
Hidden Shift Quantum Cryptanalysis and
Implications

Xavier Bonnetain1,2 and María Naya-Plasencia2

1 Sorbonne Université, Collège Doctoral, F-75005 Paris, France
2 Inria, France

Abstract. At Eurocrypt 2017 a tweak to counter Simon’s quantum at-
tack was proposed: replace the common bitwise addition with other op-
erations, as a modular addition. The starting point of our paper is a
follow up of these previous results:

First, we have developed new algorithms that improves and generalizes
Kuperberg’s algorithm for the hidden shift problem, which is the algo-
rithm that applies instead of Simon when considering modular additions.
Thanks to our improved algorithm, we have been able to build a quantum
attack in the superposition model on Poly1305, proposed at FSE 2005,
widely used and claimed to be quantumly secure. We also answer an open
problem by analyzing the effect of the tweak to the FX construction.

We have also generalized the algorithm. We propose for the first time a
quantum algorithm for solving the hidden problem with parallel modular
additions, with a complexity that matches both Simon and Kuperberg
in its extremes.

In order to verify our theoretical analysis, and to get concrete estimates
of the cost of the algorithms, we have simulated them, and were able to
validate our estimated complexities.

Finally, we analyze the security of some classical symmetric constructions
with concrete parameters, to evaluate the impact and practicality of
the proposed tweak. We concluded that the tweak does not seem to be
efficient.

Keywords: quantum cryptanalysis, hidden shift problem, Simon-meets-
Kuperberg, Poly1305, symmetric cryptography, modular additions.

1 Introduction

As years go by, quantum computers becomes an increasingly concrete threat.
The scientific community is already anticipating the changes in the hardness
of various problems such a computer would produce. Cryptology is one of the
affected disciplines. Indeed, the current state-of-the-art asymmetric primitives
would become insecure, and the NIST has launched a competition for finding
new primitives.

Symmetric cryptography, essential for enabling secure communications, seemed
much less affected at first sight: for a long time, the greatest known threat was

1

Grover’s algorithm, which allows exhaustive key searches in the square root of
the normal complexity. Thus, it was believed that doubling the key lengths suf-
fices to maintain an equivalent security in the post-quantum world.

At the same time, the security proofs in symmetric cryptography often need
to make unrealistic assumptions. Therefore, the security of concrete symmetric
primitives is mainly based on cryptanalysis: we only gain confidence in their
security through extensive and continuous scrutiny. Hence, it is not possible
to determine if a symmetric primitive is secure in the quantum world without
first understanding how a quantum adversary can attack it. New results in this
direction have appeared lately, like quantum generic meet-in-the-middle attacks
on iterative block ciphers [28], quantum linear and differential attacks [30], or
improved algorithms for collisions or multicollisions [17,27].

Using Simon’s algorithm. Some other recent attacks are based on the polynomial-
time quantum algorithm of Simon [43]. It began with [34], which presented
a distinguisher for 3-round Feistel schemes. It has then been followed among
other works by an attack against the classically secure Even-Mansour construc-
tion [35], some quantum related-key attacks [41] or a key-recovery attack against
the CAESAR candidate AEZ [11].

This algorithm has also been proven efficient against well-known modes of
operation for MACs and authenticated encryption at Crypto 2016 [29], where
a quantum slide attacks was also demonstrated, with a complexity linear in
the block size (see also [42]). An analysis of the FX construct against quan-
tum adversaries was presented at Asiacrypt 2017 [37]. A combination of Grover
and Simon showed it was much less secure than expected, and for instance the
PRINCE cipher is broken in the quantum setting. These surprising results were
the first clearly showing that doubling the key-length of symmetric primitives is
not enough – in some cases – to provide an equivalent security against quantum
adversaries when considering the superposition scenario, that we discuss next.

The attack model. These last mentioned attacks apply in a scenario of superpo-
sition quantum queries. It means that the adversary is not only allowed to per-
form local computations on a quantum computer3, but is also allowed to perform
superposition queries to a remote quantum cryptographic oracle, to obtain the
superposition of the outputs. These attacks have been described as superposition
attacks [20], quantum chosen message attacks [10] or quantum security [50].

This is a strong model for the attacker, but there are very good arguments for
studying the security of symmetric primitives in this setting (see for instance [24]
or [25] for more detailed justifications of the model):
1. This model is simple. Using another model would imply artificial and hard

to respect measures with respect to cryptographic oracles in a world with
quantum resources, with complex manipulations of yet uncertain outcome 4.

3 In [9,15,47,51], it can query a quantum oracle with an arbitrary quantum input.
4 Implementations of theoretically secure quantum cryptography remain yet not fully
understood, as shown by the attacks [38,48,52]

2

2. Safety in this model implies safety in any other scenario, even advanced ones
(e.g. obfuscated algorithms).

3. Though powerful, this model is not trivial: not all primitives are broken in it.
Actually, several resistant constructions have been proposed [4,10,20,25,44].

All the attacks proposed in this paper fit in this model.

Countering the attacks [2]. At Eurocrypt 2017, a proposal for countering the
attacks from [29] was presented [2]. The authors propose to replace the common
(Z/(2))n addition, vulnerable to the Simon algorithm, with other operations
that imply a harder problem to solve. The most promising of these operations,
because of efficiency and implementations issues, already used in several sym-
metric schemes (i.e. [40,26,49]), is addition over Z/(2n), i.e. modular addition.
The authors claim the quantum hardness of the hidden shift problem proves the
security of their proposal against quantum chosen-plaintext attacks.

This approach is a priori an interesting direction to analyze and study. The
authors did not provide a deeper analysis of the impact of various parameters
on the security. The attacks are no longer in O(n) (with n the state size) when
using the modular addition, as Simon’s algorithm does not apply anymore, but
we could describe attacks that are still a lot faster than the generic ones by using
Kuperberg’s algorithm [32], e.g. 2O(

√
n) instead of O

(√
2n
)
.

Indeed, classically, a symmetric primitive is considered secure when no at-
tack better than the generic attack exists. While the complexity of the generic
exhaustive search is exponential (2n/2), the quantum attacks on primitives with
modular additions have a sub-exponential complexity. This implies a need for a
redefinition of security, when building secure primitives with these counter mea-
sures, as the best generic attacks that define the security of the cipher (based
on Kuperberg now) will be better than the exhaustive search. Also, concrete
proposals for the size of the primitives needed in order to provide the typical
security needs (i.e. 128 bits) are missing.

Describing in detail the new best quantum attacks on the proposed con-
structions is necessary to provide concrete designs for a given wanted security.
To evaluate the interest of such constructions, we should compare these designs
with concrete parameters to other (quantum-secure) ones, like the Advanced
Encryption Standard (AES) [19].

On Kuperberg’s complexity, improvements, applications. Studying in detail Ku-
perberg’s algorithm, proposing improvements and simulating the complexity for
concrete parameters has not been done before and is of algorithmic general in-
terest. Such an analysis is required to determine suitable parameter sizes for a
given security level. Hidden shift algorithms have an impact beyond the sym-
metric variants we just mentioned, and can threaten other primitives, such as
Poly1305 [6], which uses modular additions. Hidden shift problems also arise in
some other cryptographic areas, such as isogenies. They are for example relevant
to assess the security of CSIDH [16].

3

1.1 Our contributions

1. Kuperberg’s algorithm: improvement, generalization. We studied
Kuperberg’s quantum algorithm for hidden shifts in the group Z/(N) [32] and its
applications in symmetric cryptography.5 We focus on the groups Z/(2n), which
are widely used in symmetric cryptography. The original algorithm retrieves
one bit of the secret shift at a time and uses a reducibility property to get the
next bit. We propose a variant that performs better by getting all the bits in
one step, allowing a drastic cost reduction of the attack on Poly1305. In the
extended version of this paper [12], we also propose a generic algorithm to solve
the hidden shift problem in non-abelian groups.

2. Simon Meets Kuperberg. We propose a new quantum algorithm that
considers a generalization for products of cyclic groups (Z/(2w))p and its sub-
groups), commonly used in symmetric primitives. The problem is more easily
solvable in these groups than in Z/(2wp). Our complexity analysis shows how it
meets Simon (w = 1) and Kuperberg (p = 1) in each extreme.

3. Simulation of the algorithms. We have implemented the classical part of
these algorithms (Kuperberg, improved Kuperberg and Simon-meets-Kuperberg)
and simulated them in order to estimate the asymptotic query complexity, and
to get values for parameters of interest, verifying the expected complexities6.

4. Attack on Poly1305 in the superposition model. We propose a quan-
tum attack on Poly1305 [6], a MAC that has been standardized for TLS 1.2 [36]
and 1.3 [1], and is notably used by OpenSSH, Firefox and Chrome. In [8] a clas-
sical and quantum security of 128 bits is claimed for Poly1305: "‘Information-
theoretic’ MACs such as GMAC and Poly1305 already protect against quantum
computers without any modifications: their security analysis already assumes an
attacker with unlimited computing power." Our attack, that works in the su-
perposition model, has a complexity of 238 and uses our improved Kuperberg’s
algorithm. It recovers half of the 234-bit key, allowing forgeries of authenticator
messages with the same nonce. The attack is not a direct application of the
algorithm and requires some additional techniques.

5. Attack on the FX variants. We answer an open question asked in [37],
assessing the quantum security of the FX construction with any group law. If the
5 Even if some later algorithms have been developed and are more efficient, we focus
on the original algorithm for two main reasons. We focus on quantum query and time
complexity and the gain from [39] is in memory and [21] needs an exponential time
classical post-processing. Moreover, we want concrete values and not asymptotic
exponents and the algorithm in [33] is far harder to estimate precisely.

6 The code is available at https://who.paris.inria.fr/Xavier.Bonnetain/extra/
code.tar.gz

4

https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz

inner key addition is done with a commutative group law, the security gain of the
construct is marginal, and the best we can hope to achieve with a non-abelian
group is a gain of around n/3 bits of security for an n-bit inner key.

6. Evaluate the proposed countermeasures from [2]. The final aim was to
determine how to size the symmetric primitives in order to offer a certain desired
security, and to decide whether the proposed countermeasure was sufficient, and
efficient enough in practice. Using modular additions in vulnerable constructions
instead of xors for key addition increases the complexity of the corresponding
quantum key-recovery attack, but we show that the proposal from [2] does not
seem practical. It would require an internal state size of a few thousand bits, to
be compared with the size of the internal state of AES-256, which is 128 bits.

Organization of the paper. Section 2 introduces some preliminary material.
Section 3 presents our study on Kuperberg’s algorithm and our improvement,
several generalizations, our simulations and the inferred complexities. Section 4
describes our new quantum algorithm for parallel additions. Section 5 presents
the first quantum attack on Poly1305 in the superposition model, using Kuper-
berg’s algorithm. Section 6 estimates the strength of the FX construct with new
group laws. Section 7 applies our previous results to actual symmetric primitives,
deducing the key or internal state size that must be used in those constructs to
offer a desired quantum security. The paper ends with a conclusion in Section 8.

2 Preliminaries

In this section, we present the quantum symmetric attacks from [29] and [37],
the proposed solution from [2] and our cost model.

2.1 Quantum attacks using Simon’s algorithm from [29]

In [29] Simon’s quantum algorithm was applied to cryptanalyze several widely
used modes of operation and CAESAR candidates. This was possible due to the
exponential speedup of Simon’s algorithm, that solves the following problem:

Let f : {0, 1}n → {0, 1}n. Given the promise that there exists s ∈ {0, 1}n
such that for any (x, y) ∈ {0, 1}n, [f(x) = f(y)]⇔ [x⊕ y ∈ {0n, s}], find s.

The authors applied Simon’s algorithm to find a secret information in time
linear in the block size (O(n) instead of O(2n/2) classically). One implication of
the problem was not verified in the attacks: with a small probability, we might
have f(x) = f(y) and x⊕ y /∈ {0n, s}. However, they showed that the algorithm
is still efficient with a random function in place of a random permutation.

2.2 Solution proposed in [2]

In [2], the authors propose to change the group law in the primitives broken
by [29], to prevent the use of Simon’s algorithm. They also propose a security

5

reduction from the primitives to the corresponding hidden shift problem, and
claim that they are safe, as no polynomial algorithm for these problems is known.
They notably propose (Z/(2n),+) (for which Kuperberg’s algorithm is, in a
sense, not a threat, as it is superpolynomial), or the symmetric group Sn.

2.3 Cryptanalysis of the FX construction [37]

The FX construction [31] uses a block cipher Ek and two additional keys k1, k2,
and is defined as FXk0,k1,k2(x) = Ek0(x⊕k1)⊕k2. It can be broken by combining
Simon’s and Grover’s algorithms : one can perform an exhaustive search on k0
and then see the FX construct as an Even-Mansour with the public permutation
Ek0 , which can be broken with Simon’s algorithm. The authors left as an open
problem the case where the whitening keys were added with modular addition.

2.4 Cost Model

We’re interested in the explicit costs of the algorithms we study. These algorithm
have all a similar shape: they use a generation circuit that produces some rele-
vant qubits, a combination circuit that uses the produced qubits, and a control
circuit that chooses which qubits are to be combined. The generation circuit is
a Quantum Fourier Transform applied to an oracle, whose total cost in time
and memory is the number of queries. The combination circuit has a fixed cost,
and can only be used once per query. The control circuit can be more complex,
but only have to reason about classical values, and hence can be implemented
purely classically. Its cost in time and memory will be the cost in query, with a
polynomial overhead. As we expect that a classical computer will be far more
efficient than a quantum computer to apply the same number of gates, we esti-
mated that the bottleneck of our algorithm will be the quantum part of it, and
that the relevant cost unit here is the number of queries.

3 New Results on Kuperberg’s Algorithm

In this section, we study Kuperberg’s quantum algorithm for solving the hid-
den shift problem. While the final aim is to be able to accurately estimate the
complexities of the cryptanalysis on primitives whose security rely on the hid-
den shift problem, we have also performed a deeper work that verifies and helps
better understanding Kuperberg’s algorithm and its performance. We propose a
new variant of the algorithm that reduces its cost, and that will allow to build
the performant attack from section 5. We’ve implemented the classical part of
these algorithms and made some simulations in order to get concrete estimates of
the asymptotic complexity and values for parameters of interest, that match and
refine the theoretical expectations. In the extended version of this paper [12], we
also propose a generic algorithm to solve the hidden shift problem in non-abelian
groups.

6

3.1 Hidden Shift Problem and Quantum Algorithms

The hidden shift problem (HSP) is defined as follows:
Let f , g be two injective functions, (G, ·) a group. Given the promise that

there exists s ∈ G such that, for all x, f(x) = g(x · s), retrieve s.
We say that f is a shifted version of g, the shift being s. To estimate the

complexity, we consider n = log2 |G|. The hardness of the problem depends on
the group law. If it is a bitwise xor, Simon’s algorithm [43] solves it in polyno-
mial time. If the group law is a modular addition, it can be solved with a linear
number of queries [21]. This method requires an exponential-time classical post-
processing, and as such, won’t be interesting for us. The first sub-exponential
(in quantum query and quantum and classical time) algorithms are presented in
[32]. They have a time and space complexity in 2O(

√
n) for a group of size 2n.

Other variants were developed later, with an algorithm with quantum polyno-
mial space, but slightly worse time complexity, in 2O(

√
n log(n)) [39], and some

algorithms in [33], that generalize the previous one, allowing some trade-offs
between classical and quantum memory and time.

From this point, we focus on additions modulo a power of 2, as they are very
common in symmetric cryptography, due to implementation reasons.

Single modular addition. All these algorithms are in two parts: an oracle
that calls f and g to produce some labeled qubits (`, |ψ`〉), with ` a classical
value that we call a label, and a combination circuit that transforms them into
more interesting ones. The oracle part uses the quantum oracle

O : |b〉 |x〉 |y〉 7→
{
|0〉 |x〉 |y ⊕ f(x)〉 if b = 0
|1〉 |x〉 |y ⊕ g(x)〉 if b = 1

.

Generation. The oracle circuit (Figure 1a) produces the uniform superposition
in the registers b and x with Hadamard gates (H), feeds them to the oracle (O),
and then measures register y. This measurement gives a result y0 and collapses
the b and x registers in the state

∑
f(x)=y0

|0〉 |x〉+
∑
g(x)=y0

|1〉 |x〉, which is the
state |0〉 |x0〉+ |1〉 |x0 + s〉 for a given (unknown) x0, thanks to the promise. We
then apply a quantum Fourier transform (QFT) on the x register and measure
the result. This gives us a uniformly distributed `, and collapses the remaining
qubit in the state |ψ`〉 = |0〉+ exp

(
2iπ s`2n

)
|1〉.

This qubit depends on s, but is not directly exploitable. The qubit |ψ2n−1〉 =
|0〉 + exp (iπs) |1〉 is very interesting, as it is |+〉 if the lowest bit of s is 0, and
else is |−〉. Hence, if we measure it in the {|−〉 , |+〉} basis, we get one bit of s.

Combination. We have then a combination part, that uses the produced qubits
to generate some more interesting ones. The combination is done with the cir-
cuit in Figure 1b, that consists of one controlled-not and a measurement of the
second register. By doing so, we destroy two elements in order to produce one.
Before the measurement, the system is in the state CNOT |ψ`1〉 |ψ`2〉 =

|00〉+ exp

(
2iπ

s(`1 + `2)

2n

)
|10〉+ exp

(
2iπ

s`2
2n

)(
|01〉+ exp

(
2iπ

s(`1 − `2)
2n

)
|11〉

)

7

b : |0〉

x : |0〉

y : |0〉

H

H O QFT

^

^
n n

m

n

m

n

(a) Quantum oracle call

|ψ`1〉 |ψ`〉

|ψ`2〉 ^

(b) Combination circuit

Fig. 1: Quantum circuits for Kuperberg’s algorithm

If we measure a 0 we’ll get the qubit |ψ`1+`2〉, and if we measure a 1 we’ll
get |ψ`1−`2〉. Both outcomes are equiprobable. If we only look at the labels,
the combination routine destroys 2 labels and produces a new label, which is
either their sum or difference. We want to obtain the label 2n−1. This abstract
problem would be a problem of subset-sum modulo 2n if the operation at each
combination was fixed, and not picked randomly in {+,−}, as we would want
to find a tuple satisfying ∑

i∈I

`i = 2n−1 mod 2n.

However, in our situation, the problem is closer to finding a tuple satisfying∑
i∈I

δi`i = 2n−1 mod 2n,

with δi ∈ {−1, 1} unknown before the actual destructive computation.
With these quantum tools, we can produce random elements and combine

them, but we need an algorithm to choose which elements to combine.

Choosing the elements to combine. As a combination produces either a + b or
a− b, we need to find a property preserved in both cases, to not lose everything
if the wrong outcome occurs. It turns out divisibility by 2 is such a property: if
both a and b are multiples of 2k, a + b and a − b will also be multiples of 2k.
Hence comes naturally the idea of the combination algorithm: from the elements
we have, generate elements with a higher divisibility by 2, until we get 2n−1.
To achieve this, we can combine elements such that a + b or a − b has a high
divisibility by 2 (e.g. have a long trail of 0 in their binary representation).

Hence, an algorithm to find 2n−1 is then to separate the elements in pools
by their divisibility by 2, and, beginning with the odd numbers, to combine the
two elements that can produce a number with the highest possible divisibility
by 2. As this property corresponds to the longest partial collision in the binary
representation of the elements, they can be efficiently found with a radix tree.
There is however one caveat: we don’t want the useless 0 element, so we try to
not combine two identical elements, or one element and its opposite.

As the interesting a and b collide on their lowest bits, they have the same
divisibility by 2, hence a = 2k(2a′ + 1) and b = 2k(2b′ + 1). Then, a + b =
2k+1(a+ b+ 1) and a− b = 2k+1(a− b). This means that even in the bad case
(with a small divisibility by 2), we still get a slightly better divisibility by 2.
Then, the algorithm consists in using this heuristic until we get 2n−1.

8

This is Algorithm 1, which is Algorithm 3 of [32]. The paper also presents
a sketch of proof that its complexity is in Õ

(
2
√

2 log2(3)n
)
. As the paper only

focuses on the asymptotic exponent complexity, the polynomial part is not
well known. We can however deduce from the sketch of proof a complexity in
O
(
n
√
n2
√

2 log2(3)n
)
to retrieve the whole hidden shift, which may not be a tight

bound (both for the polynomial and the exponent), due to the way the sketch
of proof works.

Algorithm 1 Kuperberg’s original algorithm [32], without qubits, in base 2
Generate a sufficiently large number N of elements in Z/(2n) . Queries
Separate them in pools Pi of elements divisible by 2i and not 2i+1

for i := 0 to n− 2 do
while |Pi| ≥ 2 do

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 (and is not 0)

c is chosen randomly in {a+ b, a− b} . Combination
Insert c in the corresponding Pj
if Pn−1 6= ∅ then . Found |ψ2n−1〉?

Perform a measurement on |ψ2n−1〉
return s0

end if
end while

end for
return Failure

If this succeeds, we get the value of the lowest significant bit of the hidden
shift, s0. We have then to retrieve the other bits of s. This can be done using
a recursive procedure: with the knowledge of s mod 2 = s0, we can construct
the functions f ′(x) = f(2x) and g′(x) = g(2x + s0), that have the hidden shift
s′ = (s− s0)/2 in Z/(2n−1). The 2nd bit of s is the lowest bit of s′, and we can
reapply the routine, and so on until we get all the bits.

Quantum memory cost. This algorithm has a cost in quantum memory of
one qubit per query, plus the memory cost of the quantum oracle, which depends
on the concrete instance. This memory is weakly entangled: after the quantum
oracle queries, we will have only pairs of entangled qubits. This notably implies
that a corrupted qubit will not disrupt the whole computation, one would only
need to erase the corresponding label.

Classical cost. The classical part needs to search for the best colliding pairs.
This can be efficiently implemented using a radix tree. Moreover, as for our
purposes, the labels x and −x are equivalent, we can normalize them, for ex-
ample by forcing, in the binary representation, the most significant bit or the

9

bit after the lowest significant one to be a zero. The time and memory cost
will be in O(N log(N)). With N = O(2

√
2 log2(3)n, the complexity will be in

O(
√
n2
√

2 log2(3)n. This represents a logarithmic overhead compared to the quan-
tum query cost. This part is purely classical, and we consider here that the
relevant cost metric is the quantum cost.

3.2 New variant with improved the time complexity

In this section we propose an optimization of the previous algorithm that allows
to perform the attack in Section 5. Previously each bit of the shift was retrieved
independently. We have noticed that if some qubits remains once we have found
the target qubit, we can reuse them in the rest of the computation. The phase
of the element ` is 2π `s2n = 2π `(s0+2s′)

2n = 2π `s′

2n−1 +2π `s02n . If s0 = 0, we can reuse
them directly as elements of Z/(2n−1) to retrieve the next bit (we just have to
see the label modulo 2n−1, that is, drop its most significant bit).

If s0 = 1, we have an additional phase of 2π `
2n that prevents us to do so.

We can get rid of it by applying a phase shift gate of angle −2π `
2n (which is the

identity for |0〉 and changes the phase of |1〉 by a given angle) before reusing it.
We can apply this trick to reuse the remaining qubits, once we have found 2n−1.
Moreover, in the 2nd phase, the interesting elements are 010...0 and 110...0,
that is, any element of the penultimate pool. Likewise, we can use an element in
a pool to retrieve one bit of the shift if we know all the preceding bits.

This strategy leads to the improved Algorithm 2, where we ensure that each
pool stays non-empty. If we miss one qubit, won’t have the value of the corre-
sponding bit of s, and, as we won’t know which rotations to do, on the following
bits of s.

Differences in complexity. The elements we keep to retrieve the whole shift
are not used in a combination, hence we can have n − 1 combination less. The
combination not done will be the least interesting one, hence this will have a
negligible impact. Another constraint is that all the pools must be nonempty.
As the hardest to fill is the one targeted by the original algorithm, it does not
change much the cost. Empirically, we found that the overhead compared to
the original algorithm is less than 2, and converges to 1 as n grows. The main
difference is that we only need to proceed once and not n times.

The complexity proof of the original algorithm naturally carries to the new
one. The core idea is that by combining 2e elements, we can expect to produce
around 2e/3 elements whose label is a multiple of 2e. Applying this principle
multiple times leads to needing an initial pool of size O

(
n2
√

2 log2(3)n
)

in or-
der produce the wanted qubit with a negligible failure probability. Hence, the
complexity is in O

(
n2
√

2 log2(3)n
)
. As the only difference in both algorithms con-

cerns the use of 2n qubits, the same principle is applicable for both algorithms.
With these complexity estimates, we obtain that the cost to retrieve the whole

10

secret with our algorithm is in O
(
n2
√

2 log2(3)n
)
, while the original algorithm

would be in O
(
n
√
n2
√

2 log2(3)n
)
. We found out that it is better in practice, as

developed in Section 3.4.
The memory complexity is negligibly increased, as we have slightly more

elements to deal with at once.

Algorithm 2 Variant to get all the bits of the secret in one pass
Generate N random numbers in Z/(2n)
Separate them in pools Pi of elements divisible by 2i and not 2i+1

for i := 0 to n− 2 do
while |Pi| ≥ 3 do . Ensures Pi stays non-empty

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 (and is not 0)

c is chosen randomly in {a+ b, a− b}
Insert c in the corresponding Pj
if ∀i ∈ [0, n− 1], Pi 6= ∅ then

Perform a measurement on a qubit in each pool
return s

end if
end while

end for
return Failure

3.3 Approximated promise

In concrete attacks, we may want to use this algorithm on functions that respect
partially the promise. We study in this section various cases.

Lemma 1 (Unwanted collisions). Let f : Z/(2n) → Z/(2n) be a random
function, s ∈ Z/(2n), g such that g(x) = f(x + s). Given a quantum oracle
access to f and g, we can retrieve s in Q quantum queries if we can solve the
hidden shift problem in Z/(2n) with a permutation using Q/e quantum queries.

Proof. This case was studied in section 2.2 of [29] in the context of Simon’s
algorithm. It corresponds to the hidden subgroup problem with a non-injective
function. It then still respect for all x, f(x) = g(x+ s) for a secret s.

Let’s decompose each step. The measurement of the third register of∑
x

|0〉 |x〉 |f(x)〉+ |1〉 |x〉 |g(x)〉

produces

|0〉
c∑
j=1

|xj〉+ |1〉
c∑
j=1

|xj + s〉

11

and the measurement yields f(xj) with probability c/2n. After the QFT, the
measurement will give us a label ` and a qubit(

c∑
j=1

exp

(
2iπ

xj`

2n

))(
|0〉+ exp

(
2iπ

s`

2n

)
|1〉

)

As a qubit is invariant by a global phase shift, we still get a valid element.
However, it is not uniformly sampled, and the probability of getting a given ` is

p =
1

c2n

∣∣∣∣∣
c∑
j=1

exp

(
2iπ

xj`

2n

)∣∣∣∣∣
2

.

Notably, the case ` = 0, which is useless for us, is the most probable.
It is known [23] that for a random function, the expected number of images

with r preimages is 2n/ (er!). The first measurement samples on the images,
uniformly if it is a bijection, and proportionally to the number of preimages in
the general case. That means we’ll have a probability of r/(er!) = 1/(e(r−1)!) of
getting an image with r preimages. We’ll get a unique preimage with probability
1/e, so that means with e times the number of samples, we’ll get enough elements
with only one preimage. This is a very rough approximation, as the multiple
preimages induces only a bias on the generated elements.

Remark 1. Alternatively, we can consider the function F (x) = (f(x), f(x +
1), . . .), that has the same shifts as f , but has a smaller probability of unwanted
collisions, at the cost of having to query f multiple times for one query of F .

Lemma 2 (Multiple shifts). Let (si)i≤m ∈ Z/(2n)m, let f, g two permuta-
tions of Z/(2n) such that, for all x, i, f(x) = g(x + si). The first bits of the si
can be retrieved if and only if they are all equal. They can be retrieved by solving
the HSP in Z/(2k) with the same functions, with 2k = gcdi 6=j(2

n, si − sj).

Proof. We can study what happens with two shifts, s and t. We have, for all x,
f(x) = g(x+ s) = g(x+ t).

From these equalities, we can deduce that for all x and λ, f(x) = f(x+λ(s−
t)) = g(x+ s+λ(s− t)). The functions have in fact plenty of shifts: s+λ(s− t),
the exact number depending on the divisibility by 2 of s− t. The bits of x that
are above this level have in fact no impact on the value of f , so this problem is
degenerate: if s − t = 2kµ, we have an instance of the problem in Z/(2k), with
a hidden shift s′ = s mod 2k = t mod 2k, and we have 2k = gcd(2n, s− t). We
cannot get the other bits of s or t, as all the s+ λ(s− t) are also valid shifts.

For more shifts, we need to consider the difference that have the smallest
divisibility by two, that is, the gcd of all the differences with 2n.

As the divisibility by two of the difference corresponds to an equality in the
first bits, the lemma holds.

Remark 2. If we don’t know that the functions have multiple shifts, or if the gcd
is not known in advance, this is still detectable, as the labels we measure will
always divide 2n−k.

12

Proof of the Remark. The formula of the probability of measuring ` is p(`) =

1
c2n

∣∣∣∑c
j=1 exp

(
2iπ

xj`
2n

)∣∣∣2 with c shifts. This reduces to

1

c2n

∣∣∣∣∣exp
(
2iπ

x`

2n

)∑
λ

exp

(
2iπ

λ2k`

2n

)∣∣∣∣∣
2

.

This is 0 if exp
(
2iπ 2k`

2n

)
6= 1, that is, if 2n−k - `. This means we’ll only get

some `s with at least n− k trailing zeros.

The following lemma addresses the problem of functions which respect the
shift promise only for a subset of their input, and shows this is still resolvable if
the number of wrong inputs is small enough.

Lemma 3 (Partial shift). Let f , g two permutations of Z/(N), s ∈ Z/(N),
X ⊂ Z/(N) such that, for all x ∈ X, f(x) = g(x + s). Then if the hidden
subgroup problem in Z/(N) costs Q queries, we can retrieve s given quantum
oracle access to f and g in Q queries, with probability (|X|/N)Q.

Proof. If we measure an f(x) whose x is in X, then we have a valid element.
This happens with probability |X|/N . If this is not the case, we get a malformed
qubit. We can expect the algorithm to succeed only if all the Q queried elements
are valid, which happens with probability (|X|/N)Q.

Remark 3. It would also be possible for the algorithm to succeed if we have a
way to identify the bad x from the value f(x)/g(x), which is measured, as it
would allow us to drop the corrupted qubit when we create it. The problem
would then only concern the unidentified bad x.

Lemma 4 (Input restriction). Let f, g be two permutations of Z/(N), s ∈
Z/(N) such that, for all x, f(x) = g(x + s). Given a quantum oracle access to
f and g restricted to the inputs 0 ≤ x < 2n, if 0 ≤ s < 2n−1 and the hidden
subgroup problem in Z/(2n−1) can be solved in Q queries, s can be retrieved in
eQ2 queries.

Proof. We are only given access to the interval [0; 2n). We cannot see the hidden
shift in Z/(N) as a hidden shift in Z/(2n). However, if s is small enough, we
have an instance of a partial hidden shift, the valid elements being the ones such
that 0 ≤ x < 2n and 0 ≤ x+ s < 2n. The probability to get a bad element is less
than s/2n in this case. If we need Q queries, and s/2n ' 1/Q, then the success
probability will be greater than (1− 1/Q)Q ' 1/e. This fails for greater s.

However, we can query a subinterval of [0; 2n) for f and g. For A ∈ [0; 2n−1),
if we query [0; 2n−1) to f(x) and g(x + A), we will retrieve s with probability
1/e if 0 ≤ s−A < 2n−1/Q′, if we need Q′ queries to solve the hidden subgroup
problem in Z/(2n−1).

To retrieve s, we can sequentially test for all A multiples of 2n−1/Q′, until
we reach 2n−1. We then have Q′ intervals to test, and each test costs Q′ queries.
Moreover, the algorithm will succeed if the test with the right guess ofA succeeds,

13

and can be verified with a few classical queries. As the right guess has a success
probability greater than 1/e, we expect to find the shift in eQ′2 queries.

Remark 4. Here, we do a sequential test of the intervals. We could do a Grover
search on it instead, but we would need to choose a slightly higher number of
queries, in order to have a success probability very close to one. Moreover, it
would force us to implement all the control system that chooses which qubit to
collide quantumly and not classically.

Remark 5. We can see this method as trying to solve the HSP in Z. It also shows
that considering only the cyclic groups Z/(2n) allows to solve the problem in any
cyclic group in subexponential time, despite a different group structure.

3.4 Simulations

We have simulated the classical part of the algorithm by replacing the quantum
measurements by random outcomes. We used this to get an estimate of the
query complexity: We generate a certain amount of random numbers, and then
combine them in order to get the values we want. We hence get an estimate of the
success probability for a given amount of samples (Figure 2), and deduce from it
an asymptotic complexity for a constant success probability. Table 1 shows some
results of these simulations for different values of n, for 90% success probability.
The code of this implementation is available at https://who.paris.inria.fr/
Xavier.Bonnetain/extra/code.tar.gz.

Fig. 2: Estimated success probability in the number of samples, for 64 bits

Figure 2 shows the estimated probability of retrieving the whole secret in
function of the number of initial queries for a 64-bit secret. We’ve considered this
parameter instead of some finer ones, such as the numbers of bits we retrieved
because of the dependency between the bits we can retrieve: we have to retrieve
them in order, and the first ones are the hardest to get. We can try to guess
the missing bits, but as we destroy our qubits when we measure them, we can’t
recover from a wrong guess. It shows a transition from a negligible probability
of success to a negligible probability of failure in less than a factor 2. As the
algorithm is collision-based, it performs significantly better if it is run once with
a bigger initial pool than many times with smaller pools. It also shows that the

14

https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz

gap to get an arbitrarily small failure probability is small, which is useful if we
want to combine it with another quantum algorithm, like a Grover search.

n queries log2(queries) 1.8
√
n− 0.5 number of tests

16 118 6.9 6.7 106

32 826 9.7 9.7 106

64 14975 13.9 13.9 5× 105

80 49200 15.6 15.6 105

128 9.8× 105 19.9 19.9 5× 104

Table 1: Some results of the simulation of Algorithm 2 for 90% success probability

We can then deduce a heuristic complexity in query of 0.7×21.8
√
n for a 90%

success probability for Algorithm 2, which matches the exponent complexity of
Õ
(
2
√

2 log2(3)n
)
of the less efficient Algorithm 1, as

√
2 log2(3) ' 1.8. We also

performed a few simulations of Algorithm 1, which gave slightly smaller results
(the ratio was less than 2, and decreased as n increased). As Algorithm 1 needs
to be repeated n times, it performs worse, both asymptotically and for the ranges
we were able to simulate. We see that the polynomial part is in fact a constant
next to 1 for Algorithm 2, which hints that the bound in [32] for Algorithm 1 of
O
(
n2
√

2 log2(3)n
)
to retrieve the last bit is probably tight for the exponent part,

but not for the polynomial part.

4 New algorithm: Simon Meets Kuperberg

We describe in this section a new quantum algorithm, that, for the first time,
solves efficiently the HSP problem when considering a product of cyclic groups,
which often appears in symmetric constructions [5,7,22,45]. We also provide a
simulation of the algorithm in section 4.3, showing that our complexity estima-
tions are correct.

4.1 Solving the Hidden Shift Problem for Parallel Modular
Additions

An interesting generalization for, inter alia, symmetric cryptography is to con-
sider p termwise additions modulo 2w, that is, a modular addition in Z/(2w)p.
The hidden shift in this case is a vector s = (s1, . . . , sp) of p words of w bits each.
The aim of this section is to propose a new algorithm that deals efficiently with
that group. The first natural approach was to apply an adapted variant of Ku-
perberg (as suggested in [32, Thm 7.1]), but its complexity of 2O(

√
n) significantly

differs from optimal: we explain in this section how to considerably improve this.
We propose a new algorithm which complexity is close to optimal. It exploits
three facts in particular that allow us to consequently improve the complexity.
In order to describe our algorithm, we need to previously adapt the first part of
Kuperberg’s algorithm by considering a quantum Fourier transform compatible

15

with the group law, so the original one is changed to into a termwise variant.
The oracle circuit produces the qubits

∣∣ψ`1,...,`p〉 = |0〉+exp
(
2iπ

∑
sj`j
2w

)
|1〉, the

product is replaced by an inner product. The combination circuit also works the
same way, and produces a termwise sum or difference.

Better worst-case gain. The first fact that allows to improve the complexity over
a basic algorithm is realizing that, though the combination strategy can be quite
similar with a research of partial collisions on the lowest significant bits of each
term, there is however a difference in the behavior in the disadvantageous case:
while we gained only one 0 in the former situation, here, we’ll get a 0 in each
term in which we have a collision in the lowest 1 (p zeros) while the size of the
corresponding list is big enough. We also have more choices in the combinations,
and we can have various equivalent and incompatible possibilities, with collisions
on different parts of the vector.

With p + 1 equations we can always gain p zeros. As before, we can separate
the elements in pools, depending on the divisibility by 2 of each term. Instead
of looking at the position of the first one, we look at the position of the first
one in any component of the vector to separate in pools. In each w pool, we can
restrict ourselves to the bit slice corresponding to the corresponding level. This
slice corresponds to a vector in (Z/(2))p. Hence, we can produce a vector that
will fit in the next pool if we manage to find some linearly dependent vectors,
that is, whose sum (or difference, as it is the same in Z/(2)) is 0.

Recovering the shift. We realized that the elements with `j ∈
{
0, 2w−1

}
are

of the form
∣∣ψ`1,...,`p〉 = |0〉 + exp (iπ

∑
sj`j) |1〉, so measuring them in the

{|−〉 , |+〉} basis will give us the parity of
∑
sj`j , that is, a linear equation in

the parity bits of the sj . In the case w = 1, we get a variant of Simon’s algorithm
for hidden shifts.

We describe next how to apply each approach separately, and then describe
how our algorithm combines them to obtain an optimized complexity, that will
be discussed and analyzed in section 4.2.

First Idea: Kuperberg’s variant with a better worst-case gain. A
simple strategy represented in Algorithm 3 is to mimic the former one: we apply
directly the strategy with the first term to zero all its bits except the most
significant one, and then process the second term, and so on. We can also apply
it the other way around: we can see the vector (sw−11 · · · s01, . . . , sw−1p · · · s0p) as
the number sw−1p sw−1p−1 · · · s

w−1
1 sw−2p · · · s0p · · · s01, and apply directly the former

strategy, until we get enough elements of the form sw−1p sw−1p−1 · · · s
w−1
1 0 · · · 0 that

we can measure. Another approach is to weight all the possible combinations
with the expected gain in the total number of trailing zeros, and choose the
most favorable one. The first two have the advantage of being classically easy to
implement, with a radix tree.

16

Algorithm 3 Variant 1 for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with all p terms divisible by 2i and at least
one term not divisible by 2i+1

for i := 0 to w − 1 do
while |Pi| ≥ 2 do

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 on each term

c is chosen randomly in {a+ b, a− b}
Insert c in the corresponding Pj

end while
end for
if Pw−1 6= ∅ then return Found
else return Failure
end if

Second Idea: p + 1 dependent equations always gain p zeros. There
is however another way to use the parallel structure of the hidden subgroup:
given p + 1 random elements, we can find a subset whose sum (or difference)
will always be even on all the components: if we look at the parity vector of the
elements, this corresponds to a linearly dependent subset of the vectors. This
approach can be useful if p is big with respect to the size of the pools: with on
average p/2 + 1 vectors, we can zero p bits. We can then iterate the technique
to set to zero the next row of bits, and so on. This is described in Algorithm 4.

Moreover, seeing the elements in a pool as equations allows us to perform the
same optimisation we have proposed for the case p = 1, to get all the secret in one
pass. Instead of storing one element per pool, we have to store p elements that
are linearly independent, that is, a full system of equations. As this optimisation
does not depend on what we do to each pool, we can also apply it to improve
Algorithm 3.

As, on average, we combine (p/2+ 1) elements, we divide at each w step the
pool by (p/2+1). This algorithm has a complexity in O((p/2+1)w). If w = 1, it
matches Simon’s complexity (and is, indeed, Simon’s algorithm). It is interesting
for big p, as it is polynomial in p, but it quickly becomes costly if w rises, as it
is exponential in it.

Our new algorithm: combining both ideas. As the two variants merge
the elements to progressively create new elements with a greater number of
zeros, we can, to be more efficient, combine both methods. Algorithm 4 is more
efficient when we have a small number of qubits to deal with, with a large p,
but is exponential in w, while Algorithm 3, having the same structure than the
original algorithm, is subexponential. Hence, the most efficient way to combine
them is to begin with Algorithm 3 until we produce some elements that lies in a
subgroup (Z/(2w′))p with a sufficiently small w′, where we can use Algorithm 4.

17

Algorithm 4 Variant 2 for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with each terms divisible by 2i and at least
one term not divisible by 2i+1

System = ∅
for i := 0 to w − 1 do

Pop p elements from Pi linearly independent at the level i, put them in System
Basis = ∅
for e ∈ Pi do

if
{
x mod 2i+1

∣∣x ∈ {e} ∪ Basis
}
is linearly independent then

Add e to Basis
else

Find a linearly dependent subset J
Compute c = ±

x∈J
x

Insert c in the corresponding Pj
end if

end for
end for
if System is full then return Found
else return Failure
end if

To estimate the complexity, we reasoned backwards: we estimated how many
elements in (Z/(2w))p we needed to obtain a given number of elements in
(Z/(2w′))p, with w′ < w, for increasing w.

The point at which we change of algorithm is the threshold, τ . The value of
this threshold is estimated and studied in the next section. Our new algorithm
is described in Algorithm 5, where all the bits are also recovered in one pass
thanks to our adapted improvement.

4.2 Complexity analysis

In this section we provide a complexity analysis of the previously described
algorithm, that will depend on the relation between the parameters w and p. A
summary can be found in Table 4.

We first estimate the complexity of Algorithms 3 and 4, and then combine
these costs to compute the best thresholds, and derive the final complexity.

Complexity using partial collisions. To estimate the complexity of partial
collisions, we first need to estimate the cost of the partial collisions with indepen-
dent bits (in (Z/(2))p), which is a more favourable situation than the collisions
in Z/(2n), as we do not have any uncertainty in the outcome of a combination.
We had the same approach as for the original algorithm: we performed simula-
tions. An optimistic approach could estimate that the complexity is 2

√
2p, which

would mean that a pool of 2e elements produces a pool of 2e−1 elements that all

18

Algorithm 5 Combined algorithm for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with each terms divisible by 2i and at least
one term not divisible by 2i+1

System = ∅
for i := 0 to w − τ − 1 do . Partial collisions

Pop p elements from Pi linearly independent at the level i, put them in System
while |Pi| ≥ 2 do

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 on each term

c is chosen randomly in {a+ b, a− b}
Insert c in the corresponding Pj

end while
end for
for i := w − τ to w − 1 do . Zero-sum

Pop p elements from Pi linearly independent at the level i, put them in System
Basis = ∅
for e ∈ Pi do

if
{
x mod 2i+1

∣∣x ∈ {e} ∪ Basis
}
is linearly independent then

Add e to Basis
else

Find a linearly dependent subset J
Compute c = ±

x∈J
x

Insert c in the corresponding Pj
end if

end for
end for
if System is full then return Found
else return Failure
end if

have e more zeroes. In practice, this is not what we observed, and we found a
complexity of around 2

√
2.3p, as presented in Table 2. This algorithm is far from

the best method to solve this problem, but it can become relevant if we need a
huge number of elements that are zeroed on p bits.

Collision cost. We have two heuristics for collision cost. When we don’t have
enough elements to have some collisions, we estimate from our simulations the
cost to produce E elements to be around 2

√
2.3p+log2(E)2 in this situation.

The minimal cost is around 2E, as we need to combine every element with
another one. Doing simulations, we found that it is (2E + 2p−2)/(1 + 1/2p),
asymptotically in E. The 2E comes from the fact that we do for almost all non-
zero elements one combination, the 2p−2 corresponds to the small number of
elements that don’t have a total collision with another element, and the (1+1/2p)
corresponds to the zero element that can naturally occur, with probability 1/2p.

19

p queries log2(queries)
√
2.3p− 0.2 number of tests

40 642 9.3 9.4 106

80 10770 13.4 13.4 106

100 33100 15.0 15.0 106

128 132600 17.0 17.0 105

140 228500 17.8 17.8 105

170 808000 19.6 19.6 104

Table 2: Some results of the simulations, for 90% success.

Alternative approach. Instead of considering only one row of bits and try to
zero it, we can consider a bigger chunk. That is, we want to produce E elements
that have a certain amount (greater than p) of zeroes in their firsts bits. In order
to estimate this cost, we refer to Kuperberg’s original algorithm. In practice,
the algorithm will be more efficient, but we can approximate it with the original
complexity. We can then estimate the cost of the algorithm to zero q bits to be
2
√

2 log2(3)q+log2(E)2 . As before, this will not hold if we have to many elements to
produce, as the minimal cost is 3E. We should never be in this regime, as this
would mean that we can obtain what the wanted value in one good combination.

Complexity using equations.

Lemma 5 (Equation cost). An iteration of the outer for loop of Algorithm 4
produces on average N/(p/2 + 1) elements with p zeroed bits using N elements,
and needs p qubits.

Proof. A step of Algorithm 4 uses random equations to produce a zeroed element.
If we have p elements that form a basis of Z/(2)p, any other element is a linear
combination of p/2 elements, on average, in this basis. If we have a basis, we
can hence get an equation that has, on average p/2+1 elements, and that sums
to zero on the p bits. We can then construct such a basis by choosing p random
elements : if they form a free family, we have a basis, if not, we then have some
elements that sums to zero. This allows to perform the algorithm on-the-fly :
each time a new element arrives, we can try to form a basis with the previous
ones. If we new element is linearly independent, we add it in our memory. If it
is not, we combine all the elements that sums to zero.

Theorem 1. Algorithm 4 has a complexity in quantum queries and time of
around 2(p/2 + 1)w. It needs 2p(w − 1) quantum memory, plus the oracle cost.

Proof. At each outer for loop iteration, we store p independent elements that
will allow us to retrieve p bits, and divide the remaining number of elements by
p/2 + 1 (Lemma 5). At the end, we want p elements (with only p elements, as
they would be random, the success probability is only of 1/e, but we can get
arbitrarily close to 1 with a fixed overhead). The total cost is then of

p(p/2 + 1)w−1 + p(p/2 + 1)w−2 + · · ·+ p,

20

which reduces to 2(p/2+1)w. The total cost in quantum memory is then p(w−1)
qubits for the w− 1 steps, and p(w− 1) qubits that will yield an equation in the
bits of the shift, but that we cannot measure immediately. This cost in memory
is optional, as we could do the algorithm w times, but we would then have to
pay the constant overhead at each step and not only at the last one.

Remark 6. We found that the marginal cost of (p/2 + 1) elements to produce
one can be beaten if the total number of elements is huge by sorting them before
searching for a zero-sum set. As extracting values from a radix tree naturally
produces a sorted list, this was observed in our simulations.

Determining the total complexity. To determine the complexity, we will
run the algorithm backwards : we estimate how many elements we need at a point
of the algorithm, and then deduce how many elements we need before to obtain
this number of elements. More precisely, we consider a fixed p, and estimate what
we have to do to get the elements we want as w grows. We considered four cases.
First, when w is small enough to use Algorithm 4. Next, when we have to use
Algorithm 3 but the number of queries is small enough to have partial collisions
on independent bits, such that we never have bad outcomes in our combination.
For bigger w, we considered another approximation, which is that a combination
gains at least one zero in each independent component in the worst case. This
is not a relevant model when p = 1, as it produces estimates exponential in w,
but it is interesting here. Finally, the last approximation model is to neglect the
gains due to the parallel additions, and consider Kuperberg’s original algorithm
complexity estimation.

The final steps. The final steps uses Algorithm 4. The complexity to process w
rows is then C0(p, w) = 2(p/2 + 1)w.

Changing to collision finding. With collision finding, we can erase one row and
produce E elements at a cost of 2

√
2.3p+log2(E)2 . Hence, if we combine this algo-

rithm, the cost is C1(p, w) = 2
√

2.3p(w−τ)+log2(C0(p,τ))2 , with τ rows handled by
the other algorithm.

Threshold. We want to change of algorithm if C0(p, w) > 2
√

2.3p+log2(C0(p,w−1))2 .
This means that 2(p/2 + 1)w ≥ 2

√
2.3p+(1+(w−1) log2(p/2+1))2 , which implies

τ = b1.15p/ log2(p/2 + 1)2 + 1/ log2(p/2 + 1)− 1/2c.

This threshold is the number of steps in which we should use Algorithm 4, and
the previous steps are solved using Algorithm 3.

Saturated regime of collisions. We saw before that the cost of zeroing one row
is asymptotically around 2E, and cannot outperform this bound. We can now
estimate when our previous estimate violates this bound. This occurs when

21

2
√

2.3p+log2(E)2 ≤ 2E, which implies E ≥ 2
2.3p−1

2 ' 21.15p. Using this constraint
to the previous complexity, we get that w must be lower than

w1 = b2.3p/4 + τ − (1 + τ log2(p/2 + 1))2/2.3pc.

We can still use the algorithm in this saturated regime, and estimate that one
row can be erased if we divide by 2 the number of elements. Then, the complexity
is C2(p, w) = 2w−w1+

√
(1+τ log2(p/2+1))2+2.3p(w1−τ).

Multiple steps at once. The complexity we got at the previous step does not
have any constraint. It can however become irrelevant, as we have a better ap-
proximation if w is big enough, as it is exponential in w. Indeed, we can consider
Kuperberg‘s original algorithm model and estimate that we can erase pw′ zeros
and get E elements at a cost of 2

√
2 log2(3)pw

′+log2(E)2 , as the combinations we are
doing here are more favorable than the ones done with a cyclic group. This ap-
proximation will become relevant when 2

√
2 log2(3)p+log2(C2(p,w−1))2 ≤ C2(p, w),

which implies

w ≥ w2 = blog2(3)p− 1/2 + w1 −
√
(1 + τ log2(p/2 + 1))2 + 2.3p(w1 − τ)c.

The total complexity is then C3(p, w) = 2
√

2 log2(3)p(w−w2)+(log2(C2(p,w2))
2

.

Quantum memory cost. The quantum memory cost is the same than in
the original algorithm, of one qubit per query, plus the oracle cost. Also, as the
original algorithm, we only have at most pairs of entangled qubits at a time in
the combinations.

Classical cost. The classical cost for Algorithm 3 is the same as the original
algorithm, as the only change to choose the combinations is the computation
of a sum and a difference of labels. The other difference is that we take a basis
before looking for combinations. This can be done in time linear in the size of
the basis, hence it is negligible.

Algorithm 4 is slightly less memory-consuming, as it can look for combina-
tions on-the-fly, hence performing classically in O(N), with N queries.

τ = d1.15p/ log2(p/2 + 1)2 + 1/ log2(p/2 + 1)− 1/2e
w1 = b2.3p/4 + τ − (1 + τ log2(p/2 + 1))2/2.3pc
w2 = blog2(3)p− 1/2 + w1 −

√
(1 + τ log2(p/2 + 1))2 + 2.3p(w1 − τ)c

Table 3: Threshold points for Algorithm 5.

Simon Meets Kuperberg. From Table 4 we can see how Simon’s complexity is met
in the extreme case where w = 1 and Kuperberg’s complexity is obtained when
p = 1, as expected. It also shows that even if asymptotically in w, the complexity
becomes closer to the complexity of Kuperberg’s algorithm in Z/(2pw), the last
w2 rows of bits of the state do not provide as much security.

22

Constraint Cost
(w ≤ τ) C0(p, w) = 2(p/2 + 1)w

τ ≤ w ≤ w1 C1(p, w) = 2
√

(log2(C0(p,τ))2+2.3p(w−τ)

w1 ≤ w (≤ w2) C2(p, w) = 2w−w1C1(p, w1)

w2 ≤ w C3(p, w) = 2
√

2 log2(3)p(w−w2)+log2(C2(p,w2))2

Table 4: Complexity of Algorithm 5.

4.3 Simulations of the algorithm

We have performed various simulations of the algorithm, in order to confirm
our models and theoretical complexities. For w = 1, the obtained complexity
corresponds to solving an equation system, hence it needs around p queries, and
our model holds. For p = 1, the complexity is reduced to 2

√
2 log2(3)p, which cor-

responds to our previous simulations. We’ve considered two types of simulations
in order to confirm the model of complexity of our algorithm. First, as before, we
simulated the success probability of the algorithm for a given input size. Second,
we simulated the number of elements at each step of the algorithm, in order to
see more precisely the accuracy of each model.

p/w 2/50 4/25 5/20 10/10 20/5 25/4 50/2 2/64 4/32 8/16 16/8 32/4 64/2

Theoretical model 17.7 17.5 17.3 15.3 14.2 13.7 10.4 20.1 19.9 18.8 16.6 15.2 11.1
Simulations 17.9 17.5 16.9 15.3 14.4 13.9 10.6 20.3 19.7 18.2 16.7 15.4 11.2

Table 5: Simulations compared with our model, with a success probability of
90%, 1000 tests per estimation, in log scale, for pw = 100 and 128.

From Table 5, we see that our estimates correspond to the simulations in the
ranges we were able to simulate, with a slightly pessimistic estimation when p
is not too small and w is bigger than p. In order to estimate the accuracy of our
different models, we also simulated the number of elements in each pool at the
beginning of each step, as for example in Figure 3.

Fig. 3: Comparison between our model and our simulations for the number of
elements in each pool at each step for p, w = 8, 16, in log scale.

The computed thresholds for Figure 3 are (2,3,7). As they are in reverse, they
correspond to (13,12,8) on the graph. The two curves are converging at around

23

step 9, which suggests that our models 3 and 4 are slightly pessimistic. This is
explained by the fact that model 3 neglects the gains of good combinations and
model 4 the gains of bad combinations.

5 Cryptanalysis of Poly1305 in the Superposition Model

We propose in this section the first quantum superposition attack on the Poly1305
primitive, with a complexity of about 238 in time and queries, that shows that
it is not secure in the superposition model.

5.1 Poly1305 description

Poly1305 is a MAC designed by Bernstein [6]. It has been standardized for
TLS 1.2 [36], is currently a part of a recommended cipher suite in the TLS
1.3 draft [1], and is notably supported by OpenSSH, Firefox and Chrome. The
designer announced in [8] a classical and quantum security of Poly1305 of 128
bits. We’ll describe Poly1305-AES, but our analysis works with any internal
block cipher used.

Poly1305-AES uses two 128-bit keys (r, k) and a 128-bit nonce n, takes as
input a variable-length message m considered as an array of 128-bit blocks, and
outputs a 128-bit tag. For efficiency purposes, some bits of r are fixed to 0, which
means it can only take 2106 different values. The function is

Poly1305-AES(r,k,n)((mi)i≤q) =

(
q∑
i=1

(mq−i+1 + 2128)ri mod 2130 − 5

)
+AESk(n).

5.2 Quantum attack in the superposition setting

For our quantum attack, we consider having access to the oracle

Polyn : |m1〉 |m2〉 |0〉 7→ |m1〉 |m2〉 |Poly1305-AES(r,k,n)(m1,m2) 〉 .

The nonce is classical, and changes at each query. As we consider the superposi-
tion scenario, we consider that the function can be called in superposition. We
aim at retrieving r (and not k), as r is sufficient to retrieve AESk(n) for any tag,
which allows some forgeries. If one also wants k, one can perform a Grover search
on it, with an additional cost of 264. In the long version of this paper [12]we de-
scribe a distinguisher on Poly1305 and a simple key-recovery attack, but in this
section we propose a more evolved attack that uses Kuperberg’s algorithm.

Poly1305 uses a polynomial structure for hashing, and the commutative alge-
bra Z/(2130 − 5)[X] contains many possible shift structures, both in Z/(2130 − 5)
(with addition) and in Z/(2130 − 6) (with multiplication). For example, one can
consider the two functions f(x) = xr+r2+2128(r+r2) and g(x) = xr+2128(r+
r2), which satisfies f(x) = g(x+r). We cannot call them directly, but we can call
F (x) = Poly1305-AES(r,k,n)(1, x) and G(x) = Poly1305-AES(r,k,n)(0, x), which
also satisfy F (x) = G(x+ r) if the nonce is the same.

24

There are two issues that do not allow the direct application of Kuperberg’s
algorithm: first, the nonce changes at each query, which means that in order to
have F (x) = G(x+r), we must compute F and G in only one query to Poly1305.
This is feasible, as both are of the form Poly1305(a(x)), with a(x) a function of
x: one can compute aF (x) = (1, x) and aG(x) = (0, x) in superposition in an
auxiliary register, and then call Polyn on it. Second, and more annoyingly, the
inputs of Poly1305 are restrained to be between 0 and 2128− 1, which means we
cannot sample all group elements.

This can still be solved by using Lemma 4, as we can query [0; 2128). Solving
the hidden shift in Z/(2127) costs around 220. We can thus set the interval size at
2106. r can be retrieved if it is below 2127. This is the case, as the bit constraints
on r implies r < 2124, which means we need only to test 218 intervals. The total
cost is then 220 × 218 = 238, for a success probability better than one half. We
can check if the found r is the right one by trying to forge some valid messages,
or we can use the distinguisher presented in Appendix A of [12].

Quantum memory use. This attack needs around 220 qubits, plus the cost of
the quantum oracle, which would need at least a few hundred qubits.

Grover acceleration. As the previous attack involves an exhaustive search on
the correct interval among the 218, one might want to use Grover’s algorithm, in
order to gain up to 29 on the attack. We automatically lose a factor 2 because
of the uncomputation of the algorithm. Moreover, we would need to compute
all the qubit choices quantumly, and we must have a success probability of the
inner function very close to one. All these factors make the attack more efficient
in queries (around 231), with a small time gain.

5.3 Impact of our improvements

The total cost of the attack is highly dependent of the precise cost of Kuper-
berg’s algorithm. The original algorithm, with an estimated complexity of around
n
√
n2
√

2 log3(2
n), has here a cost of around 231 queries. The total attack is then

more costly, around 259, which is very close to the cost of a simple exhaustive
search on the key if AES-128 is used, and exceeds the cost of the simple quantum
attack described in [12]. We could also use a Grover search, which would lead to
a cost estimate of around 245, which is higher than both the non-Grover variant
of our attack (at 238) and the Grover variant (at 231).

6 Attack on the FX Construction

The FX construction, proposed by Killian and Rogaway [31], is a simple way
to extend the key-length of a block cipher. It uses a block cipher Ek0 and two
additional keys k1, k2 whose length is the block size of the block cipher, and the
new cipher is

FXk0,k1,k2(x) = Ek0(x⊕ k1)⊕ k2.

25

We can see it as an Even-Mansour construction, with a block cipher taking the
role of the random permutation. The quantum security of this scheme has been
studied by Leander and May in [37] in the superposition model. Their conclusion
is that this construction is essentially as secure as the inner cipher Ek0 .

Their approach is close to the quantum attack against the Even-Mansour
construction, with the addition that the key of the inner cipher has to be sought.
They consider the function f(k, x) = FXk0,k1,k2(x) ⊕ Ek(x), which fulfills the
promise f(k0, x) = f(k0, x ⊕ k1). They then recover k0 and k1 by performing
a Grover search on k0, with a test function that is the application of Simon’s
algorithm to the partial function x 7→ f(k0, x). If this function is periodic, then
k0 has a very high probability of being correct, and the period of the function
is k1. It can moreover be efficiently checked, by testing the periodicity for a
few values. Once k0 and k1 are known, k2 can be retrieved with one known
plaintext/ciphertext pair. The total cost is around 2|k1|2|k0|/2.

This leads to some efficient attacks against the FX-based primitives DESX,
PRINCE [14] and PRIDE [3]. For PRINCE and PRIDE, |k0| = |k1| = 64, the
attack costs around 239 queries and time, whereas for DESX, |k0| = 56 and
|k1| = 64, the attack costs around 235 queries and time 7.

The authors only considered the original construction, that uses some xors,
and left as an open problem the evaluation of the security using another group
law. We can here give an answer for the most natural variant, which is to use
modular additions instead of xors, with the cipher

FX+k0,k1,k2(x) = Ek0(x+ k1) + k2.

The function is no longer periodic in this situation, but we can find a hidden shift
problem with the two functions f(k, x) = FX+k0,k1,k2(x)+Ek(−x) and g(k, x) =
FX+k0,k1,k2(−x) + Ek(x), which fulfills the promise f(k0, x) = g(k0, x + k1).
These two function can efficiently be computed in superposition, for a total
cost of one query and one encryption. The attack consists then in a Grover
search that uses Kuperberg’s algorithm as a test function. The Grover search
needs the same number of iterations (2|k0|/2), but Kuperberg’s algorithm needs
around 21.8

√
|k1| samples. The total cost is around 2|k0|/2+1.8

√
|k1| × 2 queries

(we can factor the query to f and g to only one query to FX+, and we double
to uncompute Kuperberg’s algorithm).

Other group laws. If the group is abelian, the attack can be straightforwardly
applied. If the group law is not abelian, we need a slightly different approach,
which is developed in the extended version of this paper [12].

Quantum attack on PRINCE+ and PRIDE+. We can directly attack a variant
of PRINCE and PRIDE where the key whitening is done through a modular
addition. Concretely, we can attack them in around 247.4 queries and time, which
is smaller than the ideal 64-bits of quantum security. We also attack DESX+ in
243.4 queries and time.
7 In [37], they considered the time of a parallelized Simon’s algorithm, which can be
neglected, leaving a complexity of 232.

26

7 Concrete Proposals

The most interesting idea from [2] for preventing Simon-based attacks is using
modular additions, which is already common in symmetric primitives (see for
instance [40,26,49]). Based on the complexities of the new algorithms and attacks
from the previous sections, we can now correctly size some of the primitives
that were broken using Simon-based algorithms, now patched to use modular
additions, in order to provide a certain desired post-quantum security.

Let us point out that we used a slightly unconventional definition of the
security: we consider a cipher to provide a security of Q bits when no attack of
complexity lower than 2Q exists (the more conventional definition being when
no attack better than the generic exhaustive search is known, whose complexity
usually is 2Q = 2k/2).

7.1 Concrete Parameters and Security of Some Generic
Constructions

If we consider the generic Even-Mansour constructions, with a xor, it will provide
a security of 8 or 9 bits for an state size of 128 or 256 bits respectively. When
using one or several modular additions, this security is augmented, becoming 20
or 28.5 bits for states of 128 or 256 bits respectively, but all the constructions
are far from the ideal 264 security offered by an ideal cipher with a 128-bit key,
and even more from the 2128 offered quantumly by a classical primitive with a
256-bit key. To the best of our knowledge, the quantum security offered by the
AES [19] meets these ideal claims.

In Table 6 we show the needed security parameters of some popular con-
structions in order to resist their corresponding attacks when using Kuperberg’s
algorithm. As expected, p modular additions of words of size w provide less se-
curity than one modular addition of the state size. We can see that, in all the
cases, the size of the state needed to achieve a certain security becomes much
bigger than for common symmetric primitives (128 bits for instance), needing
to be bigger than 5200 bits in some cases. The problem of a bigger state is not
limited to implementation issues: designing a secure permutation for such a big
state would be a very challenging task. We considered the needed size when
using non-abelian groups in the extended version [12].

(p/w) E-M(1/n) O-M/LRW(1/n) E-M(2048/13) E-M(1024/14) E-M(4/1304)

State 5168 5168 26624 14336 5216

Key 5168 k ≥ 256 26624 14336 5216

Table 6: Examples of parameters for 128-bit security when using modular addi-
tions instead of ⊕. E-M stands for Even-Mansour and O-M for operation modes.

8 Conclusion

Modular additions are not enough. We have shown that the proposal from [2],
even though it is interesting and could provide any wanted security with the

27

right (big) parameters, does not seem practical. Indeed, using modular addi-
tions 8 instead of xors, in most constructions vulnerable to Simon’s attacks,
would increase the complexity of such attacks when using Kuperberg’s algo-
rithm, and therefore also the security, but it would need a much larger internal
state to provide reasonable security, far beyond the size of typical classical sym-
metric constructions providing an equivalent degree of security. For instance, a
key-alternating cipher with modular addition that provides a 128-bit security
would need around 5200 bits of internal state and key size, to be compared with
the 128 bits of internal state and 256 key-bits of AES-256. Beyond the obvious
efficiency drawback, the design of a correspondingly large secure permutation
would be a very challenging task. Intuitively, we can see how more bits need to
be mixed, which will imperatively imply more rounds and bigger transformations
(also slower to mix).

That is why, regarding constructions that are vulnerable to Simon’s or Kuper-
berg’s attacks, the substitution of xors by modular additions seems hazardous,
as can be seen in the previous section, and we rather recommend the use of some
of the resistant constructions (many exist).

Kuperberg’s algorithm simulation and verification. We have been able to study,
improve and simulate Kuperberg’s algorithm: the concrete complexity of our
tweaked version is 21.8

√
n, which is small enough for a practical use on typical

parameters of n (we have therefore implemented the part that could be simulated
and verified this). We also have presented a way to solve the hidden shift problem
in various situations (which extends to non-abelian groups), and provided an
estimate of the complexity.

New algorithm representing Simon-meets-Kuperberg. We provided a new effi-
cient algorithm that solves the problem when considering parallel modular ad-
ditions. We have simulated the algorithm and verified that our estimated com-
plexity is met in practice. As in the case of single modular additions, though the
security is increased with respect to the same constructions when using xors, the
size state is equally increased, and the tweak does not seem more promising.

Cryptanalysis of FX variants and Poly1305. This paper proposes some new
quantum attacks, mainly using our generalized and improved Kuperberg’s algo-
rithm, that provide an important speed-up with respect to Grover’s quantum
generic exhaustive search attack.

Further applications. Hidden shift algorithms can be applied in other cryp-
tographic fields. They have in particular been successfully applied to ordinary
isogenies [18] and are relevant to assess the security of some proposed post-
quantum asymetric schemes, such as CSIDH [16]. Indeed, in [13] one of the first
concrete quantum cryptanalysis of post-quantum primitives is proposed, sug-
gesting an important re-dimension of parameters in order to propose the wanted
security. This result builds upon our work and simulations.
8 the most realistic counter measure proposed

28

Open problems:
1) Prove a tighter bound on the complexity of Kuperberg’s algorithm, or study
the success probability.
2) Study combinations and alternance of xor and modular additions to increase
the complexity of the attacks or counter them.
3) Find more attacks using the new algorithm, for instance, considering ARX
constructions. Also study applications to other post-quantum primitives, like
lattice-based ones.

Acknowledgements

The authors would like to thank André Chailloux, Anthony Leverrier and André
Schrottenloher for their helpful comments and discussions, as well as our anony-
mous reviewers, Bo-Yin Yang and Steven Galbraith for all the helpful remarks.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 714294 - acronym QUASYModo).

References

1. See https://tools.ietf.org/html/draft-ietf-tls-tls13-23#section-9.1
2. Alagic, G., Russell, A.: Quantum-Secure Symmetric-Key Cryptography Based on

Hidden Shifts. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT (3). Lecture
Notes in Computer Science, vol. 10212, pp. 65–93 (2017)

3. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block
ciphers - focus on the linear layer (feat. PRIDE). In: CRYPTO 2014. Lecture Notes
in Computer Science, vol. 8616, pp. 57–76. Springer (2014)

4. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-Quantum Security of the
CBC, CFB, OFB, CTR, and XTS Modes of Operation. In: Takagi, T. (ed.) Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9606, pp. 44–63. Springer (2016)

5. Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized Feistel
networks using matrix representation to propose a new lightweight block cipher:
Lilliput. IEEE Trans. Computers 65(7), 2074–2089 (2016)

6. Bernstein, D.J.: The poly1305-aes message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) Fast Software Encryption: 12th International Workshop, FSE
2005, Paris, France, February 21-23, 2005, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 3557, pp. 32–49. Springer (2005)

7. Bernstein, D.J.: The salsa20 family of stream ciphers. In: New Stream Cipher
Designs - The eSTREAM Finalists, Lecture Notes in Computer Science, vol. 4986,
pp. 84–97. Springer (2008)

8. Bernstein Daniel J., Lange Tanja: Post-quantum cryptography. Nature 549(7671),
188–194 (sep 2017)

29

https://tools.ietf.org/html/draft-ietf-tls-tls13-23#section-9.1

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random Oracles in a Quantum World. In: Lee, D., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011, Lecture Notes in Computer Science, vol. 7073,
pp. 41–69. Springer Berlin Heidelberg (2011)

10. Boneh, D., Zhandry, M.: Secure Signatures and Chosen Ciphertext Security in a
Quantum Computing World. In: Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II. pp. 361–379 (2013)

11. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Selected Areas in Cryptog-
raphy - SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August
16-18, 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10719, pp. 394–406. Springer (2018)

12. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and im-
plications. Cryptology ePrint Archive, Report 2018/432 (2018), https://eprint.
iacr.org/2018/432

13. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-
nary isogeny-based schemes. IACR Cryptology ePrint Archive 2018, 537 (2018)

14. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) Asiacrypt 2012.
Lecture Notes in Computer Science, vol. 7658, pp. 208–225. Springer (2012)

15. Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.: Merkle
puzzles in a quantum world. In: Rogaway, P. (ed.) Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6841,
pp. 391–410. Springer (2011)

16. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. Cryptology ePrint Archive, Report
2018/383 (2018), https://eprint.iacr.org/2018/383

17. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum colli-
sion search algorithm and implications on symmetric cryptography. In: Takagi and
Peyrin [46], pp. 211–240

18. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Mathematical Cryptology 8(1), 1–29 (2014)

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

20. Damgård, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition Attacks on Cryp-
tographic Protocols. In: Padró, C. (ed.) Information Theoretic Security - 7th Inter-
national Conference, ICITS 2013, Singapore, November 28-30, 2013, Proceedings.
Lecture Notes in Computer Science, vol. 8317, pp. 142–161. Springer (2013)

21. Ettinger, M., Høyer, P.: On Quantum Algorithms for Noncommutative Hidden
Subgroups. In: STACS 99, 16th Annual Symposium on Theoretical Aspects of
Computer Science, Trier, Germany, March 4-6, 1999, Proceedings. Lecture Notes
in Computer Science, vol. 1563, pp. 478–487. Springer (1999)

22. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The skein hash function family (2010)

23. Flajolet, P., Odlyzko, A.M.: RandomMapping Statistics. In: Quisquater, J., Vande-
walle, J. (eds.) Advances in Cryptology - EUROCRYPT ’89, Workshop on the The-
ory and Application of of Cryptographic Techniques, Houthalen, Belgium, April

30

https://eprint.iacr.org/2018/432
https://eprint.iacr.org/2018/432
https://eprint.iacr.org/2018/383

10-13, 1989, Proceedings. Lecture Notes in Computer Science, vol. 434, pp. 329–
354. Springer (1989)

24. Gagliardoni, T.: Quantum Security of Cryptographic Primitives. Ph.D. thesis,
Darmstadt University of Technology, Germany (2017)

25. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic Security and Indistinguisha-
bility in the Quantum World. In: Robshaw, M., Katz, J. (eds.) Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 9816, pp. 60–89. Springer (2016)

26. Government Committee of the USSR for Standards: Cryptographic protection for
data processing system. In: GOST 28147-89, Gosudarstvennyi Standard of USSR
(1989)

27. Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algo-
rithm. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International Con-
ference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 10625, pp. 179–210. Springer (2017)

28. Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434
(2014)

29. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking Symmetric
Cryptosystems Using Quantum Period Finding. In: Robshaw, M., Katz, J. (eds.)
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 9815, pp. 207–237. Springer (2016)

30. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum Differential
and Linear Cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

31. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search. In:
Koblitz, N. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1109, pp.
252–267. Springer (1996)

32. Kuperberg, G.: A Subexponential-Time Quantum Algorithm for the Dihedral Hid-
den Subgroup Problem. SIAM J. Comput. 35(1), 170–188 (2005)

33. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: Severini, S., Brandão, F.G.S.L. (eds.) 8th Confer-
ence on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2013, May 21-23, 2013, Guelph, Canada. LIPIcs, vol. 22, pp. 20–34. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

34. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: Information Theory Proceedings (ISIT),
2010 IEEE International Symposium on. pp. 2682–2685 (June 2010)

35. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
Information Theory and its Applications (ISITA), 2012 International Symposium
on. pp. 312–316 (Oct 2012)

36. Langley, A., Chang, W., Mavrogiannopoulos, N., Strombergson, J., Josefsson, S.:
"chacha20-poly1305 cipher suites for transport layer security (tls)". In: RFC 7905,
DOI 10.17487/RFC7905 (June 2016)

37. Leander, G., May, A.: Grover Meets Simon - Quantumly Attacking the FX-
construction. In: Takagi and Peyrin [46], pp. 161–178

38. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hack-
ing commercial quantum cryptography systems by tailored bright illumination.
Nature photonics 4(10), 686–689 (2010)

31

39. Regev, O.: A Subexponential Time Algorithm for the Dihedral Hidden Subgroup
Problem with Polynomial Space. CoRR (2004)

40. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: RC6 as the AES. In: AES Candidate
Conference. pp. 337–342 (2000)

41. Roetteler, M., Steinwandt, R.: A note on quantum related-key attacks. Information
Processing Letters 115(1), 40–44 (2015)

42. Santoli, T., Schaffner, C.: Using Simon’s Algorithm to Attack Symmetric-Key
Cryptographic Primitives. arXiv preprint arXiv:1603.07856 (2016)

43. Simon, D.R.: On the Power of Quantum Cryptography. In: 35th Annual Sympo-
sium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994. pp. 116–123. IEEE Computer Society (1994)

44. Song, F., Yun, A.: Quantum security of NMAC and related constructions - PRF
domain extension against quantum attacks. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10402, pp. 283–309. Springer (2017)

45. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight
block cipher for multiple platforms. In: Selected Areas in Cryptography, 19th In-
ternational Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7707, pp. 339–
354. Springer (2012)

46. Takagi, T., Peyrin, T. (eds.): Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II,
Lecture Notes in Computer Science, vol. 10625. Springer (2017)

47. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9057, pp. 755–784. Springer (2015),
preprint on IACR ePrint 2014/587

48. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack
in a practical quantum key distribution system. New Journal of Physics 12(11),
113026 (2010)

49. Yuval, G.: Reinventing the travois: Encryption/MAC in 30 ROM bytes. In: Biham,
E. (ed.) Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa,
Israel, January 20-22, 1997, Proceedings. Lecture Notes in Computer Science, vol.
1267, pp. 205–209. Springer (1997)

50. Zhandry, M.: How to Construct Quantum Random Functions. In: 53rd An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012. pp. 679–687 (2012)

51. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. International Journal of Quantum Information 13(04), 1550014 (2015)

52. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimen-
tal demonstration of time-shift attack against practical quantum-key-distribution
systems. Physical Review A 78(4), 042333 (2008)

32

	Hidden Shift Quantum Cryptanalysis and Implications

