝑀), . . . , 𝐹𝑞key(𝑀) for any message 𝑀 ∈𝕄 and functions
𝐹1, . . . , 𝐹𝑞key ∈ ℱ , outputs the view of the colluders which are given an encryp-
tion of 𝑀 together with decryption keys for 𝐹1, . . . , 𝐹𝑞key . Both of the above
notions can be further refined, depending on how the queries of the adversary to
the decryption key generation and encryption oracles depend on one another as
well as on the public parameters of the system, as adaptive vs semi-adaptive vs
selective. Boneh et al. [12] and O’Neill [37] showed that in general, simulation-
based security provides a stronger guarantee than indistinguishability-based se-
curity, i.e., simulation-based security of some kind, e.g., adaptive, semi-adaptive,
or selective, implies indistinguishability-based security of the same kind; but
the converse does not hold in general. In fact, Boneh et al. pointed out that
indistinguishability-based security is vacuous for certain circuit families, which
indicates that we should opt for simulation-based security whenever possible. On
the other hand, it is known that while security for single and multiple ciphertexts
are equivalent in the indistinguishability-based setting [12], this is not the case in
the simulation-based setting [12,9,3,16]. In particular, it has been demonstrated
by Boneh et al. [12] that in the adaptive or semi-adaptive simulation-based set-
ting, where the adversary is allowed to make decryption key queries even after
receiving the queried ciphertexts, achieving security for an unbounded number
of ciphertexts is impossible.

An important subclass of FE is predicate encryption (PE). In recent years,
with the rapid advancement of Internet communication and cloud technology,
there has been an emerging trend among individuals and organizations to out-
source potentially sensitive private data to external untrusted servers, and to
perform selective computations on the outsourced data by remotely querying
the server at some later point in time, or to share specific portions of the out-
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sourced data to other parties of choice. PE is an indispensable tool for performing
such operations on outsourced sensitive data without compromising the confi-
dentiality of the data.

Consider a predicate family 𝑅 = {𝑅(𝑌, ·) : 𝒳 → {0, 1} | 𝑌 ∈ 𝒴}, where
𝒳 and 𝒴 are two collections of indices or attributes. In a PE scheme for some
predicate family 𝑅, the associated message space 𝕄 is of the form 𝒳 × ℳ,
where ℳ contains the actual payloads. The functionality 𝐹𝑅𝑌

associated with
a predicate 𝑅(𝑌, ·) ∈ 𝑅 is defined as 𝐹𝑅𝑌

(𝑋,msg) = msg if 𝑅(𝑌,𝑋) = 1, or
in other words, 𝑌 is authorized for 𝑋, and 𝐹𝑅𝑌

(𝑋,msg) = ⊥ (a special empty
string) if 𝑅(𝑌,𝑋) = 0, or in other words, 𝑌 is not authorized for 𝑋 for all
(𝑋,msg) ∈𝕄 = 𝒳 ×ℳ.

The standard security notion for FE described above, when adopted in the
context of PE, stipulates that recovering the payload from a ciphertext gener-
ated with respect to some attribute 𝑋 ∈ 𝒳 should be infeasible for a group of
colluders none of which possesses a decryption key corresponding to an attribute
authorized for 𝑋, also referred to as an authorized decryption key; and more-
over, the ciphertext should conceal 𝑋 from any group of colluders, even those
in possession of authorized decryption keys. In the context of PE, this security
notion is referred to as strongly attribute-hiding security. A weakening of the
above notion, called weakly attribute-hiding security requires that 𝑋 should only
remain hidden to colluders in possession of unauthorized keys. An even weaker
notion, which only demands the payload to remain hidden to colluders with
unauthorized keys, is known as payload-hiding security, and a payload-hiding
PE scheme is often referred to as an attribute-based encryption (ABE) scheme in
the literature.

Over the last decade, a long sequence of works have developed extremely pow-
erful techniques for realizing indistinguishability-based ABE and weakly attribute-
hiding PE schemes supporting more and more expressive predicate families un-
der well-studied computational assumptions in bilinear groups and lattices, cul-
minating into schemes that can now support general polynomial-size circuits
[22,30,33,34,26,31,41,7,14,20,11,19]. However, very little is known for strongly
attribute-hiding PE schemes, even in the indistinguishability-based setting. The
situation is even worse when security against an unbounded (polynomial) number
of authorized-key-possessing colluders under standard computational assump-
tion is considered. In fact, until very recently, the known candidates were re-
stricted to only inner products or even simpler predicates [13, 29, 32, 34, 36, 16],
out of which the schemes designed in the more efficient and secure prime order
bilinear groups being only the works of Okamoto and Takashima [32, 34, 36].
One big reason for this state of the art is that unlike payload-hiding or weakly
attribute-hiding, for proving strongly attribute-hiding security, one must argue
about an adversary that gets hold of authorized decryption keys, something
cryptographers do not have a good understanding of so far. Moreover, there are
indeed reasons to believe that constructing strongly attribute-hiding PE schemes
for sufficiently expressive predicate classes such as NC1 under standard compu-
tational assumptions could be very difficult. In fact, it is known that a strongly
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attribute-hiding PE scheme for NC1 predicates, even in the weakest selective
setting, can lead all the way to indistinguishability obfuscation (IO) for general
circuits, the new holy grail of modern cryptography [5,10,6]. In view of this state
of affairs, it is natural to ask the following important question:
Can we realize “the best of both worlds”, i.e., can we design PE scheme for
some sufficiently expressive predicate family (e.g., NC1) that is secure against
an unbounded (polynomial) number of colluders under standard computational
assumptions (without IO), such that the strongly attribute-hiding guarantee holds
for a limited segment (e.g., one belonging to some subclass of NC1) of each
predicate in the predicate family?

Towards answering this question, in TCC 2017, Wee [40] put forward a new
PE scheme for an NC1 predicate family in bilinear groups of prime order that is
secure against an unbounded (polynomial) number of colluders under the well-
studied 𝑘-linear (𝑘-LIN) assumption, where the strongly attribute-hiding prop-
erty is achieved only for an inner product evaluating segment of each predicate of
the predicate class. More precisely, in his proposed PE system, the ciphertext at-
tribute set 𝒳 is given by 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 for some finite field 𝔽𝑞 and 𝑛′, 𝑛 ∈ ℕ, while the

decryption key attribute set 𝒴 is given by the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip . Any func-

tion 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip operates on a pair (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 by first computing 𝑛 arith-

metic branching programs (ABP) 𝑓1, . . . , 𝑓𝑛 : 𝔽𝑛′

𝑞 → 𝔽𝑞 on �⃗� to obtain a vector
(𝑓1(�⃗�), . . . , 𝑓𝑛(�⃗�)) ∈ 𝔽𝑛

𝑞 , and then evaluating the inner product of the computed
vector and �⃗�. The predicate family 𝑅abp∘ip associated with the PE scheme is
defined as 𝑅abp∘ip = {𝑅abp∘ip(𝑓, (·, ·)) : 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 → {0, 1} | 𝑓 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip }, where

𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 1 if 𝑓(�⃗�, �⃗�) = 0, and 0 if 𝑓(�⃗�, �⃗�) ̸= 0 for any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip

and (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 . The security property of Wee’s PE scheme guarantees

that other than hiding the payload, a ciphertext generated for some attribute
pair (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 also conceals the attribute �⃗� (but not the attribute �⃗�).

Moreover, the concealment of the attribute �⃗� is strong, i.e., even against col-
luders possessing authorized keys. Wee termed this security notion as strongly
partially-hiding security, while the attributes �⃗� ∈ 𝔽𝑛′

𝑞 and �⃗� ∈ 𝔽𝑛
𝑞 as the public

and private attributes respectively.
This PE scheme simultaneously generalizes ABE for boolean formulas and

ABP’s, as well as strongly attribute-hiding inner-product PE (IPE). For instance,
unlike standard IPE schemes, where an inner-product predicate is evaluated be-
tween the (private) attribute vector �⃗� associated with a ciphertext and the at-
tribute vector �⃗� hardwired within a decryption key, this PE scheme evaluates
inner-product predicate between �⃗� and �⃗� obtained as the result of complicated
ABP computations on a public attribute string �⃗�, which is now associated in
addition to the private attribute vector �⃗� with the ciphertext. This in turn
means that this PE scheme can be deployed in richer variants of the applica-
tions captured by IPE schemes. For example, it is well-known that inner-product
predicates can be used to evaluate conjunctive comparison predicates of the
form 𝑅comp((𝑐1, . . . , 𝑐𝑛), (𝑧1, . . . , 𝑧𝑛)) =

⋀︀
𝑗∈[𝑛][𝑧𝑗 ≥ 𝑐𝑗 ], where 𝑐𝑗 ’s and 𝑧𝑗 ’s lie

in polynomial-size domains [13]. In case of standard IPE schemes, 𝑐1, . . . , 𝑐𝑛 are
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fixed constants which are specified within the decryption key. On the contrary,
in case of a PE scheme for 𝑅abp∘ip, we can carry out more complex computation,
where instead of being fixed constants, 𝑐1, . . . , 𝑐𝑛 can be derived as the outputs of
ABP evaluations on public ciphertext attributes. Of course, fixed 𝑐1, . . . , 𝑐𝑛 is a
special case of this more expressive computation, since one can have ABP’s that
ignore the public ciphertext attributes, and simply output hardwired constants.
Similarly, standard IPE schemes can be employed for evaluating polynomials with
constant coefficients, where the coefficients are specified within the decryption
keys [29]. In contrast, in case of a PE scheme for 𝑅abp∘ip, the polynomial coef-
ficients can be generated as outputs of ABP computations on public ciphertext
attributes.

Partially-hiding PE (PHPE) schemes for similar type of predicate families
were considered in [19, 2] in the lattice setting, and those PHPE schemes are
in fact capable of evaluating general polynomial-size circuits, as opposed to
ABP’s in Wee’s construction, over public ciphertext attributes prior to evaluat-
ing inner-product predicates over private ciphertext attributes. However, those
constructions are either only weakly partially-hiding, i.e., the security of the
private attributes of the ciphertexts are only guaranteed against unauthorized
colluders [19], or strongly partially-hiding against a priori bounded number of
authorized colluders [2]. In contrast, Wee’s PHPE scheme is strongly partially-
hiding against an unbounded (polynomial) number of authorized colluders. An-
other strong aspect of the PHPE construction of Wee is that its security is
proven in the (unbounded) simulation-based framework [3], while except [16],
all prior PE constructions with strongly attribute-hiding security against an un-
bounded (polynomial) number of authorized colluders were proven in the weaker
indistinguishability-based framework.

However, the PHPE scheme proposed by Wee [40] only achieves semi-adaptive
security [15], i.e., against an adversary that is restricted to submit its ciphertext
queries immediately after viewing the public parameters, and can make decryp-
tion key queries only after that. While semi-adaptive security seems somewhat
stronger, it has recently been shown by Goyal et al. [21] that it is essentially
equivalent to the selective security, the weakest notion of security in which the
adversary is bound to declare its ciphertext queries even before the system is
setup. Their result also indicates that the gap between semi-adaptive and adap-
tive security, the strongest and most reasonable notion in which the adversary is
allowed to make ciphertext and decryption key queries at any point during the
security experiment, is in fact much wider than was previously thought. While
Ananth et al. [4] have demonstrated how to generically transform an FE scheme
that supports arbitrary polynomial-size circuits from selective security to one
that achieves adaptive security, their conversion does not work for ABE or PE
schemes which fall below this threshold in functionality. In view of this state of
affairs, it is interesting to explore whether it is possible to construct an efficient
adaptively simulation-secure strongly partially-hiding PE scheme for the predi-
cate family 𝑅abp∘ip that is secure against an unbounded (polynomial) number of
colluders under well-studied computational assumption. Note that while several
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impossibility results exist against the achievability of simulation-based security
in certain settings [12,9,3,16], those results do not overrule the existence of such
a construction, provided of course we bound the number of allowed ciphertext
queries by the adversary. In fact, Wee has posed the realization of such a PHPE
construction as an open problem in his paper [40].

Our Contributions

In this paper, we resolve the above open problem. Specifically, our main result
is a PE scheme for the predicate family 𝑅abp∘ip that achieves simulation-based
adaptively strongly partially hiding security against adversaries making any a
priori bounded number of ciphertext queries while requesting an unbounded
(polynomial) number of decryption keys both before and after the ciphertext
queries, which is the best one could hope for in the simulation-based framework
when the adversary is allowed to make decryption key queries even after mak-
ing the ciphertext queries [12]. From the relation between simulation-based and
indistinguishability-based security as well as that between single and multiple
ciphertext security in the indistinguishability-based setting as mentioned above,
it is immediate that the proposed scheme is also adaptively strongly partially-
hiding in the indistinguishability-based framework against adversaries making
an unbounded number of queries to both the encryption and the decryption key
generation oracles. Thus, our work advances the state of the art in both the fields
of simulation-based and indistinguishability-based strongly attribute-hiding PE
schemes. Our construction is built in asymmetric bilinear groups of prime order.
The security of our PHPE scheme is derived under the simultaneous external de-
cisional linear (SXDLIN) assumption [1, 38], which is a natural extension of the
well-studied decisional linear (DLIN) assumption in asymmetric bilinear group
setting, and as noted in [1], the two assumptions are in fact equivalent in the
generic bilinear group model. Nevertheless, our scheme can be readily generalized
to one that is secure under the 𝑘-LIN assumption.

Similar to [40], we only consider security against a single ciphertext query
for the construction presented in this paper to keep the exposition simple. How-
ever, we explain in Remark 3.1 how our techniques can be readily extended to
design a PHPE scheme that is secure for any a priori bounded number of cipher-
texts. Following [16], here we present our construction in the attribute-only mode
(i.e., without any actual payload). However, in the full version of this paper we
also provide a key-encapsulation mechanism (KEM) version (i.e., one that uses
a symmetric session key as the payload) of our scheme similar to [40]. For the
attribute-only version, we design a simulator that runs in polynomial time, and
thus this version of our scheme is secure in the standard simulation-based security
framework. On the other hand, for the KEM version, similar to Wee [40], our sim-
ulator needs to perform a brute force discrete log computation, and thus requires
super-polynomial (e.g., sub-exponential) computational power. Nonetheless, this
is still stronger than the indistinguishability-based framework [3, 40].

In terms of efficiency, our PHPE scheme is fairly practical. The length of ci-
phertexts and decryption keys of our scheme grow linearly with the total length
of the associated attribute strings and the ABP-size of the associated functions
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respectively. This is the same as that of [40] except for a constant blow-up, which
is common in the literature for semi-adaptive vs adaptive security. Moreover,
asymmetric bilinear groups of prime order, which are used for implementing our
scheme, are now considered to be both faster and more secure in the crypto-
graphic community following the recent progress in analysing bilinear groups of
composite order [17,23] and symmetric bilinear groups instantiated with elliptic
curves of small characteristics [8, 18,27,28].

As a byproduct of our main result, we also obtain the first simulation-based
adaptively strongly attribute-hiding IPE scheme in asymmetric bilinear groups
of prime order under the SXDLIN assumption. The only prior simulation-based
strongly attribute-hiding IPE scheme, also due to Wee [40], only achieves semi-
adaptive security.

On the technical side, our approach is completely different from that of
Wee [40]. More precisely, Wee’s technique consists of two steps, namely, first
building a private-key scheme, and then bootstrapping it to a public-key one by
applying a private-key to public-key compiler similar to [41,14], built on Water’s
dual system encryption methodology [39]. In contrast, we directly construct our
scheme in the public-key setting by extending the technique of Okamoto and
Takashima [32, 34, 36], a more sophisticated methodology than the dual sys-
tem encryption originally developed for designing adaptively strongly attribute-
hiding IPE schemes in the indistinguishability-based setting, to the scenario of
simulation-based adaptively strongly attribute-hiding security for a much ex-
pressive predicate class. Also, in order to incorporate the information of the
session keys within the ciphertexts in the KEM version of our scheme, which
is presented in the full version of this paper, we adopt an idea along the lines
of the works of Okamoto and Takashima [32, 34, 36], that deviates from that of
Wee [40]. Thus, our work further demonstrates the power of the technique intro-
duced by Okamoto and Takashima [32, 34, 36] in achieving very strong security
for highly expressive predicate families. We also believe that our work will shed
further light on one of the longstanding questions of modern cryptography:
What is the most expressive function or predicate family for which it is possible
to construct FE or strongly attribute-hiding PE schemes with adaptive security
against adversaries making an unbounded (polynomial) number of decryption
key queries under standard computational assumptions?

Overview of Our Techniques

We now proceed to explain the key technical ideas underlying our construction.
For simplicity, here we will only deal with the IPE scheme, which is a special case
of our PHPE construction for 𝑅abp∘ip. The proposed PHPE scheme for 𝑅abp∘ip

is obtained via a more sophisticated application of the techniques described in
this section, and is formally presented in full details in the sequel.

In this overview, we will consider IPE in the attribute-only mode. For IPE,
the ciphertext attribute set 𝒳 = 𝔽𝑛

𝑞 , the decryption key attribute set 𝒴 = 𝔽𝑛
𝑞

for some finite field 𝔽𝑞 and 𝑛 ∈ ℕ, and the predicate family is given by 𝑅ip =
{𝑅ip(�⃗�, ·) : 𝔽𝑛

𝑞 → {0, 1} | �⃗� ∈ 𝔽𝑛
𝑞 }, where 𝑅ip(�⃗�, �⃗�) = 1 if �⃗� · �⃗� = 0, and 0, if

�⃗� · �⃗� ̸= 0 for any �⃗�, �⃗� ∈ 𝔽𝑛
𝑞 . Observe that the predicate family 𝑅ip is subclass
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of the predicate family 𝑅abp∘ip, where we set 𝑛′ = 0, and the component ABP’s
𝑓1, . . . , 𝑓𝑛 of a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip to simply output hardwired constants. In
the attribute-only mode, a ciphertext is associated with only a vector �⃗� ∈ 𝔽𝑛

𝑞

but no payload, and decryption with a key for some vector �⃗� ∈ 𝔽𝑛
𝑞 only reveals

the predicate, i.e., whether �⃗� · �⃗� = 0 or not, but not the exact value of �⃗� · �⃗�.

Just like [32,34,36], we make use of the machinery of the dual pairing vector
spaces (DPVS) [35,33]. A highly powerful feature of DPVS is that one can com-
pletely or partially hide a linear subspace of the whole vector space by concealing
the basis of that subspace or the basis of its dual from the public parameters
respectively. In DPVS-based constructions, a pair of mutually dual vector spaces
𝕍1 and 𝕍2, along with a bilinear pairing 𝑒 : 𝕍1 × 𝕍2 → 𝔾𝑇 constructed from a
standard bilinear group (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of prime order 𝑞 is used. Typi-
cally a pair of dual orthonormal bases (𝔹,𝔹*) of the vector spaces (𝕍1,𝕍2) are
generated during setup, using random linear transformations, and a portion of 𝔹,
say ̂︀𝔹, is used as the public parameters. Thus, the corresponding segment of 𝔹*,
say ̂︀𝔹* remains partially hidden (its dual subspace is disclosed), while the part
𝔹∖̂︀𝔹 of the basis 𝔹 and the corresponding portion 𝔹*∖̂︀𝔹* of the basis 𝔹* remain
completely hidden to an adversary that is given the public parameters, cipher-
texts, and decryption keys. This provides a strong framework for various kinds of
information-theoretic tricks in the public-key setting by exploiting various nice
properties of linear transformations.

In the proposed IPE scheme, we consider a (4𝑛+1)-dimensional DPVS. During
setup, we generate a random pair of dual orthonormal bases (𝔹,𝔹*), and use
as the public parameters the subset ̂︀𝔹 consisting of the first 𝑛 and the last
𝑛 + 1 vectors of the basis 𝔹, while as the master secret key the corresponding
portion of the dual basis 𝔹*. Thus, the linear subspaces spanned by the remaining
2𝑛 vectors of the bases 𝔹 and 𝔹* are kept completely hidden. Intuitively, we
will use the first 𝑛-dimensional subspaces of these 2𝑛-dimensional subspaces
for simulating the post-ciphertext decryption key queries, while the latter 𝑛-
dimensional subspaces for simulating the pre-ciphertext decryption key queries
in the ideal experiment. A ciphertext for some vector �⃗� ∈ 𝔽𝑛

𝑞 in the proposed
scheme has the form ct = 𝒄 such that

𝒄 = (𝜔�⃗�, 0⃗𝑛, 0⃗𝑛, 0⃗𝑛, 𝜙)𝔹,

where 𝜔, 𝜙
U←− 𝔽𝑞, and (�⃗�)𝕎 represents the linear combination of the elements

of 𝕎 with the entries of �⃗� as coefficients for any �⃗� ∈ 𝔽𝑛
𝑞 and any basis 𝕎 of

DPVS. Similarly, a decryption key corresponding to some vector �⃗� ∈ 𝔽𝑛
𝑞 is given

by sk(�⃗�) = (�⃗�,𝒌) such that
𝒌 = (𝜁�⃗�, 0⃗𝑛, 0⃗𝑛, �⃗�, 0)𝔹* ,

where 𝜁
U←− 𝔽𝑞 and �⃗�

U←− 𝔽𝑛
𝑞 . Decryption computes 𝑒(𝒄,𝒌) to obtain 𝑔

𝜔𝜁(�⃗�·�⃗�)
𝑇 ∈

𝔾𝑇 , which equals to the identity element of the group 𝔾𝑇 if �⃗� · �⃗� = 0, and a uni-
formly random element of 𝔾𝑇 if �⃗� · �⃗� ̸= 0. Observe that this IPE construction is
essentially the same as that presented by Okamoto and Takashima in [32]. How-
ever, they only proved the strongly attribute-hiding security of this construction
in the indistinguishability-based framework, while we prove this construction to
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be strongly attribute-hiding in the simulation-based framework, by extending
their techniques. Let us start with describing our simulation strategy.

In the semi-adaptive case, as considered in [40], the simulation strategy is
relatively simple. In fact, for designing an IPE in the semi-adaptive setting, only
a (3𝑛+1)-dimensional DPVS with 𝑛-dimensional hidden subspace would suffice.
Note that in the semi-adaptive setting, the adversary is restricted to make the
ciphertext query immediately after seeing the public parameters, and there is
no pre-ciphertext decryption key query. So, in the semi-adaptive setting, when
the adversary makes a ciphertext query, the simulator has no constraint arising
from the pre-ciphertext queries of the adversary, and can simply simulate the
ciphertext as ct = 𝒄 such that

𝒄 = (⃗0𝑛, (⃗0𝑛−1, 𝜏), 0⃗𝑛, 𝜙)𝔹,

where 𝜏, 𝜙
U←− 𝔽𝑞, i.e., the simulator puts nothing in the subspace spanned by

the public segment of the basis 𝔹, and merely puts a random value in a one-
dimensional subspace spanned by the hidden segment of the basis. Later, when
the adversary queries a decryption key for some vector �⃗� ∈ 𝔽𝑛

𝑞 , the simulator
gets �⃗� along with the inner product relation of �⃗� with �⃗�, and the simulator can
simply hardwire this information in the corresponding hidden subspace of the
decryption key. More precisely, it can simply generate the decryption key as
sk(�⃗�) = (�⃗�,𝒌) such that

𝒌 = (𝜁�⃗�, (�⃗�, 𝜈), �⃗�, 0)𝔹* ,

where 𝜁 U←− 𝔽𝑞, �⃗�
U←− 𝔽𝑛−1

𝑞 , �⃗� U←− 𝔽𝑛
𝑞 , and 𝜈 = 0 if �⃗� · �⃗� = 0, and 𝜈

U←− 𝔽𝑞 if �⃗� · �⃗� ̸= 0.
Observe that when the simulated ciphertext is decrypted using this simulated
decryption key, one obtains the identity element of 𝔾𝑇 , or a random element of
𝔾𝑇 according as the inner product relation is satisfied or not, i.e., decryption
correctness clearly holds. At this point, please note that the simulator cannot put
anything in the subspace of the ciphertext corresponding to the public segment
of 𝔹, since it must put the actual attribute vectors in the corresponding dual
subspace of the decryption keys to ensure correct decryption with other honestly
generated ciphertexts.

In the adaptive setting, the situation is much more complex, and we need a
(4𝑛+1)-dimensional DPVS with 2𝑛-dimensional hidden subspace. Now, the sim-
ulator should also correctly simulate the pre-ciphertext decryption key queries
of the adversary. The difference between the pre-ciphertext and post-ciphertext
decryption key queries is that unlike the post-ciphertext ones, the information
about whether the inner product relation between the associated attribute vector
and the attribute vector �⃗� corresponding to the ciphertext query of the adversary
is not supplied when the decryption key is queried. In fact, �⃗� is not even declared
at that time. On the contrary, the information about predicate satisfaction for
all the pre-ciphertext decryption key vectors become available to the simulator
when the ciphertext query is made by the adversary. The main hurdle for the
simulator is to compactly embed this huge amount of information (note that we
are considering an unbounded number of pre-ciphertext decryption key queries)
in the simulated ciphertext, so that when the simulated ciphertext is decrypted
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using any pre-ciphertext decryption key, one should get the proper information
about predicate satisfaction.

Towards overcoming this difficulty, we observe that it has already been demon-
strated by O’Neill [37] that the inner-product predicate family is pre-image sam-
plable, i.e., given a set of vectors and their inner-product relation with another
fixed vector (but not the vector itself), one can efficiently sample a vector that
satisfies all those inner-product relations with high probability. To simulate the
ciphertext queried by the adversary, our simulator does exactly this, i.e., it sam-
ples a vector �⃗� ∈ 𝔽𝑛

𝑞 that has the same inner-product relations as the original
queried ciphertext attribute vector �⃗� with all the attribute vectors corresponding
to the pre-ciphertext decryption key queries of the adversary. However, �⃗� may
not have the same inner-product relation as �⃗� with the attribute vectors cor-
responding to the post-ciphertext decryption key queries. Therefore, it cannot
be embedded in the hidden subspace of the ciphertext devoted for handling the
post-ciphertext decryption key queries. Therefore, the simulator needs another
𝑛-dimensional subspace to embed �⃗�. Thus, the simulator simulates the queried
ciphertext as ct = 𝒄 such that

𝒄 = (⃗0𝑛, (⃗0𝑛−1, 𝜏), 𝜃�⃗�, 0⃗𝑛, 𝜙)𝔹,

where 𝜃
U←− 𝔽𝑞. On the other hand, it simulates a decryption key corresponding

to some vector �⃗� ∈ 𝔽𝑛
𝑞 as sk(�⃗�) = (�⃗�,𝒌) such that

𝒌 =

{︂
(𝜁�⃗�, 0⃗𝑛, ̂︀𝜁�⃗�, �⃗�, 0)𝔹* (pre-ciphertext),
(𝜁�⃗�, (�⃗�, 𝜈), 0⃗𝑛, �⃗�, 0)𝔹* (post-ciphertext),

where 𝜁, ̂︀𝜁 U←− 𝔽𝑞.

Here, we would like to emphasize that while we make use of the pre-image
samplability property introduced by O’Neill [37] to design our simulator, our re-
sult is not a mere special case of the result that O’Neill obtained using that prop-
erty. Specifically, O’Neill showed that indistinguishability-based and simulation-
based security notions are equivalent in case of FE schemes for function families
which are pre-image samplable, provided the adversary is constrained from mak-
ing any decryption key query after making a ciphertext query. His result does
not apply if the adversary is allowed to make decryption key queries even af-
ter making ciphertext queries, as is the case in this paper. Moreover, note that
there is no known PE scheme for the predicate family 𝑅abp∘ip, the actual focus
of this paper, even with indistinguishability-based strongly partially-hiding se-
curity against adversaries that are allowed to make decryption key queries prior
to making ciphertext queries.

Let us continue with the technical overview. It remains to argue that the
above simulated forms of ciphertexts and decryption keys are indistinguishable
from their real forms. In order to accomplish these changes, we design elabo-
rate hybrid transitions over different forms of ciphertext and decryption keys.
In fact, the 2𝑛-dimensional hidden subspace not only allows us to simulate the
pre-ciphertext and post-ciphertext queries differently, but are also crucially lever-
aged to realize the various forms of ciphertext and decryption keys throughout
our hybrid transitions. The hybrid transitions are alternatively computational
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and information-theoretic. Also, note that not only our simulation strategy for
pre-ciphertext and post-ciphertext decryption key queries are different, rather
in our hybrid transitions, we handle the pre-ciphertext and post-ciphertext de-
cryption key queries differently, and thereby achieve a security loss that is only
proportional to the number of pre-ciphertext decryption key queries.

We start by changing the pre-ciphertext decryption keys to their simulated
form. For making these changes, we use the first 𝑛-dimensional subspace of
the 2𝑛-dimensional hidden subspace as the working space, where we generate
the simulated components, and the next 𝑛-dimensional subspace as the stor-
ing space, where we transfer and store the simulated components once they are
generated. Note that in the simulated pre-ciphertext decryption keys, the ad-
ditional simulated components are placed in the second 𝑛-dimensions subspace
of the 2𝑛-dimensional hidden subspace. For the hybrid transitions of this part,
we make use of the first two of the three types of information-theoretic tricks,
namely, Type I, Type II, and Type III introduced in [32,34,36], in conjunction with
the three types of computational tricks based on the SXDLIN assumption also
used in those works. The Type I trick is to apply a linear transformation inside
a hidden subspace on the ciphertext side, while the more complex Type II trick
is to apply a linear transformation inside a hidden subspace on the ciphertext
side preserving the predicate relation with the entries in the corresponding dual
subspace of a specific decryption key.

After the transformation of the pre-ciphertext queries is completed, we turn
our attention to vanish the component of the ciphertext in the subspace spanned
by the public portion of the basis 𝔹. For doing this, we apply one of the three
computational tricks followed by a Type III information-theoretic trick, which
amounts to applying a linear transformation across a hidden and a partially
public subspace on both the ciphertext and decryption key sides. While, this en-
ables us to achieve our target for the ciphertext, the forms of the pre-ciphertext
decryption keys get distorted. To bring the pre-ciphertext decryption keys to
their correct simulated form, we then apply an extension of one of the compu-
tational tricks mentioned above.

Once the component in the public subspace of the ciphertext is vanished
and pre-ciphertext decryption keys are brought back to their correct simulated
form, we turn our attention to the post-cipertext decryption keys. Note that the
Type III trick applied for the ciphertext, has already altered the forms of the
post-ciphertext queries to something else. Starting with these modified forms,
we apply a more carefully crafted variant of the Type II information-theoretic
trick, followed by another computational trick based on the SXDLIN assumption
to alter the post-ciphertext decryption keys to their simulated forms. This step is
reminiscent of the one-dimensional localization of the inner-product values used
in [36]. This step also alters the ciphertext to its simulated form. At this point
we arrive at the simulated experiment, and our security analysis gets complete.

2 Preliminaries
In this section we present the backgrounds required for the rest of this paper.
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2.1 Notations

Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let 𝔽𝑞

for any prime 𝑞 ∈ ℕ, denotes the finite field of integers modulo 𝑞. For 𝑑 ∈ ℕ
and 𝑐 ∈ ℕ ∪ {0} (with 𝑐 < 𝑑), we let [𝑑] = {1, . . . , 𝑑} and [𝑐, 𝑑] = {𝑐, . . . , 𝑑}. For
any set 𝑍, 𝑧 U←− 𝑍 represents the process of uniformly sampling an element 𝑧
from the set 𝑍, and ♯𝑍 signifies the size or cardinality of 𝑍. For a probabilistic
algorithm 𝒰 , we denote by 𝛱 = 𝒰(𝛩;𝛷) the output of 𝒰 on input 𝛩 with
the content of the random tape being 𝛷, while by 𝛱

R←− 𝒰(𝛩) the process of
sampling 𝛱 from the output distribution of 𝒰 with a uniform random tape on
input 𝛩. Similarly, for any deterministic algorithm 𝒱, we write 𝛱 = 𝒱(𝛩) to
denote the output of 𝒱 on input 𝛩. We use the abbreviation PPT to mean
probabilistic polynomial-time. We assume that all the algorithms are given the
unary representation 1𝜆 of the security parameter 𝜆 as input and will not write
1𝜆 explicitly as input of the algorithms when it is clear from the context. For any
finite field 𝔽𝑞 and 𝑑 ∈ ℕ, let �⃗� denotes the (row) vector (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 , where
𝑣𝑖 ∈ 𝔽𝑞 for all 𝑖 ∈ [𝑑]. The all zero vectors in 𝔽𝑑

𝑞 will be denoted by 0⃗𝑑. For any two
vectors �⃗�, �⃗� ∈ 𝔽𝑑

𝑞 , �⃗� · �⃗� stands for the inner product of the vectors �⃗� and �⃗�, i.e.,
�⃗� · �⃗� =

∑︀
𝑖∈[𝑑]

𝑣𝑖𝑤𝑖 ∈ 𝔽𝑞. For any multiplicative cyclic group 𝔾 of order 𝑞 and any

generator 𝑔 ∈ 𝔾, let 𝒗 represents a 𝑑-dimensional (row) vector of group elements,
i.e., 𝒗 = (𝑔𝑣1 , . . . , 𝑔𝑣𝑑) ∈ 𝔾𝑑 for some 𝑑 ∈ ℕ, where �⃗� = (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 . We use
𝑴 = (𝑚𝑖,𝑘) to represent a matrix with entries 𝑚𝑖,𝑘 ∈ 𝔽𝑞. By 𝑴⊺ we will signify
the transpose of the matrix 𝑴 . The determinant of a matrix 𝑴 is denoted by
det(𝑴). Let GL(𝑑,𝔽𝑞) denotes the set of all 𝑑 × 𝑑 invertible matrices over 𝔽𝑞.
A function negl : ℕ→ ℝ+ is said to be negligible if for every 𝑐 ∈ ℕ, there exists
𝑇 ∈ ℕ such that for all 𝜆 ∈ ℕ with 𝜆 > 𝑇 , |negl(𝜆)| < 1/𝜆𝑐.

2.2 Arithmetic Branching Programs
A branching program (BP) 𝛤 is defined by a 5-tuple 𝛤 = (𝑉,𝐸, 𝑣0, 𝑣1, 𝜑), where
(𝑉,𝐸) is a directed acyclic graph, 𝑣0, 𝑣1 ∈ 𝑉 are two special vertices called the
source and the sink respectively, and 𝜑 is a labeling function for the edges in
𝐸. An arithmetic branching program (ABP) 𝛤 over a finite field 𝔽𝑞 computes
a function 𝑓 : 𝔽𝑑

𝑞 → 𝔽𝑞 for some 𝑑 ∈ ℕ. In this case, the labeling function 𝜑
assigns to each edge in 𝐸 either a degree one polynomial function in one of the
input variables with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞. Let ℘ be the set of
all 𝑣0-𝑣1 paths in 𝛤 . The output of the function 𝑓 computed by the ABP 𝛤 on

some input �⃗� = (𝑤1, . . . , 𝑤𝑑) ∈ 𝔽𝑑
𝑞 is defined as 𝑓(�⃗�) =

∑︀
𝑃∈℘

[︂ ∏︀
𝑒∈𝑃

𝜑(𝑒)|�⃗�
]︂
, where

for any 𝑒 ∈ 𝐸, 𝜑(𝑒)|�⃗� represents the evaluation of the function 𝜑(𝑒) at �⃗�. We
refer to ♯𝑉 + ♯𝐸 as the size of the ABP 𝛤 . Ishai and Kushilevitz [25,24] showed
how to relate the computation performed by an ABP to the computation of the
determinant of a matrix.

Lemma 2.1 ( [24]): Given an ABP 𝛤 = (𝑉,𝐸, 𝑣0, 𝑣1, 𝜑) computing a function
𝑓 : 𝔽𝑑

𝑞 → 𝔽𝑞, we can efficiently and deterministically compute a function 𝑳
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mapping an input �⃗� ∈ 𝔽𝑑
𝑞 to a (♯𝑉 − 1) × (♯𝑉 − 1) matrix 𝑳(�⃗�) over 𝔽𝑞 such

that the following holds:

– det(𝑳(�⃗�)) = 𝑓(�⃗�).
– Each entry of 𝑳(�⃗�) is either a degree one polynomial in a single input variable

𝑤𝑖 (𝑖 ∈ [𝑑]) with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞.
– 𝑳(�⃗�) contains only −1’s in the second diagonal, i.e., the diagonal just below

the main diagonal, and 0’s below the second diagonal.

Specifically, 𝑳 is obtained by removing the column corresponding to 𝑣0 and the
row corresponding to 𝑣1 in the matrix 𝑨𝛤 −𝑰, where 𝑨𝛤 is the adjacency matrix
for 𝛤 and 𝑰 is the identity matrix.

Note that there is a linear-time algorithm that converts any Boolean formula,
Boolean branching program, or arithmetic formula to an ABP with a constant
blow-up in the representation size. Thus, ABP’s can be viewed as a stronger
computational model than all the others mentioned above.

2.3 The Function Family F (𝒒,𝒏′,𝒏)
ABP◦IP and the Algorithm PGB

Here, we formally describe the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip which our PHPE scheme

supports, and an algorithm PGB for this function class that will be used as a
sub-routine in our PHPE construction. Parts of this section is taken verbatim
from [26,40].

■ The Function Family F(𝒒,𝒏′,𝒏)
ABP◦IP

The function class ℱ (𝑞,𝑛′,𝑛)
abp∘ip , parameterized by a prime 𝑞 and 𝑛′, 𝑛 ∈ ℕ, contains

functions of the form 𝑓 : 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 → 𝔽𝑞 defined by 𝑓(�⃗�, �⃗�) =

∑︀
𝑗∈[𝑛]

𝑓𝑗(�⃗�)𝑧𝑗 for all

�⃗� = (𝑥1, . . . , 𝑥𝑛′) ∈ 𝔽𝑛′

𝑞 and �⃗� = (𝑧1, . . . , 𝑧𝑛) ∈ 𝔽𝑛
𝑞 , where 𝑓1, . . . , 𝑓𝑛 : 𝔽𝑛′

𝑞 → 𝔽𝑞

are functions computed by some ABP’s 𝛤1, . . . , 𝛤𝑛 respectively. We will view the
input �⃗� = (𝑥1, . . . , 𝑥𝑛′) as the public attribute string, while �⃗� = (𝑧1, . . . , 𝑧𝑛) as
the private attribute string. Please refer to [40] for some illustrative examples.
A simple but crucial property of the function 𝑓 is that for any 𝜁 ∈ 𝔽𝑞 and any
(�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , we have 𝑓(�⃗�, 𝜁�⃗�) = 𝜁𝑓(�⃗�, �⃗�).

Observe that the function 𝑓 can itself be realized by an ABP 𝛤 constructed
as follows: First, marge the source vertices of all the component ABP’s {𝛤𝑗}𝑗∈[𝑛]

together to form a single vertex, and designate it as the source vertex of the
ABP 𝛤 . Next, generate a new sink vertex for 𝛤 , and for each 𝑗 ∈ [𝑛], connect
the sink vertex of the component ABP 𝛤𝑗 to that newly formed sink vertex with
a directed edge labeled with 𝑧𝑗 . For ease of notations, we will denote the size of
the ABP 𝛤 computing the function 𝑓 as 𝑚+ 𝑛+ 1, where 1 corresponds to the
sink vertex of 𝛤 , 𝑛 accounts for the number of edges directed to that sink vertex,
and 𝑚 accounts for the number of other vertices and edges in 𝛤 . Also, note that
the ABP 𝛤 can be further modified to another ABP 𝛤 ′ in which each vertex has
at most one outgoing edge having a label of degree one, by replacing each edge 𝑒
in 𝛤 with a pair of edges labeled 1 and 𝜑(𝑒) respectively, where 𝜑 is the labeling
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function of the ABP 𝛤 . It is clear that the number of vertices in this modified
ABP 𝛤 ′ is 𝑚+𝑛+1, since 𝛤 ′ is obtained by adding a fresh vertex for each edge
in 𝛤 as a result of replacing each edge in 𝛤 with a pair of edges. Throughout
this paper, whenever we will talk about the ABP computing the function 𝑓 , we
will refer to the ABP 𝛤 ′ just described, unless otherwise specified.

■ The Algorithm PGB

� Syntax and Properties:

PGB(𝑓 ; �⃗�): PGB is a PPT algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , uses

randomness �⃗� ∈ 𝔽𝑚+𝑛−1
𝑞 , and outputs a collection of constants ({𝜎𝑗}𝑗∈[𝑛],

{𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]) ∈ 𝔽𝑛
𝑞 × (𝔽2

𝑞)
𝑚 along with a function 𝜌 : [𝑚]→ [𝑛′]. Together

with some �⃗� ∈ 𝔽𝑛′

𝑞 and �⃗� ∈ 𝔽𝑛
𝑞 , this specifies a collection of 𝑛+𝑚 shares

({𝑧𝑗 + 𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′}𝑗′∈[𝑚]). (2.1)
Here, 𝑚+ 𝑛+ 1 is the number of vertices in the ABP computing 𝑓 and 𝜌 is
deterministically derived from 𝑓 .

The algorithm PGB satisfies the following properties:

∙ Linearity: For a fixed 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , PGB(𝑓 ; ·) computes a linear function of

its randomness over 𝔽𝑞.

∙ Reconstruction: There exists a deterministic polynomial-time algorithm
REC that on input any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip and any �⃗� ∈ 𝔽𝑛′

𝑞 , outputs a collection of
coefficients ({𝛺𝑗}𝑗∈[𝑛], {𝛺′

𝑗′}𝑗′∈[𝑚]) ∈ 𝔽𝑛
𝑞 ×𝔽𝑛′

𝑞 . These coefficients can be used
in combination with any set of shares of the form as in Eq. (2.1), computed by
combining the output of PGB(𝑓) with �⃗� and any �⃗� ∈ 𝔽𝑛

𝑞 , to recover 𝑓(�⃗�, �⃗�).
Moreover, the recovery procedure is linear in the shares used.

∙ Privacy: There exists a PPT simulator SIM such that for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , �⃗� ∈

𝔽𝑛′

𝑞 , �⃗� ∈ 𝔽𝑛
𝑞 , the output of SIM on input 𝑓 , �⃗�, and 𝑓(�⃗�, �⃗�) is identically

distributed to the shares obtained by combining the output of PGB(𝑓 ; �⃗�) for
uniformly random �⃗�, with �⃗� and �⃗� as in Eq. (2.1).

� Instantiation of the Algorithm: We now sketch an instantiation of the
algorithm PGB following [26,40]. This instantiation will be utilized in our PHPE
construction.

PGB(𝑓): The algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , and proceeds

as follows:
1. Let 𝛤 ′ denotes the ABP computing 𝑓 as described above. Recall that in the

ABP 𝛤 ′, there are 𝑚+𝑛+1 vertices, the variables 𝑧𝑗 ’s only appear on edges
leading into the sink vertex, and any vertex has at most one outgoing edge
with a label of degree one. It first computes the matrix representation 𝑳 ∈
𝔽(𝑚+𝑛)×(𝑚+𝑛)
𝑞 of the ABP 𝛤 ′ using the efficient algorithm of Lemma 2.1.

Then as per Lemma 2.1, the matrix 𝑳 satisfies the following properties:
– det(𝑳(�⃗�, �⃗�)) = 𝑓(�⃗�, �⃗�) for all (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 .
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– For 𝑗′ ∈ [𝑚], each entry in the 𝑗′th row of 𝑳 is either a degree one
polynomial function in one (and the same) input variable 𝑥𝜄′ (𝜄′ ∈ [𝑛′]),
with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞.

– 𝑳 contains only −1’s in the second diagonal, and 0’s below the second
diagonal.

– The last column of 𝑳 is (0, . . . , 0, 𝑧1, . . . , 𝑧𝑛)
⊺.

– 𝑳 has 0’s everywhere else in the last 𝑛 rows.
It defines the function 𝜌 : [𝑚]→ [𝑛′] as 𝜌(𝑗′) = 𝜄′ if the entries of the 𝑗′th

row of 𝑳 involves the variable 𝑥𝜄′ for 𝑗′ ∈ [𝑚].
2. Next, it chooses �⃗�

U←− 𝔽𝑚+𝑛−1
𝑞 , and computes

𝑳

(︂
�⃗�⊺

1

)︂
= (𝛼1𝑥𝜌(1) + 𝛾1, . . . , 𝛼𝑚𝑥𝜌(𝑚) + 𝛾𝑚, 𝑧1 + 𝜎1, . . . , 𝑧𝑛 + 𝜎𝑛)

⊺.

3. It outputs
(︀
({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
.

It is straightforward to verify that each of {𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚] are indeed
linear functions of the randomness �⃗�.

REC(𝑓, �⃗�): This algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip and a vector

�⃗� ∈ 𝔽𝑛′

𝑞 . It proceeds as follows:
1. It first executes Step 1 of the algorithm PGB described above to generate

the matrix representation 𝑳 of 𝑓 .
2. Next, it computes the cofactors of each entry in the last column of 𝑳. Let

({𝛺′
𝑗′}𝑗′∈[𝑚], {𝛺𝑗}𝑗∈[𝑛]) ∈ 𝔽𝑚+𝑛

𝑞 be the collection of all the cofactors in the
order of the entries. Note that the first 𝑚+𝑛−1 columns of 𝑳 involve only
the variables {𝑥𝜄′}𝜄′∈[𝑛′]. Hence, it can compute all the cofactors using the
input �⃗�.

3. It outputs ({𝛺𝑗}𝑗∈[𝑛], {𝛺′
𝑗′}𝑗′∈[𝑚]).

The output of REC(𝑓, �⃗�) can be used in conjunction with a collection of shares
({𝑧𝑗 +𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′}𝑗′∈[𝑚]) for any �⃗� ∈ 𝔽𝑛

𝑞 , to compute 𝑓(�⃗�, �⃗�) as
𝑓(�⃗�, �⃗�) =

∑︁
𝑗′∈[𝑚]

𝛺′
𝑗′(𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝑧𝑗 + 𝜎𝑗). (2.2)

Observe that the RHS of Eq. (2.2) corresponds to computing det(𝑳′(�⃗�, �⃗�)),
where the matrix 𝑳′ is obtained by replacing the last column of the matrix
𝑳 with the column (𝛼1𝑥𝜌(1) + 𝛾1, . . . , 𝛼𝑚𝑥𝜌(𝑚) + 𝛾𝑚, 𝑧1 + 𝜎1, . . . , 𝑧𝑛 + 𝜎𝑛)

⊺,
where 𝑳 is the matrix representation of the ABP 𝛤 ′ computing the function
𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , obtained by applying the algorithm of Lemma 2.1. Hence, the
correctness of Eq. (2.2) follows from the fact that

det(𝑳′(�⃗�, �⃗�)) = det(𝑳(�⃗�, �⃗�))

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1 𝑟1

. . .
...

1 𝑟𝑚+𝑛−1

1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = det(𝑳(�⃗�, �⃗�)) · 1 = 𝑓(�⃗�, �⃗�).

Here, �⃗� = (𝑟1, . . . , 𝑟𝑚+𝑛−1) ∈ 𝔽𝑚+𝑛−1
𝑞 is the randomness used by PGB while

generating the constants ({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]). In fact, an augmented
version of Eq. (2.2) also holds. More precisely, for any 𝛶, ̃︀𝛶 ∈ 𝔽𝑞, we have

𝛶𝑓(�⃗�, �⃗�) =
∑︁

𝑗′∈[𝑚]

𝛺′
𝑗′
̃︀𝛶 (𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝛶𝑧𝑗 + ̃︀𝛶𝜎𝑗). (2.3)
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This follows by observing that
det(𝑳(�⃗�, �⃗�)) =

∑︁
𝑗∈[𝑛]

𝛺𝑗𝑧𝑗 , (since the first 𝑚 entries in the last column is 0)

and hence, the RHS of Eq. (2.3) can be written as̃︀𝛶[︁ ∑︁
𝑗′∈[𝑚]

𝛺′
𝑗′(𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝑧𝑗 + 𝜎𝑗)
]︁
+ (𝛶 − ̃︀𝛶 ) ∑︁

𝑗∈[𝑛]

𝛺𝑗𝑧𝑗

= ̃︀𝛶 det(𝑳′(�⃗�, �⃗�)) + (𝛶 − ̃︀𝛶 ) det(𝑳(�⃗�, �⃗�)) = 𝛶 det(𝑳(�⃗�, �⃗�)),
as det(𝑳′(�⃗�, �⃗�)) = det(𝑳(�⃗�, �⃗�)). This fact will be used to justify the correct-
ness of our PHPE construction.

SIM(𝑓, �⃗�, 𝜖): The simulator takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , a vector

�⃗� ∈ 𝔽𝑛′

𝑞 , and a value 𝜖 ∈ 𝔽𝑞. It proceeds as follows:
1. At first, it executes Step 1 of the algorithm PGB described above to obtain

the matrix representation 𝑳 of 𝑓 together with the function 𝜌 : [𝑚]→ [𝑛′].
2. Next, it constructs a matrix ̂︀𝑳 from the matrix 𝑳 by replacing its last

column with (𝜖, 0, . . . , 0)⊺.
3. Next, it samples �⃗�

U←− 𝔽𝑚+𝑛−1
𝑞 , and computeŝ︀𝑳(︂�⃗�⊺
1

)︂
= (𝜇1, . . . , 𝜇𝑚, 𝜈1, . . . , 𝜈𝑛)

⊺.

4. It outputs
(︀
({𝜈𝑗}𝑗∈[𝑛], {𝜇𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
.

It readily follows from Theorem 3, Corollary 1 of [26] that for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip ,

�⃗� ∈ 𝔽𝑛′

𝑞 , and �⃗� ∈ 𝔽𝑛
𝑞 , the output of SIM(𝑓, �⃗�, 𝑓(�⃗�, �⃗�)) is identically distributed

to the shares obtained by combining with (�⃗�, �⃗�) the output of PGB(𝑓) with
uniform randomness, thereby establishing the privacy property of the algo-
rithm PGB described above. We omit the details here. Clearly the determi-
nant value of the matrix ̂︀𝑳(�⃗�, �⃗�) generated by SIM on input any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip ,
�⃗� ∈ 𝔽𝑛′

𝑞 , and 𝑓(�⃗�, �⃗�) for any �⃗� ∈ 𝔽𝑛
𝑞 is 𝑓(�⃗�, �⃗�).

2.4 Bilinear Groups and Dual Pairing Vector Spaces
In this section, we will provide the necessary backgrounds on bilinear groups and
dual pairing vector spaces, which are the primary building blocks of our PHPE
construction.

Definition 2.1 (Bilinear Group): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,
𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a prime integer 𝑞 ∈ ℕ; cyclic multiplicative groups
𝔾1,𝔾2,𝔾𝑇 of order 𝑞 each with polynomial-time computable group operations;
generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-time computable non-degenerate
bilinear map 𝑒 : 𝔾1 ×𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝑔𝛿1, 𝑔𝛿2) = 𝑒(𝑔1, 𝑔2)
𝛿𝛿 for all 𝛿, 𝛿 ∈ 𝔽𝑞.

– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇
, where 1𝔾𝑇

denotes the identity element of
the group 𝔾𝑇 .

A bilinear group is said to be asymmetric if no efficiently computable iso-
morphism exists between 𝔾1 and 𝔾2. Let 𝒢bpg be an algorithm that on in-
put the unary encoding 1𝜆 of the security parameter 𝜆, outputs a description
params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of a bilinear group.
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Definition 2.2 (Dual Pairing Vector Spaces: DPVS [35, 33]): A dual
pairing vector space (DPVS) params𝕍 = (𝑞,𝕍1,𝕍2, 𝔾𝑇 ,𝔸1,𝔸2, 𝑒) formed by the
direct product of a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple
of a prime integer 𝑞; 𝑑-dimensional vector spaces 𝕍𝑡 = 𝔾𝑑

𝑡 over 𝔽𝑞 for 𝑡 ∈ [2]
under vector addition and scalar multiplication defined componentwise in the

usual manner; canonical bases 𝔸𝑡 = {𝒂(𝑡,ℓ) = (

ℓ−1⏞  ⏟  
1𝔾𝑡

, . . . , 1𝔾𝑡
, 𝑔𝑡,

𝑑−ℓ⏞  ⏟  
1𝔾𝑡

, . . . , 1𝔾𝑡
)}ℓ∈[𝑑]

of 𝕍𝑡 for 𝑡 ∈ [2], where 1𝔾𝑡
is the identity element of the group 𝔾𝑡 for 𝑡 ∈ [2];

and a pairing 𝑒 : 𝕍1 × 𝕍2 → 𝔾𝑇 defined by 𝑒(𝒗,𝒘) =
∏︀

ℓ∈[𝑑]

𝑒(𝑔𝑣ℓ1 , 𝑔𝑤ℓ
2 ) ∈ 𝔾𝑇 for

all 𝒗 = (𝑔𝑣11 , . . . , 𝑔𝑣𝑑1 ) ∈ 𝕍1, 𝒘 = (𝑔𝑤1
2 , . . . , 𝑔𝑤𝑑

2 ) ∈ 𝕍2. Observe that the newly
defined map 𝑒 is also non-degenerate bilinear, i.e., 𝑒 also satisfies the following
two properties:

– Bilinearity : 𝑒(𝛿𝒗, ̂︀𝛿𝒘) = 𝑒(𝒗,𝒘)𝛿𝛿 for all 𝛿, ̂︀𝛿 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍1, and 𝒘 ∈ 𝕍2.

– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇
for all 𝒘 ∈ 𝕍2, then 𝒗 = (

𝑑⏞  ⏟  
1𝔾1

, . . . , 1𝔾1
).

Similar statement also holds with the vectors 𝒗 and 𝒘 interchanged.

For any ordered basis 𝕎 = {𝒘(1), . . . ,𝒘(𝑑)} of 𝕍𝑡 for 𝑡 ∈ [2], and any vector
�⃗� ∈ 𝔽𝑑

𝑞 , let (�⃗�)𝕎 represents the vector in 𝕍𝑡 formed by the linear combination
of the members of 𝕎 with the components of �⃗� as the coefficients, i.e., (�⃗�)𝕎 =∑︀
ℓ∈[𝑑]

𝑣ℓ𝒘
(ℓ) ∈ 𝕍𝑡. The DPVS generation algorithm 𝒢dpvs takes as input the unary

encoded security parameter 1𝜆, a dimension value 𝑑 ∈ ℕ, along with a bilinear
group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(), and outputs a description
params𝕍 = (𝑞,𝕍1, 𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒) of DPVS with 𝑑-dimensional 𝕍1 and 𝕍2.

We now describe random dual orthonormal basis generator 𝒢ob [35,33] in Fig. 2.1.
This algorithm will be utilized as a sub-routine in our PHPE construction.

2.5 Complexity Assumption
For realizing our PHPE construction in asymmetric bilinear groups, we rely on
the natural extension of the well-studied decisional linear (DLIN) assumption
to the asymmetric bilinear group setting, called the external decisional linear
(XDLIN) assumption.

Assumption (External Decisional Linear: XDLIN [1, 38]): For 𝑡 ∈ [2],
the XDLIN𝑡 problem is to guess the bit ̂︀𝛽 U←− {0, 1} given 𝜚xdlin𝑡̂︀𝛽 = (params𝔾, 𝑔𝜛1 ,

𝑔𝜉1, 𝑔
𝜘𝜛
1 , 𝑔𝜍𝜉1 , 𝑔𝜛2 , 𝑔𝜉2, 𝑔

𝜘𝜛
2 , 𝑔𝜍𝜉2 ,ℜ𝑡,̂︀𝛽), where

params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg();

𝜛, 𝜉,𝜘, 𝜍, 𝜀 U←− 𝔽𝑞;

ℜ𝑡,0 = 𝑔
(𝜘+𝜍)
𝑡 ,ℜ𝑡,1 = 𝑔

(𝜘+𝜍)+𝜀
𝑡 .

The XDLIN𝑡 assumption states that for any PPT algorithm ℰ , for any security
parameter 𝜆, the advantage of ℰ in deciding the XDLIN𝑡 problem, defined as

Advxdlin𝑡

ℰ (𝜆) = |Pr[1 R←− ℰ(𝜚xdlin𝑡
0 )− Pr[1 R←− ℰ(𝜚xdlin𝑡

1 )]|,
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𝒢ob(𝑁, (𝑑0, . . . , 𝑑𝑁 )): This algorithm takes as input the unary encoded security pa-
rameter 1𝜆, a number 𝑁 ∈ ℕ, and the respective dimensions 𝑑0, . . . , 𝑑𝑁 ∈ ℕ of the
𝑁 + 1 pairs of bases to be generated. It executes the following operations:

1. It first generates params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg().

2. Next, it samples 𝜓 U←− 𝔽𝑞∖{0} and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜓.

3. Then, for 𝚤 ∈ [0, 𝑁 ], it performs the following:
(a) It constructs params𝕍𝚤

= (𝑞,𝕍𝚤,1,𝕍𝚤,2,𝔾𝑇 ,𝔸𝚤,1,𝔸𝚤,2, 𝑒)
R←− 𝒢dpvs(𝑑𝚤, params𝔾).

(b) It samples 𝑩(𝚤) = (𝑏
(𝚤)
ℓ,𝑘)

U←− GL(𝑑𝚤,𝔽𝑞).
(c) It computes 𝑩*(𝚤) = (𝑏

*(𝚤)
ℓ,𝑘 ) = 𝜓((𝑩(𝚤))−1)⊺.

(d) For all ℓ ∈ [𝑑𝚤], let �⃗�(𝚤,ℓ) and �⃗�*(𝚤,ℓ) represent the ℓth rows of 𝑩(𝚤) and 𝑩*(𝚤)

respectively. It computes 𝒃(𝚤,ℓ) = (⃗𝑏(𝚤,ℓ))𝔸𝚤,1 , 𝒃
*(𝚤,ℓ) = (⃗𝑏*(𝚤,ℓ))𝔸𝚤,2 for ℓ ∈ [𝑑𝚤],

and sets
𝔹𝚤 = {𝒃(𝚤,1), . . . , 𝒃(𝚤,𝑑𝚤)},𝔹*

𝚤 = {𝒃*(𝚤,1), . . . , 𝒃*(𝚤,𝑑𝚤)}.
Clearly 𝔹𝚤 and 𝔹*

𝚤 form bases of the vector spaces 𝕍𝚤,1 and 𝕍𝚤,2 respectively.
Also, note that 𝔹𝚤 and 𝔹*

𝚤 are dual orthonormal in the sense that for all
ℓ, ℓ′ ∈ [𝑑𝚤],

𝑒(𝒃(𝚤,ℓ), 𝒃*(𝚤,ℓ
′)) =

{︂
𝑔𝑇 if ℓ = ℓ′,
1𝔾𝑇 otherwise.

4. Next, it sets params = ({params𝕍𝚤
}𝚤∈[0,𝑁 ], 𝑔𝑇 ).

5. It returns (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑁 ]).

Fig. 2.1: Dual Orthonormal Basis Generator 𝒢ob

is negligible in 𝜆, i.e., Advxdlin𝑡

ℰ (𝜆) ≤ negl(𝜆), where negl is some negligible func-
tion. The simultaneous XDLIN (SXDLIN) assumption states that both XDLIN1

and XDLIN2 assumptions hold at the same time. For any security parameter 𝜆,
we denote the advantage of any probabilistic algorithm ℰ against SXDLIN as
Advsxdlinℰ (𝜆).

2.6 The Notion of Partially-Hiding Predicate Encryption
Here, we formally present the syntax and simulation-based security notion of
a partially-hiding predicate encryption (PHPE) scheme for the function family
ℱ (𝑞,𝑛′,𝑛)

abp∘ip for some prime 𝑞 and 𝑛′, 𝑛 ∈ ℕ. Following [40], we define the ABP∘IP
predicate family 𝑅abp∘ip as 𝑅abp∘ip = {𝑅abp∘ip(𝑓, (·, ·)) : 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 → {0, 1} | 𝑓 ∈

ℱ (𝑞,𝑛′,𝑛)
abp∘ip }, where 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 1 if 𝑓(�⃗�, �⃗�) = 0, and 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 0

if 𝑓(�⃗�, �⃗�) ̸= 0 for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip and (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 .

� Syntax: An attribute-only/key-encapsulation mechanism (KEM) partially-
hiding predicate encryption (PHPE) scheme for the function family ℱ (𝑞,𝑛′,𝑛)

abp∘ip con-
sists of the following polynomial-time algorithms:

PHPE.Setup(1𝑛
′
, 1𝑛): The setup algorithm takes as input the security parameter

𝜆 along with the public and private attribute lengths 𝑛′ and 𝑛 respectively
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(all encoded in unary). It outputs the public parameters mpk and the master
secret key msk.

PHPE.Encrypt(mpk, (�⃗�, �⃗�)): The encryption algorithm takes as input the public
parameters mpk, a pair of public-private attribute strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 . It

outputs a ciphertext ct. In the KEM mode, it additionally outputs a session
key kem.

PHPE.KeyGen(mpk,msk, 𝑓): On input the public parameters mpk, the mas-
ter secret key msk, along with a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , the key generation
algorithm outputs a decryption key sk(𝑓).

PHPE.Decrypt(mpk, (𝑓, sk(𝑓)), (�⃗�,ct)): The decryption algorithm takes as in-
put the public parameters mpk, a pair of a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip and a
decryption key sk(𝑓) for 𝑓 , along with a pair of a public attribute �⃗� ∈ 𝔽𝑛′

𝑞

and a ciphertext ct associated with �⃗� and some private attribute string. In
the attribute-only mode, it outputs either 1 or 0, while in the KEM mode, it
outputs a session key ̃︂kem. For notational convenience, we will think of 𝑓 and
�⃗� as parts of sk(𝑓) and ct respectively, and will not write them explicitly in
the argument of PHPE.Decrypt.

The algorithm PHPE.Decrypt is deterministic, while all the others are probabilis-
tic.

� Correctness: A PHPE scheme for the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip is said to be

correct if for any security parameter 𝜆, any (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip ,

any (mpk,msk) R←− PHPE.Setup(1𝑛
′
, 1𝑛), and any sk(𝑓) R←− PHPE.KeyGen(mpk,

msk, 𝑓), the following holds:

– (Authorized) If 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 1, then
Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = 1 :

ct R←− PHPE.Encrypt(mpk, (�⃗�, �⃗�))] ≥ 1− negl(𝜆) (attribute-only mode),
Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = kem :

(ct,kem)
R←− PHPE.Encrypt(mpk, (�⃗�, �⃗�))] ≥ 1− negl(𝜆) (KEM mode).

– (Unauthorized) If 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 0, then
Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = 0 :

ct R←− PHPE.Encrypt(mpk, (�⃗�, �⃗�))] ≥ 1− negl(𝜆) (attribute-only mode),
Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) ̸= kem :

(ct,kem)
R←− PHPE.Encrypt(mpk, (�⃗�, �⃗�))] ≥ 1− negl(𝜆) (KEM mode).

Here, negl is some negligible function, and the probabilities are taken over the
random coins of PHPE.Encrypt.

� Simulation-Based Security: The simulation-based adaptively strongly
partially-hiding security notion for a PHPE scheme is formulated by considering
the following two experiments involving a stateful probabilistic adversary 𝒜 and
a stateful probabilistic simulator 𝒮:
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Expphpe,real
𝒜 (𝜆):

1. (mpk,msk) R←− PHPE.Setup(1𝑛
′
, 1𝑛).

2. {(�⃗�(𝑖), �⃗�(𝑖))}𝑖∈[𝑞ct]
R←− 𝒜PHPE.KeyGen(msk,·)(mpk).

3. (a) (attribute-only case) ct(𝑖) R←− PHPE.Encrypt(mpk, (�⃗�(𝑖), �⃗�(𝑖))) for 𝑖 ∈
[𝑞ct].

(b) (KEM case) (ct(𝑖),kem(𝑖))
R←− PHPE.Encrypt(mpk, (�⃗�(𝑖), �⃗�(𝑖))) for 𝑖 ∈

[𝑞ct].
4. (a) (attribute-only case) ℑ R←− 𝒜PHPE.KeyGen(msk,·)(mpk, {ct(𝑖)}𝑖∈[𝑞ct]).

(b) (KEM case) ℑ R←− 𝒜PHPE.KeyGen(msk,·)(mpk, {(ct(𝑖),kem(𝑖))}𝑖∈[𝑞ct]).
5. Output 𝜚phpe,real

𝒜 =
(︀
mpk, {(�⃗�(𝑖), �⃗�(𝑖))}𝑖∈[𝑞ct],ℑ

)︀
.

Expphpe,ideal
𝒜,𝒮 (𝜆):

1. mpk R←− 𝒮(1𝑛
′
, 1𝑛).

2. {(�⃗�(𝑖), �⃗�(𝑖))}𝑖∈[𝑞ct]
R←− 𝒜𝒮(·)(mpk).

3. (a) (attribute-only case) {ct(𝑖)}𝑖∈[𝑞ct]
R←− 𝒮(𝑞ct, {(�⃗�(𝑖), 𝑅abp∘ip(𝑓,

(�⃗�(𝑖), �⃗�(𝑖))))}𝑖∈[𝑞ct],∈[𝑞key-pre]).

(b) (KEM case) {kem(𝑖)}𝑖∈[𝑞ct]
U←− 𝕂, where 𝕂 = session key space

{ct(𝑖)}𝑖∈[𝑞ct]
R←− 𝒮(𝑞ct, {(�⃗�(𝑖),kem(𝑖,))}𝑖∈[𝑞ct],∈[𝑞key-pre]), where for all

𝑖 ∈ [𝑞ct],  ∈ [𝑞key-pre], kem(𝑖,) = kem(𝑖) if 𝑅abp∘ip(𝑓, (�⃗�
(𝑖), �⃗�(𝑖))) =

1, and ⊥ if 𝑅abp∘ip(𝑓, (�⃗�
(𝑖), �⃗�(𝑖))) = 0.

4. (a) (attribute-only case) ℑ R←− 𝒜𝒮𝒪𝑅abp∘ip ({(�⃗�(𝑖),�⃗�(𝑖))}𝑖∈[𝑞ct],·)(·)(mpk,
{ct(𝑖)}𝑖∈[𝑞ct]).

(b) (KEM case) ℑ R←− 𝒜𝒮𝒪𝑅abp∘ip ({((�⃗�(𝑖),�⃗�(𝑖)),kem(𝑖))}𝑖∈[𝑞ct],·)(·)(mpk, {(ct(𝑖),
kem(𝑖))}𝑖∈[𝑞ct]).

5. Output 𝜚phpe,ideal
𝒜,𝒮 =

(︀
mpk, {(�⃗�(𝑖), �⃗�(𝑖))}𝑖∈[𝑞ct],ℑ

)︀
.

Here, the simulator 𝒮 accepts as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip when it acts

as an oracle to 𝒜. Also, 𝑞ct and 𝑞key-pre respectively denotes the number of
ciphertext queries made by 𝒜 and number of decryption key queries made
by 𝒜 prior to submitting the ciphertext queries. Further, in the attribute-
only case, the oracle 𝒪𝑅abp∘ip receives as its second argument a function 𝑓 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip , and outputs {𝑅abp∘ip(𝑓, (�⃗�(𝑖), �⃗�(𝑖)))}𝑖∈[𝑞ct]. On the other hand, in
the KEM case, the oracle 𝒪𝑅abp∘ip takes as its second argument a function
𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , and outputs kem(𝑖) if 𝑅abp∘ip(𝑓, (�⃗�(𝑖), �⃗�(𝑖))) = 1, and ⊥ if
𝑅abp∘ip(𝑓, (�⃗�(𝑖), �⃗�(𝑖))) = 0 for 𝑖 ∈ [𝑞ct]. A simulator 𝒮 is said to be admissible
if on each decryption key query 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip of 𝒜 in the post-ciphertext
query phase, 𝒮 makes just a single query to the oracle 𝒪𝑅abp∘ip on 𝑓 itself. Let
the number of decryption key queries made by 𝒜 after receiving the queried
ciphertexts be 𝑞key-post.

For any security parameter 𝜆, for any probabilistic distinguisher 𝒟, the advan-
tage of 𝒟 in distinguishing the above two experiments is defined as

Advphpe,sim-ah
𝒟 (𝜆) = |Pr[1 R←− 𝒟(𝜚phpe,real

𝒜 )]− Pr[1 R←− 𝒟(𝜚phpe,ideal
𝒜,𝒮 )]|.
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Definition 2.3: A PHPE scheme is called (𝑞key-pre, 𝑞ct, 𝑞key-post)-simulation-
based adaptively strongly partially hiding if there exists an admissible stateful
PPT simulator 𝒮 such that for any stateful PPT adversary 𝒜 making at most 𝑞ct
ciphertext queries, 𝑞key-pre decryption key queries in the pre-ciphertext query
phase, while 𝑞key-post decryption key queries in the post-ciphertext query phase,
any PPT distinguisher 𝒟, and any security parameter 𝜆, Advphpe,sim-ah

𝒟 (𝜆) ≤
negl(𝜆), where negl is some negligible function. Further, a PHPE scheme is said
to be (poly, 𝑞ct, poly)-simulation-based adaptively strongly partially hiding if it
is (𝑞key-pre, 𝑞ct, 𝑞key-post)-simulation-based adaptively strongly partially hiding
as well as 𝑞key-pre and 𝑞key-post are unbounded polynomials in the security pa-
rameter 𝜆.

Remark 2.1: Consider an adversary ℋ that first invokes 𝒜 and then invokes 𝒟
once the transcript (𝜚phpe,real

𝒜 or 𝜚phpe,ideal
𝒜,𝒮 ) of the experiment is obtained. Con-

sider the experiments Expphpe,real
ℋ (𝜆) and Expphpe,ideal

ℋ,𝒮 (𝜆) which are obtained
from the experiments Expphpe,real

𝒜 (𝜆) and Expphpe,ideal
𝒜,𝒮 (𝜆) respectively by apply-

ing the corresponding augmentations. Let us define the outputs of the augmented
experiments as the output of ℋ in those experiments, and the advantage of ℋ
as

Advphpe,sim-ah
ℋ (𝜆) = |Pr[1 R←− Expphpe,real

ℋ (𝜆)]− Pr[1 R←− Expphpe,ideal
ℋ,𝒮 (𝜆)]|.

Then, clearly Advphpe,sim-ah
ℋ (𝜆) = Advphpe,sim-ah

𝒟 (𝜆). We make use of this combined
adversary ℋ as well as the associated augmented experiments Expphpe,real

ℋ (𝜆)
and Expphpe,ideal

ℋ,𝒮 (𝜆) in the security proof of our PHPE construction, both the
attribute-only and KEM versions.

3 The Proposed PHPE Scheme
3.1 Construction

In this section, we will present our PHPE scheme for the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip .

This construction is presented in the attribute-only mode, i.e., without any ac-
tual payload. A key-encapsulation mechanism (KEM) version of this construction
is presented in the full version of this paper. In the proposed scheme, we assume
that the function 𝜌 outputted by PGB(𝑓) for any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is injective. This
restriction can be readily overcome using standard techniques along the lines
of [30,34].

PHPE.Setup(1𝑛
′
, 1𝑛): The setup algorithm takes as input the security parameter

𝜆 together with the lengths 𝑛′ and 𝑛 of the public and private attribute strings
respectively. It proceeds as follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. For 𝚤 ∈ [𝑛′+𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}, ̂︀𝔹*
𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,7),

𝒃*(𝚤,8)}.
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3. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[𝑛′+𝑛]) and the
master secret key msk = {̂︀𝔹*

𝚤 }𝚤∈[𝑛′+𝑛].

PHPE.Encrypt(mpk, (�⃗�, �⃗�)): The encryption algorithm takes as input the public
parameters mpk and a pair of public-private attribute strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 ×
𝔽𝑛
𝑞 . It executes the following:

1. First, it samples 𝜔
U←− 𝔽𝑞.

2. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes
𝒄′(𝜄

′) = (𝜔(1, 𝑥𝜄′), 0⃗
4, 0⃗2, 𝜙′

𝜄′)𝔹𝜄′ .

3. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 0⃗
4, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄

.

4. It outputs the ciphertext ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).

PHPE.KeyGen(mpk,msk, 𝑓): The key generation algorithm takes as input the
public parameters mpk, the master secret key msk, along with a function
𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip . It operates as follows:

1. It first generates
(︀
({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←− PGB(𝑓).

2. Next, it samples 𝜁
U←− 𝔽𝑞.

3. Then, for 𝑗′ ∈ [𝑚], it samples �⃗�′(𝑗′) U←− 𝔽2
𝑞, and computes

𝒌′(𝑗′) = ((𝛾𝑗′ , 𝛼𝑗′), 0⃗
4, �⃗�′(𝑗′), 0)𝔹*

𝜌(𝑗′)
.

4. Then, for 𝑗 ∈ [𝑛], it samples �⃗�(𝑗) U←− 𝔽2
𝑞, and computes

𝒌(𝑗) = ((𝜎𝑗 , 𝜁), 0⃗
4, �⃗�(𝑗), 0)𝔹*

𝑛′+𝑗
.

5. It outputs the decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛]).

PHPE.Decrypt(mpk, sk(𝑓),ct): The decryption algorithm takes in the public
parameters mpk, a decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛]), and
a ciphertext ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]). It proceeds as follows:
1. It first computes 𝛬′

𝑗′ = 𝑒(𝒄′(𝜌(𝑗
′)),𝒌′(𝑗′)) for 𝑗′ ∈ [𝑚], and 𝛬𝑗 = 𝑒(𝒄(𝑗),𝒌(𝑗))

for 𝑗 ∈ [𝑛].
2. Next, it determines the coefficients ({𝛺𝑗}𝑗∈[𝑛], {𝛺′

𝑗′}𝑗′∈[𝑚]) = REC(𝑓, �⃗�).

3. Then, it computes 𝛬 =

(︃ ∏︀
𝑗′∈[𝑚]

𝛬
′𝛺′

𝑗′

𝑗′

)︃(︃ ∏︀
𝑗∈[𝑛]

𝛬
𝛺𝑗

𝑗

)︃
.

4. It outputs 1 if 𝛬 = 1𝔾𝑇
, and 0 otherwise, where 1𝔾𝑇

is the identity element
in 𝔾𝑇 .

� Correctness: For any decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛])

for a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , and any ciphertext ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛])

encrypting a pair of public-private attribute strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , we have

𝛬′
𝑗′ = 𝑔

𝜔(𝛼𝑗′𝑥𝜌(𝑗′)+𝛾𝑗′ )

𝑇 for 𝑗′ ∈ [𝑚],

𝛬𝑗 = 𝑔
𝜔(𝜁𝑧𝑗+𝜎𝑗)
𝑇 for 𝑗 ∈ [𝑛].
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The above follows from the expressions of {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛], {𝒄′(𝜄
′)}𝜄′∈[𝑛′],

{𝒄(𝜄)}𝜄∈[𝑛], and the dual orthonormality property of {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛]. Hence, from

Eq. (2.3) it follows that
𝛬 = 𝑔

𝜔𝜁𝑓(�⃗�,�⃗�)
𝑇 .

Therefore, if 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 1, i.e., 𝑓(�⃗�, �⃗�) = 0, then 𝛬 = 1𝔾𝑇
, while if

𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 0, i.e., 𝑓(�⃗�, �⃗�) ̸= 0, then 𝛬 ̸= 1𝔾𝑇
with all but negligible

probability 2/𝑞, i.e., except when 𝜔 = 0 or 𝜁 = 0.

Remark 3.1 (On Multi-Ciphertext Scheme): The PHPE scheme described
above is only secure against adversaries that are allowed to make a single cipher-
text query. However, we can readily extend the above scheme to one that is secure
for any a priori bounded number of ciphertext queries of the adversary. The ex-
tension is as follows: Suppose we want to design a scheme that is secure for
𝑞ct number of ciphertext queries. Then, we would introduce a 4𝑞ct-dimensional
hidden subspace on each of the ciphertext and the decryption key sides, where
each 4-dimensional hidden subspace on the ciphertext side and its corresponding
4-dimensional dual subspace on the decryption key side will be used to handle
each ciphertext query in the security reduction. Clearly the size of ciphertexts,
decryption keys, and public parameters would scale linearly with 𝑞ct.

3.2 Security
We now present our main theorem:

Theorem 3.1: The proposed PHPE scheme is (poly, 1, poly)-simulation-based
adaptively strongly partially hiding (as per the security model described in Sec-
tion 2.6) under the SXDLIN assumption.

Following corollary is immediate from the relation between indistinguishability-
based and simulation-based security for FE, as mentioned in the Introduction
as well as the equivalence of the single- and multi-ciphertext security in the
indistinguishability-based setting for FE:

Corollary 3.1: The proposed PHPE scheme is (poly, poly, poly)-indistinguishability-
based adaptively strongly partially hiding (as per the security model described
in [12] and the full version of this paper) under the SXDLIN assumption.

In order to prove Theorem 3.1, we consider a sequence of hybrid experiments
which differ from one another in the construction of the ciphertext and/or the de-
cryption keys queried by the augmented adversary ℋ (described in Remark 2.1).
The first hybrid corresponds to the experiment Expphpe,real

ℋ (𝜆) (described in
Section 2.6), while the last one corresponds to the experiment Expphpe,ideal

ℋ,𝒮 (𝜆)
(also described in Section 2.6) with the simulator 𝒮 described below. We argue
that ℋ’s probability of outputting 1 changes only by a negligible amount in
each successive hybrid experiment, thereby establishing Theorem 3.1. Note that
we are considering only one ciphertext query made by the adversary ℋ. Let,
𝑞key-pre, 𝑞key-post be respectively the number of decryption key queries made by
ℋ before and after making the ciphertext query, and 𝑞key = 𝑞key-pre + 𝑞key-post.
Note that we consider 𝑞key-pre and 𝑞key-post to be arbitrary polynomials in the
security parameter 𝜆.
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■ Description of the Simulator

The simulator 𝒮 is described below.

∙ In order to generate the public parameters, 𝒮 proceeds as follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. For 𝚤 ∈ [𝑛′ + 𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}.
3. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[𝑛′+𝑛]).

∙ For  ∈ [𝑞key-pre], 𝒮 simulates the th decryption key queried by ℋ corre-
sponding to some function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip as follows:
1. At first, it generates

(︀
({𝜎,𝑗}𝑗∈[𝑛], {𝛼,𝑗′ , 𝛾,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
,(︀

({̂︀𝜎,𝑗}𝑗∈[𝑛], {̂︀𝛼,𝑗′ , ̂︀𝛾,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]
)︀ R←− PGB(𝑓).

2. Next, it samples 𝜁, ̂︀𝜁 U←− 𝔽𝑞.
3. Then, for 𝑗′ ∈ [𝑚], it samples �⃗�′(,𝑗′) U←− 𝔽2

𝑞, and computes
𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), 0⃗

2, (̂︀𝛾,𝑗′ , ̂︀𝛼,𝑗′), �⃗�
′(,𝑗′), 0)𝔹*

𝜌(𝑗′)
.

4. Then, for 𝑗 ∈ [𝑛], it samples �⃗�(,𝑗) U←− 𝔽2
𝑞, and computes

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), 0⃗
2, (̂︀𝜎,𝑗 , ̂︀𝜁), �⃗�(,𝑗), 0)𝔹*

𝑛′+𝑗
.

5. It outputs sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]).

∙ When ℋ queries a ciphertext for some pair of public-private attribute strings
(�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 , 𝒮 receives �⃗� and {𝑅abp∘ip(𝑓, (�⃗�, �⃗�))}∈[𝑞key-pre]. It simulates

the ciphertext as follows:

1. At first, it samples �⃗�
U←− 𝑆 = {�⃗� ∈ 𝔽𝑛

𝑞 | 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 𝑅abp∘ip(𝑓,
(�⃗�, �⃗�))∀ ∈ [𝑞key-pre]}. Observe that the set 𝑆 is exactly identical to
the set ̃︀𝑆 = {�⃗� ∈ 𝔽𝑛

𝑞 | 𝑅ip((𝑓,1(�⃗�), . . . , 𝑓,𝑛(�⃗�)), �⃗�) = 𝑅ip((𝑓,1(�⃗�), . . . ,
𝑓,𝑛(�⃗�)), �⃗�)∀ ∈ [𝑞key-pre]}, where 𝑅ip represents the inner-product pred-
icate family defined as 𝑅ip = {𝑅ip(�⃗�, ·) : 𝔽𝑛

𝑞 → {0, 1} | �⃗� ∈ 𝔽𝑛
𝑞 } such

that 𝑅ip(�⃗�, �⃗�) = 1 if �⃗� · �⃗� = 0, and 0 if �⃗� · �⃗� ̸= 0 for �⃗�, �⃗� ∈ 𝔽𝑛
𝑞 , and 𝑓,𝑗

is the 𝑗th component ABP of 𝑓 for  ∈ [𝑞key-pre], 𝑗 ∈ [𝑛]. It has already
been demonstrated by O’Neill [37] that the inner-product predicate family
𝑅ip is pre-image-samplable, which essentially means that we can efficiently
sample from the set ̃︀𝑆. In fact, he provided an explicit algorithm for do-
ing this. Thus, given {𝑓}∈[𝑞key-pre] and �⃗�, 𝒮 can efficiently sample from 𝑆
by first determining the vectors {(𝑓,1(�⃗�), . . . , 𝑓,𝑛(�⃗�))}∈[𝑞key-pre] and then
sampling from the set ̃︀𝑆 using the algorithm described in [37].

2. Then, it samples 𝜏, 𝜃,
U←− 𝔽𝑞.

3. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes
𝒄′(𝜄

′) = (⃗03, 𝜏, 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔹𝜄′ .

4. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (⃗03, 𝜏, 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

.

5. It outputs the ciphertext ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).



Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 25

∙ For  ∈ [𝑞key-pre + 1, 𝑞key], in response to the th decryption key query of
ℋ corresponding to some function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , 𝒮 executes the following
steps:
1. It first generates

(︀
({𝜎,𝑗}𝑗∈[𝑛], {𝛼,𝑗′ , 𝛾,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←−
PGB(𝑓).

2. Next, it samples 𝜁
U←− 𝔽𝑞.

3. After that, it queries its oracle 𝒪𝑅abp∘ip((�⃗�, �⃗�), ·) with the function 𝑓, and
receives back 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)). If 𝑅abp∘ip(𝑓(�⃗�, �⃗�)) = 1, i.e., 𝑓(�⃗�, �⃗�) =

0, it forms
(︀
({𝜈,𝑗}𝑗∈[𝑛], {𝜇,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←− SIM(𝑓, �⃗�, 0).
Otherwise, if 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 0, i.e., 𝑓(�⃗�, �⃗�) ̸= 0, then it samples
𝜁

U←− 𝔽𝑞, and generates
(︀
({𝜈,𝑗}𝑗∈[𝑛], {𝜇,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←−
SIM(𝑓, �⃗�, 𝜁).

4. Then, for 𝑗′ ∈ [𝑚], it samples 𝜂′,𝑗′
U←− 𝔽𝑞, �⃗�

′(,𝑗′) U←− 𝔽2
𝑞, and computes

𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), (𝜂
′
,𝑗′ , 𝜇,𝑗′), 0⃗

2, �⃗�′(,𝑗′), 0)𝔹*
𝜌(𝑗′)

.

5. Then, for 𝑗 ∈ [𝑛], it samples 𝜂,𝑗
U←− 𝔽𝑞, �⃗�

(,𝑗) U←− 𝔽2
𝑞, and computes

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), (𝜂,𝑗 , 𝜈,𝑗), 0⃗
2, �⃗�(,𝑗), 0)𝔹*

𝑛′+𝑗
.

6. It outputs sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]).

■ Sequence of Hybrid Experiments

The hybrid experiments are described below. In the description of these hybrids,
a part framed by a box indicates coefficients that are altered in a transition from
its previous hybrid.

Hyb0: This experiment corresponds to the experiment Expphpe,real
ℋ (𝜆) defined

in Section 2.6. Thus, in this experiment, the ciphertext queried by ℋ correspond-
ing to a pair of public-private attribute strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as

ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that
𝒄′(𝜄

′) = (𝜔(1, 𝑥𝜄′), 0⃗
2, 0⃗2, 0⃗2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 0⃗
2, 0⃗2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄

for 𝜄 ∈ [𝑛],
(3.1)

where 𝜔, {𝜙′
𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, while for  ∈ [𝑞key], the th decryption
key queried by ℋ corresponding to the function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as
sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]) such that

𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), 0⃗
2, 0⃗2, �⃗�′(,𝑗′), 0)𝔹*

𝜌(𝑗′)
for 𝑗′ ∈ [𝑚],

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), 0⃗
2, 0⃗2, �⃗�(,𝑗), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(3.2)

where 𝜁
U←− 𝔽𝑞, {�⃗�′(,𝑗′)}𝑗′∈[𝑚], {�⃗�(,𝑗)}𝑗∈[𝑛]

U←− 𝔽2
𝑞, 𝑚 + 𝑛 + 1 is the num-

ber of vertices in the ABP 𝛤 ′
 computing the function 𝑓 as described in Sec-

tion 2.3, and
(︀
({𝜎,𝑗}𝑗∈[𝑛], {𝛼,𝑗′ , 𝛾,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚] → [𝑛′]

)︀ R←− PGB(𝑓).
Here, {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] is the collection of dual orthonormal bases generated by

executing 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)) during setup.
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Hyb1: This experiment is analogous to Hyb0 except that in this experiment,
the ciphertext queried by ℋ corresponding to the pair of public-private attribute
strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such

that
𝒄′(𝜄

′) = (𝜔(1, 𝑥𝜄′), ( 𝜗 , 0), 0⃗2, 0⃗2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), ( 𝜗 , 0), 0⃗2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄
for 𝜄 ∈ [𝑛],

(3.3)

where 𝜗
U←− 𝔽𝑞, and all the other variables are generated as in Hyb0.

Hyb2-𝝌-1 (𝝌 ∈ [𝒒key-pre]): The experiment Hyb2-0-4 coincides with Hyb1. This
experiment is analogous to Hyb2-(𝜒−1)-4 except that in this experiment, the
ciphertext queried by ℋ corresponding to the pair of public-private attribute
strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such

that
𝒄′(𝜄

′) = (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′) , 0⃗
2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄) , 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

for 𝜄 ∈ [𝑛],
(3.4)

where 𝜏, 𝜃
U←− 𝔽𝑞, �⃗�

U←− 𝑆 = {�⃗� ∈ 𝔽𝑛
𝑞 | 𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 𝑅abp∘ip(𝑓, (�⃗�,

�⃗�))∀ ∈ [𝑞key-pre]}, and all the other variables are generated as in Hyb2-(𝜒−1)-4.

Hyb2-𝝌-2 (𝝌 ∈ [𝒒key-pre]): This experiment is the same as Hyb2-𝜒-1 with the
only exception that the 𝜒th decryption key queried by ℋ corresponding to the
function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is formed as sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛])
such that
𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), (̃︀𝛾𝜒,𝑗′ , ̃︀𝛼𝜒,𝑗′) , 0⃗

2, �⃗�′(𝜒,𝑗′), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), (̃︀𝜎𝜒,𝑗 , ̃︀𝜁𝜒) , 0⃗2, �⃗�(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],
(3.5)

where ̃︀𝜁𝜒 U←− 𝔽𝑞,
(︀
({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒]→ [𝑛′]

)︀ R←− PGB(𝑓𝜒),
and all the other variables are generated as in Hyb2-𝜒-1.

Hyb2-𝝌-3 (𝝌 ∈ [𝒒key-pre]): This experiment is analogous to Hyb2-𝜒-2 except
that in this experiment, the ciphertext queried byℋ for the pair of public-private
attribute strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 is formed as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛])

such that {𝒄′(𝜄′)}𝜄′∈[𝑛′] are given by Eq. (3.4) and
𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑠𝜄 ), 𝜃(1, 𝑠𝜄), 0⃗

2, 𝜙𝜄)𝔹𝑛′+𝜄
for 𝜄 ∈ [𝑛], (3.6)

where all the variables are generated as in Hyb2-𝜒-2.

Hyb2-𝝌-4 (𝝌 ∈ [𝒒key-pre]): This experiment is identical to Hyb2-𝜒-3 except that

the 𝜒th decryption key queried by ℋ corresponding to the function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip

is generated as sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗2, (̂︀𝛾𝜒,𝑗′ , ̂︀𝛼𝜒,𝑗′) , �⃗�
′(𝜒,𝑗′), 0)𝔹*

𝜌𝜒(𝑗′)
for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗2, (̂︀𝜎𝜒,𝑗 , ̂︀𝜁𝜒) , �⃗�(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(3.7)

where ̂︀𝜁𝜒 U←− 𝔽𝑞,
(︀
({̂︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̂︀𝛼𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒]→ [𝑛′]

)︀ R←− PGB(𝑓𝜒),
and all the other variables are generated in the same manner as that in Hyb2-𝜒-3.
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Hyb3: This experiment is analogous to Hyb2-𝑞key-pre-4 except that in this ex-
periment, the ciphertext queried by ℋ for the pair of public-private attribute
strings (�⃗�, �⃗�) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is formed as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]), where

{𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛] are given by Eq. (3.4), while for  ∈ [𝑞key], the th de-
cryption key queried by ℋ for 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as sk(𝑓) = (𝑓,
{𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]) such that

𝒌′(,𝑗′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((𝛾,𝑗′ , 𝛼,𝑗′), (̃︀𝛾,𝑗′ , ̃︀𝛼,𝑗′) , (̂︀𝛾,𝑗′ , ̂︀𝛼,𝑗′), �⃗�

′(,𝑗′), 0)𝔹*
𝜌(𝑗′)

for 𝑗′ ∈ [𝑚] if  ∈ [𝑞key-pre],

((𝛾,𝑗′ , 𝛼,𝑗′), (̃︀𝛾,𝑗′ , ̃︀𝛼,𝑗′) , 0⃗
2, �⃗�′(,𝑗′), 0)𝔹*

𝜌(𝑗′)

for 𝑗′ ∈ [𝑚] if  ∈ [𝑞key-pre + 1, 𝑞key],

𝒌(,𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((𝜎,𝑗 , 𝜁), (̃︀𝜎,𝑗 , ̃︀𝜁) , (̂︀𝜎,𝑗 , ̂︀𝜁), �⃗�(,𝑗), 0)𝔹*

𝑛′+𝑗

for 𝑗 ∈ [𝑛] if  ∈ [𝑞key-pre],

((𝜎,𝑗 , 𝜁), (̃︀𝜎,𝑗 , ̃︀𝜁) , 0⃗2, �⃗�(,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛] if  ∈ [𝑞key-pre + 1, 𝑞key],

(3.8)

where {̃︀𝜁}∈[𝑞key]
U←− 𝔽𝑞,

(︀
({̃︀𝜎,𝑗}𝑗∈[𝑛], {̃︀𝛼,𝑗′ , ̃︀𝛾,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←−
PGB(𝑓) for  ∈ [𝑞key], and all the other variables are formed as in Hyb2-𝑞key-pre-4.

Hyb4: This experiment is analogous to Hyb3 except that in this experiment, the
ciphertext queried by ℋ for the pair of public-private attribute strings (�⃗�, �⃗�) ∈
𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = ( 0⃗2 , 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = ( 0⃗2 , 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

for 𝜄 ∈ [𝑛],
(3.9)

where all the variables are generated as in Hyb3.

Hyb5: This experiment is identical to Hyb4 except that in this experiment, for
 ∈ [𝑞key-pre], the th decryption key queried by ℋ corresponding to the function
𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]) such
that {𝒌′(,𝑗′)}𝑗′∈[𝑚] and {𝒌(,𝑗)}𝑗∈[𝑛] are given by Eq. (3.7).

Hyb6: This experiment is the same as Hyb5 except that in this experiment, the
ciphertext queried by ℋ for the pair of public-private attribute strings (�⃗�, �⃗�) ∈
𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (�⃗�, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (⃗02, (0, 𝜏) , 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, (0, 𝜏) , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

for 𝜄 ∈ [𝑛],
(3.10)

while for  ∈ [𝑞key-pre + 1, 𝑞key], the th decryption key queried by ℋ for 𝑓 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛]) such that

𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), (̃︀𝛾,𝑗′ , ̃︀𝛼,𝑗′)𝑼
′(𝜌(𝑗

′)) , 0⃗2, �⃗�′(,𝑗′), 0)𝔹*
𝜌(𝑗′)

for 𝑗′ ∈ [𝑚],

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), (̃︀𝜎,𝑗 , ̃︀𝜁)𝑼 (𝑗) , 0⃗2, �⃗�(,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(3.11)
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where 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞) | (1, 𝑥𝜄′)𝒁 = �⃗�(2) = (0, 1)}, 𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺

for 𝜄′ ∈ [𝑛′], 𝒁(𝜄) U←− {𝒁 ∈ GL(2,𝔽𝑞 | (1, 𝑧𝜄)𝒁 = �⃗�(2) = (0, 1)}, 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺

for 𝜄 ∈ [𝑛], and all the other variables are generated as in Hyb5.

Hyb7: This experiment is identical to Hyb6 with the only exception that for  ∈
[𝑞key-pre+1, 𝑞key], the th decryption key queried byℋ corresponding to the func-
tion 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛])
such that
𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), (𝜂′,𝑗′ , ̃︀𝛼,𝑗′𝑥𝜌(𝑗′) + ̃︀𝛾,𝑗′) , 0⃗2, �⃗�′(,𝑗′), 0)𝔹*

𝜌(𝑗′)

for 𝑗′ ∈ [𝑚],

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), (𝜂,𝑗 , ̃︀𝜁𝑧𝑗 + ̃︀𝜎,𝑗) , 0⃗
2, �⃗�(,𝑗), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(3.12)

where {𝜂′,𝑗′}∈[𝑞key-pre+1,𝑞key],𝑗′∈[𝑚], {𝜂,𝑗}∈[𝑞key-pre+1,𝑞key],𝑗∈[𝑛]
U←− 𝔽𝑞, and all

the other variables are generated as in Hyb6.

Hyb8: This experiment is analogous to Hyb7 with the only exception that for
 ∈ [𝑞key-pre+1, 𝑞key], the th decryption key queried by ℋ corresponding to the
function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is formed as sk(𝑓) = (𝑓, {𝒌′(,𝑗′)}𝑗′∈[𝑚], {𝒌(,𝑗)}𝑗∈[𝑛])
such that
𝒌′(,𝑗′) = ((𝛾,𝑗′ , 𝛼,𝑗′), (𝜂

′
,𝑗′ , 𝜇,𝑗′ ), 0⃗

2, �⃗�′(,𝑗′), 0)𝔹*
𝜌(𝑗′)

for 𝑗′ ∈ [𝑚],

𝒌(,𝑗) = ((𝜎,𝑗 , 𝜁), (𝜂,𝑗 , 𝜈,𝑗 ), 0⃗2, �⃗�(,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],
(3.13)

where {̃︀𝜁}∈[𝑞key-pre+1,𝑞key]
U←− 𝔽𝑞,

(︀
({𝜈,𝑗}𝑗∈[𝑛], {𝜇,𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
R←− SIM(𝑓, �⃗�, 𝑓(�⃗�, ̃︀𝜁�⃗�)) for  ∈ [𝑞key-pre + 1, 𝑞key], and all the other vari-

ables are generated as in Hyb7. Observe that for any  ∈ [𝑞key-pre] + 1, 𝑞key] if
𝑅abp∘ip(𝑓, (�⃗�, �⃗�)) = 1, i.e., 𝑓(�⃗�, �⃗�) = 0, then 𝑓(�⃗�, ̃︀𝜁�⃗�) = ̃︀𝜁𝑓(�⃗�, �⃗�) = 0, while
if 𝑅abp∘ip(𝑓(�⃗�, �⃗�)) = 0, i.e., 𝑓(�⃗�, �⃗�) ̸= 0, then due to the uniform and indepen-
dent (of the other variables) choice of ̃︀𝜁, it follows that 𝑓(�⃗�, ̃︀𝜁�⃗�) = ̃︀𝜁𝑓(�⃗�, �⃗�) is
uniformly and independently (of the other variables) distributed in 𝔽𝑞. Thus, this
experiment coincides with the experiment Expphpe,ideal

ℋ,𝒮 (𝜆) with the simulator 𝒮
as described above.

■ Analysis

Let us now denote by Adv(𝚥)ℋ (𝜆) the probability that ℋ outputs 1 in Hyb𝚥 for
𝚥 ∈ {0, 1, {2-𝜒-𝑘}𝜒∈[𝑞key-pre],𝑘∈[4], 3, . . . , 8}. By definition of the hybrids, we clearly
have Advphpe-sim-ah

ℋ (𝜆) = |Adv(0)ℋ (𝜆)− Adv(8)ℋ (𝜆)|. Hence, we have
Advphpe,sim-ah

ℋ (𝜆) ≤ |Adv(0)ℋ (𝜆)− Adv(1)ℋ (𝜆)|+∑︁
𝜒∈[𝑞key-pre]

[︁
|Adv(2-(𝜒−1)-4)

ℋ (𝜆)− Adv(2-𝜒-1)
ℋ (𝜆)|+

∑︁
𝑘∈[3]

|Adv(2-𝜒-𝑘)
ℋ (𝜆)− Adv(2-𝜒-(𝑘+1))

ℋ (𝜆)|
]︁
+

|Adv(2-𝑞key-pre-4)
ℋ (𝜆)− Adv(3)ℋ (𝜆)|+

∑︁
𝚥∈[3,7]

|Adv(𝚥)ℋ (𝜆)− Adv(𝚥+1)
ℋ (𝜆)|.
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It can be shown that each term on the RHS of the above equation is negligible in
𝜆, and hence Theorem 3.1 follows. The details are provided in the full version.
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