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Abstract. We introduce a new cryptographic primitive called signa-
tures with flexible public key (SFPK). We divide the key space into equiv-
alence classes induced by a relation R. A signer can efficiently change his
or her key pair to a different representatives of the same class, but with-
out a trapdoor it is hard to distinguish if two public keys are related. Our
primitive is motivated by structure-preserving signatures on equivalence
classes (SPS-EQ), where the partitioning is done on the message space.
Therefore, both definitions are complementary and their combination
has various applications.

We first show how to efficiently construct static group signatures and self-
blindable certificates by combining the two primitives. When properly
instantiated, the result is a group signature scheme that has a shorter
signature size than the current state-of-the-art scheme by Libert, Peters,
and Yung from Crypto’15, but is secure in the same setting.

In its own right, our primitive has stand-alone applications in the cryp-
tocurrency domain, where it can be seen as a straightforward formaliza-
tion of so-called stealth addresses. Finally, it can be used to build the
first efficient ring signature scheme in the plain model without trusted
setup, where signature size depends only sub-linearly on the number of
ring members. Thus, we solve an open problem stated by Malavolta and
Schröder at ASIACRYPT’2017.

Keywords: flexible public key, equivalence classes, stealth addresses,
ring signatures, group signatures

1 Introduction

Digital signatures aim to achieve two security goals: integrity of the signed mes-
sage and authenticity of the signature. A great number of proposals relax these
goals or introduce new ones to accommodate the requirements of specific ap-
plications. As one example, consider sanitizable signatures [1] where the goal of



preserving the integrity of the message is relaxed to allow for authorized modi-
fication and redactions of the signed message.

The primitive we introduce in this work allows for a relaxed characteriza-
tion of authenticity instead. The goal is not complete relaxation, such that an
impostor could sign messages on behalf of a legitimate signer, but rather that
authenticity holds with respect to some established legitimate signer, but who it
is exactly remains hidden.

The new primitive, called signatures with flexible public key (SFPK) formal-
izes a signature scheme, where verification and signing keys live in a system of
equivalence classes induced by a relation R. Given a signing or verification key it
is possible to transform the key into a different representative of the same equiv-
alence class, i.e., the pair of old key and new key are related via R. Thus, we
extend the requirement of unforgeability of signatures to the whole equivalence
class of the given key under attack.

Additionally, it should be infeasible, without a trapdoor, to check whether
two keys are in the same class. This property, which we call computational class-
hiding, ensures that given an old verification key, a signature under a fresh repre-
sentative is indistinguishable from a signature under a different newly generated
key, which lives in a different class altogether with overwhelming probability.
Intuitively this means that signers can produce signatures for their whole class
of keys, but they cannot sign for a different class (because of unforgeability) and
they are able to hide class to which the signature belongs to, i.e., to hide their
own identity in the signature (because of class-hiding). This primitive is moti-
vated by (structure-preserving) signatures on equivalence classes [29] (SPS-EQ),
where relations are defined for the message space, instead of the key space.
Both notions are complementary, in the sense that we can use SPS-EQ to cer-
tify the public key of an SFPK scheme if the respective equivalence relations
are compatible, which immediately gives so called signatures with self-blindable
certificates [41].

Signatures with flexible public key are especially useful in applications where
there is a (possibly pre-defined) set of known verification keys and a verifier
only needs to know that the originator of a given signature was part of that
set. Indeed, upon reading the first description of the scheme’s properties, what
should come to mind immediately is the setting of group signatures [18] and to
some extent ring signatures [37] where the group is chosen at signing time and
considered a part of the signature. Our primitive yields highly efficient, cleanly
constructed group and ring signature schemes, but it should be noted, that SFPK
on its own is neither of the two.

The basic idea to build a group signature scheme from signatures with flexi-
ble public key is to combine them with an equally re-randomizable certificate on
the signing key. Such a certificate is easily created through structure-preserving
signatures on equivalence classes by the group manager on the members’ veri-
fication key. A group signature is then produced by signing the message under
a fresh representative of the flexible public key and tying that signature to the
group by also providing a blinded certificate corresponding to the fresh flexi-
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ble key. This fresh certificate can be generated from the one provided by the
group manager. Opening of group signatures is done using the trapdoor that
can be used to distinguish if public keys belong to the same equivalence class.
In the case of ring signatures with n signers, the certification of keys becomes
slightly more complex, since we cannot make any assumption on the presence
of a trusted group manager. Therefore, the membership certificate is realized
through a perfectly sound proof of membership, which has a size of O(

√
n) if

we use general proofs and the square matrix idea for membership proofs due to
Chandran, Groth and Sahai [15].

Our contributions. This paper develops a new cryptographic building block from
the ground up, presenting security definitions, concrete instantiations and appli-
cations. The main contributions are as follows:

Signatures with flexible public key and their applications. Our new pri-
mitive is a natural counterpart of structure-preserving signatures on equiv-
alence classes, but for the public key space. We demonstrate how SFPK can
be used to build group and ring signatures in a modularized fashion. For
each construction, we give an efficient standard model SFPK instantiation
which takes into account the differences in setting between group and ring
signatures. The resulting group and ring signature schemes have smaller
(asymptotic and concrete) signature sizes than the previous state of the art
schemes also secure in the strongest attacker model, including schemes with
non-standard assumptions.
For instance, the static group signature scheme due to Libert, Peters, and
Yung achieves fully anonymous signatures secure under standard non-interac-
tive assumptions at a size of 8448 bits per signature. Our scheme, based
on comparable assumptions, achieves the same security using 7680 bits per
signature. Another variant of our scheme under an interactive assumption
achieves signature sizes of only 3072 bits per signature, thus more than halv-
ing the size achieved in [32] and not exceeding by more than factor 3 the
size of signatures in the scheme due to Bichsel et al. [7] which produces
signatures of size 1280 bits but only offers a weaker form of anonymity un-
der an interactive assumption in the random oracle model. A comprehensive
comparison between our scheme and known group signature constructions
can be found in Section 5.3. Our ring signature construction is the first to
achieve signature sizes in O(

√
N) without trusted setup and with security

under standard assumptions in the strongest security model by Bender, Katz
and Morselli [6]. We also show how to efficiently instantiate the scheme using
Groth-Sahai proofs and thereby we solve an open problem stated in the ASI-
ACRYPT’2017 presentation of [34], namely: Are there efficient ring signature
schemes without trusted setup provably secure under falsifiable assumptions?

Applications of independent interest. We also show that signatures with
flexible public key which also implement a key recovery property contribute
to the field of cryptocurrencies. In particular, our definitions can be seen as
a formalization of the informal requirements for a technique called stealth
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addresses [40, 35, 38], which allows a party to transfer currency to an anony-
mous address that the sender has generated from the receivers long-term
public key. No interaction with the receiver is necessary for this transaction
and the receiver can recover and subsequently spend the funds without link-
ing them to their long-term identity. Moreover, existing schemes implement-
ing stealth addresses are based on a variant of the Diffie-Hellman protocol
and inherently bound to cryptography based on the discrete logarithm prob-
lem. On the other hand, our definition is generic and SFPK can potentially
be instantiated from e.g. lattice assumptions.

1.1 Related Work

At first glance, signatures with flexible public keys are syntactically reminiscent
of structure-preserving signatures on equivalence classes [29]. While both prim-
itives are similar in spirit, the former considers equivalence classes of key pairs
while the latter only considers equivalence classes on messages.

There exist many primitives that allow for a limited malleability of the signed
message. Homomorphic signatures [10] allow to sign any subspace of a vector
space. In particular, given a number of signatures σi for vectors vi, everyone can
compute a signature of

∑
i βi · vi for scalars βi.

Chase et al. [16] discussed malleable signatures, which allow any party know-
ing a signature of message m to construct a signature of message m′ = T (m)
for some defined transformation T . One can consider malleable signatures as a
generalization of quotable [2] and redactable signatures [31].

Signatures on randomized ciphertexts by Blazy et al. [8] allow any party that
is given a signature on a ciphertext to randomize the ciphertext and adapt the
signature to maintain public verifiability.

Verheul [41] introduces so-called self-blindable certificates. The idea is to use
the same scalar to randomize the signature and corresponding message. Verheul
proposed that one can view the message as a public key, which allows to pre-
serve the validity of this “certificate” under randomization/blinding. However,
the construction does not yield a secure signature scheme. We will show that
combining our primitive with signatures on equivalence classes [29] can be used
to instantiate self-blindable certificates.

As noted above, all the mentioned works consider malleability of the mes-
sage space. In our case we consider malleability of the key space. A related
primitive are signatures with re-randomizable keys introduced by Fleischhacker
et al. [22]. It allows a re-randomization of signing and verification keys such that
re-randomized keys share the same distribution as freshly generated keys and a
signature created under a randomized key can be verified using an analogously
randomized verification key.

They also define a notion of unforgeability under re-randomized keys, which
allows an adversary to learn signatures under the adversaries’ choice of random-
ization of the signing key under attack. The goal of the adversary is to output
a forgery under the original key or under one of its randomizations. Regular
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existential unforgeability for signature schemes is a special case of this notion,
where the attacker does not make use of the re-randomization oracle.

The difference to signatures with flexible public keys is that re-randomization
in [22] is akin to sampling a fresh key from the space of all public keys, while
changing the representative in our case is restricted to the particular key’s equiv-
alence class. Note that one might intuitively think that signatures under re-
randomizable keys are just signatures with flexible keys where there is only one
class of keys since re-randomizing is indistinguishable from fresh sampling. In
this case class-hiding would be perfect. However, such a scheme cannot achieve
unforgeability under flexible keys, since it would be enough for an attacker to
sample a fresh key pair and use a signature under that key as the forgery.

2 Preliminaries

We denote by y ← A(x, ω) the execution of algorithm A outputting y, on input x
with randomness ω, writing just y ←$ A(x) if the specific randomness used is not
important. We will sometimes omit the use of random coins in the description of
algorithms if it is obvious from the context (e.g. sampling group elements). The
superscript O in AO means that algorithm A has access to oracle O. Moreover,
we say that A is probabilistic polynomial-time (PPT) if A uses internal random
coins and the computation for any input x ∈ {0, 1}∗ terminates in polynomial
time. By r ←$ S we mean that r is chosen uniformly at random from the set
S. We will use 1G to denote the identity element in group G, [n] to denote the
set {1, . . . , n}, u to denote a vector and

(
x0 . . . x|x|

)
bin

to denote the binary
representation of x.

Remark 1. Due to space limitations, we omit full formal definitions of the syntax
and security properties of ring and group signatures as well as some proofs. These
omitted materials may be found in the full version of this work [3].

Definition 1 (Bilinear map). Let us consider cyclic groups G1, G2, GT of
prime order p. Let g1, g2 be generators of respectively G1 and G2. We call e :
G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and the
following conditions hold:

Bilinearity: ∀(S, T ) ∈ G1 ×G2, ∀a, b ∈ Zp, we have e(Sa, T b) = e(S, T )
a·b

,
Non-degeneracy: e(g1, g2) 6= 1 is a generator of group GT ,

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
deterministic polynomial-time algorithm BGGen that on input a security parame-
ter λ returns a bilinear group BG = (p,G1,G2,GT , e, g1, g2) such that G1 = 〈g1〉,
G2 = 〈g2〉 and GT are groups of order p and e : G1 × G2 → GT is a bilinear
map.

Bilinear map groups with an efficient bilinear-group generator are known to
be instantiable with ordinary elliptic curves introduced by Barreto and Naehrig [4]
(in short BN-curves).
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Invertible Sampling. We use a technique due to Damg̊ard and Nielsen [21]:

– A standard sampler returns a group element X on input coins ω.
– A “trapdoor” sampler returns coins ω′ on input a group element X.

Invertible sampling requires that (X,ω) and (X,ω′) are indistinguishably dis-
tributed.

This technique was also used by Bender, Katz and Morselli [6] to prove full
anonymity (where the adversary receives the random coins used by honest users
to generate their keys) of their ring signature scheme.

2.1 Number Theoretical Assumptions

In this section we recall assumptions relevant to our schemes. They are stated rel-
ative to bilinear group parameters BG := (p,G1,G2,GT , e, g1, g2)←$BGGen(λ).

Definition 3 (Decisional Diffie-Hellman Assumption in Gi). Given BG
and elements gai , g

b
i , g

z
i ∈ Gi it is hard for all PPT adversaries A to decide

whether z = a · b mod p or z←$Z∗p. We will use Advddh
A (λ) to denote the ad-

vantage of the adversary in solving this problem.

We now state the bilateral variant of the well known decisional linear assump-
tion, where the problem instance is given in both G1 and G2. This definition was
also used by Ghadafi, Smart and Warinschi [26].

Definition 4 (Symmetric Decisional Linear Assumption). Given BG, el-

ements f1 = gf1 , h1 = gh1 , f
a
1 , h

b
1, g

z
1 ∈ G1 and elements f2 = gf2 , h2 = gh2 , f

a
2 , h

b
2,

gz2 ∈ G2 for uniformly random f, h, a, b ∈ Z∗p it is hard for all PPT adversaries

A to decide whether z = a + b mod p or z←$Z∗p. We will use Advlinear
A (λ) to

denote the advantage of the adversary in solving this problem.

In this paper we use a variant of the 1-Flexible Diffie-Hellman assump-
tion [33]. We show that this new assumption, which we call the co-Flexible
Diffie-Hellman (co-Flex) assumption, holds if the decisional linear assumption
holds.

Definition 5 (co-Flexible Diffie-Hellman Assumption). Given BG, ele-
ments ga1 , g

b
1, g

c
1, g

d
1 ∈ G1 and ga2 , g

b
2, g

c
2, g

d
2 ∈ G2 for uniformly random a, b, c, d ∈

Z∗p, it is hard for all PPT adversaries A to output (gc1)
r
, (gd1)

r
, gr·a·b1 . We will use

Advco-flexdh
A (λ) to denote the advantage of the adversary in solving this problem.

Lemma 1. The co-Flexible Diffie-Hellman assumption holds for BG if the de-
cisional linear assumption holds for BG.

Proof. Suppose we have an efficient algorithm A that solves the co-Flexible
Diffie-Hellman problem with non-negligible probability. We will show how to
build algorithm R that solves the decision linear problem. Let (BG, f1, f2, h1, h2,
fa1 , f

a
2 , h

b
1, h

b
2, g

z
1 , g

z
2) be an instance of the decision linear problem. The algorithm
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R first runs algorithm A on input (BG, f1, f2, g
z
1 , g

z
2 , f

a
1 , f

a
2 , h

b
1, h

b
2). With non-

negligible probability A outputs a solution to the co-Flexible Diffie-Hellman
problem, i.e. it outputs the tuple ((fa1 )

r
, (hb1)

r
, (fz1 )

r
). Then R computes

T1 =e((fz1 )
r
, h2) = e(f1, h

r
2)
z
,

T2 =e((fa1 )
r
, h2) = e(f1, h

r
2)
a
,

T3 =e((hb1)
r
, f2) = e(h1, f

r
2 )
b

= e(fr1 , h2)
b
,

and outputs 1 if T1 = T2 · T3 and 0 otherwise.

2.2 Programmable Hash Functions

Programmable hash functions presented at Crypto’08 by Hofheinz and Kiltz [30]
introduce a way to create hash functions with limited programmability. In par-
ticular, they show that the function introduced by Waters [42] is a programmable
hash function. To formally define such function we first define so called group
hash functions for a group G, which consists of two polynomial time algorithms
PHF.Gen, PHF.Eval and has an output length of ` = `(λ). For a security param-
eter λ the generation algorithm PHF.Gen(λ) outputs a key KPHF, which can be
used in the deterministic algorithm PHF.Eval to evaluate the hash function via
y ←$ PHF.Eval(KPHF, X) ∈ G. We will use HKPHF

(X) to denote the evaluation of

the function PHF.Eval(KPHF, X) on X ∈ {0, 1}`. We can now recall the definition
of programmable has functions.

Definition 6. A group hash function is an (m,n, γ, δ)-programmable hash func-
tion if there are polynomial time algorithms PHF.TrapGen and PHF.TrapEval such
that:

– For any g, h ∈ G the trapdoor algorithm (K ′PHF, t) ←$ PHF.TrapGen(λ, g, h)

outputs a key K ′ and trapdoor t. Moreover, for every X ∈ {0, 1}` we have
(aX , bX)←$ PHF.TrapEval(t,X), where PHF.Eval(K ′PHF, X) = gaXhbX .

– For all g, h ∈ G and for (K ′PHF, t) ←$ PHF.TrapGen(λ, g, h) and KPHF ←$
PHF.Gen(λ), the keys KPHF and K ′PHF are statistically γ-close.

– For all g, h ∈ G and all possible keys K ′PHF from the range of PHF.TrapGen(λ, g,

h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}` such that Xi 6= Zj for any i, j
and for the corresponding (aXi , bXi)←$ PHF.TrapEval(t,Xi) and (aZi , bZi)←$
PHF.TrapEval(t, Zi) we have

Pr[aX1
= · · · = aXm = 0 ∧ aZ1

= · · · = aZn 6= 0] ≥ δ,

where the probability is over trapdoor t that was generated with key K ′PHF.

Note that using this definition we can define the Waters hash function, with
key KPHF = (h0, . . . , h`) ∈ G`+1 and message X = (x1, . . . , x`) ∈ {0, 1}` as

h0 ·
∏`
i=1 h

xi
i . Hofheinz and Kiltz prove that for any fixed q = q(λ) this is a

(1, q, 0, 1/8 ·(`+1) ·q)-programmable hash function. Unless mentioned otherwise,
we will always instantiate the programmable hash function using the Waters
function and use ` = λ.
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2.3 Non-Interactive Proof Systems

In this paper we make use of non-interactive proof systems. Although we define
the proof system for arbitrarily languages, in our schemes we use the efficient
Groth-Sahai (GS) proof system for pairing product equations [28]. Let R be
an efficiently computable binary relation, where for (x,w) ∈ R we call x a
statement and w a witness. Moreover, we denote by LR the language consisting
of statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 7 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π consists of the following three algorithms (Setup,Prove,Verify):

Setup(λ): on input security parameter λ, this algorithm outputs a common ref-
erence string ρ.

Prove(ρ, x, w): on input common reference string ρ, statement x and witness w,
this algorithm outputs a proof π.

Verify(ρ, x, π): on input common reference string ρ, statement x and proof π,
this algorithm outputs either accept(1) or reject(0).

Some proof systems do not need a common reference string. In such case, we
omit the first argument to Prove and Verify.

Definition 8 (Soundness). A proof system Π is called sound, if for all PPT
algorithms A the following probability, denoted by AdvsoundΠ,A (λ), is negligible in
the security parameter λ:

Pr[ρ← Setup(λ); (x, π)← A(ρ) : Verify(ρ, x, π) = accept ∧ x 6∈ LR].

We say that the proof system is perfectly sound if AdvsoundΠ,A (λ) = 0.

Definition 9 (Witness Indistinguishability (WI)). A proof system Π is
witness indistinguishable, if for all PPT algorithms A we have that the advantage
AdvwiΠ,A(λ) computed as:

|Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w0) : A(π) = 1]−
Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w1) : A(π) = 1]|,

where (x,w0), (x,w1) ∈ R, is at most negligible in λ. We say that the proof
system if perfectly witness indistinguishable if AdvwiΠ,A(λ) = 0.

Perfectly Sound Proof System for Pairing Product Equations. We
briefly recall the framework of pairing product equations that is used for the
languages of the Groth-Sahai proof system [28]. For constants Ai ∈ G1, Bi ∈ G2,
tT ∈ GT , γij ∈ Zp which are either publicly known or part of the statement, and
witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we can prove that:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
j=1

n∏
i=1

e(Xi, Yi)
γij = tT .
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Prove(x,w)

1 : ρ1 := (f1, f2, h1, h2, . . .)←$ SetupPPE(λ); r, s←$ Z∗p
2 : ρ2 := (f1, f2, h1, h2, f

r
1 , f

r
2 , h

s
1, h

s
2, g

r+s
1 , g

r+s
2 )

3 : πLinear ←$ ProveLinear((ρ1, ρ2), (r, s))

4 : π1 ←$ ProvePPE(ρ1, x, w); π2 ←$ ProvePPE(ρ2, x, w)

5 : return π := (ρ1, ρ2, πLinear, π1, π2)

Verify(x, π)

1 : parse π = (ρ1, ρ2, πLinear, π1, π2)

2 : return VerifyPPE(ρ1, x, π1) = 1 ∧
3 : VerifyPPE(ρ2, x, π2) = 1 ∧
4 : VerifyLinear((ρ1, ρ2), πLinear) = 1

Scheme 1: Perfectly Sound Proof System for Pairing Product Equations

The system (SetupPPE,ProvePPE,VerifyPPE) has several instantiations based on
different assumptions. In this paper we only consider the instantiation based on
the symmetric linear assumption given by Ghadafi, Smart and Warinschi [26].

For soundness it must be ensured, that SetupPPE outputs a valid DLIN tuple.
This can be enforced by requiring a trusted party perform the setup. However,
our schemes require a proof system which is perfectly sound, even if a malicious
prover executes the SetupPPE algorithm.

To achieve this we use the ideas by Groth, Ostrovsky and Sahai [27]. They
propose a perfectly sound and perfectly witness indistinguishable proof system
(ProveLinear,VerifyLinear) which does not require a trusted setup. Using it one
can show that given tuples T1, T2 as a statement, at least one of T1 and T2 is
a DLIN tuple. The results were shown for type 1 pairing but the proof itself is
only given as elements in G2. Moreover, our variant of the DLIN assumption
gives the elements in both groups. Thus, we can apply the same steps as in [27].
The size of such a proof is 6 elements in G2.

Next is the observation that the tuples T1 and T2 can each be used as common
reference strings for the pairing product equation proof system. Since at least
one of the tuples is a valid DLIN tuple, at least one of the resulting proofs will be
perfectly sound. Witness-indistinguishability will be only computational, since
we have to provide T1 and T2 to the verifier but that is sufficient in our case.
The full scheme is presented in Scheme 1.

Theorem 1. Scheme 1 is a perfectly sound proof system for pairing product
equations if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly sound in the
common reference string model.

Theorem 2. Scheme 1 is a computational witness-indistinguishable proof sys-
tem if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly witness-indistinguish-
able in the common reference string model.

2.4 Structure-Preserving Signatures on Equivalence Classes

Hanser and Slamanig introduced a cryptographic primitive called
structure-preserving signatures on equivalence classes [29]. Their work was fur-
ther extended by Fuchsbauer, Hanser and Slamanig in [24] and [25]. The idea
is simple but provides a powerful functionality. The signing SignSPS(M, skSPS)
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algorithm defines an equivalence relation R that induces a partition on the
message space. By signing one representative of a partition, the signer in fact
provides a signature for all elements in it. Moreover, there exists a procedure
ChgRepSPS(M,σSPS, r, pkSPS) that can be used to change the signature to a dif-
ferent representative without knowledge of the secret key. Existing instantiations
allow to sign messages from the space (G∗i )

`
, for ` > 1, and for the following

relation Rexp: given two messages M = (M1, . . . ,M`) and M ′ = (M ′1, . . . ,M
′
`),

we say that M and M ′ are from the same equivalence class (denoted by [M ]R)
if there exists a scalar r ∈ Z∗p, such that ∀i∈[`](Mi)

r
= M ′i .

The original paper defines two properties of SPS-EQ namely unforgeability
under chosen-message attacks and class-hiding. Fuchsbauer and Gay [23] recently
introduced a weaker version of unforgeability called unforgeability under chosen-
open-message attacks, which restricts the adversary’s signing queries to messages
where it knows all exponents.

Definition 10 (Signing Oracles). A signing oracle is an oracle OSPS(skSPS, ·)
(resp. Oop(skSPS, ·)), which accepts messages (M1, . . . ,M`) ∈ (G∗i )

`
(resp. vectors

(e1, . . . , e` ) ∈ (Z∗p)
`
) and returns a signature under skSPS on those messages

(resp. on messages (ge11 , . . . , g
e`
1 ) ∈ (G∗i )

`
).

Definition 11 (EUF-CMA (resp. EUF-CoMA)). A SPS-EQ scheme

(BGGenSPS,KGenSPS,SignSPS,ChgRepSPS,VerifySPS,VKeySPS) on (G∗i )
`

is called
existentially unforgeable under chosen message attacks (resp. adaptive chosen-
open-message attacks), if for all PPT algorithms A with access to an open signing
oracle OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) the following advantage (with templates
T1, T2 defined below) is negligible in the security parameter λ:

Adv`,T1

SPS-EQ,A(λ) = Pr

[
BG←BGGenSPS(λ);

(skSPS,pkSPS)←
$ KGenSPS(BG,`);

(M∗,σ∗SPS)←
$ AOT2 (skSPS,·)(pkSPS)

:
∀M∈Q. [M∗]R 6=[M ]R ∧
VerifySPS(M

∗,σ∗SPS,pkSPS)=1

]
,

where Q is the set of messages signed by the signing oracle OT2
and for T1 =

euf-cma we have T2 = SPS, and for T1 = euf-coma we have T2 = op.

A stronger notion of class hiding, called perfect adaptation of signatures,
was proposed by Fuchsbauer et al. in [25]. Informally, this definition states that
signatures received by changing the representative of the class and new signatures
for the representative are identically distributed. In our schemes we will only use
this stronger notion.

Definition 12 (Perfect Adaptation of Signatures). A SPS-EQ scheme on

(G∗i )
`

perfectly adapts signatures if for all (skSPS, pkSPS,M, σ, r), where

VKeySPS(skSPS, pkSPS) = 1, M ∈ (G∗1)
`
, r ∈ Z∗p and VerifySPS(M,σ, pkSPS) = 1,

the distribution of

((M)
r
,SignSPS(Mr, skSPS)) and ChgRepSPS(M,σ, r, pkSPS)

are identical.
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3 Signatures with Flexible Public Key

We begin by motivating the idea behind our primitive. In the notion of existen-
tial unforgeability of digital signatures, the adversary must return a signature
valid under the public key given to him by the challenger. Imagine now that
we allow a more flexible forgery. The adversary can return a signature that is
valid under a public key that is in some relation R to the public key chosen by
the challenger. Similar to the message space of SPS-EQ signatures, this relation
induces a system of equivalence classes on the set of possible public keys. A given
public key, along with the corresponding secret key can be transformed to a dif-
ferent representative in the same class using an efficient, randomized algorithm.
Since there may be other ways of obtaining a new representative, the forgery on
the challenge equivalence class is valid as long as the relation holds, even without
knowledge of the explicit randomness that leads to the given transformation.

Note, that because of this the challenger needs a way to efficiently ascertain
whether the forgery is valid, even if no transformation randomness is given.
Indeed, for the full definition of our schemes’ security we will require that it
should not be feasible, in absence of the concrete transformation randomness,
to determine whether a given public key belongs to one class or another. This
property —called class-hiding in the style of a similar property for SPS-EQ
signatures— should hold even for an adversary who has access to the randomness
used to create the key pairs in question.

The apparent conflict is resolved by introducing a trapdoor key generation
algorithm TKeyGen which outputs a key pair (sk, pk) and a class trapdoor τ
for the class the key pair is in. The trapdoor allows the challenger to reveal
whether a given key is in the same class as pk, even if doing so efficiently is
otherwise assumed difficult. Since we require that the keys generated using the
trapdoor key generation and the regular key generation are distributed identi-
cally, unforgeability results with respect to the former also hold with respect to
the latter.

Definition 13 (Signature with Flexible Public Key). A signature scheme
with flexible public key (SFPK) is a tuple of PPT algorithms (KeyGen,TKeyGen,
Sign,ChkRep,ChgPK,ChgSK,Verify) such that:

KeyGen(λ, ω): takes as input a security parameter λ, random coins ω ∈ coin and
outputs a pair (sk, pk) of secret and public keys,

TKeyGen(λ, ω): a trapdoor key generation that takes as input a security parame-
ter λ, random coins ω ∈ coin and outputs a pair (sk, pk) of secret and public
keys, and a trapdoor τ .

Sign(sk,m): takes as input a message m ∈ {0, 1}λ and a signing key sk, and
outputs a signature σ,

ChkRep(τ, pk): takes as input a trapdoor τ for some equivalence class [pk′]R and
public key pk, the algorithm outputs 1 if pk ∈ [pk′]R and 0 otherwise,

ChgPK(pk, r): on input a representative public key pk of an equivalence class
[pk]R and random coins r, this algorithm returns a different representative
pk′, where pk′ ∈ [pk]R.

11



ChgSK(sk, r): on input a secret key sk and random coins r, this algorithm returns
an updated secret key sk′.

Verify(pk,m, σ): takes as input a message m, signature σ, public verification key
pk and outputs 1 if the signature is valid and 0 otherwise.

A signature scheme with flexible public key is correct if for all λ ∈ N, all
random coins ω, r ∈ coin the following conditions hold:

1. The distribution of key pairs produced by KeyGen and TKeyGen is identical.
2. For all key pairs (sk, pk) ←$ KeyGen(λ, ω) and all messages m we have

Verify(pk,m,Sign(sk,m)) = 1 and Verify(pk′,m,Sign(sk′,m)) = 1, where
ChgPK(pk, r) = pk′ and ChgSK(sk, r) = sk′.

3. For all (sk, pk, τ) ←$ TKeyGen(λ, ω) and all pk′ we have ChkRep(τ, pk′) = 1
if and only if pk′ ∈ [pk]R.

Definition 14 (Class-hiding). For scheme SFPK with relation R and adver-
sary A we define the following experiment:

C-HASFPK,R(λ)

ω0, ω1 ←$ coin

(ski, pki)←
$ KeyGen(λ, ωi) for i ∈ {0, 1}

b←$ {0, 1}; r ←$ coin

sk′ ←$ ChgSK(skb, r); pk
′ ←$ ChgPK(pkb, r)

b̂←$ ASign(sk′,·)(ω0, ω1, pk
′)

return b = b̂

A SFPK is class-hiding if for all PPT adversaries A, its advantage in the
above experiment is negligible:

Advc-hA,SFPK(λ) =

∣∣∣∣Pr
[
C-HASFPK,R(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

Definition 15 (Existential Unforgeability under Flexible Public Key).
For scheme SFPK with relation R and adversary A we define the following ex-
periment:

EUF-CMAASFPK,R(λ)

ω ←$ coin

(sk, pk, τ)←$ TKeyGen(λ, ω);Q := ∅

(pk′,m∗, σ∗)←$ AO
1(sk,·),O2(sk,·,·)(pk, τ)

return (m∗, ·) 6∈ Q ∧
ChkRep(τ, pk′) = 1 ∧
Verify(pk′,m∗, σ∗) = 1

O1(sk,m)

σ ←$ Sign(sk,m)

Q := Q ∪{(m,σ)}
return σ

O2(sk,m, r)

sk′ ←$ ChgSK(sk, r)

σ ←$ Sign(sk′,m)

Q := Q ∪{(m,σ)}
return σ

12



A SFPK is existentially unforgeable with flexible public key under chosen mes-
sage attack if for all PPT adversaries A the advantage in the above experiment
is negligible:

Adveuf−cma
A,SFPK (λ) = Pr

[
EUF− CMAASFPK(λ) = 1

]
= negl(λ) .

Definition 16 (Strong Existential Unforgeability under Flexible Pub-
lic Key). A SFPK is strongly existentially unforgeable with flexible public
key under chosen message attack if for all PPT adversaries A the advantage
Advseuf−cma

A,SFPK (λ) in the above experiment, where we replace the line (m∗, ·) 6∈ Q
with (m∗, σ∗) 6∈ Q, is negligible.

In a standard application, the public key and secret key are jointly random-
ized by the signer using the same randomness in ChgPK and ChgSK. However,
the ChgPK algorithm alone can be executed by a third party given only the pub-
lic key and random coins r. Revealing r to the signer allows them to compute
the corresponding secret key. For some applications we want to avoid interaction
during this recovery of the secret key. Allowing the user to extract the new secret
key only using their old secret key would break class-hiding, since the attacker
in this case has access to the pre-transformed secret keys. Fortunately, we can
instead use the additional trapdoor returned by the TKeyGen algorithm. More
formally, we define this optional property as follows.

Definition 17 (Key Recovery). A SFPK has recoverable signing keys if there
exists an efficient algorithm Recover such that for all security parameters λ ∈ N,
random coins ω, r and all (sk, pk, τ) ←$ TKeyGen(λ, ω) and pk′ ←$ ChgPK(pk, r)
we have ChgSK(sk, r) = Recover(sk, τ, pk′).

3.1 Flexible Public Key in the Multi-user Setting

In this subsection, we address applications where part of each user’s public key is
shared with all the other public keys and is precomputed by a trusted third party
in a setup phase, e.g. the key used in a programmable hash function. We therefore
define an additional algorithm CRSGen that, given a security parameter, outputs
a common reference string ρ. We assume that this string is an implicit input to
all algorithms. If the KeyGen is independent from ρ, we say that such a scheme
supports key generation without setup.

We will now discuss the implication of this new algorithm on the security
definitions. Usually, we require that the common reference string is generated
by an honest and trusted party (i.e. by the challenger in definitions 14 and 15).
We additionally define those notions under maliciously generated ρ. We call a
scheme class-hiding under malicious reference string if the class-hiding definition
holds even if in definition 14 the adversary is allowed to generate the string ρ.
Similarly, we call a SFPK scheme unforgeable under malicious reference string if
the unforgeability definition 15 holds if ρ is generated by the adversary.
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4 Applications

In this section we present natural applications of signatures with flexible public
key. First we show how to implement cryptocurrency stealth addresses from
schemes which have the additional key recovery property.

Then follow generic constructions of group and ring signature schemes. As
we will see in Section 5, each of the schemes presented in this section can be
instantiated with an SFPK scheme such that it improves on the respective state-
of-the-art in terms of concrete efficiency, necessary assumptions or both.

4.1 Cryptocurrency Stealth Addresses

In cryptocurrency systems transactions are confirmed through digital signatures
from the spending party on, among other things, the public key of the receiving
party. Using a technique called stealth addresses [40, 38], it is possible for the
sender to create a fresh public key (address) for the receiving party from their
known public key such that these two keys cannot be linked. The receiving party
can recognize the fresh key as its own and generate a corresponding private
key, subsequently enabling it to spend any funds send to the fresh unlinkable
key. Crucially, there is no interaction necessary between sender and receiver to
establish the fresh key and only the receiver can recover the right secret key.

Informally, a sender can take a recipient’s public address and transform it to
a one-time address such that:

– The new one is unlinkable to the original one and other one-time addresses,
– only the recipient (or a party given the view key) can link all payments,
– only the recipient can derive the spending key for the one-time address.

In existing schemes, stealth addresses are implemented using a variant of
the Diffie-Hellman protocol [38, 20]. Let ga be the public key of the sender and
gb the recipient’s public address. The sender computes the secret s = H(ga·b)
and to finish the transaction sends the funds to the address gs. Note that this
requires the recipient to immediately spend the coins, because the sender also
knows s. To protect against this type of misuse, an asymmetric Diffie-Hellman
was introduced, i.e. the funds are sent to the address gs+b = (g)

s · gb. Note that
since only the recipient knows both s and b, only he can spend the money.

In practice, the sender’s public key ga is ephemeral and unique for each
transaction. Moreover, to increase efficiency a 2-key stealth address scheme was
introduced. The recipient still holds the key for spending the coin, but gives
a view key gv to a third party for checking incoming transactions. Therefore,
the recipient is not required to download all transactions and check if they cor-
respond to their identity. However, the party holding the view key can break
the anonymity of the recipient. To enable this feature, the sender also publishes
(gv)

a
, as part of this transaction.

It is worth noting that the technique was introduced without a formal model
and as an add-on for existing cryptocurrencies. In particular, as shown in [20]
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there exist many security pitfalls, which are exhibited by some of the schemes.
Moreover, all existing schemes inherently rely on the Diffie-Hellman protocol,
which is defined for groups in which the discrete logarithm is hard.

We will now show that signatures with flexible public keys that additionally
implement the Recover algorithm can be seen as a formalization of 2-key stealth
addresses. Let us consider the following scenario. A sender wants to send funds
to a recipient identified by an address pk, where (sk, pk, τ) ←$ TKeyGen(λ, ω).
In order to send the coins, the sender first chooses randomness r and computes
the one-time address pk′ ←$ ChgPK(pk, r). The trapdoor τ can be used as the
view key to identify an incoming transaction using ChkRep(τ, pk′). Finally, the
recipient can use Recover(sk, τ, pk′) to compute the secret key sk′ that can be
used to spend funds sent to address pk′.

The main advantage of instantiating 2-key stealth addresses using SFPK is
that we can use the security arguments of the latter. In particular, unforgeability
of SFPK means that there cannot exist an efficient adversary that can spend the
recipient’s coins. Note that this holds even if the adversary knows the view key
τ . Privacy of the recipient is protected by class-hiding. Since the distributions of
TKeyGen and KeyGen are identical, it follows that any adversary breaking privacy
would break class-hiding. The party holding the view key τ can distinguish
transactions by definition, hence class-hiding does not hold for this party.

It is worth noting, that all previous descriptions of stealth addresses did not
consider any formal model and rigorous proofs. As we have argued above, our
definition of SFPK with key recovery seems to directly address the requirements
set before stealth addresses. Thus, our schemes are provable secure realizations
of a stealth address scheme. Moreover, since we do not use a particular group
structure, our construction could be instantiated using e.g. lattice-based cryp-
tography. We leave an instantiation of SFPK from lattices as an open problem.

Finally, note that Scheme 4 is an instance of signatures with flexible public
key which has the required recovery algorithm. We also show how to extend
Schemes 5 and 6 to support it.

4.2 Group Signatures/Self-blindable Certificates

We now present an efficient generic construction of static group signatures that
uses SFPK as a building block and which is secure in the model by Bellare, Mic-
ciancio and Warinschi [5]. The idea is to generate a SFPK secret/public key pair
and “certify” the public part with a SPS-EQ signature. To sign a message, the
signer changes the representation of their SFPK key, and changes the represen-
tation of the SPS-EQ certificate. The resulting signature is the SFPK signature,
the randomized public key and the SPS-EQ certificate.

To enable subsequent opening, the group manager generates the SFPK keys
using TKeyGen and stores their trapdoors. Opening is then performed using
the stored trapdoors with the ChkRep algorithm.The group manager can also
generate ρ ←$ CRSGen for the SFPK signatures and use it as part of the group
public key. This allows us to use schemes which are secure in the multi-user
setting, e.g. Scheme 5. If the KeyGen algorithm is used instead of TKeyGen
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KeyGenGS(1λ, n)

1 : BG←$ BGGenSPS(1
λ

); (pkSPS, skSPS)←
$ KGenSPS(BG, `)

2 : ρ←$ CRSGen(1
λ

)// optional

3 : foreach user i ∈ [n] :

4 : (pki, ski, τ i)←$ TKeyGen(1
λ
, ωi)

5 : σ
i
SPS ←

$ SignSPS(pk
i
, skSPS)

6 : return (gpk := (BG, pkSPS, ρ), gmsk := ([(τ
i
, pki)]ni=1),

7 : gski := (pki, ski, σiSPS))

SignGS(gski,m)

1 : parse gski = (pk, sk, σSPS)

2 : r ←$ Z∗p; pk′ ← ChgPK(pk, r); sk′ ← ChgSK(sk, r)

3 : (pk′, σ′SPS)← ChgRepSPS(pk, σSPS, r, pkSPS)

4 : M := m||σ′SPS||pk
′

5 : σ ←$ Sign(sk′,M)

6 : return σGS := (pk′, σ, σ′SPS)

Scheme 2: Generic Group Signature Scheme

to compute the SFPK key pairs, there is no efficient opening procedure and
the combination of SFPK and SPS-EQ signature scheme yields a self-blindable
certificate scheme [41].

Due to space limitations, we only present the setup and signing algorithm for
Scheme 2. Verification and opening procedures should be clear from the context.

Theorem 3. Scheme 2 is fully traceable if the SPS-EQ and the SFPK signature
schemes are existentially unforgeable under chosen-message attack.

Proof (Sketch). The proof relies on the fact that the only way for an adversary
to win the full traceability game is by either creating a new group member (thus
directly breaking the unforgeability of the SPS-EQ scheme) or by creating a
forged signature for an existing group member (thus breaking the unforgeability
of the SFPK scheme).

Theorem 4. Scheme 2 is fully anonymous if the SPS-EQ signature scheme per-
fectly adapts signatures and is existentially unforgeable under chosen-message
attacks, the SFPK scheme is class-hiding and strongly existentially unforgeable.

Proof (Sketch). We first use the perfect adaptation of SPS-EQ signatures to
re-sign the public key pk′ used in the challenge signature. Then we exclude
the case that the adversary issues an open query that cannot be opened. This
means that the adversary created a new group member and can be used to
break the unforgeability of the SPS-EQ scheme. In the next step we choose one
of the users (and abort if he is not part of the query issued by the adversary
to the challenge oracle) for which we change the way we generate the secret
key. Instead of using TKeyGen, we use the standard key generation algorithm
KeyGen. Note that in such a case, the open oracle cannot identify signatures
created by this user. However, since signatures cannot be opened by the oracle
for this user we can identify such a case and return his identifier. Finally, we
replace the SFPK public key and signature in the challenged group signature
by a random one (which is indistinguishable by class-hiding). In the end the

challenged signature is independent from the bit b̂. However, the adversary still
has non-zero advantage. This follows from the fact that it can randomize the
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RKeyGen(1λ)

1 : (sk, pk)←$ KeyGen(λ, ω)

2 : I := (A,B,C)←$ G3
1

3 : return (pkRS := (pk, I), skRS := sk)

RVerify(m,Σ, Ring)

1 : parse Σ = (pk′, σ,Π, ρΠ)

2 : return Verify(x,Π) ∧

3 : Verify(pk′,m, σ)

RSign(m, skRS, Ring)

1 : r ←$ Z∗p; sk′ ←$ ChgSK(sk, r); pk′ ←$ ChgPK(pk, r)

2 : σ ←$ Sign(sk′,m||Ring)

3 : Π ←$ Prove(x, (pk, r)) where x is statement

∃i,pk,r
(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′

)
∨

∃i,I ((i, ·, I) ∈ Ring ∧ I is not a DDH tuple)

4 : return Σ := (pk′, σ,Π)

Scheme 3: Generic Ring Signature Scheme

challenged signature and our oracle will output ib̂ (because the SFPK public
key is random in the signature, the oracle will fail to open and return the user’s
identifier). However, if the adversary is able to submit such a query we can break
the strong existential unforgeability of the SFPK scheme.

4.3 Ring Signatures

In ring signatures there is no trusted entity such as a group manager and groups
are chosen ad hoc by the signers themselves. Thus, to certify ring members we
use a membership proof instead of a SPS-EQ signature. This proof is perfectly
sound even if the common reference string is generated by the signer. In other
words, the actual ring signature is a SFPK signature (pk′, σ) and a proof Π that
there exists a public key pk ∈ Ring that is in relation to the public key pk′, i.e.
the signer proves knowledge of the random coins used to get pk′. The signature’s
anonymity relies on the class-hiding property of SFPK. Unfortunately, in the
proof, the reduction does not know a valid witness for proof Π, since it does
not choose the random coins for the challenged signature. Thus, we extend the
signer’s public keys by a tuple of three group elements (A,B,C) and prove
an OR statement which allows the reduction to compute a valid proof Π if
(A,B,C) is a non-DDH tuple (cf. Scheme 3). We can instantiate this scheme
with a membership proof based on the O(

√
n) size ring signatures by Chandran,

Groth, Sahai [15] and the perfectly sound proof system for NP languages by
Groth, Ostrovsky, Sahai [27]. The resulting membership proof is perfectly sound
and of sub-linear size in the size of the set. It follows, that our ring signature
construction yields the first sub-linear ring signature from standard assumptions
without a trusted setup.

17



Theorem 5. The generic construction of ring signatures presented in Scheme 3
is unforgeable w.r.t. insider corruption assuming the SFPK scheme is existen-
tially unforgeable, the proof system used is perfectly sound and the decisional
Diffie-Hellman assumption holds.

Proof (Sketch). We first fix all public keys of honest users to contain only DDH
tuples. This ensures that the forgery Σ∗ = (pk∗, σ∗, Π∗, ρ∗Π) includes a perfectly
sound proof for the first clause of the statement, i.e. there exists a public key
pk ∈ Ring, which is in relation to pk∗ (all users in Ring must be honest). This
enables us to break existential unforgeability of the SFPK scheme. Note that we
have to guess the correct user to execute a successful reduction.

Theorem 6. The generic construction of ring signatures presented in Scheme 3
is anonymous against full key exposure assuming the SFPK scheme is class-hiding
and the used proof system is computationally witness-indistinguishable.

Proof (Sketch). We first fix all public keys of honest users to contain only non-

DDH tuples I. In the next step we randomly choose a fresh bit b̂ ←$ {0, 1} and
use the witness for the tuple Iib̂ in the challenged signature. Note that the proof

is valid for both values of b̂ but now the proof part is independent from the bit
b. Next we change the SFPK scheme public key pk′ and signature σ returned as
part of the challenged signature Σ = (pk′, σ′, Π). Again we choose a fresh bit

b̂←$ {0, 1} and compute them using pk′ ←$ ChgPK(pkib̂ , r), sk
′ ←$ ChgSK(skib̂ , r)

and σ ←$ Sign(sk′,m||Ring). Any adversary distinguishing this change can be
used to break the class-hiding property of the SFPK scheme. Finally, all elements
of Σ are independent from b and the adversary’s advantage is zero.

5 Efficient Instantiation from Standard Assumptions

In this section we present two efficient instantiations of signatures with flexible
public key. All schemes support the same exponentiation relation Rexp. We say
that public keys pk1 = (pk1,1, . . . , pk1,k) and pk2 = (pk2,1, . . . , pk2,k) are in this
relation, denoted (pk1, pk2) ∈ Rexp, if and only if there exists a value r ∈ Z∗p
such that ∀i∈[k](pk1,i)

r = pk2,i. We assume that in the plain model scheme (i.e.
without a common reference string) the public key contains the implicit security
parameter λ and parameters BG. Since the bilinear-group generation algorithm
BGGen(λ) is deterministic, it follows that this does not influence the class-hiding
property or the unforgeability property. Therefore, for readability we omit those
parameters.

The first instantiation is based on a modified version of Waters signatures [42]
for type-2 and type-3 pairings due to Chatterjee and Menezes [17]. The scheme
has the key recovery property and can hence be used to implement stealth ad-
dresses and instantiate our ring signature construction.

The second scheme works in the multi-user setting and features small public
key size, independent of the security parameter λ. It is also based on the modified
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KeyGenFW(λ, ω)

1 : KPHF ←$ PHF.Gen(λ) ∈ Gλ+1
1

2 : A,B,C,D,X ←$ G1 y ←$ Z∗p
3 : t← e(X

y
, g2)

4 : return (pkFW := (A,B,C,D, t,KPHF),

5 : skFW := (y,X, pkFW))

TKeyGenFW(λ, ω)

1 : KPHF ←$
(
g
µi
1 | i ∈ {0, . . . , λ}, µi ←$ Zp

)
2 : a, b, c, d, x←$ Z∗p y ←

$ Z∗p
3 : t← e(g

x·y
1 , g2)

4 : return (pkFW := (g
a
1 , g

b
1, g

c
1, g

x·d
1 , t,KPHF)

5 : skFW := (y, g
x
1 , pkFW),

6 : τ := (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ0
2 , g

µ1
2 , . . . , g

µλ
2 ))

SignFW(skFW,m)

1 : parse skFW = (y,X, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW :=
(
X
y ·
(
HKPHF

(m)
)r
, g
r
1 , g

r
2

)

VerifyFW(pkFW,m, σFW)

1 : parse σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

2 : pkFW = (A,B,C,D, t,KPHF)

3 : return e(σ
2
W, g2) = e(g1, σ

3
W) ∧

4 : e(σ
1
FW, g2) = t · e

(
HKPHF

(m), σ
3
FW

)

ChgSKFW(skFW, r)

1 : parse skFW = (y,X, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return skFW
′

:= (y, (X
r
), pkFW

′
)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,C,D, t,KPHF)

2 : return pkFW
′

:= (A
r
, B

r
, C

r
, D

r
, t
r
, (KPHF)

r
)

ChkRepFW(τ, pkFW, pkFW
′)

1 : parse pkFW
′

= (pk1, pk2, pk3, X, t, pk4, . . . , pkλ+4)

2 : τ = (d, Y2, τ1, . . . , τλ+4)

3 : return e(X
d−1

, Y2) = t ∧

4 :

λ+4∧
i=1

λ+4∧
j=1

e(pki, τj) = e(pkj , τi)

Recover(sk, τ, pk′)

1 : parse sk = (y, g
x
1 , pk)

2 : τ = (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ0
2 , . . . g

µλ
2 )

3 : pk′ = (A
r
, B

r
, C

r
, D

r
, t
r
, (KPHF)

r
)

4 : X
′ ← (D

r
)
1/d

5 : return sk′ := (y,X
′
, pk′)

Scheme 4: Warm-up Scheme for Waters Signatures

version of Waters signatures. A strongly unforgeable variant of this scheme is
ideal for instantiating the group signature scheme presented in Section 4. In
combination with the SPS-EQ from [23] it results in the shortest static group
signature scheme under standard assumptions. Further, using type-2 pairing and
the random oracle model allows to use this scheme without a trusted party.

5.1 Warm-up Scheme

Theorem 7. Scheme 4 is existentially unforgeable under flexible public key, as-
suming the decisional linear assumption holds and that PHF is (1, poly(λ))

Proof. In this particular proof we assume that we can re-run PHF.TrapGen using
the same random coins on a different group, i.e. that we can generate key KPHF =
(gµ0

1 , . . . , gµλ1 ) ∈ Gλ+1
1 and a corresponding key K ′PHF = (gµ0

2 , . . . , gµλ2 ) ∈ Gλ+1
2 .

Note that this means that we make non-blackbox use of the underlying pro-
grammable hash function, but this re-running is possible for the hash function
we use, i.e. the Waters hash function.

Let (f1, f2, h1, h2, f
α
1 , f

α
2 , h

β
1 , h

β
2 , g

γ
1 , g

γ
2 ) be an instance of the decisional lin-

ear problem and let A be an PPT adversary that has non-negligible advantage
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Adveuf−cma
A,SFPK (λ). We will show an algorithm R that uses A to break the above

problem instance.
In the first step, the reductionR prepares the public key pkFW = (A,B,C,D, t,

KPHF) as follows. It sets:

X = gγ1 A = fα1 B = hβ1

C = h1 t = e(X, f2) = e(Xφ, g2) D = Xd

and (KPHF, τPHF) ←$ PHF.TrapGen(λ, gγ1 , g1). The reduction also prepares the

trapdoor τ = (d, f2, f
α
2 , h

β
2 , h2,K

′
PHF), where to generate K ′PHF we re-run the

algorithm PHF.TrapGen(λ, gγ2 , g2).
Let (m, l) be one of A′s signing queries. To answer it, R

– chooses random values t←$ Z∗p,
– it computes (am, bm)←$ PHF.TrapEval(τPHF,m) and aborts if am = 0,
– it computes pkFW

′ ←$ ChgPKSFPK(pkSFPK, l),
– it computes:

σ1
FW = (gγ1 )t·l·am · ((f1)(−a−1

m ) · gt1))l·bm ,

σ2
FW = (f1)−a

−1
m · gt1, σ3

FW = (f1)−a
−1
m · gt2,

– it returns the signature σFW = (σ1
FW, σ

2
FW, σ

3
FW).

Let f1 = gφ1 . We will now show that this is a valid signature. Note that the

a valid signature is of the form (fγ·l1 · ((gγ1 )am · gbm1 )l·r, gr1, g
r
2). In this case, the

reduction has set r = −a−1
m · φ+ t and this means that the fγ·l1 cancels out and

the reduction does not need to compute fγ1 .
Finally,A will output a valid signature under messagem∗: ˆσFW = ( ˆσFW

1, ˆσFW
2,

ˆσFW
3) = ((gγ·φ1 HKPHF

(m∗)r
∗
)l
∗
, gr
∗

1 , gr
∗

2 ), for which we hope that am∗ = 0, where
(am∗ , bm∗) ←$ PHF.TrapEval(τPHF,m

∗). Moreover, since this should be a valid

forgery then we have that this signature is under a public key ˆpkFW for which
(pkFW, ˆpkFW) ∈ R. Thus, we have ˆσFW = ((fγ1 (gr

∗

1 )bm∗ )l
∗
, gr
∗

1 , gr
∗

2 ), for some

unknown r∗ but known bm∗ . Since (pkFW, ˆpkFW) ∈ R. This means that ˆpkFW =

(Al
∗
, Bl

∗
, Cl

∗
, Dl∗ , tl

∗
,Kl∗

PHF) = ((fα1 )l
∗
, (hβ1 )l

∗
, (h1)l

∗
, (gγ·d1 )l

∗
, tl
∗
,Kl∗

PHF). We now
compute

T1 = e( ˆσFW
1, h2) = e(fγ1 (gr

∗

1 )bm∗ , hl
∗

2 ) T2 = e(hl
∗

1 , g
r∗

2 )bm∗ = e(gr
∗·bm∗

1 , hl
∗

2 )

T3 = e((fα1 )l
∗
, h2) = e(fα1 , h

l∗

2 ) T4 = e((hβ1 )l
∗
, f2) = e(fβ1 , h

l∗

2 )

Finally, the reduction R returns 1 if T1 ·T−1
2 = T3 ·T4 and 0, otherwise. Note

that T1 · T−1
2 = e(fγ1 , h

l∗

2 ) and the above equation is correct only if γ = α+ β.
The success probability of the reduction R depends on whether it can answer

all signing queries of A and on the returned forgery (i.e. for which we must have
am∗ = 0). However, since we assume that the used hash function is a (1, poly(λ))-
programmable hash function, it follows that R has a non-negligible advantage
in solving the decisional linear problem.
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Theorem 8. Scheme 4 is class-hiding, assuming the decisional Diffie-Hellman
assumption in G1 holds.

Proof. In this proof we will use the game based approach. We start with GAME0

which is the original class-hiding experiment and let S0 be an event that the ex-
periment evaluates to 1, i.e. the adversary wins. We then make small changes
and show in the end that the adversary’s advantage is zero. We will use Si to de-
note the event that the adversary wins the class-hiding experiment in GAMEi.
We will also use the vector u to denote the key for the programmable hash
function KPHF. Let pkFW

′ = (A′, B′, C ′, D′, t′,u′) be the public key given to the
adversary as part of the challenge. Moreover, let pkFW0 = (A0, B0, C0, D0, t0,u0)
and pkFW1 = (A1, B1, C1, D1, t1,u1) be the public keys that are returned by the
KeyGen algorithm on input of random coins ω0 and ω1 given to the adversary
and b̂ be the bit chosen by the challenger.

GAME1: In this game we change the way we sample pkFW0 and pkFW1. Instead
of sampling directly from G1, we sample a, b, c, d, x, ν1, . . . , νλ ←$ Z∗p and set

A = ga1 , B = gb1, C = gc1, D = gd1 , X = gx1 and u = (gν01 , . . . , gνλ1 ). More-
over, we change the way skFW

′ and pkFW
′ are computed from skFW b̂ pkFW b̂, i.e.

pkFW
′ = (Qa, Qb, Qc, Qd, e(Qx, gy2 ), (Qν0 , . . . , Qνλ)), and skFW

′ = (y,Qx, pkFW
′).

In other words, instead of using the value r to randomize the public key and
secret key, we use a group element Q to do it.

Because we can use the invertible sampling algorithm to retrieve the random
coins ω0 and ω1 and since the distribution of the keys does not change, it follows
that Pr[S1] = Pr[S0]. Note that since the secret key skFW

′ is known, the signing
oracle Sign(skFW

′, ·) can be properly simulated for any adversary.

GAME2: In this game instead of computing pkFW
′ = (Qa, Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2 ),

(Qν0 , . . . , Qνλ)) as in GAME1, we sample A′ ←$ G1 set pkFW
′ = (A′, Qb, Qc,

Qd, e(Qxb̂ , g
yb̂
2 ), (Qν0 , . . . , Qνλ)).

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1 ) be a instance of this problem

in G1. R samples r0,A, r1,A ←$ Z∗p and sets A0 = (gα1 )r0,A , A1 = (gα1 )r1,A .

Additionally, the reduction uses Q = gβ1 and the public key

pkFW
′ = ((gγ1 )rb̂,A , Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2 ), (Qν0 , . . . , Qνλ)).

Note that since R knows the secret key skFW
′ it can answer signing queries.

Finally notice, that if γ = α · β then (pkFW
′, σFW) have the same distribution as

in GAME1 and otherwise as in GAME2. Thus, we have |Pr[S2] − Pr[S1]| ≤
AdvddhA (λ).
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GAME3 (series of sub-games): In this game instead of computing
pkFW

′ = (A′, Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2 ), (Qν1 , . . . , Qνλ)) as in GAME2, we sample

B′, C ′, D′, u′0, . . . , u
′
λ ←$ G1 and set pkFW

′ = (A′, B′, C ′, D′, e(Qxb̂ , g
yb̂
2 ), (u′0, . . . , u

′
λ)).

This transition is composed of a number of sub-games, in which we change
each element of the public key pkFW

′ separately. Obviously, we can use the same
reduction as above and show that each change lowers the adversary’s advantage
by at most AdvddhA (λ). It is worth noting, that the reduction can always create
a valid signature, since the secret key skFW

′ = (yb̂, Q
xb̂ , pkFW

′) can be computed

by R. Thus, we have |Pr[S3]− Pr[S2]| ≤ (4 + λ) · AdvddhA (λ).

Let us now take a look at the randomized public key and signature given to
the adversary. Because of all the changes, we have: pkFW

′ = (A′, B′, C ′e(Qxb̂·yb̂ , g2),
u′) and signatures from the oracle are of the form (Qxb̂·yb̂(HKPHF

(m))r, gr1, g
r
2)

for some r ∈ Z∗p and A′, B′, C ′,u′(= KPHF), Q, which are independent from the

bit b̂ and the original public keys. Since the value Q is random and only appears
as part of the term Qxb̂·yb̂ , we can always restate this term to Q′x1−b̂·y1−b̂ where

Q′ = Q(x1−b̂·y1−b̂)·(xb̂·yb̂)
−1

and Q′ is a random value. It follows that the adver-
saries advantage is zero, i.e. Pr[S3] = 0.
Finally, we have Advc-hA,SFPK(λ) = Pr[S0] ≤ (5 + λ) · AdvddhA (λ).

5.2 Flexible Public Key Scheme in the Multi-user Setting

Theorem 9. Scheme 5 is existentially unforgeable under flexible public key in
the common reference string model, assuming the co-Flexible Diffie-Hellman as-
sumption holds and that PHF is a (1, poly(λ))-programmable hash function.

Proof (Sketch). The proof follows the same idea as the proof of Theorem 7.
The only difference is that in this case we will use a reduction directly to the
co-Flexible Diffie-Hellman assumption. Let (gα1 , g

α
2 , g

β
1 , g

β
2 , g

γ
1 , g

γ
2 , g

θ
1 , g

θ
2) be an

instance of this problem. The reduction R prepares the common reference string
ρ = (BG, Y1, Y2,KPHF) and the public key pkFW = (A,B,X) as follows. It sets

X = gβ1 , Y1 = gα1 , Y2 = gα2 , A = gγ1 , B = gθ1 and (KPHF, τPHF)←$ PHF.TrapGen(λ,

gβ1 , g1). Moreover, R sets τ = (gγ2 , g
θ
2 , g

β
2 ). Finally, the adversary A will output

a public key ˆpkFW = (Al
∗
, Bl

∗
, X l∗) and a valid signature under message m∗:

ˆσFW = ((gα·β1 )l
∗
(gr
∗

1 )bm∗ , gr
∗

1 , gr
∗

2 ), for some unknown r∗ but known bm∗ . The

reduction can compute S = (gα·β1 )l
∗

and return (Al
∗
, Bl

∗
, S) as a solution to the

co-Flexible Diffie-Hellman problem.

Theorem 10. Scheme 5 is class-hiding under the DDH assumption in G1.

Proof (Sketch). The proof is analogous to the proof of Theorem 8.

Remark 2 (Key Recovery). To support key recovery, the public key must be
extended to the form (A,B,C,X) for C = Y c1 . The value c is then part of τ and
can be used to restore the value Y r1 , where r is the randomness used to change
the public key. Given Y r1 we need to compute Zr = Y xr1 , therefore we also have
to include x as part of the original secret key skFW = (x, Y x1 ) = (x, Z).
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CRSGen(λ, ω)

1 : BG←$ BGGen(λ)

2 : KPHF ←$ PHF.Gen(λ) ∈ Gλ+1
1

3 : y ←$ Z∗p;Y1 ← g
y
1 ;Y2 ← g

y
2

4 : return ρ := (BG, Y1, Y2, KPHF)

KeyGenFW(λ, ω)

1 : A,B ←$ G1; x←$ Z∗p
2 : return (pkFW := (A,B, g

x
1 )

3 : skFW := (Y
x
1 , pkFW))

TKeyGenFW(λ, ω)

1 : a, b, x←$ Z∗p
2 : return (pkFW := (g

a
1 , g

b
1, g

x
1 ),

3 : skFW := (Y
x
1 , pkFW),

4 : τ := (g
a
2 , g

b
2, g

x
2 ))

SignFW(skFW,m)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW := (Z · (HKPHF
(m))

r
, g
r
1 , g

r
2)

VerifyFW(pkFW,m, σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

3 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

4 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(HKPHF

(m), σ
3
FW)

ChgSKFW(skFW, r)

1 : parse skFW = (Z, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return

4 : skFW
′

:= ((Z)
r
, pkFW

′
)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,X)

2 : return pkFW
′

:= (A
r
, B

r
, X

r
)

ChkRepFW(τ, pkFW
′)

1 : parse τ = (τ1, τ2, τ3)

2 : pkFW
′

= (pk1, pk2, pk3)

3 : return

4 :
∧
i∈[3]

∧
j∈[3]

e(pki, τj) = e(pkj , τi)

Scheme 5: Multi-user Flexible Public Key

Transformation to Strong Existential Unforgeability. Scheme 5 is only
existentially unforgeable under flexible public key and this directly follows from
the fact that given a signature (gx·y·l1 HKPHF

(m)r, gr1, g
r
2) on message m, we can

compute a randomized signature (σ1
FW, σ

2
FW, σ

3
FW) = (gx·y·l1 HKPHF

(m)r·HKPHF
(m)r

′
,

gr1g
r′

1 , g
r
2g
r′

2 ) for a fresh value r′ ←$ Z∗p.
A generic transformation from existentially unforgeable to strongly unforge-

able signatures was proposed by Boneh, Shen and Waters [11]. In particular,
they use Waters signatures as a case study. It works for all schemes for which
there exist two algorithms F1 and F2 with the following properties: 1) the output
signature is (σ1, σ2), where σ1 ←$ F1(m, r, sk) and σ2 ←$ F2(r, sk), 2) given m and
σ2 there exists at most one σ1 so that (σ1, σ2) is a valid signature under pk. It
is easy to see that these properties hold for standard Waters signatures and for
Scheme 5, since we can compute σ2

FW, σ
3
FW in algorithm F2 and σ1

FW in F1. What
is more, once the random value r is set, there exists exactly one value σ1

FW, for
which (σ1

FW, σ
2
FW, σ

3
FW) is valid under a given public key.

The high level idea of the solution is to bind the part computed by F2 using
a hash function, i.e. the output of F2 is hashed together with the actual message
m and the output is signed. In a scenario where we consider a given public key,
this means that the signature cannot be randomized. Any manipulation of the
values (σ2

FW, σ
3
FW) would result in a different signed message, which would lead

to an attack against existential unforgeability of the underlying scheme. Fixing
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SignFW(skFW,m)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p; s←$ Z∗p
3 : v ← H(m, g

r
1 , g

r
2 , pkFW) ∈ Z∗p

4 : M ← g
v
1h
s

5 : return σFW := (Z · (HKPHF
(M))

r
, g
r
1 , g

r
2 , s)

VerifyFW(pkFW,m, σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW, s)

3 : v ← H(m, g
r
1 , g

r
2 , pkFW)

4 : M ← g
v
1h
s

5 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

6 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(HKPHF

(M), σ
3
FW)

Scheme 6: Strong Existential Unforgeable Variant of Scheme 5

(σ2
FW, σ

3
FW) fixes σ1

FW, as required by the properties above. Unfortunately, the
second argument does not hold for strong unforgeability under flexible public key.
Note that the adversary can still change σ1

FW by randomizing the public key. We
can overcome this by simply including the public key in the hash computation.

This idea prevents the randomization of the signature but breaks the security
proof of the underlying scheme. To allow the security reduction to bypass this
protection Boneh, Shen and Waters propose to sign a Pedersen commitment to
this hash value, instead of the value itself. The reduction can use a trapdoor to
bypass this protection using equivocation of the commitment. At the same time
the binding property still makes it impossible for the adversary to randomize the
signature. To apply this idea in our case, we first extend the common reference
string ρ by an element h←$ G1. This element is part of the commitment key for
the Pedersen scheme. More details are given in Scheme 6.

Theorem 11. Scheme 6 is strongly existentially unforgeable under flexible pub-
lic key in the CRS model, assuming the co-Flexible Diffie-Hellman assumption
holds and the hash function H is collision-resistant.

Proof (Sketch). The proof follows directly from the proof given in [11].

Theorem 12. Scheme 6 is class-hiding under the DDH assumption in G1.

Proof (Sketch). We can apply the same reasoning as in the proof of Theorem 10.

5.3 Discussion

In this we instantiate the generic group signature Scheme 2 and the generic ring
signature Scheme 3 with our SFPK instantiations.

Note that in the case of group signatures we can use a SFPK scheme that
is strongly existentially unforgeable in the multi-user setting, since the group
manager can be trusted to perform a proper setup of public parameters. Thus, a
natural candidate is Scheme 6. We also require a SPS-EQ signature scheme, which
we instantiate using the scheme presented in [23]. A caveat to this scheme is that
it only supports a one-time adaptation of signatures to a different representative.
This does not impact our use of the scheme since in our application the group
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Scheme
Public Key

Size
Signature

Size
CRS Assumption

Key
Recovery

[G1] [GT ] [G1] [G2] [GT ] [Z∗p] [G1] [G2]

4 (λ+ 5) 1 2 1 - - - - DLIN + DDH 3

5 3 - 2 1 - - (λ+ 2) 1 co-Flex (or DLIN) + DDH 7/3†

6 3 - 2 1 - 1 (λ+ 3) 1 co-Flex + DDH + CRHF 7/3†

† Can support key recovery at an expense of a larger public key (one element in G1).

Fig. 1. Comparison of Presented Instantiations

member performs the adaptation only once per signing. Further, the scheme is
only unforgeable under adaptive chosen-open-message attacks, hence we require
the following lemma.

Lemma 2. Let the public key of the SFPK scheme consist only of elements
sampled directly from G1 or computed as gx1 , where x ←$ Z∗p. Theorems 3 and 4
still hold if the SPS-EQ scheme is only existential unforgeable under adaptive
chosen-open-message attacks.

Proof (Sketch). In the proof of Theorem 3, instead of excluding the case where
the adversary creates a new user, we can toss a coin and chose the adversary’s
strategy (forging the SPS-EQ or SFPK signature). In case we end up choosing
the SPS-EQ, we can freely choose the SFPK public keys and issue signing oracles
to get all σiSPS. In the proof of Theorem 4 we use the unforgeability of SPS-EQ
to exclude the case that the adversary issues an open query for a new user.
Because this is the first change, we can again freely choose the SFPK public keys
and issue signing oracles to get all σiSPS. Finally, we note that in such proofs we
make a non-blackbox use of the SFPK scheme.

For message space (G∗1)` the size of the SPS-EQ signature is (4 · ` + 2) ele-
ments in G1 and 4 elements in G2. The security of the SPS-EQ scheme relies on
the decisional linear assumption and the decisional Diffie-Hellman assumption
in G2, while the security of our SFPK relies on the co-Flexible Diffie-Hellman
assumption. All in all, the proposed instantiation yields a static group signature
scheme that is secure under standard assumptions and has a signature size of
20 elements in G1 (counting elements in Z∗q as G1) and 5 elements in G2. It
therefore has shorter signatures than the current state-of-the-art scheme in [32].

Even shorter signatures can be achieved at the expense of introducing stronger
assumptions without relying on Lemma 2, by using the scheme found in [24],
which is unforgeable in the generic group model and has signatures of size 2
elements in G1 and 1 element in G2. More details are given in Figure 2.

We now focus on instantiating our ring signatures construction. Combining
any scheme from Section 5 with a generic perfectly sound proof system would
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Scheme
Signature size∗

[bits]
Key size∗

[bits gpk + bits gmsk]
Anonymity Assumptions

Random
Oracle


Camenisch-Groth [14] 13 568 26 112 + O(λ) full standard

Boneh-Boyen-Shacham [9] 2 304 2 048 + 512 CPA-full q-type

Bichsel et al. [7]† 1 280 1 024 + 512 no key exposure interactive

No
Random
Oracle



Boyen-Waters [13] 18 432 O(λ) + 6144 CPA-full q-type

Boyen-Waters [13]‡ 6 656 O(λ) + 512 CPA-full q-type

Libert-Peters-Yung [32] 8 448 18 688¶ + 256 full standard

Ours with [24] 3 072 O(λ) +O(n) full interactive

Ours with [23] 7 680 O(λ) +O(n) full standard
? At a 256-bit (resp. 512-bit) representation of Zq,G1 (resp. G2) for Type 3 pairings and at a 3072-bit

factoring and DL modulus with 256-bit key
† The scheme defines additionally a join↔issue procedure
‡ Adapted from type 1 to type 3 pairings as in [32]; ¶ A chameleon hash key excluded.

Fig. 2. Comparison of Static Group Signature Schemes

result in a ring signature scheme that is unlikely to be of interest, as there are
already more efficient schemes with/without a trusted setup (see Figure 3 for a
comprehensive comparison). However, using the results presented by Chandran,
Groth and Sahai [15] we can make the membership proof efficient. They propose
a perfectly sound proof of size O(

√
n) that a public key pk ∈ G1 (or pk ∈ G2),

is in a Ring of size n. This idea can be applied to arbitrary public keys (i.e.
consisting of group elements in different groups) in combination with a perfectly
sound proof system for NP languages. Thus, we must use a compatible SFPK
instantiation, leaving as the only scheme without a trusted party assumption
Scheme 4. A public key of Scheme 4 contains an element in GT and therefore
cannot be used with the proof system from Subsection 2.3, which is based on the
efficient Groth-Sahai proofs for pairing product equations. We solve this problem
in the following way:

Lemma 3. Scheme 4 is unforgeable and class-hiding even if X = gx1 , Y = gy2
are publicly known, where t = e(Xy, g2) = e(X,Y ) is part of the signer’s public
key. Moreover, knowing the secret key one can compute such values.

Proof. Class-hiding still holds, because the adversary is given the secret keys ski
for i ∈ {0, 1}, which contain Xi and yi so it can compute Xi and Yi by itself
already. To show that unforgeability still holds, we first have to note that Y is
part of the trapdoor τ and does not provide new information for the adversary.
Finally, in the proof of unforgeability of Scheme 4 X is set to be gγ1 , where gγ1 is
part of the decisional linear problem instance. This element is not given to the
adversary directly but the same proof works if this value would be given to the
adversary.
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Scheme Signature size Assumptions

Trusted
Setup


Shacham-Waters [39] O(n) standard

Boyen [12] O(n) q-type

Chandran-Groth-Sahai [15] O(
√
n) q-type

Malavolta-Schröder [34] O(1) q-type + GGM

No
Trusted
Setup



Chow et al. [19] O(n) q-type

Bender-Katz-Morselli [6] O(n) ENC + ZAP

Malavolta-Schröder [34] O(n) q-type + knowledge

Our scheme O(n) standard

Our scheme with [15] O(
√
n) standard

Fig. 3. Comparison of Ring Signature Schemes without Random Oracles and Secure
in the Strongest Model from [6]

The idea is that instead of putting the public key pkFW = (A,B,C,D, t,
KPHF) into the ring, we put (A,B,C,D,X, Y,KPHF). Finally, we modify the
first part of the statement proven during signing, i.e. we use

∃A,B,C,D,X,X′,Y,KPHF,r (i, (A,B,C,D,X, Y,KPHF), ·) ∈ Ring ∧ e(X, gr2) = e(X ′, g2) ∧
e(X ′, Y ) = t′ ∧ e(A, gr2) = e(A′, g2) ∧
e(B, gr2) = e(B′, g2) ∧ e(C, gr2) = e(C ′, g2) ∧
e(D, gr2) = e(D′, g2) ∧ e(KPHF, g

r
2) = e(K ′PHF, g2),

instead of ∃pk,r
(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′

)
, where pkFW

′ = (A′, B′,
C ′, D′, t′,K ′PHF) is the randomized SFPK public key used as part of the ring
signature. Since all elements in the ring are now elements in G1 or G2, we can
use the proof system from Subsection 2.3 to efficiently instantiate the proof used
in our ring signature construction. What is more, we can also apply the trick
from [15] and create a membership proof of length only O(

√
n). The resulting

ring signature scheme is the first efficient scheme that is secure under falsifiable
assumptions, without a trusted party and with signature size that does not
depend linearly on the number of ring members. This solves the open problem
stated by Malavolta and Schröder [34].
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