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Abstract. Order-revealing encryption (ORE) is a primitive for out-
sourcing encrypted databases which allows for efficiently performing range
queries over encrypted data. Unfortunately, a series of works, starting
with Naveed et al. (CCS 2015), have shown that when the adversary has
a good estimate of the distribution of the data, ORE provides little pro-
tection. In this work, we consider the case that the database entries are
drawn identically and independently from a distribution of known shape,
but for which the mean and variance are not (and thus the attacks of
Naveed et al. do not apply). We define a new notion of security for ORE,
called parameter-hiding ORE, which maintains the secrecy of these pa-
rameters. We give a construction of ORE satisfying our new definition
from bilinear maps.
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1 Introduction

An emerging area of cryptography concerns the design and analysis of “leaky”
protocols (see e.g. [33, 36, 11] and additional references below), which are pro-
tocols that deliberately give up some level of security in order to achieve better
efficiency. One important tool in this area is order-revealing encryption [7, 8]6.
Order-revealing encryption (ORE) is a special type of symmetric encryption
which leaks the order of the underlying plaintexts through a public procedure
Comp. In practice, ORE allows for a client to store a database on an untrusted
server in encrypted form, while still permitting the server to efficiently perform
various operations such as range queries on the encrypted data without the secret
decryption key. ORE has been implemented and used in real-world encrypted
database systems, including CryptDB [36].

Various notions of ORE have been proposed. The strongest, called “ideal”
ORE, insists that everything about the plaintexts is hidden, except for their
order. For example, it should be impossible to distinguish between encryptions
of 1, 2, 3 and 1, 4, 9. Such ideal ORE can be constructed from multilinear maps [8],
showing that in principle ideal ORE is achievable. However, current multilinear

6 In [7], it was called efficiently-orderable encryption.
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maps are quite inefficient, and moreover have been subject to numerous attacks
(e.g. [16, 32, 17]).

In order to develop efficient schemes, one can relax the security require-
ments to allow for more leakage. Order-preserving encryption (OPE) [1, 6] —
which actually predates ORE — is one example, where Comp is simply inte-
ger comparison. Very efficient constructions of OPE are known [6]. However,
OPE necessarily leaks much more information about the plaintexts [6] than ideal
ORE; intuitively, the difference between ciphertexts can be used to approximate
the difference between the plaintexts. More recently, there have been efforts to
achieve better security without sacrificing too much efficiency: Chenette, Lewi,
Weis and Wu (CLWW) [15] recently gave an ORE construction which leaks only
the position of the most significant differing bits of the plaintexts.

Unfortunately, even hypothetical ideal ORE has recently been shown insecure
for various use cases [24, 25, 3, 19, 30, 26, 10, 34, 20, 22]. This is even if the scheme
itself reveals nothing but the order of the plaintexts. The problem is that just the
order of plaintexts alone can already reveal a significant amount of information
about the data. For example, if the data is chosen uniformly from the entire
domain, then even ideal ORE will leak the most significant bits. As the most
significant bits are often the most important ones, this is troubling.

The problem is that the definitions of ORE, while precise and provable, do not
immediately provide any “semantically meaningful” guarantees for the privacy
of the underlying data. Indeed, the above attacks show that when the adversary
has a strong estimate of the prior distribution the data is drawn from, essentially
no security is possible. However, we contend that there are scenarios (see below)
where the adversary lacks this knowledge. A core problem in such scenarios is
that the privacy of one message is inherently dependent on what other cipher-
texts the adversary sees. Analyzing these correlations under arbitrary sources
of data, even for ideal ORE, can be quite difficult. Only very mild results are
known, for example the fact that either CLWW leakage or ideal leakage provably
hides the least significant bits of uniformly chosen data. Unfortunately, these bits
are probably of less importance (e.g. for salaries).

Therefore, a central goal of this paper is to devise a semantically meaningful
notion of privacy for the underlying data in the case that the adversary does
not have a strong estimate of the prior distribution, and develop a construction
attaining this notion not based on multilinear maps.

We stress that we are not trying to devise a scheme that is secure in the use
cases of the attacks above, as many of the attacks above would apply to any
ORE scheme; we are instead aiming to identify settings where the attacks do
not apply, and then provide a scheme satisfying a given notion of security in this
setting.

1.1 This Work: Parameter-Hiding ORE

In this work, we give one possible answer to the question above. Rather than
focusing on the individual data records, we instead ask about the privacy of the
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distribution they came from. We show how to protect some information about
the underlying data distribution.

Motivating Example. To motivate our notion, consider the following setting. A
large university wants to outsource its database of student GPAs. For simplicity,
we will assume each student’s academic ability is independent of other students,
and that this is reflected in the GPA. Thus, we will assume that each GPA is
sampled independently and identically according to some underlying distribu-
tion. The university clearly wants to keep each individual’s GPA hidden. It also
may want aggregate statistics such as mean and variance to be hidden, perhaps
to avoid getting a reputation for handing out very high or very low grades.

Distribution-Hiding ORE. This example motivates a notion of distribution-
hiding ORE, where all data is sampled independently and identically from some
underlying distribution D, and we wish to hide as much as possible about D.
We would ideally like to handle arbitrary distributions D, but in many cases
will accept handling certain special classes of distributions. Notice that if the
distribution itself is completely hidden, then so too is every individual record,
since any information about a record is also information about D.

We begin with the following trivial observation: if D has high min-entropy
(namely, super-logarithmic), then the ideal ORE leakage is just a random order-
ing with no equalities, since there are no collisions with overwhelming probability.
In particular, this leakage is independent of the distribution D; as such, ideal
ORE leakage hides everything about the underlying distribution, except for the
super-logarithmic lower bound on min-entropy. Thus, we can use the multilinear
map-based scheme of [8] to achieve distribution-hiding ORE for any distribution
with high min-entropy.

We note the min-entropy requirement is critical, since for smaller min-entropies,
the leakage allows for determining the frequency of the most common elements,
hence learning non-trivial information about D.7

Unfortunately, the only way we know to build distribution-hiding ORE is
using ideal leakage as above; as such, we do not know of a construction not
based on multilinear maps. Instead, in hopes of building such a scheme, we will
allow some information about the distribution to leak.

Parameter-Hiding ORE. We recall that in many settings, data follows a known
type of distribution. For example, the central limit theorem implies that many
quantities such as various physical, biological, and financial quantities are (ap-
proximately) normally distributed. It is also common practice to assign grades

7 This min-entropy requirement may be somewhat problematic in some settings. GPAs
for example, probably have fewer than 10 bits of entropy. However, adding small
random noise to the data before encrypting (much smaller than the precision of the
data) will force the data to have high min-entropy without changing the order of
data, with the exception that identical data will appear different when comparing.
In many cases (such as answering range queries) it is totally acceptable to fail to
identify identical data.
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on an approximately normal distribution, so GPAs might reasonably be conjec-
tured to be normal. For a different example, insurance claims are often modeled
according to the Gamma distribution.

Therefore, since the general shape of the distribution is typically known, a
reasonable relaxation of distribution-hiding ORE is what we will call parameter-
hiding ORE. Here, we will assume the distribution has a known, public “shape”
(e.g. normal, uniform, Laplace etc.) but it may be shifted or scaled. We will
allow the overall shape to be revealed; our goal instead is to completely hide
the shifting and scaling information. More precisely, we consider a distribution
D over [0, 1] which will describe the general shape of the family of distributions
in question. For example, if the shape in consideration is the set of uniform
distributions over an interval, we may take D to be uniform distribution over
[0, 1]; if the shape is the normal distribution, we will take D be be the normal
distribution with mean 1/2, and standard deviation small enough so that the
vast majority of the mass is in [0, 1]. Let Dα,β be the distribution defined as: first
sample x← D, and then output bαx+βc. We will call α the scaling term and β
the shift. The adversary receives a polynomial number of encryptions of plaintext
sampled iid from Dα,β for some α, β. We will call a scheme parameter hiding if
the scale and shift are hidden from any computationally bounded adversary. Our
main theorem is that it is possible to construct such parameter-hiding ORE from
bilinear maps:

Theorem 1 (Informal). Assuming bilinear maps, it is possible to construct
parameter-hiding ORE for any “smooth” distribution D, provided the scaling
term is “large enough.”

We note the restrictions to large scalings are inherent: any small scaling will
lead to a distribution with low min-entropy. As discussed above, even with ideal
ORE, it is possible to estimate the min-entropy of low min-entropy distributions,
and hence it would be possible to recover the scaling term if the scaling term is
small. Some restrictions on the shape of D are also necessary, as certain shapes
can yield low min-entropy even for large scalings. “Smoothness” (which we will
define as having a bounded derivative) guarantees high min-entropy at large
scales, and is also important technically for our analysis.

1.2 Technical Overview

As a starting point, we will consider the leakage profile of Chenette, Lewi, Weis
and Wu [15] (henceforth referred to as CLWW), which reveals the position of the
most significant differing bit between any two plaintexts. This is quite a lot of
information: for example, it can be used to get rough bounds on the difference
between two plaintexts. Thus, CLWW cannot be parameter hiding, since the
scaling term is not hidden. However, CLWW will be a useful starting point, as
it will allow us to construct shift-hiding ORE, where we only care about hiding
the shift term. To help illustrate our approach, we will therefore first describe
an equivalent formulation of CLWW leakage, which we will then explain how to
extend to get full parameter-hiding ORE.
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An alternative view of CLWW leakage Consider the plaintext space {0, 1, 2,
. . . , 2`−1}. We will think of the plaintexts as leaves in a full binary tree of depth
`. In this tree, the position of the most significant differing bit between two plain-
texts corresponds to the depth of their nearest ancestor. The leakage of CLWW
can therefore can be seen as revealing the tree consisting of all given plaintexts,
their ancestors in the tree up to the lowest common ancestor, and the order of
the leaves, with all other information removed. See Figure 1 for an illustration.

⇒

⇒

Fig. 1: CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and {1, 6, 7, 8, 9}
correspond to equivalent subtrees. If the message space extends beyond 15, the CLWW
leakage remains the same as depicted, since the leakage only reveals the tree up to the
most recent ancestor.

Now, suppose all plaintext elements are in the range [0, 2i) for some i. This
means they all belong in the same subtree at height i; in particular, the CLWW
leakage will only have depth at most i. Now, suppose we add a multiple of 2i to
every plaintext. This will simply shift all the plaintexts to being in a different
subtree, but otherwise keep the same structure. Therefore, the CLWW leakage
will remain the same.

Therefore, while CLWW is not shift hiding, it is shift periodic. In particular,
if imagine a distribution D whose support is on [0, 2i), and consider shifting D by
β. Consider an adversary A, which is given the CLWW leakage from q plaintexts
sampled from the shifted D, and outputs a bit. If we plot the probability p(β)
that A outputs 1 as a function of β, we will see that the function is periodic
with period 2i.

Shift-Hiding ORE/OPE. With this periodicity, it is simple to construct a scheme
that is shift hiding. To get a shift-hiding scheme for message space [0, 2`), we
instantiate CLWW with message space [0, 2`+1). We also include as part of
the secret key a random shift γ chosen uniformly in [0, 2`). We then encrypt a
message m as Enc(m+ γ). Adding a random shift can be seen as convolving the
signal p(β) with the rectangular function

q(β) =

{
2−` if β ∈ [0, 2`)

0 otherwise
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Since the rectangular function’s support matches the period of p, the result
is that the convolved signal p̂ is constant. In other words, the adversary always
has the same output distribution, regardless of the shift β. Thus, we achieve
shift hiding.

When the comparison algorithm of an ORE scheme is simple integer com-
parison, we say the scheme is an order-preserving encryption (OPE) scheme.
OPE is preferable because it can be used with fewer modifications to a database
server. We recall that CLWW can be made into an OPE scheme — where cipher-
texts are integers and comparision is integer comparison — while maintaining
the CLWW leakage profile. Our conversion to shift-hiding preserves the OPE
property, so we similarly achieve a shift-hiding OPE scheme.

Scale-Hiding ORE/OPE. We note that we can also turn any shift-hiding ORE
into a scale-hiding ORE. Simply take the logarithm of the input before encrypt-
ing; now multiplying by a constant corresponds to shifting by a constant. Of
course, taking the logarithm will result in non-integers; this can easily be fixed
by rounding to the appropriate level of precision (enough precision to guarantee
no collisions over the domain) and scaling up to make the plaintexts integral.
Similarly, we can also obtain scale-hiding OPE if we start with an OPE scheme.

Impossibility of parameter-hiding OPE. One may hope to achieve both shift-
hiding and scale-hiding by some combination of the two above schemes. For
example, since order preserving encryption schemes can be composed, one can
imagine composing a shift-hiding scheme with a scale-hiding scheme. Interest-
ingly, this does not give a parameter-hiding scheme. The reason is that shifts/scalings
of the plaintext do not correspond to shifts/scalings of the ciphertexts. There-
fore, while the outer OPE may provide, say, shift-hiding for its inputs, this will
not translate to shift-hiding of the inner OPE’s inputs.

Nonetheless, one may hope that tweaks to the above may give a scheme that
is simultaneously scale and shift hiding. Perhaps surprisingly, we show that this
is actually impossible. Namely, we show that OPE cannot possibly be parameter-
hiding. Due to space limit, we put the rigorous proof in our full version [12].

This impossibility shows that strategies leveraging CLWW leakage are un-
likely to yield parameter-hiding ORE schemes. Interestingly, all ORE schemes
we are aware of that can be constructed from symmetric crypto can also be made
into OPE schemes. Thus, this suggests we need stronger tools than those used
by previous efficient schemes.

Parameter Hiding via Smoothed CLWW Leakage Motivated by the
above, we must seek a different leakage profile if we are to have any hope of
achieving parameter-hiding ORE. We therefore first describe a “dream” leakage
that will allow us to perform similar tricks as in the shift hiding case in order
to achieve both scale and shift hiding simultaneously. Our dream leakage will be
a “smoothed” CLWW leakage, where all nodes of degree exactly 2 are replaced
with an edge between the two neighbors. In other words, the dream leakage is
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the smallest graph that is “homeomorphic” to the CLWW leakage. See Figure 2
for an illustration.

⇒

⇒

Fig. 2: Smoothed CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and
{1, 2, 3, 5, 6} correspond to equivalent smoothed subtrees. Notice that the CLWW leak-
age for these two trees is different.

Our key observation is that this smoothed CLWW leakage now exhibits ad-
ditional periodicity. Namely, if we multiply every plaintext by 2, every edge in
the bottom layer of the CLWW leakage will get subdivided into a path of length
2, but smoothing out the leakage will result in the same exact graph. This means
that smoothed CLWW leakage is periodic in the log domain.

In particular, consider a distribution D with support on [0, 2i), and suppose
it is multiplied by α. Consider an adversary A, which is given the smoothed
CLWW leakage from q plaintexts sampled from a scaled D, and outputs a bit.
If we plot the probability p(log2 α) that A outputs 1 as a function of α, we will
see that the function is periodic with period 1.

Therefore, we can perform a similar trick as above. Namely, we convolve p
with the uniform distribution over the period of p in the log domain. We ac-
complish this by including a random scalar α as part of the secret key, and
multiplying by α before encrypting. However, this time several things are differ-
ent:

– Since we are working in the log domain, the logarithm of the random scalar
α has to be uniform. In other words, α is log-uniform

– Since we are working over integers instead of real numbers, many issues arise.

• First, α needs to be an integer to guarantee that the scaled plaintexts
are still integers. This means we cannot choose α at log-uniformly over
a single log period, since then α only has support on {1, 2}. Instead,
we need to choose α log-uniformly over a sufficiently large multiple of
the period that α approximates the continuous log-uniform distribution
sufficiently well.

• Second, unlike the shift case, sampling at random from D and then scal-
ing is not the same as sampling from a scaled version of D, since the
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rounding step does not commute with scaling. For example, for con-
creteness consider the normal distribution. If we sample from a normal
distribution (and round) and then scale, the resulting plaintexts will all
be multiples of α. However, if we sample directly from a scaled nor-
mal distribution (and then round), the support of the distribution will
include integers which are not multiples of α.
To remedy this issue, we observe that if the plaintexts are sampled from
a wide enough distribution, their differing bits will not be amongst the
lowest significant bits. Hence, the leakage will actually be independent
of the lower order bits. For example, this means that while the rounding
does not commute with the scaling, the leakage actually does not depend
on the order in which the two operations are carried out.

• The above arguments can be made to work for, say, the normal dis-
tribution. However, we would like to have a proof that works for any
distribution. Unfortunately, for distributions that oscillate rapidly, we
may run into trouble with the above arguments, since rounding such
distributions can cause odd behaviors at all scales. This problem is actu-
ally unavoidable, as quickly oscillating distributions may have actually
have low min-entropy even at large scales. Therefore, we must restrict
to “smooth” functions that have a bounded derivative.

Using a careful analysis, we are able to show for smooth distributions that
we achieve the desired scale hiding.

– Finally, we want to have a scheme that is both scale and shift hiding. This
is slightly non-trivial, since once we introduce, say, a random shift, we have
modified the leakage of the scheme, and cannot directly appeal to the argu-
ments above to obtain scale hiding as well. Instead, we distill a set of specific
requirements on the leakage that will work for both shift hiding and scale
hiding. We show that our shift hiding scheme above satisfies the require-
ments needed in order for us to introduce a random scale and additionally
prove scale hiding.

Achieving Smoothed CLWW Leakage. Next we turn to actually construct-
ing ORE with smoothed CLWW leakage. Of course, ideal ORE has better than
(smoothed) CLWW leakage, so we can construct such ORE based on multilinear
maps. However, we want a construction that uses standard tools.

We therefore provide a new construction of ORE using pairings that achieves
smoothed CLWW leakage. We believe this construction is of interest on its own,
as it is achieves the to-date smallest leakage of any non-multilinear-map-based
scheme.

CLWW ORE and how to reduce its leakage. Our construction builds on the
ideas of CLWW, so we first briefly recall the ORE scheme of CLWW. In their
(basic) scheme, the encryption key is just a PRF key K. To encrypt a plaintext
x ∈ {0, 1}n, for each prefix pi = x[1, . . . , i], the scheme computes

yi = PRFK(pi) + xi+1
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where xi+1 is the (i+ 1)-st bit of x, and the output of PRF ∈ {0, 1}λ is treated
as an integer (we will take λ to be the security parameter). The ORE ciphertext
is then (y1 . . . , yn). To compare two ciphertexts (y1 . . . , yn) and (y′1 . . . , y

′
n), one

finds the smallest index i such that yi 6= y′i, and outputs 1 if y′i − yi = 1. This
naturally reveals the index of the bit where the plaintexts differ.

Our approach to reducing the leakage is to attempt to hide the index i where
the plaintexts differ. As a naive attempt at this, first consider what happens if we
modify the scheme to simply randomly permute the outputs (y1 . . . , yn) (with a
fresh permutation chosen for each encryption). We can still compare ciphertexts
by appropriately modifying the comparison algorithm: now given c = (y1 . . . , yn)
and c′ = (y′1 . . . , y

′
n) (permuted as above), it will look for indices i, j such that

either y′i − yj = 1, in which case it outputs 1, or yj − y′i = 1, in which case it
outputs 0. (If we choose the output length of the PRF to be long enough then
this check will be correct with overwhelming probability.)

This modification, however, does not actually reduce leakage: an adversary
can still determine the most significant differing bit by counting how many ele-
ments c and c′ have in common.

We can however recover this approach by preventing an adversary from de-
tecting how many elements c and c′ have in common. To do so, we introduce and
employ the new notion of property-preserving hashing (PPH). Intuitively, a PPH
is a randomized hashing scheme that is designed to publicly reveal a particular
predicate P on pairs of inputs.

PPH can be seen as the hashing (meaning, no decryption) analogue of the
notion of property-preserving encryption, a generalization of order-revealing en-
cryption to arbitrary properties due to Pandey and Rouselakis [35]. (This can
also be seen as a symmetric-key version of the notion of “relational hash” due
to Mandal and Roy [31].)

Specifically, we construct and employ a PPH for the property

P1(x, x′) =

{
1 if x = x′ + 1

0 otherwise

(Here x, x′ are not plaintexts of the ORE scheme, think of them as other inputs
determined below.) Security requires that this is all that is leaked; in particular,
input equality is not leaked by the hash values (which requires a randomized
hashing algorithm).

Now, the idea is to modify the scheme to include a key KH for such a PPH H,
and the encryption algorithm to not only randomly permute the yi’s but hash
them as well, i.e., output (h1, . . . , hn) where hi = HKH (yi) for the permuted
yi’s.

8 The comparison algorithm can again be modified appropriately, namely to
not to check if y′i − yj = 1 but rather if their h′i and h′j hash values satisfy P1

via the PPH (and similarly for the check yj − y′i = 1).

8 A minor issue here is that we now lose decryptability for the resulting ORE scheme;
however, this can easily be added back in a generic way by also encrypting the
plaintext separately under a semantically secure scheme.
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For any two messages, the resulting ORE scheme is actually ideal: it only
reveals the order of the underlying plaintexts, but nothing else. However, for
three messages m,m′,m′′ we see that some additional information is leaked.
Namely, if we find that y′i − yj = 1 y′′k − yj = 1, then we know that y′j = y′′k . We
choose the range of the PRF large enough so that this can only happen if y′j and
y′k are both PRFK(p`) + x`+1 for the same prefix p` and same bit x`+1, and y′j
corresponds to the most significant bit where m′ differs from m, y′′k corresponds
to the most significant bit where m′′ differs from m, and moreover these positions
are the same. Therefore, the adversary learns whether these most-significant
differing bits are the same. It is straightforward to show that this leakage is
exactly equivalent to the smoothed CLWW leakage we need. Proving this ORE
scheme secure wrt. this leakage based on an achievable notion of security for the
PPH turns out to be technically challenging. Nevertheless, we manage to prove
it “non-adaptively secure,” meaning the adversary is required to non-adaptively
choose the dataset, which is realistic for a passive adversary in the outsourced
database setting.

Property-preserving hash from bilinear maps. Next we turn to constructing a
property-preserving hash (PPH) for the property P1(x, x′) = x = x′ + 1. For
this, we adapt techniques from perfectly one-way hash functions [9, 31] to the
symmetric-key setting and use asymmetric bilinear groups. Roughly, in our con-
struction the key for the hash function is a key K for a pseudorandom function
PRF and, letting e : G1 × G2 → GT be an asymmetric bilinear map on prime
order cyclic groups G1, G2 with generators g1, g2, the hash of x is

HK(x) = (gr11 , g
r1PRFK(x)
1 , gr22 , g

r2PRFK(x+1)
2 )

for fresh random r1, r2 ∈ Zp. (Thus, the PRF is also pushed to our PPH construc-
tion and can be dropped from from the higher-level ORE scheme when our hash
function is plugged-in.) The bilinear map allows testing whether P1(x, x′) from
HK(x),HK(x′), and intuitively our use of asymmetric bilinear groups prevents
testing other relations such as equality (formally we use the XSDH assumption).
We prove the construction secure under an indistinguishability-based notion in
which the adversary has to distinguish between the hash of a random challenge
x∗ and a random hash value, and can query for hash values of inputs x of its
choice as long as P1(x, x∗) and P1(x∗, x) are both 0. Despite being restricted,9,
this notion suffices in our ORE scheme above.

When our PPH is plugged into our ORE scheme, ciphertexts consist of 4n
group elements, and order comparison requires n(n − 1) pairing computations
on average. We also note that CLWW gave an improved version of their scheme
where ciphertexts are size O(n) rather than O(nλ) for security parameter λ,
however, we have reason to believe this may be difficult for schemes with our
improved leakage profile, see below.

9 More generally, following [35] one could allow the adversary to choose two challenge
inputs and make queries that do not allow it to trivially distinguish them, but we
are unable to prove our construction secure under this stronger notion.
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Piecing everything together, we obtain a parameter-hiding ORE from bilinear
maps. We note that, as parameter-hiding OPE is impossible, we achieve the first
construction of ORE without multilinear maps secure with a security notion that
is impossible for OPE.

Generalizing our ORE scheme. In our full version [12], we also show several
extensions to our smoothed CLWW ORE scheme. In one direction, we achieve
an improved level of leakage by considering blocks of bits at a time(encrypting
message block by block, rather than bit by bit). We show that if the block
size is only 2, then we improve security and efficiency simultaneously, while for
larger block sizes the leakage continues to reduce but the efficiency compared
to the basic scheme (in terms of both ciphertext size and pairings required for
comparison) decreases.

On the other direction, we also show how to improve efficiency while sacri-
ficing some security. We give a more efficient version of the scheme than above
(only need O(n) pairings for each comparison), that is still sufficient for achieving
parameter-hiding ORE using our conversion.

In addition, we also show how our ORE scheme easily gives a left/right ORE
as defined by [29] that also improves on their leakage. In left/right ORE, cipher-
texts can be generated in either the left mode or right mode, and the comparison
algorithm only compares a left and a right ciphertext. Security requires that no
information is leaked amongst left and right ciphertexts in isolation.

1.3 Discussion and Perspective

The original OPE scheme of [6] leaks “whatever a random order-preserving func-
tion leaks.” Unfortunately, this notion does not say anything about what such
leakage actually looks like. The situation has been improved in recent works on
OPE such as CLWW which define a precise “leakage profile” for their scheme.
However, such leakage profiles are still of limited use, since they do not obviously
say anything about the actual privacy of the underlying data.

We instead study ORE with a well-defined privacy notion for the underlying
plaintexts. A key part of our results is showing how to translate sufficiently
strong leakage profiles into such privacy notions. Nonetheless, we do not claim
that our new ORE scheme is safe to use in general higher-level protocols. We only
claim security as long all that is sensitive is the scale and shift of the underlying
plaintext distributions. If, for example, if the shape of the distribution is highly
sensitive, or if there are correlations to other data available to the attacker, our
notion is insufficient.

However, our construction provably has better leakage than existing efficient
schemes, and it at least shows some meaningful security for specific situations.
Moreover we suspect that the scheme can be shown to be useful in many other
settings by extending our techniques.
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1.4 Related Work

Work done on “leaky cryptography” includes work on multiparty computa-
tion [33], searchable symmetric and structured encryption [37, 21, 13, 18, 14, 11,
28], and property-preserving encryption [5, 6, 35]. In the database community,
the problem of querying an encrypted database was introduced by Hacigümüş,
Iyer, Li and Mehrotra [23], leading to a variety of proposals there but mostly
lacking formal security analysis. Proposals of specific outsourced database sys-
tems based on property-preserving encryption like ORE include CryptDB [36],
Cipherbase [2], and TrustedDB [4].

Besides, in [29], the authors give an efficient ORE construction based on
PRFs, while their leakage profile cannot achieve shift hiding and scale hiding si-
multaneously, which means their scheme cannot meet our privacy notion. More-
over, in [27], the authors give an alternative ORE construction, based on on
function revealing encryption for simple functions, namely orthogonality testing
and intersection cardinality, while their leakage needs further analysis.

2 Background

Notation. All algorithms are assumed to be polynomial-time in the security
parameter (though we will sometimes refer to efficient algorithms explicitly).
We will denote the security parameter by λ. For a random variable Y , we write

y
$← Y to denote that y is sampled according to Y ’s distribution, moreover, let

D be Y ’s distribution, we abuse notation y
$← D to mean that y is sampled

according to D. For an algorithm A, by y
$← A(x) we mean that A is executed

on input x and the output is assigned to y, furthermore, if A is randomized,

then we write y
$← A(x) to denote running A on input x with a fresh random

tape and letting y be the random variable induced by its output. We denote

by Pr[A(x) = y : x
$← X] the probability that A outputs y on input x when

x is sampled according to X. We say that an adversary A has advantage ε in

distinguishing X from Y if Pr[A(x) = 1 : x
$← X] and Pr[A(y) = 1 : y

$← Y ]
differ by at most ε.

When more convenient, we use the following probability-theoretic notation
instead. We write PX(x) to denote the probability that X places on x, i.e.
PX(x) = Pr[X = x], and we say PX(x) is the probability density function
(PDF) of X’s distribution. The statistical distance between X and Y is given
by ∆ = 1

2

∑
x |PX(x) − PY (x)|. If ∆(X,Y ) is at most ε then we say X,Y are

ε-close. It is well-known that if X,Y are ε-close then any (even computationally
unbounded) adversary A has advantage at most ε in distinguishing X from Y .

The min-entropy of a random variable X is H∞(X) = − log(maxx PX(x)).
A value ν ∈ R depending on λ is called negligible if its absolute value goes to
0 faster than any polynomial in λ, i.e. ∀c > 0 ∃λ∗ ∈ N ∀λ ≥ λ∗ : |ν| ≤ 1

λc .
We let [M ] = {1, . . . ,M}, [M ]′ = {0, . . . ,M − 1} and [M,N ] = {M, . . . , N}.
We write m as a vector of plaintexts and |m| as the vector’s length, namely
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m = (m1, . . . ,ms) and |m| = s. For a vector m, by am we mean (am1, . . . , ams)
and we write m+b to denote (m1+b, . . . ,ms+b). Let x be a real number, we write
bxc as the largest integer s.t. bxc ≤ x, and dxe as the smallest integer s.t. dxe ≥ x.
By bxe, we mean rounding x to the nearest integer, namely−1/2 ≤ bxe−x < 1/2.
If P is a predicate, we write 1(P ) for the function that takes the inputs to P
and returns 1 if P holds and 0 otherwise.

PRFs. We use the standard notion of a PRF. A function F : {0, 1}λ × D →
{0, 1}λ is said to be a PRF with domain D if for all efficient A we have that

|Pr[AF (K,·)(1λ) = 1]− Pr[Ag(·)(1λ) = 1]|

is a negligible function of λ, where K is uniform over {0, 1}λ and g is uniform
over all functions from D to {0, 1}λ.

ORE. The following definition of syntax for order-revealing encryption makes
explicit that comparison may use helper information (e.g. a description of a
particular group) by incorporating a comparison key, denote ck.

Definition 2 (ORE). A ORE scheme is a tuple of algorithms Π = (K, E , C)
with the following syntax.

– The key generation algorithm K is randomized, takes inputs (1λ,M), and
always emits two outputs (sk, ck). We refer to the first output sk as the secret
key and the second output ck as the comparison key.

– The encryption algorithm E is randomized, takes inputs (sk,m) where m ∈
[M ], and always emits a single output c, that we refer to as a ciphertext.

– The comparison algorithm C is deterministic, takes inputs (ck, c1, c2), and
always emits a bit.

If the comparison algorithm C is simple integer comparison (i.e., if C(ck, c1, c2)
is a canonical algorithm that treats its the ciphertexts and binary representations
of integers and tests which is greater) then the scheme is said to be an order-
preserving encryption (OPE) scheme.

Correctness of ORE schemes. Intuitively, an ORE scheme is correct if the
comparison algorithm can output the order of the underlying plaintext, by taking
ck and two ciphertexts as inputs.

Our constructions will only be computationally correct, i.e. correct with
overwhelming probability when the input messages are provided by an effi-
cient process, under hardness assumptions. Formally, we define correctness using
the game CORore

Π (A), which is defined as follows: The game starts by running

(sk, ck)
$← K(1λ,M), and it gives ck to A. The adversary A then outputs two

messages x, y ∈ [M ]. The game computes c1
$← E(sk, x) and c2

$← E(sk, y),
outputs 1 if x < y but C(ck, c1, c2) = 0.

We say that an ORE scheme Π is computationally correct if for all efficient
adversaries A, all M = poly(λ), we have that Pr[CORore

Pi(A) = 1] is a negligible
function in the security parameter.
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Security of ORE schemes. The following simulation-based security definition
is due to Chenette et al. [15]. Here a leakage profile is any randomized algorithm.
The definition refers to games given in Figure 3, which we review now. In the
real game, key generation is run and the adversary is given the comparison key
and oracle access to the encryption algorithm with the corresponding secret key.
The adversary eventually outputs a bit that the game uses as its own output. In
the ideal simulation game, the adversary is interacting with the same oracle, but
the comparison key is generated by a stateful simulator, and the oracle responses
are generated by the simulator which receives leakage from the stateful leakage
algorithm L.

Game REALore
Π (A):

(sk, ck)
$← K(1λ,M); b

$← AEnc(ck)
Return b
Enc(m):
Return E(sk,m)

Game SIMore
Π,L(A,S):

st` ← ⊥; (ck, sts)
$← S(1λ); b

$← AEnc(ck)
Return b
Enc(m):

(L, st`)
$← L(st`,m); (c, sts)

$← S(L, sts)
Return c

Fig. 3: Games REALoreΠ(A) (left) and SIMore
Π,L(A,S) (right), where Π = (E , C) is an

ORE scheme, L is a leakage profile, A is an adversary, and S is a simulator.

Definition 3 (L-simulation-security for ORE). For an ORE scheme Π,
an adversary A, a simulator S, and leakage profile L, we define the games
REALore

Π (A) and SIMore
Π,L(A) in Figure 3. The advantage of A with respect to S

is defined as

Advore
Π,L,A,S(λ) =

∣∣Pr[REALore
Π (A) = 1]− Pr[SIMore

Π,L(A,S) = 1]
∣∣ .

We say that Π is L-simulation-secure if for every efficient adversary A there
exists an efficient simulator S such that Advore

Π,L,A,S(λ) is a negligible function.
We also define non-adaptive variants of the games where A gets a single

query to an oracle that accepts a vector of messages of unbounded size. In the real
game REALore-na

Π (A), the oracle returns the encryptions applied independently
to each message. In the ideal game SIMore-na

Π (A), the leakage function gets the
entire vector of messages as input and produces an output L that is then given
to S which produces a vector of ciphertexts, which are returned by the oracle.

We define the non-adaptive advantage of A with respect to S analogously,
and denote it Advore-na

Π,L,A,S(λ). Non-adaptive L-simulation security is defined anal-
ogously.

Ideal ORE. Ideal ORE is the case where the leakage profile L is simply the list
of results of comparisons between the plaintexts. We note that such a L is always
revealed by the comparison algorithm, so ideal ORE is the best one can hope
for. Ideal ORE can be constructed from multilinear maps [8].



Parameter-Hiding Order Revealing Encryption 15

CLWW Leakage. As an example of a non-ideal leakage profile, consider the
leakage Lclww of Chenette, Lewi, Weis and Wu [15]. For m0,m1 ∈ {0, 1}n, we
define the most significant differing bit of m1 and m2, denoted msdb(m0,m1),
as the index of first bit where m0,m1 differ, or n+ 1 if m1 = m2.

The CLWW leakage profile Lclww takes in input a vector of plaintext m =
(m1, . . . ,mq) and produce the following:

Lclww(m1, . . . ,mq) := (∀1 ≤ i, j ≤ n,1(mi < mj),msdb(mi,mj))

3 New Security Notions for ORE

In this section, we propose four meaningful notions of privacy: distribution-
hiding, parameter-hiding, scale-hiding and shift-hiding ; in those notions, we are
considering the privacy of the underlying distribution of data records, rather
than the individual data records, and show how to protect information about
the underlying data distribution.

Distribution-Hiding for ORE. We assume that all database entries are in-
dependently and identically distributed according to some distribution D10, and
the notion of distribution-hiding refers to game defined in Figure 4. In the inter-
active game, after receiving the public parameter and comparison key, adversary
A picks two distributions D0, D1 and sends to challenger C, C then flips a coin
b, samples a sequence of entries from Db, and sends back the encrypted entries.
Eventually A outputs a bit, and we say adversary wins if it guesses b correctly.
We note that if either of Db has low min-entropy, it is possible for an adversary to
estimate the min-entropy by looking for collisions in its ciphertexts. Therefore,
we must restrict Db to have high min-entropy.

Game DHΠ,q(A, λ):

(sk, ck)
$← K(1λ,M); D0, D1 ← A(1λ, ck) s.t. H∞(Db) ≥ ω(log λ)

b
$← {0, 1},m $← Db s.t. |m| = q; maxDb ≤M ; c = E(sk,m)

b′ = A(ck, c); Return (b
?
= b′)

Fig. 4: Games DHΠ,q(A, λ) , where Π = (K, E , C) is an ORE scheme, q = poly(λ), and
A is an adversary.

Definition 4 (Distribution-Hiding for ORE). For an ORE scheme Π, an
adversary A, function q = q(λ) we define the games DHΠ,q(A, λ) in Figure 4.

The advantage of A is defined as AdvDH
Π,q(A, λ) = |Pr[DHΠ,q(A, λ) − 1

2 ]|. We
say that Π is distribution-hiding if for every efficient adversary A, and any
polynomial q = poly(λ), AdvDH

Π,q(A, λ) is a negligible function.

10 By D, here we mean a sampling algorithm, such that the outputs of this algorithm
obey the distribution D, for ease we denote maxD as the maximum item in D’s
support.
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We immediately observe that ideal ORE achieves distribution hiding, while for
other known leakier ORE schemes, it’s seems unfeasible to achieve this privacy
guarantee. However, in many settings, the general shape of the distribution is
often known (that is, if the distribution is normal, uniform, Laplace, etc), and
it is reasonable to allow the overall shape to be reveal but hide its mean and/or
variance completely, subject to certain restrictions. Before formalize these notion,
we firstly introduce some notations.

For a continuous random variable X, where D is X’s distribution, we abuse
notation pD(x) = pX(x). Now we introduce three alternative distributions:

Dδ
scale, D

`
shift, D

δ,`
aff with parameter δ, `, where the corresponding probability den-

sity function is defined as:

pDscale
=
pD(xδ )

δ
; pDshift

(x) = pD(x− `); pDaff
=
pD(x−`δ )

δ

In other words, Dδ
scale scales the shape of D by a factor of δ; Dshift shifts D by `

and Daff does both.

Rounded distribution. As our plaintexts are integers, we need map real num-
ber to its rounded integer, namely x → bxe. More precisely, let D be a distri-
bution over real numbers between α and β; we induce a rounded distribution
Rα,βD on [dαe, bβc]which samples from D and then rounds. Its probability density
function is:

pRα,βD
(k) =



∫ dαe+1/2
α

pD(x)dx∫ β
α
pD(x)dx

k = α∫ k+1/2

k−1/2
pD(x)dx∫ β

α
pD(x)dx

k ∈ [dα+ 1e, bβ − 1c]∫ β
bβc−1/2

pD(x)dx∫ β
α
pD(x)dx

k = β

0 Otherwise

In the case of Dδ
scale, D

`
shift, or Dδ,`

aff , we will use the notation bDδ
scalee, bD`

shifte,
and bDδ,`

aff e to denote the respective rounded distributions.

Now, we present the notion “(γ,D)-parameter-hiding” ORE, referring to the
game defined in Figure 5. Here, D is a distribution over [0, 1], which represents
the description of the known shape of the distribution of plaintexts. γ is a lower-
bound on the scaling that is allowed. Then key generation is run and adversary is
given the public parameter, (γ,D), and the comparison key. Then, the adversary
A sends two pairs of parameters (δ0, `0), (δ1, `1) to challenger C. Next, C flips
a coin b, checks whether the parameter is proper(1(δ0 ≥ γ ∩ δ1 ≥ γ) ), then

samples a sequence of data entries from the rounded distribution bDδb,`b
aff e and

sends back encrypted data. Eventually A outputs a bit, and we say adversary
wins if it guesses b correctly.

Definition 5 ((γ,D)-parameter hiding for ORE). For an ORE scheme Π,
an adversary A, a distribution D, and function q = q(λ), we define the games
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Game (γ,D)-para-hidΠ,q(A, λ):

(sk, ck)
$← K(1λ,M); δ0, `0, δ1, `1 ← A(ck, D)

If δ0 < γ or δ1 < γ, output a random bit and abort,

else, b
$← {0, 1},m $← bDδb,`b

aff e, s.t.|m| = q; max bDδb,`b
aff e ≤M ; c = E(sk,m)

b′ = A(ck, c) Return (b
?
= b′)

Fig. 5: Games para-hidΠ,q(A, λ) , where Π = (E , C) is an ORE scheme, D is a distri-
bution on [0, 1], A is an adversary

(γ,D)-para-hidΠ,q(A, λ) in Figure 5. The advantage of A is defined as

Advpara-hid
Π,q,γ,D(A, λ) = |Pr[(γ,D)-para-hidΠ,q(A, λ)− 1

2
]|

We say that Π is (γ,D)-parameter hiding if for every efficient adversary A and

polynomial q Advpara-hid
Π,q,γ,D(A, λ) is a negligible function.

Similarly, we define (γ,D)-scale hiding and (γ,D)-shift hiding with little change
as above. More precisely, in the game of (γ,D)-scale hiding, we add the restric-
tion `0 = `1 = 0 and in the game of (γ,D)-shift hiding, we add the restriction
δ0 = δ1. Due to the space limit, we skip the formal definitions here.

We note that these three notions are distribution dependent, and we would
like they work for any distribution. Unfortunately, quickly oscillating distribu-
tions do not fit into our case, as they may have actually low min-entropy for
their discretized distributions on integers, even at large scales. Hence, we place
additional restrictions. We place the following restriction, which is sufficient, but
potentially stronger than necessary:

(η, µ)-smooth distribution. We let D be a distribution where its support
mainly on [0, 1] (Pr[x /∈ [0, 1] : x ← D] ≤ negl(λ)), we denote p′D(x) as its
derivative, and we say that D is (η, µ)-smooth if 1) ∀x ∈ [0, 1], pD(x) ≤ η; 2)
|p′D(x)| ≤ η for all x ∈ [0, 1] except for µ points.

Definition 6 ((γ, η, µ)-parameter hiding for ORE). For an ORE scheme
Π, we say Π is (γ, η, µ)-parameter hiding if for every efficient adversary A,

polynomial q, and any (η, µ)-smooth distribution D, Advpara-hid
Π,q,γ,D(A, λ) is a neg-

ligible function.

4 Parameter Hiding ORE

In this section, we will assume we are given an ORE Π = (K, E , C) with a
“smoothed” version of CLWW leakage, defined below. Later, in Section 5, we
will show how to instantiate such a scheme from bilinear maps.

We show how to convert a scheme with smoothed CLWW leakage into a
parameter-hiding ORE scheme by simply composing with a linear function:
namely, for any plaintext m, the ciphertext has form E(αm + β), where α, β
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are the same across all messages and are sampled as part of the secret key. Intu-
itively, α helps to hide the scale parameter and β hides the shift. We need to be
careful about the distributions of α and β; α needs to be drawn from a “discrete
log uniform” distribution of appropriate domain, and β needs to be chosen from
a uniform distribution of appropriate domain.

The discrete log uniform distribution D on [A,B] (logU(A,B)) has probabil-
ity density function:

pD(k) =

{
1/k∑B
i=A 1/i

i ∈ [A,B]

0 Otherwise

We say a leakage function L is smoothed CLWW if:

1. For any two plaintext sequences m0,m1, if Lclww(m0) = Lclww(m1), then
L(m0) = L(m1) (in other words, it leaks no more information that CLWW);

2. For any plaintext sequence m, L(m) = L(2m)

4.1 Parameter-Hiding ORE

In this part, we give the formal description of parameter-hiding ORE. To simplify
our exposition, we first specify some parameters. We will assume we are given:

q = poly(λ),M = 2poly(λ), γ = 2ω(log λ), η, µ ≤ O(1)

We will assume γ and M are exactly powers of 2 without loss of generality
by rounding up. We define:

τ = γ, ξ = γ2, U = 4ξM, T = γ2 × U,K = 2× T

Let Π = (K, E , C) be an ORE scheme on message space [K] with smoothed
CLWW leakage L. We define our new ORE Πaff = (Kaff , Eaff , Caff) on message
space [M ] as follows:

– Kaff(1λ,M,Π): On input the security parameter λ, message space [M ] and
Π, the algorithm picks a super-polynomial γ = 2ω(log λ) as a global param-
eter, and computes parameters above. Then it runs (ck, sk) ← K(1λ,K),

draws α
$← logU(ξ, 2ξ − 1) and β from discrete uniform on [T ]′ and outputs

skaff = (sk, α, β), ckaff = ck;
– Eaff(skaff ,m). On input the secret key skaff and a message m ∈ [M ], it outputs

CTaff = E(αm+ β)

By our choice of message space [K] for Π, the input to E is guaranteed to
be in the message space.

– Caff(ckaff ,CT
0
aff ,CT

1
aff): On inputs the comparison key ckaff , two ciphertexts

CT0
aff ,CT

1
aff , it outputs C(ckaff ,CT

0
aff ,CT

1
aff)
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Here we also give the description of composted schemes that only achieve
“scale-hiding” or “shift-hiding”. Formally, we define Πscale = (Kscale, Escale, Cscale)
and Πshift = (Kshift, Eshift, Cshift), respectively:

– Kscale(1
λ,M,Π): On input the security parameter λ, the message space [M ]

and Π, the algorithm picks a super-polynomial γ = 2ω(log λ) as a global pa-
rameter, and computes parameters above. Then it runs (ck, sk)← K(1λ,K),

draws α
$← logU(ξ, 2ξ − 1) and outputs skscale = (sk, α), ckscale = ck;

– Escale(skscale,m). On input the secret key skscale and a message m ∈ [M ], it
outputs

CTscale = E(αm)

– Cscale(ckscale,CT
0
scale,CT

1
scale): On inputs the comparison key ckscale, two ci-

phertexts CT0
scale,CT

1
scale, it outputs C(ckscale,CT

0
scale,CT

1
scale).

– Kshift(1
λ,M,Π): On input the security parameter λ, the message space [M ]

and Π, the algorithm picks a super-polynomial γ = 2ω(log λ) as a global
parameter, and computes parameters above. Then it runs (ck, sk)← K(1λ),
draws β from discrete uniform on [T ]′ and outputs skshift = (sk, α), ckshift =
ck;

– Eshift(skshift,m). On input the secret key skshift and a message m ∈ [M ], it
outputs

CTshift = E(m+ b)

– Cshift(ckshift,CT
0
shift,CT

1
shift): On inputs the comparison key ckshift, two cipher-

texts CT0
shift,CT

1
shift, it outputs C(ckshift,CT

0
shift,CT

1
shift).

The correctness of Πaff , Πscale and Πshift is directly held by correctness of Π,
and what is more interesting is the privacy that those scheme can guarantee.

4.2 Main Theorem

In the part, we prove Πaff is parameter hiding, formally:

Theorem 7 (Main Theorem). Assuming Π has L-simulation-security where
L is smoothed CLWW, then for any γ = 2ω(log λ), Πaff is (γ, η, µ)-parameter
hiding.

Proof. According to the security notions, it is straightforward that if an ORE
scheme is (γ, η, µ)-parameter hiding, then it is also (γ, η, µ)-scale hiding and
(γ, η, µ)-shift hiding. Next we claim the converse proposition holds.

Claim. If an ORE scheme Π achieves (γ, η, µ)-scale hiding and (γ, η, µ)-shift
hiding simultaneously, then Π is (γ, η, µ)-parameter hiding.

We sketch the proof by hybrid argument. For any γ = 2ω(log λ) and (η, µ)-
smooth distribution D, firstly, by shift-hiding, there is no efficient adversary
that distinguish (δ0, `0) from (δ0, 0) with non-negligible probability. Then due
to scale-hiding, no efficient adversary can differ (δ0, 0) from (δ1, 0) with non-
negligible probability. Thirdly, same as the first argument, any efficient adversary
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can distinguish (δ1, 0) from (δ1, `1) with only negligible advantage. Combining
together, Π achieves (γ, η, µ)-parameter hiding.

Thus, it suffices to show Πaff is both (γ, η, µ)-scale hiding and (γ, η, µ)-shift
hiding, due to space limit, we put the rigorous proof in our full version [12] .

5 ORE with smoothed CLWW Leakage

We start by defining the security we target via a smoothed CLWW leakage func-
tion. Then we recall a primitive for our construction called a property-preserving
hash (PPH) function, and state and analyze our ORE construction using a PPH.
In a later section we instantiate the PPH to complete the construction. Next,
we give variant constructions with trade-offs between efficiency and leakage.

Now We define the non-adaptive version of the leakage profile for our con-
struction. The leakage profile takes in input a vector of messages m = (m1, . . . ,mq)
and produces the following:

Lf (m1, . . . ,mq) := (∀1 ≤ i, j, k ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mi,mk)))

By definition, it’s easy to note that Lf leaks strictly less than CLWW. Ex-
cept for the order of underlying plaintexts, it only leaks whether the position
of msdb(mi,mj) and msdb(mi,mj) are the same, therefore the leakage profile
preserve consistent if we left-shift all the plaintexts by one bit, which referring
to Lf (m) = Lf (2m). Thus, Lf is smoothed CLWW.

5.1 Property Preserving Hash

Our construction will depend on a tool – property preserving hash (PPH), which
is essentially a property-preserving encryption scheme [35] without the decryp-
tion algorithm. In this section we recall the syntax and security of a PPH.

Definition 8. A property-preserving hash (PPH) scheme is a tuple of algo-
rithms Γ = (Kh,H, T ) with the following syntax:

– The key generation algorithm Kh is randomized, takes as input 1λ and emits
two outputs (hk, tk) that we refer to as the hash key hk and test key tk.
These implicitly define a domain D and range R for the hash.

– The evaluation algorithm H is randomized, takes as input the hash key hk,
an input x ∈ D, and emits a single output h ∈ R that we refer to as the
hash of x.

– The test algorithm T is deterministic, takes as input the test key tk and two
hashes h1, h2, and emits a bit.

Correctness of PPH schemes. Let P be a predicate on pairs of inputs. We
define correctness of a PPH Γ with respect to P via the game CORpph

Γ,P (A), which

is as follows: It starts by running (hk, tk)
$← Kh(1λ) and gives tk to A. Then A

outputs x, y. The game computes h
$← H(hk, x), h′

$← H(hk, y) and outputs 1 if
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T (tk, h, h′) 6= P (x, y). We say that Γ is computationally correct with respect to

P if for all efficient A, Pr[CORpph
Γ,P (A) = 1] is a negligible function of λ.

Security of PPH schemes. We recall a simplified version of the security
definition for PPH that is a weaker version of PPE security defined by Pandey
and Rouselakis [35]. The definition is a sort of semantic security for random
messages under chosen-plaintext attacks, except that the adversary is restricted
from making certain queries.

Game INDpph
Γ,P (A):

(hk, tk)
$← Kh(1λ) ; x∗

$← A(tk)

h0
$← H(hk, x∗) ; h1

$← R ; b
$← {0, 1} ; b′

$← AHash(tk, x∗, hb)

Return (b
?
= b′)

Hash(x):

If P (x∗, x) = 1 or P (x, x∗) = 1, then h← ⊥, Else h
$← H(hk, x)

Return h

Fig. 6: Game INDpph
Γ,P (A).

Definition 9. Let P be some predicate and Γ = (Kh,H, T ) be a PPH scheme

with respect to P . For an adversary A we define the game INDpph
Γ,P (A) in Fig-

ure 6. The restricted-chosen-input advantage of A is defined to be Advpph
Γ,P,A(λ) =

2 Pr[INDpph
Γ,P (A) = 1]− 1. We say that Γ is restricted-chosen-input secure if for

all efficient adversaries A, Advpph
Γ,P,A(λ) is negligible.

5.2 ORE from PPH

Construction. Let F : K × ([n] × {0, 1}n) → {0, 1}λ be a secure PRF. Let
P (x, y) = 1(x = y + 1) be the predicate that outputs 1 if and only if x = y + 1,
and let Γ = (Kh,H, T ) be a PPH scheme with respect to P . In our construction,
we interpret the output of F as a λ-bit integer, which is also the input domain
of the PPH Γ . We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M ], the
algorithm chooses a key k uniformly at random for F , and runs the key
generation algorithm of the property preserving hash function Γ.Kh to obtain
the hash and test keys (hk, tk). It sets ck ← tk, sk ← (k, hk) and outputs
(ck, sk).

– E(sk,m): On input the secret key sk and a message m, the algorithm writes
the binary representation as m as (b1, . . . , bn), and then for i = 1, . . . , n, it
computes:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi mod 2λ, ti = Γ.H(hk, ui).
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We note that ui is computed by treating the PRF output as a member of
{0, . . . , 2λ − 1}. Then it chooses a random permutation π : [n] → [n], and
sets vi = tπ(i). The algorithm outputs CT = (v1, . . . , vn).

– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′1, . . . , v
′
n), the algorithm runs Γ.T (tk, vi, v

′
j)

and Γ.T (tk, v′i, vj) for every i, j ∈ [n]. If there exists a pair (i∗, j∗) such that
Γ.T (tk, vi∗ , v

′
j∗) = 1, then the algorithm outputs 1, meaning m1 > m2; else if

there exists a pair (i∗, j∗) such that Γ.T (tk, v′i∗ , vj∗) = 1, then the algorithm
outputs 0, meaning m1 < m2; otherwise it outputs ⊥, meaning m1 = m2.

Correctness. For two messages m1,m2, let (b1, . . . bn) and (b′1, . . . , b
′
n) be their

binary representations. Assuming m1 > m2, there must exists a unique index
i∗ ∈ [n] such that ui = u′i + 1. Therefore correctness of Π is followed by cor-
rectness of PPH. We can use the same argument for the case m1 = m2 and
m1 < m2. What is more interesting is its simulation based security, as it is the
foundation for parameter hiding ORE, formally:

Theorem 10. Assuming F is a secure PRF and Γ is restricted-chosen-input
secure, Π is Lf-non-adaptively-simulation secure.

Proof. We use a hybrid argument, and define a sequence of hybrid games as
follows:

– H−1: Real game REALore
Π (A);

– H0: Same as H−1, except replacing PRF Fk(·) by a truely random function
F ∗ in the encryption oracle;

– Hi·q+j Depend on a predicate Switch(i,j) which is define below. If Switch(i,j) =

0, then Hi·q+j = Hi·q+j−1, else in procedure of E(mj), u
j
i is replaced by a

random string.

From the high level, we establish the proof by showing show that any adjacent
hybrids are indistinguishable, and then we construct an efficient simulator S such
that the output of Hqn and SIMore

Π,Lf
(A,S) are statistically identical. For the

predicate, we say Switchi,j = 1 if ∀k ∈ [q],msdb(mj ,mk) 6= i, and 0 otherwise.

We note that when Switchi,j = 0, there exists uki such that uji = uki ± 1, the
relation which can be detected by the test algorithm of PPH(for the i-th bit
of mj , we call such a bit a leaky bit), which means we cannot replace it with
random string, otherwise adversary can trivially distinguish it. In the following
we firstly prove any adjacent objects are computational indistinguishable.

Lemma 11. Assuming Γ is restricted-chosen-input secure, for any k ∈ [qn]

Hk−1
comp
≈ Hk.

Proof. Due to the security of PRF, it’s trivial that H−1
comp
≈ H0, and for any

k > 0(for ease, k = i∗ · q + j∗ where i∗ ∈ [n − 1], j∗ ∈ [q] ), it suffices to

show Hk−1
comp
≈ Hk under the condition Switchi∗,j∗ = 1(Switchi∗,j∗ = 0 implies

Hk−1 = Hk). We prove that if there exists adversary A that distinguish Hk from



Parameter-Hiding Order Revealing Encryption 23

Hk−1 with noticeable advantage ε, then we can construct a simulator B wins the
restricted-chosen-input game with ε-negl. Here is the description of B. Firstly
it runs INDpph

Γ , and sends tk as the comparison key ck to A. After receiving a
sequence of plaintext m1, . . . ,mq, it picks a random function F ∗(using the lazy

sampling technique for instance), sets X∗ = F ∗(i∗, bj
∗

1 b
j∗

2 · · · b
j∗

i∗−1||0n−i
∗+1)+bj

∗

i∗

where bji is the i-th bit of mj . Then it sends X∗ to its challenger in restricted-
chosen-input game and gets back T as the challenge term. To simulate the en-
cryption oracle, B works as follows:

1. (i′, j′) > (i∗, j∗)(here using a natural order for tuples, (i, j) > (i′, j′) iff
iq + j > i′q + j′ ), B computes:

uj
′

i′ = F ∗(i∗, bj
′

1 b
j′

2 · · · b
j′

i′−1||0
n−i′+1) + bj

′

i′ ; t
j′

i′ = Γ.H(hk, uj
′

i′ )

2. (i′, j′) < (i∗, j∗)∩Switchi′,j′ = 0, then same as above, else uj
′

i′
$← {0, 1}λ, tj

′

i′ =

Γ.H(hk, uj
′

i′ ).

3. sets tj
∗

i∗ = T , and ∀j ∈ [q], picks a random permutation πj and outputs the

ciphertexts CTj = (tjπj(1), . . . , t
j
πj(n)

).

Finally, B outputs whatever A outputs11.

Since F ∗ is a random function, Pr[uj
′

i′ = X∗± 1] is negligible for all (i′, j′) 6=
(i∗, j∗), which means B fails to simulate the encryption oracle with only negligible
probability. Besides, when T = Γ.H(hk, X∗), B properly simulates Hk−1, and if
T is random, then B simulates Hk(due to the PRF security, the distribution

of Γ.H(hk, r) : r
$← {0, 1}λ is computationally close to a random variable that

uniformly sampled from the range of Γ ). Hence, if Adv(A) is noticeable, then
B’s advantage is also noticeable. ut

In the following, we describe an efficient simulator S such that the output
of Hqn and SIMore

Π,Lf
(A,S) are statistically identical. Roughly speaking, we note

that Switchi,j = 1 means that i-th bit of mj is not a leaky bit, indicating that its
value would not affect the leakage profile whp. Hence, it suffices to only simulate
the leaky bit of each individual message, which can be extracted by Lf , and sets
the rest just as random string. Due to the final random permutations, Hqn and
SIMore

Π,Lf
(A,S) are statistically identical. Formally:

Description of the simulator. For fixed a message set M = {m1, . . . ,mq}
(without loss of generality, we assume m1 > . . . > mq), the simulator S is given
the leakage information Lf (m1, . . . ,mq). S firstly keeps a q × n matrix B and
runs a recursive algorithm FillMatrix(1, 1, q) to fill in the entries, as follows:

– If j = k, then ∀i′ ∈ [i, n], B[j][i′] = r where r
$← {0, 1}λ;

– Else, it proceeds as follows:

• searches the smallest j∗ ∈ [j, k] s.t. P (mj ,mj∗) = P (mj ,mk);

11 We note that B does not have hk, what it does is to call the hash oracle
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• sets B[j′][i] = r′,∀j′ ∈ [j, j∗ − 1];B[j′][i] = r′ − 1,∀j′ ∈ [j∗, k], where

r′
$← {0, 1}λ;

• runs FillMatrix(i+ 1, j, j′ − 1) and FillMatrix(i+ 1, j′, k) recursively.

More concretely, our recursive algorithm is to fill in the entries by

FillMatrix(i, j, k), ∀i ∈ [n], j ≤ k ∈ [q]

Then S runs Γ.Kh(1λ) and gets the keys tk, hk, and sets ti,j = Γ.H(hk,B[j][i]),
∀i ∈ [n], j ∈ [q]. Finally, S samples random permutations πj , outputs CTj as

CTj = (tjπj(1), . . . , t
j
πj(n)

) We note that the FillMatrix algorithm terminates after

at most qn steps as each cell will not be written twice, hence S is an efficient
simulator.

Finally we claim that S properly simulates the relevant games. We first ob-
serve that the simulator identifies how many leaked bits (prefixes) there are for
the messages m1, . . . ,mq. Recall that if messages m1, . . . ,mq share the same pre-
fix up to the `−1-th bit, and if there exists (the first ) i∗ such that msdb(m1,mi∗) =
msdb(m1,mq), then we can conclude that {m1, . . . ,mi∗−1} has 1 on their `-th
bit, and and {mi∗ , . . . ,mq} has 0 on their `-th bit. This way the `-th bit of these
messages are leaked. The simulator recursively identifies other leaked bits for
these two sets. At the end, for each message, how many prefixes whose next bits
are leaked will be identified. As this information will also be identified in the
hybrid Hqn. So a random permutation (for Hqn and the simulation) will hide
these leaked prefixes, except the total number. Thus, our simulation is identical
to Hqn, and we establish the entire proof. ut

5.3 More efficient comparisons

The construction above needs to run O(n2) times PPH test algorithm for one
single comparison, which is very expensive for real application. In this part,
we present a variant ORE achieving better efficiency but with a weaker leak-
age profile, which only requires O(n) pairings in each individual comparison.
And what’s more interesting is that this weaker leakage profile is also smoothed
CLWW, that means we can still construct a parameter hiding ORE based on
it, along with better efficiency. From the high level, we fix a permutation for all
encryptions(this permutation is part of the secret key now), rather than sam-
pling fresh permutation for each ciphertext. Therefore, in the comparison, we
only need run the PPH test for pairs that share the same index, which means
only O(n) pairings for one comparison. Formally:

Construction. Let F be a secure PRF with the same syntax as above, let
P (x, y) = 1(x = y + 1) be the relation predicate that outputs 1 if and only if
x = y+1, and let Γ = (Kh,H, T ) be a PPH scheme with respect to P , as before.
We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M ], the
algorithm chooses a key k uniformly at random for F , runs Γ.Kh to obtain the



Parameter-Hiding Order Revealing Encryption 25

hash and test keys (hk, tk), and samples a random permutation π : [n]→ [n].
It sets ck← tk, sk← (k, hk, π) and outputs (ck, sk).

– E(sk,m): On input the secret key SK and a message m, the algorithm com-
putes the binary representation of m = (b1, . . . , bn), and then calculates:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi, ti = Γ.H(hk, ui).

Then it sets vi = tπ(i) and outputs CT = (v1, . . . , vn).
– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′1, . . . , v
′
n), the algorithm runs Γ.T (tk, vi, v

′
i)

for every i ∈ [n]. If there exists i∗ such that Γ.T (tk, vi∗ , v
′
i∗) = 1, then the

algorithm outputs 1, meaning m1 > m2; else if there exists a pair i∗ such
that Γ.T (tk, v′i∗ , vi∗) = 1, then the algorithm outputs 0, meaning m1 < m2;
otherwise it outputs it outputs ⊥, meaning m1 = m2.

Now, we give the description of the leakage profile, which takes m = {m1, . . . ,mq}
as input and produces:

L′f (m1, . . . ,mq) := (∀1 ≤ i, j, k, l ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mk,ml)))

Compared to Lf , L′f gives extra information that 1(msdb(mi,mj) = msdb(mk,ml))
even when i 6= k. However, L′f is still strictly stronger than CLWW, and for any
m, it’s obvious that L′f (m) = L′f (2m), which gives evidence that L′f is also
smoothed CLWW. And for its simulation based security, applying exactly the
same argument as the proof of Theorem 10, we can establish the following the-
orem.

Theorem 12. The ORE scheme Π is L′f -non-adaptive-simulation secure, as-
suming F is a secure PRF and Γ is restricted-chosen-input secure.

Therefore, to achieve the privacy of parameter hiding, we can use this effi-
cient scheme as an alternative, such that we only need O(n) pairings for each
comparison.

6 PPH from Bilinear Maps

We construct a PPH scheme for the predicate P required in our ORE construc-
tion. That is, P (x, y) = 1 if and only if x = y + 1.

We let F : {0, 1}λ × {0, 1}λ → Zp be a PRF, where p is a prime to be
determined at key generation.

Construction. We now define our PPH Γ = (Kh,H, T ).

– Kh(1λ) This algorithm takes the security parameter as input. It samples

descriptions of prime-order p groups G, Ĝ,GT , generators g ∈ G, ĝ ∈ Ĝ, a

bilinear map e : G × Ĝ → GT . It then chooses k
$← {0, 1}λ. It sets the

hash key hk← (k, g, ĝ), the test key tk← (G, Ĝ,GT , e), a description of the
bilinear map and groups, and outputs (hk, tk).
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– H(hk, x) This algorithm takes as input the hash key hk, an input x, picks
two random non-zero r1, r2 ∈ Zp and outputs

H(hk, x) = (gr1 , gr1·F (k,x), ĝr2 , ĝr2·F (k,x+1)).

– T (tk, h1, h2) To test two hash values (A1, A2, B1, B2) and (C1, C2, D1, D2),
T outputs 1 if

e(A1, D2) = e(A2, D1),

and otherwise it outputs 0.

Hence the domain D is {0, 1}λ and the range R is (G2, Ĝ2)

Correctness. Correctness reduces to testing if F (k, y + 1) = F (k, x). If x =
y+ 1 then this always holds. If not, then it is easily shown that finding x, y with
this property (and without knowing the key) with non-negligible probability
leads to an adversary that contradicts the assumption that F is a PRF.

Security. We prove that PPH is restricted-chosen-input secure, assuming that
F is a PRF and that the following assumption holds.

Definition 13. Let G, Ĝ,GT be prime-order p groups, g be generator of G and
ĝ be a generator of Ĝ, tand e : G × Ĝ → GT be a bilinear pairing. We say the
symmetric external Diffie-Hellman assumption holds with respect to these groups
and pairing if for all efficient A,

|Pr[A(g, ga, gb, gab) = 1] Pr[A(g, ga, gb, T ) = 1]|

and
|Pr[A(ĝ, ĝa, ĝb, ĝab) = 1] Pr[A(ĝ, ĝa, ĝb, T ) = 1]|

are negligible functions of λ, where a, b, c are uniform over Zp and T is uniform
over GT .

We can now state and prove our security theorem.

Theorem 14. Our PPH Γ is restricted-chosen-input secure, assuming F is a
PRF and the SXDH assumption hold with respect to the appropriate groups and
pairing.

Proof. We use a hybrid argument. Let (A1, A2, B1, B2) ∈ G2 × Ĝ2 denote the

challenge hash value given to the adversary during the real game H0 = INDpph
Γ,P (A).

Additionally, let R be a random element of G, R̂ be a random element of Ĝ, both
independent of the rest of the random variables under consideration. Then we
define the following hybrid experiments:

– H1: At the start of the game, a uniformly random function F ∗
R← Funs[{0, 1}λ,

{0, 1}λ] is sampled instead of the PRF key K, the rest remain unchanged.

– H2: The challenge hash value is (A1, R,B1, B2), where R
$← G.

– H3: The challenge hash value is (A1, R,B1, R̂), where R
$← Ĝ.
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In H3, the adversary is given a random element from the range R. Therefore,

Advpph
Γ,P,A(λ) = |Pr[H0 = 1]− Pr[H3 = 1]|

To prove H0 is indistinguishable from H3, we show that each step of the hybrid
is indistinguishable from the next. First, it is apparent that H0 and H1 are
computational indistinguishable by the PRF security, then:

Lemma 15. H1 ≈ H2 under the SXDH assumption.

Let A be an adversary playing the PPH security game, and let

ε = |Pr[H1 = 1]− Pr[H2 = 1]|.

Then we can build adversary B that solves SXDH with advantage ε. B is given
as input (g, ĝ, B,C) and the challenge term T . B works as follows:

– B sets tk = (G, Ĝ,GT , e) and sends it to A. After receiving x∗
$← A(tk)

it simulates a random function F ∗ via lazy sampling, and it will implicitly
set F ∗(x∗) = b, the discrete logarithm of B. It prepares the challenge as by

selecting r∗
$← Zp and computing

A1 = gc, A2 = T,B1 = ĝr
∗
, B2 = ĝr

∗F∗(x∗+1)

and runs A on input tk, x∗, (A1, A2, B1, B2).

– To answer hash query for x 6= x∗ from A, B calculates F ∗(x) and F ∗(x+ 1)
(note that x, x+ 1 6= x∗). Then B picks r1, r2 randomly and computes:

H(x) = gr1 , gr1·F
∗(x), ĝr2 , ĝr2·F

∗(x+1);

If A queries x = x∗, B calculates F ∗(x∗+1), picks r′1, r
′
2

$← Zp, and computes

H(x∗) = gr
′
1 , Br

′
1 , ĝr

′
2 , ĝr

′
2·F
∗(x∗+1);

– Finally B outputs whatever A outputs.

We note that in A’s view, without querying A(x∗ − 1), B simulates the game
properly. If T = gbc, then B simulates H1, and if T s random then it simulates
H2. Hence if A has an advantage ε in distinguishing H1 and H2, then B has the
same advantage to break SXDH assumption.

We also have the following lemma:

Lemma 16. H2 ≈ H3 under the SXDH assumption.

The proof is exactly the same as the prior hybrid step, except in the group Ĝ
part of the hash instead of G. We omit the details.

Collecting the steps completes the proof of Theorem 14.
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