
Robustly Reusable Fuzzy Extractor from
Standard Assumptions

Yunhua Wen1 and Shengli Liu1,2,3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{happyle8, slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. A fuzzy extractor (FE) aims at deriving and reproducing
(almost) uniform cryptographic keys from noisy non-uniform sources.
To reproduce an identical key R from subsequent readings of a noisy
source, it is necessary to eliminate the noises from those readings. To
this end, a public helper string P , together with the key R, is produced
from the first reading of the source during the initial enrollment phase.

In this paper, we consider computational fuzzy extractor. We formal-
ize robustly reusable fuzzy extractor (rrFE) which considers reusability
and robustness simultaneously in the Common Reference String (CRS)
model. Reusability of rrFE deals with source reuse. It guarantees that
the key R output by fuzzy extractor is pseudo-random even if the initial
enrollment is applied to the same source several times, generating mul-
tiple public helper strings and keys (Pi, Ri). Robustness of rrFE deals
with active probabilistic polynomial-time adversaries, who may manip-
ulate the public helper string Pi to affect the reproduction of Ri. Any
modification of Pi by the adversary will be detected by the robustness
of rrFE.

– We show how to construct an rrFE from a Symmetric Key Encap-
sulation Mechanism (SKEM), a Secure Sketch (SS), an Extractor
(Ext), and a Lossy Algebraic Filter (LAF). We characterize the key-
shift security notion of SKEM and the homomorphic properties of
SS, Ext and LAF, which enable our construction of rrFE to achieve
both reusability and robustness.

– We present an instantiation of SKEM from the DDH assumption.
Combined with the LAF by Hofheinz (EuroCrypt 2013), homomor-
phic SS and Ext, we obtain the first rrFE based on standard as-
sumptions.

Keywords: Fuzzy extractor, Reusability, Robustness, Standard assump-
tions

1 Introduction

Uniformly distributed keys are pivots of cryptographic primitives. However, it
is not easy for us to create, memorize and safely store random keys. In practice,



there are plenty of noisy sources, which possess high entropy and provide similar
but not identical reading at each enrollment. Such sources include biometrics
like fingerprint, iris, face and voice [9,17,19,20], Physical Unclonable Functions
[21,23] and quantum sources [3,16]. How to make use of these noisy sources to
derive uniform and reproducible keys for cryptographic applications is exactly
the concern of Fuzzy Extractors [12].

Fuzzy extractor. A fuzzy extractor FE consists of a pair of algorithms (Gen,Rep).
It works as follows. The generation algorithm Gen takes as input a reading w
of some source and outputs a public helper string P and an extracted key R.
The reproduction algorithm Rep takes as input the public helper string P and
a reading w′ of the same source (w′ is a noisy version of w). It reproduces R
if w and w′ are close enough. The security of fuzzy extractor requires that R
is statistically (or computationally) indistinguishable from a uniform one, even
conditioned on the public helper string P .

With a fuzzy extractor FE, one may invoke Gen to generate a random key R
and a public helper string P from a noisy source, then he stores the helper string
P (publicly), and uses the key R in a cryptographic application. Note that it is
not necessary for the user to store R. Whenever key R is needed again, he just
re-reads the (noisy) source and invokes Rep to reproduce R with the help of P .

However, there are two limitations of FE, leading to two issues.

– The extracted key R is (pseudo)random under the assumption that no more
than a single extraction is performed on the noisy source by Gen. In real-
ity, biometric information, like fingerprint or iris, is unique and cannot be
changed or created. One may hope that the same source is enrolled multiple
times by Gen to generate different keys R1, R2, . . . , Rρ for different applica-
tions. But no security guarantee can be provided for any Ri if ρ ≥ 2.

– The security notion of FE only considers passive adversary and says nothing
about active attacks. If the public helper string P is modified by an active
adversary, then the reproduction algorithm Rep may generate a wrong key
R̃. In this case, one might not realize that R̃ is a wrong one, and it may lead
to unbearable economic loss.

The first issue can be resolved by reusable FE and the second by robust FE.

Reusable Fuzzy Extractor. Reusable Fuzzy Extractor aims to address the
first issue. It allows of multiple extractions from the same source, i.e., apply Gen
to correlated readings w,w1, . . . , wρ of a source to obtain keys and public helper
strings (P,R) {Pi, Ri}i∈{1,2,...,ρ}. Define [ρ] := {1, 2, . . . , ρ}. Reusability of FE
asks for pseudorandomness of R, even conditioned on {Pi, Ri}i∈[ρ] and P .

The concept of reusable FE was first proposed by Boyen [4], who presented
two reusable FE constructions with outsider security and insider security respec-
tively. Outsider security considers the pseudorandomness of R even if the adver-
sary is able to adaptively choose δi and see Pi (but not Ri), where (Pi, Ri) ←
Gen(w + δi). It can be regarded as weak reusability in the sense that the adver-
sary sees only {Pi}i∈[ρ]. Insider security is stronger by allowing the adversary

2



to obtain not only {Pi}i∈[ρ] but also R̃i ← Rep(P̃i, w + δ̃i) where P̃i and δ̃i are
chosen by the adversary. However, the construction for insider security in [4] re-
lies on the random oracle model. Meanwhile, the perturbation δi in the reusable
FE constructions [4] is very special and independent of w, no matter for out-
sider security or insider security. Apon et al. [2] adapted the FE proposed by
Fuller et al. [14] to obtain a weakly reusable FE. They also gave a reusable FE
based on the LWE assumption. Their security model is similar to [4] but has no
special requirements on δi except that dis(δi) ≤ t. However, just like [14] their
reusable FE can only tolerate a logarithmic fraction of errors. With the same
security model, a reusable FE tolerating linear fraction of errors from the LWE
assumption was proposed in [24].

Canetti et al. [6] constructed a reusable FE for Hamming distance. The se-
curity model of their reusable FE makes no assumption about how repeating
readings are correlated, but their construction only tolerates sub-linear fraction
of errors. Moreover, their construction of FE has to rely on a powerful tool
named “digital locker”. Up to now, digital locker can only be instantiated with a
hash function modeled as random oracle or constructed from the non-standard
strong vector DDH assumption. Following the line of constructing reusable FE
from digital locker, Alamelou et al. [1] constructed a reusable FE for both the
set difference metric and Hamming distance. Their construction tolerates lin-
ear fraction of errors but requires that noisy secrets distributions have enough
entropy in each symbol of a large alphabet.

Recently, Wen et al.[26] proposed a reusable FE from the DDH assumption
which can tolerate linear fraction of errors. But a strong requirement is imposed
on the input distribution: any differences between two distinct inputs should not
leak too much information of the source w.

As far as we know, the available works on reusable FE follow three lines
according to the correlations among source readings wi’s. The first line considers
arbitrary correlations among wi’s and has to rely on non-standard assumptions
or random oracle. The second line imposes strong requirements on the source, i.e.,
any differences between two distinct inputs should not leak too much information
of the source wi. The third line considers δi (= wi−w) controlled by adversaries.
See Figure 1. The related works are also summarized in Table 1.

Robust Fuzzy Extractor. Robust Fuzzy Extractor aims to address the second
issue. Robustness of FE requires that any modification of P by an adversary
will be detected. Boyen et al. [5] introduced the concept of robust FE, and
proposed a general way of converting a FE to a robust one. In their approach,
a hash function is employed and modeled as a random oracle. Dodis et al. [10]
strengthened robustness to post-application robustness, which guarantees that
the FE will detect any modification of P by adversary who also sees R. Later,
robust FE was slightly improved in [18]. Nevertheless, it was shown in [13] that
in the information theoretic setting, it is impossible to construct a robust FE
if the entropy rate of W is less than half in the plain model. Cramer et al. [7]
broke this barrier by building a robust FE in the Common Reference String
(CRS) model. Recall that CRS can be hardwired or hardcoded into the system

3



di  is controlled by adversary

wi  = w + di

 arbitrary correlated

(wi , wj)

WLH18[26]
H(wi |wi -wj )>m

(wi , wj)

Boy04[4]

Random OracleInformation Theoretical

Insider SecureWeakly reusable

6]

Digital Locker

CFPRS16[7] ABCG16[1]

Digitaal Locker

DDH

       FE

Reusable

Robust

Our work

CRS Model

DDH &DLIN

ACEK17[2]

LWE

WL18[24]

LWE

Plain Model CRS ModelRandom Oracle 

BDKOS05[5] DKRS06[10] KR08[18] CDFPW08[7]

Plain Model

Fig. 1. Related works about reusable FE and robust FE. H(wi|wi − wj) is the average
min-entropy of wi conditioned on wi − wj.

so that CRS can be observed but not modified by adversaries. See Figure 1 and
Table 1 for related works of robust FE.

We stress that up to now there is no work ever considering robustness of
reusable FE or reusability of robust FE in the standard model, since designing
reusable FE or robust FE alone is already an uneasy task.

Table 1. Comparison with known FE schemes. “Robustness?” asks whether the
scheme achieves robustness; “Reusability?” asks whether the scheme achieves reusabil-
ity; “Standard Assumption ?” asks whether the scheme is based on standard assump-
tions. “Linear Errors?” asks whether the scheme can correct linear fraction of errors.
“–” represents the scheme is an information theoretical one.

FE Schemes Robustness? Reusabiliy? Standard Assumption? Linear Errors?

FMR13[14] 7 7 4 7

DRS04[12], Boy04[4] 7 weak – 4

CFPRS16[6] 7 4 7 7

Boy04[4] ABCG16[1] 7 4 7 4

ACEK17[2] 7 4 4 7

BDKOS05[5] 4 7 7 4

DKRS06[10], KR08[18], CDFPW08[7] 4 7 – 4

WL18[24],WLH18[26] 7 4 4 4

Ours 4 4 4 4

1.1 Our Contributions

We consider how to construct fuzzy extractors satisfying reusability and robust-
ness simultaneously based on standard assumptions in the CRS model.

– We formalize robustly reusable fuzzy extractor (rrFE) whose security notions
include both reusability and post-application robustness in the computa-
tional setting.

4



– We propose a general construction of rrFE from a Symmetric Key Encapsu-
lation Mechanism (SKEM), a Secure Sketch (SS), an Extractor (Ext), and
a Lossy Algebraic Filter (LAF) in the CRS model.
• We characterize the required security notion of SKEM and the homo-

morphic properties of SS, Ext and LAF, which enable the construction
of rrFE to achieve both reusability ad robustness.

• SKEM is a primitive similar to Key Encapsulation Mechanism (KEM),
but the encapsulation and decapsulation make use of the same secret
key. We define Key-Shift (KS) security for SKEM, which says that the
encapsulated key is pseudorandom, even if the adversary sees multiple
encapsulations under shifted secret keys where the shifts are designated
by the adversary. We present an instantiation of SKEM and prove its
KS-security from the DDH assumption.

– We obtain the first rrFE tolerating linear fraction of errors based on stan-
dard assumptions by instantiating SKEM, LAF, SS and Ext. More precisely,
SKEM is built from the DDH assumption and LAF by Hofheinz (EuroCrypt
2013) is based on the DLIN assumption.

Our construction is the first FE possessing both reusability and robustness.
Meanwhile, our construction is able to tolerate a linear fraction of errors. How-
ever, we do not assume arbitrary correlations between different readings of w.
Instead, we assume that the shifts between different readings are controlled by
the adversary in the security model, just like [2]. Our work can be regarded as
a step forward from the the third and fourth branches in Figure 1.

Table 1 compares our rrFE with the available reusable FE and robust FE.

1.2 Our Approach

Our work stems from the traditional sketch-and-extract paradigm [11] due to
Dodis et al. First, we review the traditional sketch-and-extract paradigm [11].
Then we introduce a new primitive called Symmetric Key Encapsulation Mech-
anism (SKEM) and define for it a so-called Key-Shift security. We also recall the
definition of Lossy Algebraic Filter (LAF) introduced by Hofheinz [15]. Equipped
with SKEM and LAF, we show how to construct a robustly reusable Fuzzy Ex-
tractor (rrFE) from SS, Ext, SKEM and LAF. Finally, we describe the high level
idea of why our construction of rrFE achieves both reusability and robustness.

The Sketch-and-Extract Paradigm. In [11], Dodis et al. proposed a paradigm
of constructing FE from secure sketch and extractor.

Secure Sketch (SS) is used for removing noises from fuzzy inputs. An SS
scheme consists of a pair of algorithms SS = (SS.Gen, SS.Rec). Algorithm SS.Gen
on input w outputs a sketch s; algorithm SS.Rec on input s and w′ recovers w as
long as w and w′ are close enough. For SS, it is required that W still has enough
entropy conditioned on s.

An extractor Ext distills an almost uniform key R from the non-uniform
random variable W of enough entropy, with the help of a random seed iext.

The sketch-and-extract construction of FE = (Gen,Rep) [11] works as follows.

5



– Gen(w, iext): Set P := (SS.Gen(w), iext), R := Ext(w, iext). Output (P,R).
– Rep(w′, P = (s, iext)): Recover w := SS.Rec(w′, s) and outputR := Ext(w, iext).

Symmetric Key Encapsulation Mechanism. For reusability, we introduce a
technical tool called symmetric key encapsulation mechanism (SKEM). It is sim-
ilar to Key Encapsulation Mechanism (KEM)[8], except that the encapsulation
and decapsulation algorithms share the same secret key sk.

– Encapsulation algorithm SKEM.Enc takes as input the secret key sk, and
outputs a ciphertext c and an encapsulated key k ∈ K.

– Decapsulation algorithm SKEM.Dec recovers the key k, on input c and sk.

The requirement for SKEM is key-shift security. That is, (c, k)← SKEM.Enc(sk)
is computationally indistinguishable from (c, u), where u is uniformly chosen
from K, even if the adversary has an access to a key-shift encapsulation oracle
SKEM.Enc(sk +∆i), where ∆i is chosen by the adversary adaptively.

Lossy Algebraic Filter. For robustness, we introduce a technical tool named
lossy algebraic filter (LAF) by Hofheinz [15]. It is a family of functions indexed
by a public key Fpk and a tag tag. A tag is lossy, injective or neither. A func-
tion from that family takes a vector X = (Xi)

n
i=1 ∈ Zn

p as input. If tag is an
injective tag, then the function LAFFpk,tag(·) is an injective function. If tag is
lossy, then the function is lossy in the sense that the value only depends on
a linear combination of

∑n
i=1 uiXi ∈ Zp (instead of the whole X), where the

coefficients {ui}i∈[n] are independent of the lossy tag and depend only on the
public key. In particular, evaluating the same input X under multiple lossy tags
with respect to a common public key only reveals the same linear combination∑n
i=1 uiXi ∈ Zp, thus leaking at most log p bits of information about X. It is

required that there are many lossy tags and with a trapdoor one can efficiently
sample a lossy tag. Additionally, LAF has two more properties named evasive-
ness and indistinguishability. Evasiveness demands that without the trapdoor,
any PPT adversary can hardly find a new non-injective tag even given many
lossy tags; indistinguishability demands that it is hard to distinguish lossy tags
from random tags for all PPT adversaries.

Our Construction. Our rrFE stems from the basic “sketch-and-extract” FE
[11], but an SKEM and an LAF are integrated to this basic FE to achieve
reusability and robustness. The construction is shown in Fig. 2.

In our construction, the reading w of a source plays two roles, one is for
extraction(reproduction) of R (R̃), the other is for authentication (verification).
We stress that LAFFpk,tag(w) can be regarded as a message authentication code
(MAC)4, where w is the authentication key, tag is the message, and the output
of LAF is just the authenticator σ.

Below describes how the generation algorithm of our rrFE works.

4 The traditional MAC does not apply in the scenario of robust fuzzy extractor: the
adversary can arbitrarily modify the public helper string P , so the key of the MAC
is modified accordingly. As a result, the message and the authentication key are not
independent anymore.

6



P

crs

pp

k

sk

c

s

( , )t s c=

t

't

't s

pkF w

R k=

t

Generation

pps c ''t s

w

dis( , ) ?¢ >, ) ??¢))w w t

' ?s s¹

N

Y

'w

N

Y

's '

P crs

^

sk

k

exti

R k= k

~

Reproduction

extipkF

Fig. 2. Construction of robustly reusable fuzzy extractor.

– The common reference string crs consists of the public parameter pp of
SKEM, the random seed iext of Ext, and the public key Fpk of LAF.

– The reading w of a source is fed not only to SS and Ext, but also to LAF.
This results in a sketch s from SS.Gen, a secret key sk from Ext, and an
authenticator σ from LAF.

– We do not take the output sk of Ext as the final extracted key. Instead, the
output sk of Ext serves as the secret key of SKEM.Enc, which in turn outputs
a ciphertext c and an encapsulated key k. This encapsulated key k is served
as the final extracted key R := k.

– The evaluation of LAF on w under tag tag = (s, c, t′) results in an authen-
ticator σ, where t′ is randomly chosen. The public helper string is set as
P := (s, c, t′, σ).

Given the public helper string P̃ = (s̃, c̃, t̃′, σ̃) and a reading w′, the reproduction

algorithm of our rrFE will return the reproduced key R̃ := SKEM.Dec(Ext(w̃, iext), c̃)
only if the distance of w̃ := SS.Rec(w′, s̃) and w′ is no more than a predetermined
threshold t and the computed authenticator σ̃′ := LAFFpk,(s̃,c̃,t̃′)(w̃) is identical

to the authenticator σ̃ contained in P̃ .

7



Reusability. Reusability says that the extracted key R is pseudorandom even if
the PPT adversary knows P = (s, c, t, σ) and can adaptively asks the generation
oracle with shift δi to get multiple {Pi = (si, ci, t

′
i, σi), Ri}i∈[ρ] where (Pi, Ri)←

Gen(w + δi).
To achieve reusability, we require that the underlying building blocks SS, Ext

and LAF are homomorphic and SKEM is key-shift secure. Recall that iext and
Fpk are parts of crs so they are independent of each other and distributed as
designed. The high level idea of proving reusability is as follows.

1. By the homomorphic property of SS, Ext and LAF, we have
• si := SS.Gen(wi) = SS.Gen(w+δi) = SS.Gen(w)+SS.Gen(δi)= s+ SS.Gen(δi);
• ski = Ext(wi, iext) = Ext(w+δi, iext) = Ext(w, iext)+Ext(δi, iext)= sk + Ext(δi, iext);
• σi := LAFFpk,tagi(w+δi) = LAFFpk,tagi(w)+LAFFpk,tagi(δi)= σ + LAFFpk,tagi(δi).

Observe that the knowledge of SS.Gen(w),Ext(w) and {LAFFpk,tagi(w)}i∈[ρ]
suffices for the challenger to simulate the whole view of the adversary in the
reusability experiment.

2. By the indistinguishability property of LAF, {tagi}i∈[ρ] can be replaced
with lossy tags. Now the challenger can use SS.Gen(w),Ext(w) and S :=
{LAFFpk,tag(w) for all lossy tags} to simulate the view of the adversary.

3. By the lossiness of LAF, the information of W leaked by S is at most log p
bits. By the security of SS, the information of W leaked by SS.Gen(w) is
also bounded. Meanwhile, SS.Gen(w) and set S are independent of iext due
to the independence between (W,Fpk) and iext (note that the lossy tag space
is determined by Fpk). Consequently, sk := Ext(w, iext) is almost uniform
conditioned on SS.Gen(w) and S.

4. Observe that (ci, ki) ← SKEM.Enc(ski) can be regarded as encapsulations
under shifted key ski := sk + Ext(δi). With a uniform sk (conditioned on
SS.Gen(w) and S), the KS-security of SKEM makes sure that R := k is
pseudorandom given P and {Pi = (si, ci, t

′
i, σi), Ri = ki}i∈[ρ], where (c, k)←

SKEM.Enc(sk).

Robustness. Robustness states that even if the PPT adversary can adaptively
asks the generation oracle with shift δi to get (Pi, Ri) ← Gen(w + δi), it is still
hard to forge a fresh valid P̃ .

Following 1, 2 and 3 of the above analysis for reusability, the view of ad-
versary in the robustness experiment can be simulated with the knowledge of
SS.Gen(w) and S. Note that the SS.Gen(w) and set S only leak bounded in-
formation of W . Consequently, even if the adversary sees {Pi, Ri}i∈[ρ], there
is still enough entropy left in W . By the evasiveness of LAF, the forged tag
t̃ag = (s̃, c̃, t̃′) contained in P̃ = (s̃, c̃, t̃′, σ̃) must be injective, hence LAFFpk,t̃ag(·)
is an injective function. Consequently, the entropy of W is intactly transferred
to σ̃′ := LAFFpk,t̃ag(w̃) and the forged authenticator σ̃ hits the value of σ̃′ with
negligible probability.

2 Preliminaries

Let λ be the security parameter. We write PPT short for probabilistic polynomial-
time. Let [ρ] denote set {1, 2 · · · , ρ}. Let dxe denote the smallest integer that is

8



not smaller than x. If X is a distribution, x← X denotes sampling x according
to distribution X; if X is a set, x ←$ X denotes choosing x from X uniformly.

For a set X, let |X| denote the size of X. Let

y︷︸︸︷
xxx and xxx︸︷︷︸

y

denote y := xxx.

For a primitive XX and a security notion YY, by ExpYY
XX,A(·) ⇒ 1, we mean

that the security experiment outputs 1 after interacting with an adversary A;
by AdvYY

XX,A(1λ), we denote the advantage of a PPT adversary A and define

AdvYY
XX(1λ) := maxPPTA AdvYY

XX,A(1λ). Our security proof will proceed by a se-

quence of games. By a
G
= b we mean that a equals b or is computed as b in game

G. By GA ⇒ b, we mean that game G outputs b after interacting with A.

2.1 Metric Spaces

A metric space is a set M with a distance function dis : M ×M 7→ [0,∞).
We usually consider multi-dimensional metric spaces of form M = Fn for some
alphabet F (usually a finite filed Fp) equipped with the Hamming distance. For
any two element w,w′ ∈ M, the Hamming distance dis(w,w′) is the number of
coordinates in which they differ. For an element w ∈M, let dis(w) := dis(w, 0).

2.2 Min-Entropy, Statistical Distance and Extractor

Definition 1 (Min-Entropy). For a random variable X, the min-entropy of
X is defined by H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of

X given Y is defined by H̃∞(X|Y ) = − log[Ey←Y (maxx Pr[X = x|Y = y])].

Obviously, for a deterministic function f and a randomized function g with the
random coins R independent of X, we have that

H̃∞ (X | Y, f(Y )) = H̃∞(X | Y ). (1)

H̃∞(X | Y, g(Y,R)) = H̃∞(X | Y ). (2)
Lemma 1. [11] If Y takes at most 2λ possible values, then H̃∞(X | Y ) ≥
H̃∞(X)− λ.

Definition 2 (Statistical Distance). For two random variables X and Y
over a set M, the statistical distance of X and Y is given by SD(X,Y ) =
1
2

∑
w∈M |Pr[X = w] − Pr[Y = w]|. If SD(X,Y ) ≤ ε, X and Y are called

ε-statistically indistinguishable, denoted by X
ε
≈ Y .

Lemma 2. [22] Let M1 and M2 be finite sets, X and Y be random variables
overM1, and f : M1 7→ M2 be a function. Then SD(f(X), f(Y )) ≤ SD(X,Y ).

Definition 3 (Average-Case Strong Extractor [11]). We call a function
Ext : M × I 7→ SK an average-case (M,m,SK, ε)-strong extractor with seed

space I, if for all pairs of random variables (X,Y ) such that X ∈M and H̃∞(X |
Y ) ≥ m, we have

(Ext(X, I), I, Y )
ε
≈ (U, I, Y ), (3)

where I and U are uniformly distributed over I and SK, respectively.

9



2.3 Secure Sketch

Definition 4 (Secure Sketch [11]). An (m, m̂, t)-secure sketch (SS) SS =
(SS.Gen,SS.Rec) for metric space M with distance function dis, consists of a
pair of PPT algorithms and satisfies correctness and security.

– SS.Gen on input w ∈M, outputs a sketch s.
– SS.Rec takes as input w′ ∈M and a sketch s, and outputs w̃.

Correctness. ∀w ∈ M, if dis(w,w′) ≤ t, then SS.Rec(w′,SS.Gen(w)) = w.
Security. For any random variable W over M with min-entropy m, we have
H̃∞(W | SS.Gen(W )) ≥ m̂.

Lemma 3. [5] Let SS = (SS.Gen,SS.Rec) be an (m, m̂, t)-SS for M, if W0,W1

are two random variables over M satisfying dis(W0,W1) ≤ t, then for any vari-

able Y , we have H̃∞(W1 | (SS.Gen(W0), Y )) ≥ H̃∞(W0 | (SS.Gen(W0), Y )).

2.4 Lossy Algebraic Filter

Our construction of robustly reusable fuzzy extractor relies on a technical tool,
named lossy algebraic filter which is proposed by Hofheinz [15].

Definition 5 (Lossy Algebraic Filter). An (lLAF, n)-lossy algebraic filter LAF =
(FGen,FEval,FTag) consists of three PPT algorithms.

– Key generation. FGen(1λ) outputs a public key Fpk together with a trap-
door Ftd, i.e., (Fpk, Ftd) ← FGen(1λ). The public key Fpk contains an lLAF-
bit prime p and defines a tag space Ttag = {0, 1}∗ × T ′, a lossy tag space
Tlossy ⊆ Ttag and an injective tag space Tinj ⊆ Ttag. A tag tag = (t, t′) ∈ Ttag
consists of a core tag t′ ∈ T ′ and an auxiliary tag t ∈ {0, 1}∗. Ftd is a
trapdoor that allows of sampling lossy tags.

– Evaluation. FEval takes as input the public key Fpk, a tag tag = (t, t′),
and X = (Xi)

n
i=1 ∈ Zn

p, and outputs LAFFpk,tag(X), i.e., LAFFpk,tag(X) =
FEval(Fpk, tag, X).

– Lossy tag generation. FTag takes as input the trapdoor Ftd and an aux-
iliary tag t, and returns a core tag t′, i.e., t′ ← FTag(Ftd, t), such that
tag = (t, t′) is a lossy tag.

We require the following:

– Lossiness. If tag ∈ Tinj , then the function LAFFpk,tag(·) is injective. If tag ∈
Tlossy, then LAFFpk,tag(X) depends only on

∑n
i=1 uiXi mod p for ui ∈ Zp

that only depends on Fpk.
– Indistinguishability. For all PPT adversaries, it is hard to distinguish

lossy tags from random tags. Formally,

AdvindLAF,A(1λ) :=
∣∣∣Pr
[
A(1λ, Fpk)FTag(Ftd,·) = 1

]
− Pr

[
A(1λ, Fpk)OT ′ (·) = 1

]∣∣∣
is negligible for all PPT adversary A, where (Fpk, Ftd) ← FTag(1λ) and
OT ′(·) is the oracle that ignores its input and samples a random core tag t′.

10



– Evasiveness. For all PPT adversaries, without the trapdoor, non-injective
tags are hard to find, even given multiple lossy tags. More precisely,

AdvevaLAF,A(1λ) := Pr
[
tag /∈ Tinj | tag← A(1λ, Fpk)FTag(Ftd,·)

]
is negligible for all PPT admissible adversaryA where (Fpk, Ftd)← FGen(1λ).
We call A is admissible if A never outputs a tag obtained from its oracle.

Remark 1. If tag = (t, t′), we use FEval(Fpk, t, t
′, X) to denote FEval(Fpk, tag, X).

Remark 2. Let us consider multiple, say m, evaluations of LAF of the same
X = (X1, X2, . . . , Xn) under a fixed public key Fpk but different tags (tj , t

′
j). Ac-

cording to the lossiness property of LAF, each evaluation of FEval(Fpk, tj , t
′
j , X)

is completely determined by
∑n
i=1 uiXi and (tj , t

′
j), so there exists a function

f such that FEval(Fpk, tj , t
′
j , X) = f

(∑n
i=1 uiXi, (tj , t

′
j)
)
. Suppose that Fpk is

independent of X. As long as tags {(tj , t′j)}j∈[m] are independent of X or are

(randomized) functions of
∑n
i=1 uiXi, we have

H̃∞

(
X
∣∣∣ {FEval(Fpk, tj , t′j , X)

}
j∈[m]

)
= H̃∞

(
X

∣∣∣∣ {f (∑n

i=1
uiXi, (tj , t

′
j)
)}

j∈[m]

)
≥ H̃∞

(
X
∣∣∣ ∑n

i=1
uiXi

)
≥H̃∞(X)− log p, (4)

where the last but one step is due to Eq. (2) and the last step is by Lemma 1.

2.5 Homomorphic Properties

We assume that the domains and codomains of Ext, SS and LAF are groups
with operation “+” (we abuse “+” for different group operations for simplicity).
Now we characterize homomorphic properties of Ext, SS and LAF.

Definition 6 (Homomorphic Average-Case Strong Extractor ). An average-
case (M,m,SK, ε)-strong extractor Ext :M×I → SK is homomorphic if for all
w1, w2 ∈M, all iext ∈ I, we have Ext(w1+w2, iext) = Ext(w1, iext)+Ext(w2, iext).

It was shown in [11], universal hash functions are average-case strong extractors.
In particular, Ext(x, i) : Zl+1

q × Zlq → Zq defined by

Ext(x, i) := x0 + i1x1 + · · ·+ ilxl (5)

is an average-case strong (Zl+1
q ,m,Zq, ε)-extractor with log q ≤ m + 2 log ε, as

shown in [22]. Obviously, it is homomorphic.

Definition 7 (Homomorphic Secure Sketch). A secure sketch is homomor-
phic if for all w1, w2 ∈M, SS.Gen(w1 + w2) = SS.Gen(w1) + SS.Gen(w2).

The syndrome-based secure sketch [12] is homomorphic (see the full version [25]).

Definition 8 ( Homomorphic Lossy Algebraic Filter). We call an (lLAF, n)-
LAF with domain Zn

p is homomorphic if for all (Fpk, Ftd) ← FGen(1λ), all
tag ∈ Ttag and all w1, w2 ∈ Zn

p, the following holds FEval(Fpk, tag, w1 + w2) =
FEval(Fpk, tag, w1) + FEval(Fpk, tag, w2).

The LAF constructed from the DLIN assumption in [15] is homomorphic. See
the full version [25] for the specific construction of homomorphic LAF.

11



2.6 Decisional Diffie-Hellman Assumption

Definition 9 (Decisional Diffie-Hellman Assumption). The decisional Diffie-
Hellman assumption holds w.r.t. a group generation algorithm IG, if

AdvDDH
IG,A(1λ) := |Pr[A((G, q, g), gx, gy, gz) = 1]−Pr[A((G, q, g), gx, gy, gxy) = 1]|

is negligible for all PPT adversary A, where (G, q, g) ← IG(1λ), G is a cyclic
group of order q with generator g and x, y, z ←$ Zq.

3 Symmetric Key Encapsulate Mechanism

3.1 Definition of SKEM

In this section, we propose a new primitive called symmetric key encapsulate
mechanism (SKEM). It is one of the core technical tools in our rrFE.

Definition 10 (Symmetric Key Encapsulate Mechanism). A symmetric
key encapsulate mechanism SKEM = (SKEM.Init, SKEM.Enc, SKEM.Dec) con-
sists of a triple of PPT algorithms.

– SKEM.Init takes as input the security parameter 1λ and outputs public pa-
rameter pp which implicitly defines the secret key space SK, encapsulated
key space K and ciphertext space, i.e., pp← SKEM.Init(1λ).

– SKEM.Enc takes as input pp and the secret key sk, and outputs a ciphertext
c and an encapsulated key k ∈ K, i.e., (c, k)← SKEM.Enc(pp, sk).

– SKEM.Dec takes as input pp, the secret key sk and a ciphertext c, and outputs
k ∈ K, i.e., k ← SKEM.Dec(pp, sk, c).

The correctness of SKEM is that for all pp← SKEM.Init(1λ), sk ∈ SK, (c, k)←
SKEM.Enc(pp, sk), k′ ← SKEM.Dec(pp, sk, c), we have k′ = k.

We require pseudorandomness of the encapsulated key under key-shift attack.
Roughly speaking, the encapsulated key is pseudorandom even if the adversary
observes multiple encapsulations under shifted secret key where the shift ∆i is
designated by the adversary adaptively. The formal definition is given below.

Definition 11 (KS-Security of SKEM). A SKEM SKEM = (SKEM.Init,
SKEM.Enc,SKEM.Dec) is Key-Shift (KS) secure if for all PPT adversary A,

AdvksSKEM,A(1λ) := |Pr[ExpksSKEM,A(1)⇒ 1]− Pr[ExpksSKEM,A(0)⇒ 1]|

is negligible. Here ExpksSKEM,A(β), β ∈ {0, 1}, is an experiment played between an
adversary A and a challenger C as follows.

ExpksSKEM,A(β) :

– C invokes pp← SKEM.Init(1λ), samples sk ←$ SK and returns pp to A.
– Challenge: Challenger C invokes (c, k) ← SKEM.Enc(pp, sk). If β = 0, it

resets k with k ←$ K. Finally it returns (c, k) to A.
– During the whole experiment, A may adaptively make encapsulation oracle

queries of the following form:
– A submits a shift ∆i ∈ SK to challenger C.
– C invokes (ci, ki)← SKEM.Enc(pp, sk +∆i), and returns (ci, ki) to A.

– As long as A outputs a guessing bit β′, the experiment outputs β′.

12



3.2 Construction of Symmetric Key Encapsulate Mechanism

We instantiate a KS-secure SKEM from the DDH assumption, and the construc-
tion is given in Fig. 3.

SKEM.Init(1λ):

(G, q, g)← IG(1λ).
pp := (G, q, g).
SK := Zq.
K := G.
Return pp.

SKEM.Enc(pp, sk): // sk ∈ SK
r ←$ Zq.
c = gr.

k = csk.
Return (c, k).

SKEM.Dec(pp, sk, c):

k = csk.
Return k.

Fig. 3. Construction of SKEM with KS-security from the DDH assumption.

Theorem 1. If the DDH assumption holds with respect to IG, then SKEM con-
structed in Fig. 3 is KS-secure. More precisely, for any PPT adversary A,

AdvksSKEM,A(1λ) ≤ AdvDDH
IG (1λ).

Proof. Suppose that there exists a PPT adversary A who has advantage ε in the
key-shift attack of SKEM in Fig. 3, then we can construct a PPT algorithm B
with the same advantage ε in solving the DDH problem.

Given (G, q, g, gx, gy, gd), where x, y are uniformly and independently chosen
from Zq, algorithm B simulates an environment for A as follows.

– Algorithm B returns pp = (G, q, g) to A and implicitly sets sk := x.
– Algorithm B returns (gy, gd) to A.
– When adversary A makes an encapsulation query with ∆i ∈ Zp, algorithm
B uniformly chooses yi ← Zq and sets ci := gyi , ki := (gxg∆i)yi and returns
(ci, ki) to A.

– When adversary A returns a bit β′, algorithm B returns β′ to its own chal-
lenger.

Obviously, B simulates answers to the encapsulation queries for A perfectly. For
the challenge,

– If d = xy, then B perfectly simulates ExpksSKEM,A(1) for A.

– If d = z, where z ←$ Zq, then B perfectly simulates ExpksSKEM,A(0) for A.
Consequently,

AdvDDH
IG,B(1λ) = Pr[B((G, q, g), gx, gy, gxy) = 1]− Pr[B((G, q, g), gx, gy, gz) = 1]

= |Pr[ExpksSKEM,A(1)⇒ 1]− Pr[ExpksSKEM,A(0)⇒ 1]| = AdvksSKEM,A(1λ).

This completes the proof of Theorem 1.

4 Robustly Reusable Fuzzy Extractor

In this section, we define robustly reusable fuzzy extractor (rrFE) and present a
construction of rrFE in the CRS model.

13



4.1 Definition of Robustly Reusable Fuzzy Extractor

First, we recall the definition of fuzzy extractor presented in [7].

Definition 12 (Fuzzy Extractor). An (M,m,R, t, ε)-fuzzy extractor FE for
metric space M consists of three PPT algorithms (Init,Gen,Rep),

– Init on input security parameter 1λ outputs common reference string crs, i.e.,
crs← Init(1λ).

– Gen on input the common reference string crs and w ∈ M, outputs a public
helper string P and an extracted string R ∈ R, i.e., (P,R)← Gen(crs, w).

– Rep takes as input the common reference string crs, public helper string P and
w′ ∈M, and outputs an extracted string R or ⊥, i.e., R/⊥ ← Rep(crs, P, w′).

It satisfies the following properties.

Correctness. If dis(w,w′) ≤ t, then for any crs← Init(1λ), (P,R)← Gen(crs, w)
and R′ ← Rep(crs, P, w′), it holds that R′ = R.

Privacy. For any distribution W over metric space M with H∞(W ) ≥ m, any
PPT adversary A, it holds that

AdvindFE,A(1λ) := |Pr[A(crs, P,R) = 1]− Pr[A(crs, P, U) = 1]| ≤ ε,

where crs← Init(1λ), (P,R)← Gen(crs,W ) and U ←$ R.

A fuzzy extractor is reusable if its privacy is retained even if the same noisy
source is reused multiple times. We follow the definition of reusability of fuzzy
extractor from [2] (which is called “strong reusability” in [2]).

Definition 13 (Reusable Fuzzy Extractor). A fuzzy extractor rFE = (Init,
Gen,Rep) is an (M,m,R, t, ε1)-reusable fuzzy extractor if it is a fuzzy extractor
with ε1-reusability. An (M,m,R, t, ε1)-fuzzy extractor is ε1-reusable, if for any
distribution W over metric space M with H∞(W ) ≥ m, for any PPT adversary
A, it holds that

AdvreurFE,A(1λ) := |Pr[ExpreurFE,A(1)⇒ 1]− Pr[ExpreurFE,A(0)⇒ 1]| ≤ ε1,

where ExpreurFE,A(β), β ∈ {0, 1}, describes the reusability experiment played be-
tween an adversary A and a challenger C.

ExpreurFE,A(β) : // β ∈ {0, 1}

1. Challenger C invokes crs← Init(1λ) and returns crs to A.
2. C samples w ←W and invokes (P,R)← Gen(crs, w). If β = 1, return (P,R)

to A; otherwise, it chooses U ←$ R and returns (P,U) to A.
3. A may adaptively make queries of the following form:

– A submits a shift δi ∈M satisfying dis(δi) ≤ t to C.
– C invokes (Pi, Ri)← Gen(crs, w + δi), and returns (Pi, Ri) to A.

4. As long as A outputs a guessing bit β′, the experiment outputs β′.

14



Robust fuzzy extractor guarantees that any modification of the public helper
string by a PPT adversary will be detected. Now, combining the definition of
reusability in [2] and robustness of fuzzy extractor in [7], we give the definition
of robustly reusable fuzzy extractor.

Definition 14 (Robustness of Reusable Fuzzy Extractor). Let rrFE =
(Init,Gen,Rep) be an (M,m,R, t, ε1)-reusable fuzzy extractor. We say rrFE is
ε2-robust if for any distribution W over metric space M with H∞(W ) ≥ m, for
any PPT adversary A, it holds that

AdvrobrrFE,A(1λ) := Pr[ExprobrrFE,A(1λ)⇒ 1] ≤ ε2,

where ExprobrrFE,A(1λ) describes the robustness experiment played between an ad-
versary A and a challenger C.

ExprobrrFE,A(1λ) :

1. Challenger C invokes crs← Init(1λ), and returns crs to A.
2. C samples w ←W , invokes (P,R)← Gen(crs, w) and returns (P,R) to A.
3. A may adaptively make queries of the following form:

– A submits a shift δi ∈M satisfying dis(δi) ≤ t to challenger C.
– C invokes (Pi, Ri)← Gen(crs, w + δi), and returns (Pi, Ri) to A.

4. A submits its forgery (P̃ , δ̃) to C. A wins if dis(δ̃) ≤ t, P̃ is fresh (i.e., P̃ is

different from P and those Pi) and Rep(crs, P̃ , w + δ̃) 6= ⊥. The experiment
outputs 1 if A wins and 0 otherwise.

Definition 15 (Robustly Reusable Fuzzy Extractor). An (M,m,R, t, ε1, ε2)-
robustly reusable fuzzy extractor (rrFE) is an (M,m,R, t, ε1)-reusable fuzzy ex-
tractor with ε2-robustness.

Remark 3. In the robustness experiment, the adversary submits not only P̃ , but
also the shift δ̃. In the previous works, such as [8], the authors considered two
perturbation styles: 1)the shift is independent of W ; 2) the shift can arbitrarily
depend on W . In our definition, the shift is controlled by the adversary, and it
just sits in the middle of the two styles. The reason we adopt such a definition is
to make the perturbation style consistent with that in the reusability experiment.

4.2 Construction of Robustly Reusable Fuzzy Extractor

Figure 4 illustrates our construction of robustly reusable FE rrFE = (Init,Gen,Rep)
for metric space M, which makes use of the following building blocks:

– A key-shift secure symmetric key encapsulation mechanism SKEM = (SKEM.Init,
SKEM.Enc,SKEM.Dec). Let its secret key space be SK and encapsulation key
space be K.

– A homomorphic average-case (M, m̂,SK, εext)-strong extractor Ext.
– A homomorphic (m−dlog pe, m̂, 2t)-secure sketch SS = (SS.Gen,SS.Rec) for

metric space M with m̂− dlog pe ≥ ω(log λ).

15



crs← Init(1λ):

(Fpk, Ftd)← FGen(1λ).

iext ←$ I.

pp← SKEM.Init(1λ).

crs := (Fpk, iext, pp).

Return crs.

(R,P )← Gen(crs, w):

Parse crs = (Fpk, iext, pp).

s← SS.Gen(w).

sk ← Ext(w, iext).

(c, k)← SKEM.Enc(pp, sk).

t := (s, c).

t′ ←$ T ′.

σ ← FEval(Fpk, t, t
′, w).

P := (t = (s, c), t′, σ)

R := k.

Return (P,R).

R/⊥ ← Rep(crs, P̃ , w′):

Parse crs = (Fpk, iext, pp).

Parse P̃ = (t̃ = (s̃, c̃), t̃′, σ̃).

w̃ ← SS.Rec(w′, s̃).

If dis(w̃, w′) > t,

Return ⊥.

Else,

σ̃′ ← FEval(Fpk, t̃, t̃′, w̃).

If σ̃′ 6= σ̃,

Return ⊥.

Else,

s̃k ← Ext(w̃, iext).

k̃ ← SKEM.Dec(pp, s̃k, c̃).

Return k̃.

Fig. 4. Construction of robustly reusable fuzzy extractor rrFE.

– A homomorphic (lLAF, n)-lossy algebraic filter LAF = (FGen,FEval,FTag)
with domain Zn

p, lLAF = dlog pe, and tag space {0, 1}∗ × T ′. We assume
that any w ∈M can be explained as an element in Zn

p.

The correctness of the fuzzy extractor follows from the correctness of the under-
lying SS and SKEM.

Theorem 2. If the underlying SKEM is key-shift secure with secret key space
SK and encapsulation key space K, Ext is a homomorphic average-case (M, m̂,
SK, εext)-strong extractor, SS is a homomorphic (m−dlog pe, m̂, 2t)-secure sketch
for metric space M with m̂ − dlog pe ≥ ω(log λ), and LAF is a homomorphic
(lLAF, n)-lossy algebraic filter with domain Zn

p and lLAF = dlog pe, and every el-
ement in M can be explained as an element in Zn

p, then the fuzzy extractor
rrFE in Fig. 4 is an (M,m,K, t, ε1, ε2)-robustly reusable fuzzy extractor, where
ε1 = 2AdvindLAF(1λ)+2εext+AdvksSKEM(1λ) and ε2 = AdvindLAF(1λ)+εext+AdvevaLAF(1λ)+
2−ω(log λ).

Proof. All we have to do is to show that rrFE is ε1-reusable and ε2-robust, which
are proved in Theorem 3 and Theorem 4 respectively.

Theorem 3. Given the building blocks specified in Theorem 2, the fuzzy extrac-
tor rrFE in Fig. 4 is ε1-reusable, where ε1 = 2AdvindLAF(1λ) + 2εext +AdvksSKEM(1λ).

Proof. We will prove this theorem by a sequence of games. The changes from
Game Gj to Game Gj+1 are underlined.

Game G0: It is exactly experiment ExpreurFE,A(1). More precisely,

1. Challenger C invokes (Fpk, Ftd) ← FGen(1λ) and pp ← SKEM.Init(1λ), sam-
ples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

16



2. C samples w ← W , invokes s ← SS.Gen(w), sk ← Ext(w, iext), (c, k) ←
SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ←$ T ′, computes σ ← FEval(Fpk,
t, t′, w), sets P := (s, c, t′, σ), R := k, and returns (P,R) to A.

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C invokes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, invokes σi ← FEval(Fpk, ti, t

′
i, w + δi),

sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

4. If A outputs a bit β′, the game outputs β′.

Obviously,
Pr[ExpreurFE,A(1)⇒ 1] = Pr[G0

A ⇒ 1]. (6)

Game G1: It is the same as G0, except for conceptual changes of generating
(Pi, Ri). More precisely,

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si := s+ SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),

sets ti := (si, ci), samples t′i ← $ T ′, computes σi := FEval(Fpk, ti, t
′
i, w)+

FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns (Pi, Ri) to

A.

Lemma 4. Pr[G0
A ⇒ 1] = Pr[G1

A ⇒ 1].

Proof. By the homomorphic property of the deterministic secure sketch, we have:

si
G0= SS.Gen(w + δi) = SS.Gen(w) + SS.Gen(δi) = s+ SS.Gen(δi)

G1= si.

By the homomorphic property of Ext, we have:

ski
G0= Ext(w + δi, iext) = Ext(w, iext) + Ext(δi, iext) = sk + Ext(δi, iext)

G1= ski.

Similarly, by the homomorphic property of LAF, we have:

σi
G0= FEval(Fpk, ti, t

′
i, w + δi) = FEval(Fpk, ti, t

′
i, w) + FEval(Fpk, ti, t

′
i, δi)

G1= σi.

Thus the changes are just conceptual, and Lemma 4 follows.

Game G2: It is the same as G1, except that the core tags t′, t′i are not uniformly
chosen any more. Now they are generated by FTag in G2. More precisely,

2. Challenger C samples w ← W , computes s← SS.Gen(w), sk ← Ext(w, iext),
(c, k)← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t), com-

putes σ ← FEval(Fpk, t, t
′, w), sets P := (s, c, t′, σ), R := k, and returns

(P,R) to A.
3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,

t′i, w)+FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

17



Lemma 5. |Pr[G1
A ⇒ 1]− Pr[G2

A ⇒ 1]| ≤ AdvindLAF(1λ).

Proof. Assume there exists a PPT adversary A such that |Pr[G1
A ⇒ 1] −

Pr[G2
A ⇒ 1]| = ε. We construct a PPT algorithm B who, given Fpk, can dis-

tinguish oracle FTag(Ftd, ·) from oracle OT ′(·) with advantage ε. Algorithm B
simulates an environment for A as follows:

– Given Fpk, algorithm B invokes pp← SKEM.Init(1λ), samples a seed iext ←
$ I, sets crs := (Fpk, iext, pp), and returns crs to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k)← SKEM.Enc(pp, sk) and sets t := (s, c).

– B queries its own oracle with t = (s, c), and the oracle replies B with t′.
After receiving t′ from its oracle, B invokes σ ← FEval(Fpk, t, t

′, w), sets
P := (t = (s, c), t′, σ), R := k, and returns (P,R) to A.

– Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, algorithm B computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski)
and sets ti = (si, ci).

– B queries its oracle with ti := (si, ci), and the oracle replies B with t′i.
After receiving t′i from its oracle, B computes σi := FEval(Fpk, ti, t

′
i, w) +

FEval (Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns (Pi, Ri)

to A.

– When A outputs a bit β′, algorithm B returns β′.

Observe that if the oracle to which B has access is FTag(Ftd, ·), then B perfectly
simulates G2 for A; otherwise it perfectly simulates G1 for A. Thus

AdvindLAF,B(1λ) = |Pr[G1
A ⇒ 1]− Pr[G2

A ⇒ 1]|.

This completes the proof of Lemma 5.

Game G3: It is the same as G2, except that sk is changed to a uniform one.
More precisely,

2. Challenger C samples w ←W , computes s← SS.Gen(w), samples ŝk ←$ SK,

computes (c, k) ← SKEM.Enc(pp, ŝk), sets t := (s, c), generates t′ ← FTag
(Ftd, t), computes σ ← FEval(Fpk, t, t

′, w), sets P := (s, c, t′, σ), R := k, and
returns (P,R) to A.

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes

si := s + SS.Gen(δi), ski := ŝk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 6. |Pr[G2
A ⇒ 1]− Pr[G3

A ⇒ 1]| ≤ εext.

Proof. Assume that A makes ρ queries to the challenger. The only difference

between G2 and G3 is that sk ← Ext(w, iext) in G2 is changed to ŝk ←$ SK in

18



G3. We will show that the views of adversary A in G2 and G3 are statistically
indistinguishable.

Since Fpk, Ftd and pp are independent of W , we have

H̃∞(W | (Fpk, Ftd, pp)) = H̃∞(W ) ≥ m. (7)

Define S := {σ | σ = FEval(Fpk, t, t
′,W ) ∧ tag = (t, t′) ∈ Tlossy}, which collects

all function values w.r.t. the same W and the same Fpk but under all possible
lossy tags. By the lossiness of LAF, S only reveals log p bits information of W
(see remark 2). According to Lemma 1 and Eq. (7), we have

H̃∞(W | (Fpk, Ftd, pp,S)) ≥ H̃∞(W | (Fpk, Ftd, pp))− log p ≥ m− log p. (8)

Since SS is a (m− log p, m̂, 2t)-secure sketch, we have

H̃∞(W | (s = SS.Gen(W ), Fpk, Ftd, pp,S)) ≥ m̂.

Define AuxiliaryInput := (s = SS.Gen(W ), Fpk, Ftd, pp,S). Obviously AuxiliaryInput
is independent of iext. According to Eq. (3), the average-case (M, m̂,SK, εext)-
strong extractor Ext implies

(
sk, iext, (s = SS.Gen(W ), Fpk, Ftd, pp,S︸ ︷︷ ︸

AuxiliaryInput

)
) εext≈ (

ŝk, iext, (s = SS.Gen(W ), Fpk, Ftd, pp,S︸ ︷︷ ︸
AuxiliaryInput

)
)
, (9)

where sk := Ext(W, iext) and ŝk ← $ SK. Since crs = (Fpk, iext, pp), Eq. (9)
implies

(
sk, s = SS.Gen(W ), crs, Ftd,S︸ ︷︷ ︸

Ω

) εext≈ (
ŝk, s = SS.Gen(W ), crs, Ftd,S︸ ︷︷ ︸

Ξ

)
. (10)

Let w be a specific value taken by random variable W .
Recall that P = (s, c, t′, σ) and R = k, where s ← SS.Gen(w), (c, k) ←

SKEM.Enc(pp, sk), t := (s, c), t′ ← FTag(Ftd, t), σ ← FEval(Fpk, t, t
′, w). Ob-

viously, (P,R) can be regarded as an output of some randomized function on
input Ω.

Define P̂ := (s, ĉ, t̂′, σ̂) and R̂ := k̂, where s← SS.Gen(w), (ĉ, k̂)← SKEM.Enc

(pp, ŝk), t̂ = (s, ĉ), t̂′ ← FTag(Ftd, t̂), σ̂ ← FEval(Fpk, t̂, t̂′, w). In other words,

(P̂ , R̂) is the helper string and the extracted string generated with the random

key ŝk. Then (P̂ , R̂) can be regarded as an output of the same randomized
function on input Ξ as that for (P,R).

According to Lemma 2, Formula (10) implies

( Ω︷ ︸︸ ︷
sk := Ext(W, iext), s = SS.Gen(W ), crs, Ftd,S, P, R︸ ︷︷ ︸

Ω0

) εext≈ ( Ξ︷ ︸︸ ︷
ŝk ←$ SK, s = SS.Gen(W ), crs, Ftd,S, P̂ , R̂︸ ︷︷ ︸

Ξ0

)
,

19



in short,
(
Ω,P,R︸ ︷︷ ︸
Ω0

) εext≈ (
Ξ, P̂ , R̂︸ ︷︷ ︸
Ξ0

)
. (11)

Before A submits its first query δ1 in G2, its view is described by 〈crs, P,R〉.
Obviously, δ1 can be computed by some randomized function of 〈crs, P,R〉 (the
function is determined by A’s strategy). Naturally, it can be regarded as an
output of some randomized function on input Ω0.

Similarly, the first query δ̂1 of A in G3 is determined by the same randomized
function of its view 〈crs, P̂ , R̂〉, hence it can also be regarded as an output of the
same randomized function of Ξ0.

By Lemma 2 again, Formula (11) implies(
Ω,P,R, δ1︸ ︷︷ ︸

Ω′0

) εext≈ (
Ξ, P̂ , R̂, δ̂1︸ ︷︷ ︸

Ξ′0

)
. (12)

Recall that P1 := (s1, c1, t
′
1, σ1), R1 := k1, where s1 = s+ SS.Gen(δ1), sk1 =

sk+Ext(δ1, iext), (c1, k1)← SKEM.Enc(pp, sk1), t1 = (s1, c1), t′1 ← FTag(Ftd, t1)
σ1 = FEval(Fpk, t1, t

′
1, w) + FEval(Fpk, t1, t

′
1, δ1). Note that (t1, t

′
1) is a lossy tag,

hence FEval(Fpk, t1, t
′
1, w) ∈ S. Obviously, P1 and R1 can be determined by some

randomized function of Ω′0.

Define P̂1 := (ŝ1, ĉ1, t̂′1, σ̂1), R̂1 := k̂1, where ŝ1 = s + SS.Gen(δ̂1), ŝk1 =

ŝk+Ext(δ̂1, iext), (ĉ1, k̂1)← SKEM.Enc(pp, ŝk1), t̂1 = (ŝ1, ĉ1), t̂′1 ← FTag(Ftd, t̂1)

σ̂1 = FEval(Fpk, t̂1, t̂′1, w) + FEval(Fpk, t̂1, t̂′1, δ̂1). Similarly, P̂1 and R̂1 can be
determined by the same randomized function of of Ξ ′0.

Applying Lemma 2 once more, Formula (12) implies

( Ω′0︷ ︸︸ ︷
Ω,P,R, δ1, P1, R1︸ ︷︷ ︸

Ω1

) εext≈ ( Ξ′0︷ ︸︸ ︷
Ξ, P̂ , R̂, δ̂1, P̂1, R̂1︸ ︷︷ ︸

Ξ1

)
. (13)

By induction on i ∈ [ρ], we have that(
Ω,P,R, {δi, Pi, Ri}i∈[ρ]︸ ︷︷ ︸

Ωρ

) εext≈ (
Ξ, P̂ , R̂, {δ̂i, P̂i, R̂i}i∈[ρ]︸ ︷︷ ︸

Ξρ

)
. (14)

More precisely,

( Ω︷ ︸︸ ︷
sk := Ext(W, iext), s = SS.Gen(W ), crs, Ftd,S, P, R, {δi, Pi, Ri}i∈[ρ]︸ ︷︷ ︸

Ωρ

) εext≈
( Ξ︷ ︸︸ ︷
sk := Ext(W, iext), s = SS.Gen(W ), crs, Ftd,S, P̂ , R̂, {δ̂i, P̂i, R̂i}i∈[ρ]︸ ︷︷ ︸

Ξρ

)
. (15)

(15) implies
(

crs, P, R, {δi, Pi, Ri}i∈[ρ]︸ ︷︷ ︸
Ω∗ρ

) εext≈ (
crs, P̂ , R̂, {δ̂i, P̂i, R̂i}i∈[ρ]︸ ︷︷ ︸

Ξ∗ρ

)
. (16)

20



Observe that Ω∗ρ is just the whole view of A in G2, and Ξ∗ρ is the whole
view of A in G3. The statistical distance of Ω∗ρ and Ξ∗ρ is smaller than εext. As

a consequence, we have |Pr[G2
A ⇒ 1]− Pr[G3

A ⇒ 1]| ≤ εext.

Game G4: It is the same as G3, except that R is uniformly chosen from K instead
of being output by SKEM. More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), samples ŝk ←
$ SK, computes (c, k) ← SKEM.Enc(pp, ŝk), sets t := (s, c), generates t′ ←
FTag(Ftd, t), computes σ ← FEval(Fpk, t, t

′, w), sets P := (s, c, t′, σ), samples
R←$ K, and returns (P,R) to A.

Lemma 7. |Pr[G3
A ⇒ 1]− Pr[G4

A ⇒ 1]| ≤ AdvksSKEM(1λ).

Proof. Assume there exists a PPT adversary A such that |Pr[G3
A ⇒ 1] −

Pr[G4
A ⇒ 1]| = ε. We construct a PPT algorithm B who can implement the

key-shift attack with the same advantage ε. Algorithm B simulates an environ-
ment for A as follows:

– After receiving pp from its own challenger, algorithm B invokes (Fpk, Ftd)←
FGen(1λ), samples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs
to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), asks the chal-
lenge oracle of SKEM to get (c, k). Then B sets t := (s, c), generates t′ ←
FTag(Ftd, t), computes σ ← FEval(Fpk, t, t

′, w), sets P := (t = (s, c), t′, σ),
R := k, and returns (P,R) to A.

– Upon receiving a shift δi ∈ M queried from A with dis(δi) ≤ t, algorithm
B computes si := s + SS.Gen(δi), ∆i := Ext(δi, iext), asks its encapsulation
oracle with ∆i to obtain (ci, ki), where (ci, ki) ← SKEM.Enc(pp, sk + ∆i).
Then B sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi :=
FEval(Fpk, ti, t

′
i, w) + FEval (Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki,

and returns (Pi, Ri) to A.
– When A outputs a bit β′, algorithm B outputs β′ to its own challenger.

Note that if (c, k) is generated by (c, k)← SKEM.Enc(pp, sk), then algorithm
B perfectly simulates G3 for A; otherwise k is uniformly chosen from K, then
algorithm B perfectly simulates G4 for A. Hence B shares exactly the same
advantage with A. Thus Advmrka

SKEM,B(1λ) = |Pr[G3
A ⇒ 1] − Pr[G4

A ⇒ 1]| ≤
Advmrka

SKEM(1λ). This completes the proof of Lemma 7.

Game G5: It is the same as G4, except that the generation of ŝk is changed back
to sk ← Ext(w, iext). More precisely,

2. Challenger C samples w ← W , computes s← SS.Gen(w), sk ← Ext(w, iext),

(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t),
computes σ ← FEval(Fpk, t, t

′, w), sets P := (s, c, t′, σ), samples R ← $ K,
and returns (P,R) to A.

21



3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 8. |Pr[G4
A ⇒ 1]− Pr[G5

A ⇒ 1]| ≤ εext.

Proof. The proof is similar to the proof of Lemma 6, since the changes from G4

to G5 is symmetric to that from G2 to G3. We omit the proof here.

Game G6: It is the same as G5, except that the core tags are changed back to
random tags. More precisely,

2. C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext), (c, k) ←
SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ←$ T ′, computes σ ← FEval(Fpk,
t, t′, w), sets P := (s, c, t′, σ), samples R←$ K, and returns (P,R) to A.

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, C computes si := s+
SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki)← SKEM.Enc(pp, ski), sets ti :=
(si, ci), samples t′i ←$ T ′, computes σi := FEval(Fpk, ti, t

′
i, w)+FEval(Fpk, ti,

t′i, δi), sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

Lemma 9. |Pr[G5
A ⇒ 1]− Pr[G6

A ⇒ 1]| ≤ AdvindLAF(1λ).

Proof. The proof is similar to the proof of Lemma 5, since the changes from G5

to G6 is symmetric to that from G1 to G2. We omit the proof here.

Game G7: It is the same as G6, except for conceptual changes of generating
(Pi, Ri). More precisely,

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),

sets ti := (si, ci), samples t′i ←$ T ′, computes σi ← FEval(Fpk, ti, t
′
i, w + δi),

sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

Lemma 10. Pr[G6
A ⇒ 1] = Pr[G7

A ⇒ 1].

Proof. The proof is identical to the proof of Lemma 4, since the changes from
G6 to G7 is symmetric to that from G0 to G1. We omit the proof here.

Note that G7 is identical to experiment ExpreurFE,A(0). Thus

Pr[ExpreurFE,A(0)⇒ 1] = Pr[G7 ⇒ 1]. (17)

Taking all things together, by Eq. (6), Lemma 4-10 and Eq. (17), we have that

AdvreurFE,A ≤ 2AdvindLAF(1λ) + 2εext + AdvksSKEM(1λ).

This completes the proof of Theorem 3.

22



Theorem 4. Given the building blocks specified in Theorem 2, the fuzzy extrac-
tor rrFE in Fig. 4 is ε2-robust, where ε2 = AdvindLAF(1λ) + εext + AdvevaLAF(1λ) +
2−ω(log λ).

Proof. Similar to the proof of reusability, we will prove this theorem by a se-
quence of games again. The changes from Game Gj to adjacent Game Gj+1 are
underlined. Let winj denote the event that adversary A wins in Gj . Gj outputs

1 if A wins and 0 otherwise. Obviously, Pr[winj ] = Pr[Gj
A ⇒ 1].

Game G0: It is identical to the robustness experiment ExprobrrFE,A(1λ).

1. Challenger C invokes (Fpk, Ftd) ← FGen(1λ) and pp ← SKEM.Init(1λ), sam-
ples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

2. Challenger C samples w ← W , computes s← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ← $ T ′, computes
σ ← FEval(Fpk, t, t

′, w), sets P := (t = (s, c), t′, σ), R := k, and returns
(P,R) to A.

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, computes σi ← FEval(Fpk, ti, t

′
i, w + δi),

sets Pi := (ti = (si, ci), t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

4. A submits to C its forgery (P̃ , δ̃) with P̃ = (t̃ = (s̃, c̃), t̃′, σ̃). A wins if dis(δ̃) ≤
t, P̃ is fresh and Rep(crs, P̃ , w+ δ̃) 6= ⊥. Recall that Rep(crs, P̃ , w+ δ̃) 6= ⊥ if

and only if dis(w̃, w + δ̃) ≤ t and σ̃′ = σ̃ holds, where w̃ ← SS.Rec(w + δ̃, s̃)

and σ̃′ ← FEval(Fpk, t̃, t̃′, w̃). The game outputs 1 if A wins and 0 otherwise.

Obviously,
Pr[G0

A ⇒ 1] = Pr[ExprobrrFE,A(1λ)⇒ 1]. (18)

Game G1: It is the same as G0, except for conceptual changes of generating
(Pi, Ri). More precisely,

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si := s+ SS.Gen(δi), ski := sk + Ext(δi, iext) , (ci, ki)← SKEM.Enc(pp, ski),

sets ti := (si, ci), samples t′i ← $ T ′, computes σi ← FEval(Fpk, ti, t
′
i, w)+

FEval(Fpk, ti, t
′
i, δi), sets Pi := (ti = (si, ci), t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 11. Pr[G0
A ⇒ 1] = Pr[G1

A ⇒ 1].

Proof. The changes are just conceptual by the homomorphic properties of SS,
Ext, LAF. Similar to the proof of Lemma 4, Lemma 11 follows.

Game G2: It is the same as G1, except that the core tags t′, t′i are not uniformly
chosen any more. Now they are generated by FTag in G2. More precisely,

2. Challenger C samples w ← W , computes s← SS.Gen(w), sk ← Ext(w, iext),
(c, k)← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t), com-

putes σ ← FEval(Fpk, t, t
′, w), sets P := (s, c, t′, σ), R := k, and returns

(P,R) to A.

23



3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,

t′i, w) + FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 12. |Pr[G1
A ⇒ 1]− Pr[G2

A ⇒ 1]| ≤ AdvindLAF(1λ).

Proof. The proof is similar to that of Lemma 5 (the difference is the output
strategy of algorithm B). Assume there exists a PPT adversary A such that
|Pr[G1

A ⇒ 1]−Pr[G2
A ⇒ 1]| = ε. We construct a PPT algorithm B who, given

Fpk, can distinguish oracle FTag(Ftd, ·) from oracle OT ′(·) with advantage ε.
Algorithm B simulates an environment for A as follows:

– Given Fpk, algorithm B invokes pp← SKEM.Init(1λ), samples a seed iext ←
$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k)← SKEM.Enc(pp, sk), sets t := (s, c) and queries its oracle with t to ob-
tain t′. After receiving t′ from its oracle, B computes σ ← FEval(Fpk, t, t

′, w),
sets P := (t = (s, c), t′, σ), R := k, and gives (P,R) to A.

– Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, algorithm B computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci) and queries its oracle with ti to obtain t′i. After receiving t′i
from its oracle, B computes σi := FEval(Fpk, ti, t

′
i, w) + FEval (Fpk, ti, t

′
i, δi),

sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

– When A submits its forgery (P̃ = (s̃, c̃, t̃′, σ̃), δ̃), algorithm B checks whether
A wins. B returns 1 if A wins; otherwise, it returns 0.

Recall thatA wins means that conditions dis(δ̃) ≤ t, P̃ is fresh and Rep(crs, P̃ , w+

δ̃) 6= ⊥ are satisfied. These conditions can be efficiently checked by B. Moreover,
if the oracle to which B has access is FTag(Ftd, ·), then B perfectly simulates G2

for A; otherwise it perfectly simulates G1 for A. Thus

AdvindLAF,B(1λ) =
∣∣ Pr[win1]− Pr[win2]

∣∣ =
∣∣ Pr[G1

A ⇒ 1]− Pr[G2
A ⇒ 1]

∣∣.
This completes the proof of Lemma 12.

Game G3: It is the same as G2, except that sk is changed to a uniform one.
More precisely,

2. Challenger C samples w ←W , computes s← SS.Gen(w), samples ŝk ←$ SK,

computes (c, k)← SKEM.Enc(pp, ŝk), sets t := (s, c), generates t′ ← FTag(Ftd, t),
computes σ ← FEval(Fpk, t, t

′, w), sets P := (s, c, t′, σ), R := k, and returns
(P,R) to A.

3. Upon receiving a shift δi ∈M from A with dis(δi) ≤ t, challenger C computes

si := s + SS.Gen(δi), ski := ŝk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti = (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

24



Lemma 13.
∣∣ Pr[G2

A ⇒ 1]− Pr[G3
A ⇒ 1]

∣∣ ≤ εext.
Proof. The only difference between G2 and G3 is that sk ← Ext(w, iext) in G2 is

changed to ŝk ←$ SK in G3. The proof is exactly the same as that of Lemma 6.
Assume thatAmakes ρ queries to the challenger before submitting its forgery

(P̃ , δ̃). Following similar arguments as those in the proof Lemma 6, we can show
that the views of adversary A before submitting the forgery in G2 and G3 are
statistically indistinguishable, i.e.,

(
crs, P,R, {δi, Pi, Ri}i∈[ρ]︸ ︷︷ ︸

Ω∗ρ

)
εext≈
(

crs, P̂ , R̂, {δ̂i, P̂i, R̂i}i∈[ρ]︸ ︷︷ ︸
Ξ∗ρ

)
. (19)

Here Ω∗ρ summerizes the view of A in G2, and Ξ∗ρ the view of A in G3 before
A submits its forgery. The statistical distance of Ω∗ρ and Ξ∗ρ is smaller than εext.
As a consequence,∣∣ Pr[win2]− Pr[win3]

∣∣ =
∣∣ Pr[G2

A ⇒ 1]− Pr[G3
A ⇒ 1]

∣∣ ≤ εext.
Lemma 14. Pr[win3] ≤ AdvevaLAF(1λ) + 2−ω(log λ).

Proof. Let bad denote the event that A’s forgery P̃ = (t̃, t̃′, σ̃) contains a non-

injective tag, i.e., (t̃, t̃′) /∈ Tinj . We have

Pr[win3] = Pr[win3 ∧ bad] + Pr[win3 ∧ ¬bad]. (20)

Thus it suffices to prove the following two claims.

Claim. Pr[win3 ∧ bad] ≤ AdvevaLAF(1λ).

Proof. If there exists a PPT adversary A whose forgery makes win3∧bad happen
in G3, we can construct a PPT algorithm B attacking on LAF’s evasiveness. Given
Fpk and a lossy tag generation oracle FTag(Ftd, ·), B aims to output a new lossy
tag. To this end, B simulates G3 for A as follows:

– After receiving Fpk from its own challenger, B invokes pp← SKEM.Init(1λ),
samples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

– B samples w ←W , computes s← SS.Gen(w), samples ŝk ←$ SK, computes

(c, k)← SKEM.Enc(pp, ŝk), and sets t := (s, c).
– B asks its own lossy tag generation oracle FTag(Ftd, ·) with t = (s, c)

and obtains t′ from the oracle. Obviously the oracle generates t′ by t′ ←
FTag(Ftd, t).

B computes σ ← FEval(Fpk, t, t
′, w), sets P := (s, c, t′, σ) and R := k, and

returns (P,R) to A.
– Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, B computes si :=

s + SS.Gen(δi), ski := ŝk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski) and
sets ti := (si, ci).

25



– B asks its own lossy tag generation oracle FTag(Ftd, ·) with ti = (si, ci)
and obtains t′i from the oracle. Obviously the oracle generates t′i by
t′i ← FTag(Ftd, ti).

B computes σi := FEval(Fpk, ti, t
′
i, w)+ FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci,

t′i, σi) and Ri := ki, and returns (Pi, Ri) to A.

– When A outputs its forgery
(
P̃ = (t̃ = (s̃, c̃), t̃′, σ̃), δ̃

)
, B returns the tag

(t̃, t̃′) to it own challenger.

Note that B perfectly simulates G3 for A, since its oracle generates lossy tags
with FTag(Ftd, ti).

If event win3 ∧ bad occurs, the forged helper string P̃ must be fresh, i.e.,
P̃ 6= P and P̃ 6= Pi for i ∈ [ρ]. Define freshT as the event that the forged tag

(t̃, t̃′) is a fresh one, i.e., (t̃, t̃′) 6= (t, t′) and (t̃, t̃′) 6= (ti, t
′
i) for all i ∈ [ρ]. Clearly,

Pr[win3 ∧ bad] = Pr[win3 ∧ bad ∧ ¬freshT︸ ︷︷ ︸
Case 1

] + Pr[win3 ∧ bad ∧ freshT︸ ︷︷ ︸
Case 2

]. (21)

Case 1. In this case, freshT does not happen. Then we have (t̃, t̃′) = (t, t′) or

(t̃, t̃′) = (ti, t
′
i) for some i ∈ [ρ]. With loss of generality, we assume that

(t̃, t̃′) = (ti, t
′
i). Clearly t̃ = ti implies s̃ = si. Note that dis(δi) ≤ t and

dis(δ̃) ≤ t, thus dis(w + δ̃, w + δi) ≤ dis(w + δ̃, w) + dis(w,w + δi) ≤ 2t. By
the correctness of (m− dlog pe, m̂, 2t)-secure sketch SS, we have w̃ = w+ δi,

where w̃ ← SS.Rec(w + δ̃, si) and si ← SS.Gen(w + δi). As a result,

σ̃′ = FEval(t̃, t̃′, w̃) = FEval(ti, t
′
i, w + δi) = σi.

If win3 occurs, then σ̃ = σ̃′ must hold. This implies P̃ = (t̃, t̃′, σ̃) = (ti, t
′
i, σi) =

Pi. This contradicts to the requirement of win3 that P̃ is fresh. Thus we have

Pr[win3 ∧ bad ∧ ¬freshT] = 0. (22)

Case 2. If both bad and freshT occur, then the forged tag (t̃, t̃′) is a fresh non-
injective tag. Observe that B perfectly simulates G3 for A, then B succeeds
in outputting a fresh non-injective tag, as long as bad ∧ freshT occurs. Con-
sequently,

Pr[win3 ∧ bad ∧ freshT] ≤ Pr[bad ∧ freshT] = AdvevaLAF,B(1λ). (23)

Combining (21), (22) and (23) together, we have

Pr[win3 ∧ bad] ≤ AdvevaLAF,B(1λ).

Claim. Pr[win3|¬bad] ≤ 2−ω(log λ).

26



Proof. In G3, adversary A interacts with the challenger and presents its forgery
(P̃ , δ̃) at the end. Define A’s view before it submits its forgery as

view := (crs, P,R, {δi, Pi, Ri}i∈[ρ]) =
(
crs, (s, c, t′, σ), k, {δi, (si, ci, t′i, σi), ki}i∈[ρ]

)
.

Given the forgery (P̃ = (s̃, c̃, t̃′, σ̃), δ̃), A wins if Rep(crs, P̃ , w + δ̃) 6= ⊥,

P̃ is fresh and dis(δ̃) ≤ t. In the mean time, Rep(crs, P̃ , w + δ̃) 6= ⊥ if and

only if dis(w̃, w + δ̃) ≤ t and σ̃ = σ̃′ hold, where w̃ ← SS.Rec(w + δ̃, s̃) and
σ̃′ ← FEval(Fpk, t̃, t̃

′, w̃). Therefore,

Pr [win3 ∧ ¬bad] = Pr

[
P̃ is fresh ∧ dis(δ̃) ≤ t ∧

dis(w̃, w + δ̃) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad

∣∣∣∣∣ G3

]
≤ Pr

[
dis(w̃, w + δ̃) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad

∣∣∣ G3

]
.

Now that bad does not occur, then the tag t̃ag = (t̃ = (s̃, c̃), t̃′) contained in P̃
must be an injective tag. Thus LAFFpk,(t,t′)(·) is injective and entropy preserving.

This means σ̃′ := FEval(Fpk, t̃, t̃′, W̃ ) has the same entropy as W̃ . Consequently,

it will be hard for adversary A to forge a valid σ̃ (i.e., σ̃ = σ̃′) if W̃ has enough
min-entropy conditioned on A’s view in G3.

The outline of the proof is as follows.

– First, we prove that if dis(w̃, w + δ̃) ≤ t, then

H̃∞
(
W̃ | view

)
≥ H̃∞

(
W | view

)
. (24)

– Next, we show that
H̃∞

(
W | view

)
≥ ω(log λ). (25)

– Formulas (24) and (25) give H̃∞
(
W̃ | view

)
≥ ω(log λ).

If the event bad does not happen, (t̃, t̃′) must be an injective tag, hence

LAFFpk,(t̃,t̃′)(·) is an injective function, and σ̃′ = FEval(Fpk, t̃, t̃′, W̃ ) preserves

the entropy of W̃ . So we have

Pr[win3|¬bad] ≤ Pr
[
dis(w̃, w + δ̃) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad

∣∣∣ G3

]
≤ 2−ω(log λ).

It remains to prove (24) and (25).

Proof of (24). Define the random variable W̃ := SS.Rec(s̃,W + δ̃), where W
is the random variable in the robustness game. Let w, w̃ denote the values
taken by the random variables W, W̃ , respectively.
If A wins, then dis(w + δ̃, w̃) ≤ t. By Lemma 3, we have

H̃∞

(
W̃ |

(
SS.Gen(W+δ̃), view , δ̃

))
≥ H̃∞

(
W+δ̃ |

(
SS.Gen(W+δ̃), view , δ̃

))
.

(26)

27



Note that SS.Gen(W+δ̃) = SS.Gen(W )+SS.Gen(δ̃). The sketch s = SS.Gen(W )

belongs to view , so SS.Gen(W + δ̃) can be computed from view and δ̃. As a
result, according to Eq. (1),

H̃∞

(
W + δ̃ |

(
SS.Gen(W + δ̃), view , δ̃

))
= H̃∞

(
W + δ̃ |

(
view , δ̃

))
. (27)

Note that δ̃ is determined by A after seeing view , therefore, it can be further
eliminated from the condition because of Eq. (2), and we have

H̃∞

(
W |

(
view , δ̃

))
= H̃∞

(
W | view

)
. (28)

With Eq. (27) and (28), we have

H̃∞

(
W + δ̃ |

(
SS.Gen(W + δ̃), view , δ̃

))
= H̃∞

(
W | view

)
. (29)

Similarly, we have

H̃∞

(
W̃ |

(
SS.Gen(W + δ̃), view , δ̃

))
= H̃∞

(
W̃ | view

)
. (30)

Combining (26), (29) and (30), we have

H̃∞
(
W̃ | view

)
≥ H̃∞

(
W | view

)
. (31)

Proof of (25). The general idea of the proof is that we will, step by step, show
that the view of adversary can be perfectly simulated by a simulator with S
and s, where S := {σ | σ = FEval(Fpk, t, t

′,W ) ∧ tag = (t, t′) ∈ Tlossy} and
s = SS.Gen(W ). By the lossiness of LAF, the information of W leaked by S is
at most log p bits. By the fact that SS is a (m− dlog pe, m̂, 2t)-secure sketch

and the fact that m̂ − dlog pe ≥ ω(log λ), we have that H̃∞(W | view
)
≥

ω(log λ). Details can be found in the full version [25].

Taking all things together, by Eq. (18) and Lemma 11-14, it follows that

AdvrobrrFE,A ≤ AdvindLAF(1λ) + εext + AdvevaLAF(1λ) + 2−ω(log λ).

Corollary 1. If SS is instantiated by a syndrome-based secure sketch, Ext is
instantiated as Eq. (5), LAF is instantiated with the scheme in [15], and SKEM
is instantiated with the scheme shown in Fig. 3, then the construction in Fig. 4
results in a robustly reusable fuzzy extractor based on the DLIN assumption and
the DDH assumption.

Remark 4. Since there exist efficient linear error correcting codes which can
correct linear fraction of errors, the syndrome-based secure sketch is able to
correct linear fraction of errors as well, so is our robustly reusable fuzzy extractor.

Acknowledgements. We would like to thank the reviewers for their valuable
comments. The authors are supported by the National Natural Science Founda-
tion of China (NSFC No. 61672346).

28



References

1. Alamélou, Q., Berthier, P., Cachet, C., Cauchie, S., Fuller, B., Gaborit, P.,
Simhadri, S.: Pseudoentropic isometries: A new framework for fuzzy extractor
reusability. In: Kim, J., Ahn, G., Kim, S., Kim, Y., López, J., Kim, T. (eds.) Asi-
aCCS 2018. pp. 673–684. ACM (2018), http://doi.acm.org/10.1145/3196494.
3196530

2. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors from
LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp. 1–18.
Springer,Heidelberg (2017), https://doi.org/10.1007/978-3-319-60080-2_1

3. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature
404(6775), 247–255 (2000)

4. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P.D. (eds.) CCS 2004. pp. 82–91. ACM (2004), http://doi.acm.org/
10.1145/1030083.1030096

5. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.D.: Secure remote authenti-
cation using biometric data. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494,
pp. 147–163. Springer, Heidelberg (2005), https://doi.org/10.1007/11426639_9

6. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.D.: Reusable fuzzy ex-
tractors for low-entropy distributions. In: Fischlin, M., Coron, J. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer,Heidelberg (2016), https:
//doi.org/10.1007/978-3-662-49890-3_5

7. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008), https://doi.org/10.1007/978-3-540-78967-3_27

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003), https://doi.org/10.1137/S0097539702403773

9. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Techn.
14(1), 21–30 (2004), https://doi.org/10.1109/TCSVT.2003.818350

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.D.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006), https://doi.org/10.1007/
11818175_14

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008), https://doi.org/10.1137/060651380

12. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004),
https://doi.org/10.1007/978-3-540-24676-3_31

13. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) STOC 2009. pp. 601–610. ACM
(2009), http://doi.acm.org/10.1145/1536414.1536496

14. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Hei-
delberg (2013), https://doi.org/10.1007/978-3-642-42033-7_10

15. Hofheinz, D.: Circular chosen-ciphertext security with compact cipher-
texts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,

29

http://doi.acm.org/10.1145/3196494.3196530
http://doi.acm.org/10.1145/3196494.3196530
https://doi.org/10.1007/978-3-319-60080-2_1
http://doi.acm.org/10.1145/1030083.1030096
http://doi.acm.org/10.1145/1030083.1030096
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1109/TCSVT.2003.818350
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/11818175_14
https://doi.org/10.1137/060651380
https://doi.org/10.1007/978-3-540-24676-3_31
http://doi.acm.org/10.1145/1536414.1536496
https://doi.org/10.1007/978-3-642-42033-7_10


vol. 7881, pp. 520–536. Springer, Heidelberg (2013), https://doi.org/10.1007/
978-3-642-38348-9_31

16. Imamog, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin,
M., Small, A., et al.: Quantum information processing using quantum dot spins
and cavity qed. Physical Review Letters 83(20), 4204 (1999)

17. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circuits Syst. Video Techn. 14(1), 4–20 (2004), https://doi.org/
10.1109/TCSVT.2003.818349

18. Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: Ostrovsky, R.,
Prisco, R.D., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 156–171. Springer,
Heidelberg (2008), https://doi.org/10.1007/978-3-540-85855-3_11

19. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition, 2nd Edition. Springer
(2011), https://doi.org/10.1007/978-0-85729-932-1

20. Marasco, E., Ross, A.: A survey on antispoofing schemes for fingerprint recogni-
tion systems. ACM Comput. Surv. 47(2), 28:1–28:36 (2014), https://doi.org/
10.1145/2617756

21. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) CCS 2010. pp. 237–249. ACM (2010), http://doi.acm.org/
10.1145/1866307.1866335

22. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press (2006)

23. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: DAC 2007. pp. 9–14. IEEE (2007), http://doi.

acm.org/10.1145/1278480.1278484

24. Wen, Y., Liu, S.: Reusable fuzzy extractor from LWE. In: Susilo, W., Yang, G.
(eds.) ACISP 2018. LNCS, vol. 10946, pp. 13–27. Springer, Heidelberg (2018),
https://doi.org/10.1007/978-3-319-93638-3_2

25. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions.
Cryptology ePrint Archive, Report 2018/818 (2018), https://eprint.iacr.org/
2018/818

26. Wen, Y., Liu, S., Han, S.: Reusable fuzzy extractor from the deci-
sional diffie-hellman assumption. Designs Codes and Cryptography. (2018).
https://doi.org/10.1007/s10623-018-0459-4

30

https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1109/TCSVT.2003.818349
https://doi.org/10.1109/TCSVT.2003.818349
https://doi.org/10.1007/978-3-540-85855-3_11
https://doi.org/10.1007/978-0-85729-932-1
https://doi.org/10.1145/2617756
https://doi.org/10.1145/2617756
http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1278480.1278484
http://doi.acm.org/10.1145/1278480.1278484
https://doi.org/10.1007/978-3-319-93638-3_2
https://eprint.iacr.org/2018/818
https://eprint.iacr.org/2018/818
https://doi.org/10.1007/s10623-018-0459-4

	Robustly Reusable Fuzzy Extractor from Standard Assumptions
	Introduction
	Our Contributions
	Our Approach

	Preliminaries
	Metric Spaces
	Min-Entropy, Statistical Distance and Extractor
	Secure Sketch
	Lossy Algebraic Filter
	Homomorphic Properties
	Decisional Diffie-Hellman Assumption

	Symmetric Key Encapsulate Mechanism 
	Definition of SKEM
	Construction of Symmetric Key Encapsulate Mechanism

	Robustly Reusable Fuzzy Extractor
	Definition of Robustly Reusable Fuzzy Extractor
	Construction of Robustly Reusable Fuzzy Extractor



