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Abstract. Functional encryption (FE) is a modern public-key crypto-
graphic primitive allowing an encryptor to finely control the information
revealed to recipients from a given ciphertext. Abdalla, Bourse, De Caro,
and Pointcheval (PKC 2015) were the first to consider FE restricted to
the class of linear functions, i.e. inner products. Though their schemes are
only secure in the selective model, Agrawal, Libert, and Stehlé (CRYPTO
16) soon provided adaptively secure schemes for the same functionality.
These constructions, which rely on standard assumptions such as the
Decision Diffie-Hellman (DDH), the Learning-with-Errors (LWE), and
Paillier’s Decision Composite Residuosity (DCR) problems, do however
suffer of various practical drawbacks. Namely, the DCR based scheme
only computes inner products modulo an RSA integer which is oversized
for many practical applications, while the computation of inner products
modulo a prime p either requires, for their DDH based scheme, that the
inner product be contained in a sufficiently small interval for decryption
to be efficient, or, as in the LWE based scheme, suffers of poor efficiency
due to impractical parameters.
In this paper, we provide adaptively secure FE schemes for the inner
product functionality which are both efficient and allow for the evaluation
of unbounded inner products modulo a prime p. Our constructions rely
on new natural cryptographic assumptions in a cyclic group containing
a subgroup where the discrete logarithm (DL) problem is easy which
extend Castagnos and Laguillaumie’s assumption (RSA 2015) of a DDH
group with an easy DL subgroup. Instantiating our generic constructions
using class groups of imaginary quadratic fields gives rise to the most
efficient FE for inner products modulo an arbitrary large prime p. One
of our schemes outperforms the DCR variant of Agrawal et al.’s protocols
in terms of size of keys and ciphertexts by factors varying between 2 and
20 for a 112-bit security.

Keywords: Inner product functional encryption, Adaptive security, Diffie-
Hellman assumptions.

1 Introduction

Traditional public key encryption (PKE) provides an all-or-nothing approach
to data access. This somewhat restricting property implies that a receiver can



either recover the entire message with the appropriate secret key, or learns noth-
ing about the encrypted message. In many real life applications however, the
encryptor may wish for a more subtle encryption primitive, allowing him to dis-
close distinct and restricted information on the encrypted data according to the
receivers privileges. For instance, in a cloud-based email service, users may want
the cloud to perform spam filtering on their encrypted emails but learn nothing
more about the contents of these emails. Here the cloud should only learn one
bit indicating whether or not the message is spam, but nothing more.

Functional encryption (FE) [BSW11,O’N10] emerged from a series of refine-
ments of PKE, starting with identity based encryption [Sha84], which was later
extended to fuzzy identity-based encryption by Sahai and Waters [SW05]. This
work also introduced attribute-based encryption, where a message is encrypted
for all users that have a certain set of attributes. FE encompasses all three of
these primitives, and goes further still, as it allows not only to devise policies
regulating which users can decrypt, but also provides control over which piece or
function of the data each user can recover. Specifically, FE allows for a receiver
to recover a function f(y) of the encrypted message y, without learning any-
thing else about y. The primitive requires a trusted authority, which possesses a
master secret key msk, to deliver secret keys skfi – associated to specific func-
tionalities fi – to the appropriate recipients. The encryptor computes a single
ciphertext associated to the plaintext c = Encrypt(y), from which any user, given
a decryption key skfi , can recover fi(y) = Decrypt(ski, c).

There exist two main security definitions for FE, indistinguishability-based
and a stronger simulation-based security. The former – which is the model we
adopt throughout this paper – requires that no efficient adversary, having chosen
plaintext messages y0 and y1, can guess, given the encryption of one of these,
which is the underlying message with probability significantly greater than 1/2.
The adversary can query a key derivation oracle for functionalities f , with the
restriction that f(y0) = f(y1), otherwise one could trivially tell apart both
ciphertexts. Though constructions for general FE have been put forth, these
schemes are far from practical, and only allow the adversary to request an a priori
bounded number of secret keys [GKP+13b,SS10], or rely on non-standard and ill-
understood cryptographic assumptions such as indistinguishability obfuscation
or multilinear maps [ABSV15,BGJS16,GKP+13a,GVW12,Wat15,GGHZ16].

The problem thus arose of building efficient FE schemes for restricted classes
of functions; such constructions could be of great use for many practical appli-
cations, while developing our understanding of FE.

Inner Product Functional Encryption (IPFE). The restriction of FE to linear
functions, i.e. the inner product functionality yields many interesting applica-
tions. Among other uses, linear functions allow for the computation of weighted
averages and sums, useful for statistical analysis on encrypted data, where the
statistical analysis itself has sensitive information. As mentioned by Katz, Sa-
hai and Waters [KSW08], another application is the evaluation of polynomials
over encrypted data. Agrawal, Libert and Stehlé [ALS16, Section 6] motivate FE
for computing linear functions modulo a prime p by demonstrating that such a
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scheme can be turned into a bounded collusion FE scheme for all circuits3. And
as a final example, Agrawal, Bhattacherjee, Phan, Stehlé and Yamada provide
a generic transformation from FE for linear functions to trace-and-revoke sys-
tems in [ABP+17]. As they are performing linear algebra, their transformation
requires the modulus to be prime and preferably quite large (∼128 or 256 bits).

The primitive can succinctly be defined as follows: plaintexts are vectors y ∈
R`, where R is a ring. Function specific secret keys skx are derived from vectors
x ∈ R` and allow to recover 〈y,x〉 ∈ R but reveal no further information about
y. It is worth noting that due to the linearity of inner products, if the adversary
requests decryption keys derived from independent vectors xi for i ∈ {1, . . . , `},
it can recover y by resolving a simple system of linear equations resulting from
〈y,xi〉 for i ∈ {1, . . . , `}.

This specific line of research was initiated by Abdalla, Bourse, De Caro and
Pointcheval in 2015 [ABDP15]. They provided the first IPFE schemes which rely
on standard assumptions such as learning with errors (LWE) and decision Diffie
Hellman (DDH). However their schemes are only selectively secure, i.e. the ad-
versary must commit to challenge messages before having access to the schemes’
public parameters. Though of great theoretical interest, such schemes are not
sufficiently secure for practical applications, indeed selective security is often
considered a first step towards proving full adaptive security. The first fully se-
cure schemes were put forth by Agrawal et al. [ALS16] under the LWE, DDH and
Paillier’s Decision Composite Residuosity (DCR, cf. [Pai99]) assumptions. Ab-
dalla et al. in [ABCP16] also put forth an adaptively secure generic construction
and provide instantiations from the DDH, DCR and LWE assumptions. However,
their instantiation from Elgamal gives the same construction as the DDH based
scheme of [ALS16], and their obtained schemes from LWE are restricted to the
computation of inner products over the integers Z, and are less efficient than
those of [ALS16]. Finally Benhamouda et al. [BBL17,Bou17] provided generic
constructions from hash proof systems to both chosen plaintext and chosen ci-
phertext secure IPFE schemes. The resulting schemes are again restricted to the
computation of inner products over the integers Z and the sizes of secret keys
are larger than those of [ALS16] (see details at the end of this introduction).

These brilliant developments do however still suffer of practical drawbacks.
Namely the computation of inner products modulo a prime p are restricted, in
that they require that the inner product 〈y,x〉 be small for decryption to be
efficient (as is the case for the schemes of [ABDP15], [ABCP16], and the DDH
based scheme of [ALS16]). To our knowledge, the only scheme that allows for
decryption of inner products of any size modulo a prime p is the LWE based
scheme of [ALS16], which suffers of poor efficiency since the modulus should
be exponentially large in the dimension of encrypted vectors while the size of
ciphertexts is cubic in this dimension.

3 We note however that this application of linear FE modulo a prime p can not be
instantiated with our schemes, as we require p to be at least a 112-bit prime, whereas
this application typically calls for small values of p (e.g. p = 2).
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Our Contributions. In this paper we put forth IPFE schemes which resolve the
aforementioned issue. Our constructions compute inner products over the inte-
gers and modulo a prime p, and rely on novel cryptographic assumptions defined
in Section 3.1. These are variants of the [CL15] assumption, which supposes the
existence of a DDH group with an easy DL subgroup: a cyclic group G = 〈g〉
where the DDH assumption holds together with a subgroup F = 〈f〉 of G where
the discrete logarithm (DL) problem is easy.

The first assumption we introduce relies on a hard subgroup membership
(HSM) problem (according to Gjøsteen’s terminology [Gjø05]), and somewhat
generalises Paillier’s DCR assumption, which follows a long line of assumptions
of distinguishing powers in Z/NZ. Known attacks for these require computing
the groups’ order which reduces to factoring N . In the [CL15] framework, the
group G is cyclic of order ps where s is unknown and gcd(p, s) = 1. We denote
Gp = 〈gp〉 the subgroup of p−th powers in G. In this setting one has G = F×Gp.
The assumption is that it is hard to distinguish the elements of Gp in G.

We then define the DDH-f assumption, which is weaker than both the DDH
assumption of [CL15], and the aforementioned HSM assumption. Denoting D a
distribution statistically close to the uniform distribution modulo ps, this as-
sumption states that it is hard to distinguish distributions {(gx, gy, gxy), x, y ←↩
D} (i.e. Diffie-Hellman triplets in G) and {(gx, gy, gxyfu), x, y ←↩ D, u←↩ Z/pZ}.
We prove this assumption is equivalent to the semantic security of the generic
CL homomorphic encryption scheme of [CL15], an Elgamal variant in G where
messages are encoded in the exponent in the subgroup F . In fact, the DDH-f
assumption is better suited to mask elements of F , thus providing clearer proofs.

These new assumptions allow us to construct generic, linearly homomorphic
encryption schemes over Z/pZ which are semantically secure under chosen plain-
text attacks (ind-cpa), which we call HSM-CL and Modified CL (cf. Section 3.2).
The reductions between their semantic security and the underlying assumptions
are given in Fig. 1, where A→ B indicates that assumption B holds if assump-
tion A holds, i.e. A is a stronger assumption than B.

DDH DDH-f HSM

Modified CL ind-cpaCL ind-cpa HSM-CL ind-cpa

Fig. 1: Reductions between assumptions and ind-cpa security of CL variants

We then use the homomorphic properties of the above schemes to construct
generic IPFE schemes over the integers and over Z/pZ, both from the weaker
DDH-f assumption in Section 4, and from the HSM assumption in Section 5,
somewhat generalising the scheme based on DCR of [ALS16]. Since the inner
product is encoded in the exponent in the subgroup F , it can efficiently be
recovered, whatever its size. We thereby present the first IPFE schemes which
are both efficient and recover 〈y,x〉 mod p whatever its size.
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Our security proofs for the HSM based schemes follow a similar logic to those
of [ALS16], analysing the entropy loss that occurs via queried keys, and demon-
strating that there is enough residual entropy left for the challenge ciphertext
to appear uniform to the adversary. However, significant difficulties occur for
the schemes arising from the weaker DDH-f assumption. As in the DDH based
scheme of [ALS16], we use a variant of Elgamal à la Cramer-Shoup. But unlike
previous uses of this approach, the order of our group is unknown and may have
small factors, so with constant probability an element may not be a generator.
This calls for various subtleties: any element of the group can not be masked,
however, if p is large enough, elements of the subgroup F of order p can be.

Moreover, in order to handle the information given by private key queries,
instead of computing the global distribution of the master secret keys, we care-
fully simplify the description of the adversary’s view, since merely restricting the
adversary’s view modulo p could potentially result in a loss of information.

We note that for our schemes over Z/pZ, vectors xi from which keys are de-
rived are in Z/pZ, whereas decryption keys are computed in Z, so a lift of the xi
in Z must be done. Since lifting does not preserve linear dependencies, it is essen-
tial (as in [ALS16]) the key generation algorithm be stateful to lift vectors while
maintaining linear dependencies. Without this restriction an adversary could
learn a combination of the master key components which is singular modulo p
but invertible over Z, thus revealing the whole master key.

To instantiate our generic constructions we use class groups of imaginary
quadratic fields. Although the devastating attack from [CL09] eliminates a whole
family of protocols built from such groups, this attack applies to schemes whose
security is based on factoring a discriminant while here this factorisation is pub-
lic. Moreover [CL15] showed that designing with care DL based cryptosystems
within such groups is still possible and allows for efficient and versatile proto-
cols (Encryption switching protocols for instance, cf. [CIL17]). The problem of
computing a DL in class groups of imaginary quadratic fields has been exten-
sively studied since the 80’s, and the complexity of best known subexponential
algorithms is4 O(L1/2) (cf. [BJS10]) as opposed to O(L1/3) (cf. [Adl94]) for the
DL problem in finite field or factoring. In particular this implies that our keys
can be chosen shorter and corroborates the above claim that the assumptions
on which we rely are indeed weak.

In terms of efficiency, we show in Section 6 that for a security parameter
of λ = 112 we outperform Paillier’s variant of [ALS16] on all possible sizes by
factors varying between 2 and 20.

Relation to Hash Proof Systems. Hash proof systems (HPS) were introduced in
[CS02] as a generalisation of the techniques used in [CS98]. Consider a set of
words X , an NP language L ⊂ X such that L = {x ∈ X | w : (x,w) ∈ R} where
R is the relation defining the language, L is the language of true statements in
X , and for (x,w) ∈ R, w is a witness for x ∈ L. A HPS defines a key generation
algorithm which outputs a secret hashing key hk and a public projection key

4 Lα is a shortcut to denote Lα,c(x) = exp(c log(x)α log(log(x))1−α)
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hp such that hk defines a hash function Hhk : X 7→ Π, and hp allows for the
(public) evaluation of the hash function on words x ∈ L, i.e. Hhp(x,w) = Hhk(x)
for (x,w) ∈ R. The smoothness property requires that for any x /∈ L, the value
Hhk(x) be uniformly distributed knowing hp.

The DDH and DCR assumptions yield smooth HPSs where the languages
L ⊂ X define hard subset membership problems. Such HPSs, endowed with ho-
momorphic properties over the key space, underly the IPFE schemes of [ALS16].
In fact Benhamouda, Bourse, and Lipmaa in [BBL17,Bou17], present a generic
construction from a key homomorphic HPS (satisfying various properties) to an
IPFE scheme in Z which is secure under chosen plaintext attacks. They instanti-
ate it from DDH and from DCR but leave out LWE due to the complexity of the
resulting scheme, as simpler constructions can be attained without using HPSs.

We note that though our constructions resemble the above – one can deduce
new subset membership problems from the assumptions in Section 3.1 and as-
sociated HPSs – our proof techniques are very different to those of [Bou17], to
achieve adaptive security, their game challenger must guess the difference be-
tween challenge ciphertexts prior to generating the public/private key pair. If
the hash key is not sampled uniformly at random from the key space (as in our
constructions), then in order to maintain a level of security equivalent to that of
the HPS the size of the secret keys increases substantially. Indeed, to encrypt `-
dimensional vectors whose coordinates are bounded by Y , their proof techniques
cause an additional ` log(Y )-bit term to appear in each coordinate of the secret
key, whereas in our constructions over Z, the bit length of the coordinates is
independent of `. Consequently, this approach leads to less efficient schemes.

Our goal has been to build practical IPFE schemes, therefore we avoid this
genericity and the key blow up it entails, carefully evaluating the information
leaked to the adversary by the public key, the secret key queries and the challenge
ciphertext, thus ensuring that the challenge bit remains statistically hidden. This
style of proof is closer to those of [ALS16], it allows us to obtain constructions for
IPFE over Z that are substantially more efficient than those of [BBL17,Bou17],
and constructions for IPFE modulo a prime p that do not restrict the size of the
resulting inner product, which are the most efficient such schemes to date.

2 Background

Notations. We denote sets by uppercase letters, vectors by bold lowercase letters,
and 〈x,y〉 denotes the inner product of vectors x and y. For a distribution D,
we write d ←↩ D to refer to d being sampled from D. We overload the notation
as b ←↩ B to say that b is sampled uniformally at random in the set B. For an
integer x, we denote its size by |x|, and by [x] the set of integers {1, . . . , x}. For
any c ∈ R`, real σ > 0, and `-dimensional lattice Λ, DΛ,σ,c will denote the usual
discrete Gaussian distribution over Λ.

Definition of Inner Product Functional Encryption. This is a special case of func-
tional encryption, as first formalised by Boneh, Sahai and Waters in [BSW11].
To start with, we provide the definition of a functionality.
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Definition 1 (Functionality). A functionality F defined over (K,Y) is a func-
tion F : K×Y → Σ ∪{⊥}, where K is a key space, Y is a message space and Σ
is an output space, which does not contain the special symbol ⊥.

In this article, we consider the inner product functionality, s.t. decrypting the
encryption of a vector y with a key associated to a vector x only reveals 〈x,y〉.
So we consider the function F : (Z/pZ)`×(Z/pZ)` → Z/pZ∪{⊥} s.t. F (x,y) =
〈x,y〉. The syntax of a functional encryption scheme is described below.

Definition 2 (Functional encryption scheme). Let λ be a positive integer.
A functional encryption (FE) scheme for a functionality F over (K,Y) is a tuple
(Setup,KeyDer,Encrypt,Decrypt) of algorithms with the following specifications:

– Setup on input a security parameter 1λ, outputs a master key pair (mpk,msk);
– KeyDer on input the master key msk and a key K ∈ K, outputs a key skK ;
– Encrypt on input the master public key mpk and a message Y ∈ Y, outputs a

ciphertext C;
– Decrypt takes as input the master public key mpk, a key skK and a ciphertext
C and outputs v ∈ Σ ∪ {⊥}.

Correctness requires that for all (mpk,msk) ← Setup(1λ), all keys K ∈ K and
all messages Y ∈ Y, if skK ← KeyDer(msk,K) and C ← Encrypt(mpk, Y ),
with overwhelming probability it holds that, if v ← Decrypt(mpk, skK , C) then
v = F (K,Y ) whenever F (K,Y ) 6=⊥.

Security. We define below the security notion for FE, which states that given
the ciphertext of a message Y , the only information obtained from the secret key
skK is the evaluation of the function f(K,Y ). More precisely, no adversary can
distinguish an encryption of Y0 from an encryption of Y1 even with the knowledge
of secret keys skK chosen adaptatively but satisfying F (K,Y0) = F (K,Y1). The
following definition is that of adaptive security, meaning that the adversary has
access to the systems’ public parameters, and can perform a series of secret key
requests before choosing Y0 and Y1. We consider an indistinguishability-based
definition instead of the simulation-based security definition of [BSW11]. This
adaptive indistinguishability notion is easier to handle, and it is also the strongest
adaptive notion of security that can be achieved for numerous interesting func-
tionalities. In particular, it has been demonstrated in [BSW11,AGVW13,BO13]
that the strong simulation-based definition cannot be met in the standard model,
while O’Neill showed in [O’N10] that indistinguishability-based security is equiv-
alent to non-adaptive simulation-based security for a class of functions that in-
cludes the inner product. Moreover, De Caro et al. [DIJ+13] describe a method
to transform an FE achieving an indistinguishability-based security notion into
an FE attaining a certain simulation-based security.

Definition 3 (Indistinguishability-based security). A functional encryp-
tion scheme FE = (Setup,KeyDer,Encrypt,Decrypt) provides semantic security
under chosen-plaintext attacks (ind-fe-cpa) if no PPT adversary A has non-
negligible advantage AdvA(λ), under the constraints that A’s secret-key queries
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before and after its choice of challenge messages Y0 and Y1 satisfy F (K,Y0) =
F (K,Y1) for all K in the set of key queries. A’s advantage is defined as:

AdvA(λ) =
∣∣∣Pr[β = β′ : mpk,msk ← Setup(1λ), Y0, Y1 ← AKeyDer(msk,·)(mpk),

β
$←− {0, 1}, C? ← Encrypt(mpk, Yβ), β

′ ← AKeyDer(msk,·)(C?)
]
− 1

2

∣∣∣.
Backgound on Lattices. We recall some definitions and basic results on Gaussian
distributions. These are useful for our security proofs, in which we evaluate the
distribution of an inner product when one of the two vectors follows a Gaussian
distribution. We also recall a result from [GPV08] giving the conditions for a
Gaussian distribution over a lattice, which is reduced modulo a sublattice, to be
close to a uniform distribution, another crucial point of our proofs.

Definition 4 (Gaussian Function). For any σ > 0 define the Gaussian func-
tion on R` centred at c with parameter σ: ∀x ∈ R`, ρσ,c(x) = exp(−π||x −
c||2/σ2). If σ = 1 (resp. c = 0), then the subscript σ (resp. c) is omitted.

Definition 5 (Discrete Gaussian). For any c ∈ R`, real σ > 0, and `-
dimensional lattice Λ, define the discrete Gaussian distribution over Λ as:
∀x ∈ Λ, DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ), where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x).

Lemma 1. Let x ∈ R` \ {0}, c ∈ R`, σ ∈ R with σ > 0 and σ′ = σ/||x||2,
c′ = 〈c,x〉

〈x,x〉 . A random variable K is distributed according to DZ,σ′,c′ if and only
if V := Kx is distributed according to DxZ,σ,c.

In dimension 1, Lemma 1 implies that if x ∈ R, then Kx is distributed according
to DxZ,σ,c iff. K is distributed according to DZ,σ/|x|,c/x. Lemma 2 gives the
distribution of the inner product resulting from a constant vector x, and a vector
with coordinates sampled from a Gaussian distribution over the lattice x · Z.
Please refer to the full version [CLT18, Aux. Material I] for proofs of Lemmas 1
and 2.

Lemma 2. Let x ∈ R` with x 6= 0, c ∈ R`, σ ∈ R with σ > 0. Let V be a
random variable distributed according to Dx·Z,σ,c. Then the random variable S
defined as S = 〈x, V 〉 is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉.

Lemma 3 ([GPV08]). Let Λ′0 ⊂ Λ0 ⊂ R` be two lattices with the same dimen-
sion. Let ε ∈ (0, 1/2) and ηε(Λ′0) be the smoothing parameter of Λ′0 (cf. [MR04]).
Then for any c ∈ R` and any σ ≥ ηε(Λ

′
0), the distribution DΛ0,σ,c mod Λ′0 is

within statistical distance 2ε from the uniform distribution over Λ0/Λ
′
0.

3 Variants of CL: assumptions and ind-cpa schemes

In [CL15], Castagnos and Laguillaumie introduced the framework of a DDH
group with an easy DL subgroup: a cyclic group G where the DDH assumption
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holds along with a subgroup F of G where the DL problem is easy. Within this
framework, they designed a linearly homomorphic variant of Elgamal [CL15],
denoted CL. Moreover, they gave an instantiation using class groups of quadratic
fields allowing for the computation of linear operations modulo a prime p.

Their protocol is similar to the one of Bresson et. al. [BCP03] whose ind-cpa
security relies on the DDH assumption in (Z/N2Z)×, where N = pq, using
the arithmetic ideas of Paillier’s encryption [Pai99]. Another encryption scheme
based on Elgamal over (Z/N2Z)× was proposed by Camenisch and Shoup in
[CS03]. Its ind-cpa security relies on the Decision Composite Residuosity assump-
tion (DCR), which consists in distinguishing the N−th powers in (Z/N2Z)×.

In the following subsection, we recall the framework of [CL15] and then gen-
eralise the DCR assumption to fit this framework of a DDH group with an easy DL
subgroup with a hard subgroup membership problem (following [Gjø05]’s termi-
nology). We also introduce a new DDH-like assumption which is weaker than the
original DDH in G. Then, in Subsection 3.2, we give generic encryption schemes
whose ind-cpa security are based on these assumptions. In particular we give a
generalisation of the scheme of [CS03] in a DDH group with an easy DL sub-
group, and a modification of CL à la Cramer-Shoup. Finally, in Subsection 3.3,
we discuss the relations between these assumptions.

3.1 Algorithmic assumptions

We first define the generator GenGroup used in the framework of a DDH group
with an easy DL subgroup [CL15], with a few modifications as discussed below.

Definition 6 (Generator for a DDH group with an easy DL subgroup).
Let GenGroup be a pair of algorithms (Gen,Solve). The Gen algorithm is a group
generator which takes as inputs two parameters λ and µ and outputs a tuple
(p, s̃, g, f, gp, G, F,G

p). The set (G, ·) is a cyclic group of order ps where s is an
integer, p is a µ-bit prime, and gcd(p, s) = 1. The algorithm Gen only outputs
an upper bound s̃ of s. The set Gp = {xp, x ∈ G} is the subgroup of order s of
G, and F is the subgroup of order p of G, so that G = F × Gp. The algorithm
Gen outputs f, gp and g = f ·gp which are respective generators of F , Gp and G.
Moreover, the DL problem is easy in F , which means that the Solve algorithm is
a deterministic polynomial time algorithm that solves the DL problem in F :

Pr
[
x = x? : (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ), x←↩ Zp, X = fx,

x? ← Solve(p, s̃, g, f, gp, G, F,G
p, X)

]
= 1.

Remark 1. In practice the size of s is chosen so that computing discrete loga-
rithms in Gp takes time O(2λ).

We note that this definition differs slightly from the original definition of
[CL15]. Here F is of prime order p as our agenda is to use the instantiation with
class groups of quadratic fields so as to have Z/pZ as the message space. This
means that our generic constructions do not encompass the schemes built from
Paillier where the message space is Z/NZ, with N = pq. If using N = pq as the
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order of F , the proofs must rely on factoring assumptions to deal with the non-
zero non-invertible elements of Z/NZ. Consequently, this restriction simplifies
the proofs, since an element of Z/pZ is invertible if and only if it is non-zero.

Another modification is outputing the element gp that generates Gp to define
the HSM assumption below, and setting g = f · gp. In practice, the instantiation
of [CL15] with class groups of quadratic fields already computes an element gp
and thus defines the generator g of G. Note that this explicit definition of g is
only needed in proof of Theorem 4, for the relation between the HSM, DDH-f
(defined below) and DDH [CL15, Def. 1] assumptions. A last modification is
that Gen only outputs an upper bound s̃ of s and not n. This is more accurate
than the original definition as n is not used in the applications and actually,
the instantiation does not compute n as it is a class number that requires sub-
exponential time (with an O(L1/2) complexity) to be computed. This implies
that in the following assumptions, exponents are sampled from distributions
statistically close to uniform distributions. We discuss this in Remark 2.

We now define a hard subgroup membership (HSM) problem, which somewhat
generalises Paillier’s DCR assumption. In Def. 6, one has G = F × Gp, the
assumption is that it is hard to distinguish the elements of Gp in G.

Definition 7 (HSM assumption). Let GenGroup = (Gen,Solve) be a generator
for DDH groups with an easy DL subgroup. Using the notations introduced in
Def 6, the HSM assumption requires that the HSM problem is hard in G even
with access to the Solve algorithm. Let D (resp. Dp) be a distribution over the
integers such that the distribution {gx, x ←↩ D} (resp. {gxp , x ←↩ Dp}) is at
distance less than 2−λ from the uniform distribution in G (resp. in Gp). Let A
be an adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ, µ) =

∣∣∣∣2 · Pr[b = b? : (p, s̃, g, f, gp, G, F,G
p)← Gen(1λ, 1µ),

x←↩ D, x′ ←↩ Dp, b←↩ {0, 1}, Z0 = gx, Z1 = gx
′

p ,

b? ← A(p, s̃, g, f, gp, G, F,Gp, Zb,Solve(.))
]
− 1

∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time
attacker A, AdvHSMA (λ, µ) is negligible.

Remark 2. In contrast to the traditional formulation of DDH or DCR, we can
not sample uniformly elements in Gp or G as the order s (resp. ps) of Gp (resp.
of G) is unknown. As a result we use the upper bound s̃ of s to instantiate
the distributions Dp and D of Def. 7. Choosing D and Dp statistically close to
the uniform distributions in G and Gp allows for more flexibility in our upcom-
ing proofs, which is of interest, since it is easy to see that the DDH and HSM
assumptions do not depend on the choice of the distribution.

In practice, we will instantiate Dp and D thanks to Lemma 4 (proved in the full
version [CLT18, Aux. Material III.]). We use folded gaussians as they provide
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better efficiency than folded uniforms, and allow us to apply Lemma 3 in our
security proofs.

Lemma 4. Distributions Dp and D can be implemented from the output of Gen:

1. One can choose D to be the uniform distribution over {0, . . . , 2λ−2 · s̃ · p}.
2. Alternatively, choosing D = DZ,σ with σ = s̃ ·p ·

√
λ allows for more efficient

constructions as the sampled elements will tend to be smaller.
3. Likewise, one can choose Dp = DZ,σ′ with σ′ = s̃ ·

√
λ

4. One can also, less efficiently, define Dp = D.
5. Conversely, one can also define D from Dp and the uniform distribution

modulo p: the distribution {gxp · fa, x←↩ Dp, a←↩ Zp} is statistically close to
the uniform distribution in G.

Finally, we introduce a new assumption called DDH-f. Roughly speaking, it
means that it is hard to distinguish the distributions:

{(gx, gy, gxy), x, y ←↩ D} and {(gx, gy, gxyfu), x, y ←↩ D, u←↩ Z/pZ}.

In other words, we have on the left, a Diffie-Hellman (DH) triplet in G, and
on the right, a triplet whose components in Gp form a DH triplet, and whose
components in F form a random triplet: (fx, fy, fxy+u) since g = gp ·f (as noted
in Remark 2, D induces distributions statistically close to the uniform in Gp and
F ).

We will see in the next subsection that the security of the CL encryption
scheme is actually equivalent to this assumption and that this assumption is
weaker than the DDH assumption and the HSM assumption (see Theorem 4).
As a side effect, using this assumption will simplify the forthcoming proofs as it
is tightly related to the ind-cpa security of the underlying encryption scheme.

We note that DDH-f can be seen as an instance of the Extended-DDH
(EDDH) problem defined by Hemenway and Ostrovsky [HO12]. They show that
QR and DCR imply two different instantiations of EDDH, our implication from
HSM to DDH-f somewhat generalises their proof as DDH-f is more generic than
either of the hardness assumptions obtained from their reductions.
Definition 8 (DDH-f assumption). Let GenGroup = (Gen,Solve) be a gener-
ator for DDH groups with an easy DL subgroup. Using the notations of Def 6,
the DDH-f assumption requires that the DDH-f problem is hard in G even with
access to the Solve algorithm. Let D be a distribution over the integers such that
{gx, x ←↩ D} is at distance less than 2−λ of the uniform distribution in G. Let
A be an adversary for the DDH-f problem, its advantage is defined as:

AdvDDH-f
A (λ, µ) =

∣∣∣∣2 · Pr[b = b? : (p, s̃, g, f, gp, G, F,G
p)← Gen(1λ, 1µ),

x, y ←↩ D, u←↩ Z/pZ, X = gx, Y = gy, b←↩ {0, 1}, Z0 = gxy, Z1 = gxyfu,

b? ← A(p, s̃, g, f, gp, G, F,Gp, X, Y, Zb,Solve(.))
]
− 1

∣∣∣∣.
The DDH-f problem is said to be hard in G if for all probabilistic polynomial
time attacker A, AdvDDH-f

A (λ, µ) is negligible.
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3.2 Some variants of the CL generic encryption scheme

The original Castagnos-Laguillaumie encryption scheme. Castagnos and
Laguillaumie put forth in [CL15, Section 2.3] a generic construction for a linearly
homomorphic encryption scheme over Z/pZ based on a cyclic group with a
subgroup of order p where the DL problem is easy, as given by the GenGroup
generator of Def. 6. They prove this scheme is ind-cpa under the DDH assumption
[CL15, Def. 1]. We demonstrate below that we can be more precise and prove
that the security of this scheme is equivalent to the DDH-f assumption of Def. 8:
the key idea is to perform a one-time pad in F , instead of in the whole group G.

Theorem 1. The CL encryption scheme is semantically secure under chosen
plaintext attacks (ind-cpa) if and only if the DDH-f assumption holds.

Proof (sketch). Suppose that the DDH-f assumption holds. Let us consider the
ind-cpa game, with a public key, h = gx, x ←↩ D, and a challenge ciphertext
(c1, c2) = (gr, fmβhr) with r ←↩ D and β ←↩ {0, 1}, m0,m1 ∈ Z/pZ. We can
replace (h, c1, h

r) = (gx, gr, gxr) by (gx, gr, gxrfu) = (gx, gr, hrfu) with u ←↩
Z/pZ. As a result c2 = hrfu+mβ . For the adversary, the value of r modulo n
is fixed by c1 = gr as g is a generator, so the value of hr is fixed. As a result
from c2 an unbounded adversary can infer u+mβ ∈ Z/pZ but as u is uniformly
distributed in Z/pZ, he will have no information on β.

Conversely, we construct an ind-cpa adversary from a distinguisher for the
DDH-f problem. Choose m0 ∈ Zp and m1 := m0 + u with u←↩ Z/pZ. From the
public key and the challenge ciphertext, construct the triplet

(h, c1, c2/f
m0) = (gx, gr, gxrfmβ−m0).

This gives a DH triplet if and only β = 0 and the exponent of f is uniformly
distributed in Z/pZ if and only β = 1. As a result, one can use the output of a
distinguisher for the DDH-f problem to win the ind-cpa game. ut

A linearly homomorphic encryption scheme from HSM. As noted in this
section’s introduction, the CL scheme was inspired by the scheme of [BCP03]. We
here slightly modify the CL scheme so that it relies on the HSM assumption of
Def. 7 and somewhat generalises the approach of Camenisch and Shoup’s scheme
in [CS03]. This ind-cpa scheme will be the basis of the IPFE scheme of Section 5.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,G
p) of the Gen-

Group generator of Def. 6, ignoring the generator g which is useless here. Follow-
ing Lemma 4, Item 3, we require σ′ > s̃

√
λ so that {grp, r ←↩ DZ,σ′} is at distance

less than 2−λ from the uniform distribution in Gp. The plaintext space is Z/pZ,
where p is a µ bit prime, with µ ≥ λ. The scheme is depicted in Fig. 2a.

Theorem 2. The scheme described in Fig. 2a is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the HSM assumption.

Please see the full version [CLT18, Aux. Material IV] for the proof.
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Algorithm KeyGen(1λ, 1µ)

1. (p, s̃, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. Pick x←↩ DZ,σ′ and h = gxp
3. Set pk = (s̃, gp, f, p, h)
4. Set sk = x
5. Return (pk, sk)

Algorithm Encrypt(pk,m)

1. Pick r ←↩ DZ,σ′

2. Return (grp, f
mhr)

Algorithm Decrypt(sk, (c1, c2))

1. Compute M = c2/c
x
1

2. Return Solve(M)

(a) HSM-CL
Algorithm KeyGen(1λ, 1µ)

1. (p, s̃, g, f,G, F )← Gen(1λ, 1µ)
2. Pick x, y, α←↩ DZ,σ

3. Compute h = gα

4. Compute η = gxhy

5. Set pk = (g, h, η)
6. Set sk = (x, y)
7. Return (pk, sk)

Algorithm Encrypt(pk,m)

1. Pick r ←↩ DZ,σ

2. Return (gr, hr, ηrfm)

Algorithm Decrypt(sk, (c1, c2, c3))

1. Compute M = c3/(c
x
1c
y
2)

2. Return Solve(M)

(b) Modified CL
Fig. 2: Description of our variants of the CL encryption

Enhanced variant of the CL encryption scheme. We here modify the
original CL scheme by adding a key à la Cramer-Shoup (cf. [CS98]). The security
of this scheme also relies on the DDH-f assumption. This ind-cpa scheme will be
the basis of the IPFE scheme of Section 4.

This modification incurs some challenges: consider the vanilla Elgamal en-
cryption scheme defined over a cyclic group of prime order q, generated by g.
The modification leading to the [CS03] encryption scheme uses a second genera-
tor h to create a key η = gxhy where x, y ←↩ Z/qZ. Then ηr, with r ←↩ Z/qZ is
used to mask the message. In the proof under the DDH assumption, one replaces
the DH triplet (h, gr , hr) built from the public key and the ciphertext by a
random triplet and proves that the mask ηr is then uniformly distributed and
acts as a one-time pad for the plaintext, even knowing η. The triplet (h, gr, hr)
is indeed a DH triplet, because if h is a generator, h = gα with α ∈ (Z/qZ)∗.
As a result, α is almost uniformly distributed in Z/qZ (α←↩ Z/qZ is s.t. α 6= 0
with overwhelming probability if q is large). The same happens in a composite
group of order N ′ where N ′ is an RSA integer as in [Luc02], under the factoring
assumption.

In our case, we use the GenGroup generator of Def. 6, i.e. a cyclic group G of
order n = p · s generated by g, where s is unknown and may have small factors.
As a result, a random element h = gα, with α ←↩ DZ,σ may not be a generator
with constant probability. Consequently, the padding ηr where r ←↩ DZ,σ and
η = gxhy, with x, y ←↩ DZ,σ may not be uniformly distributed in G knowing η.

13



However, we only need ηr to act as a one-time pad in the subgroup F = 〈f〉 of G
of order p, since the message m ∈ Z/pZ is encoded as fm ∈ F . Supposing that
p is a µ-bit prime, with µ ≥ λ is sufficient to prove this. As the exponents are
taken close to uniform modulo n and n = p · s with gcd(p, s) = 1, they behave
independently and close to uniform mod p and mod s. As we are interested only
in what happens mod p, we can ignore the behaviour mod s and get ind-cpa
security under the DDH-f assumption. Note that the use of this assumption
instead of the stronger DDH assumption greatly simplifies the proof.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,G
p) of the gen-

erator GenGroup of Def. 6, ignoring the group Gp and its generator. Following
Lemma 4, Item 2, we require σ > ps̃

√
λ to ensure that {gr, r ←↩ DZ,σ} is at

distance less than 2−λ from the uniform distribution in G. The plaintext space
is Z/pZ, where p is a µ bit prime, with µ ≥ λ. The scheme is depicted in Fig. 2b.

Theorem 3. The scheme described in Fig. 2b is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the DDH-f assumption.

Please see the full version [CLT18, Aux. Material V] for the proof.

3.3 Relations between the assumptions

Although one can establish direct reductions from the problems underlying the
DDH, DDH-f and HSM assumptions, it is easier to use intermediate results on the
ind-cpa security of the schemes defined in Subsection 3.2 to see these reductions.

Theorem 1 states that the original CL cryptosystem is ind-cpa iff. the DDH-f
assumption holds. In [CL15], it was proven that this scheme is ind-cpa under the
DDH assumption. As a result, DDH-f is a weaker assumption than DDH. Further-
more, if the HSM scheme of Fig. 2a is ind-cpa then the original CL cryptosystem
is ind-cpa: from a public key h = gxp , x←↩ DZ,σ′ and a ciphertext c = (c1, c2) =
(grp, f

m · hr), r ←↩ DZ,σ′ for the HSM scheme, one can chose a, b ←↩ Z/pZ and
construct h′ = h · fa, and the ciphertext c′ = (c′1, c

′
2) = (c1 · f b, c2 · fab). Accord-

ing to Lemma 4, Item 5, h′ and c′1 are statistically indistinguishable from the
uniform distribution in G. Furthermore, h′ = gxpf

a = gα where α is defined mod
n from the Chinese remainder theorem, such that α ≡ x (mod s) and α ≡ a
(mod p). Likewise, c′1 = grpf

b = gβ for some β defined equivalently. Finally, one
has c′2/fm = gxrp f

ab = gαβ mod s
p fαβ mod p = gαβ . As a result, (h′, c′1, c′2/fm)

is a DH triplet in G, so h′, c′ are a public key and a ciphertext for m for the
CL cryptosystem. Consequently, an ind-cpa attacker against the cryptosystem
based on HSM can be built from an ind-cpa attacker against CL. Now, if the
HSM assumption holds, from Theorem 2, the HSM scheme is ind-cpa, so the CL
scheme is also ind-cpa and the DDH-f assumption holds. We sum up these results
in Theorem 4 (see also Fig. 1).

Theorem 4. The DDH assumption implies the DDH-f assumption. Further-
more, the HSM assumption implies the DDH-f assumption.
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4 Inner product FE relying on the DDH-f assumption

In this section, we build an IPFE scheme from the DDH-f assumption (Def. 8).
As proven in Theorem 4, this assumption is weaker than both the DDH and
the HSM assumptions and yields simple proofs as it is suited to deal with the
encoding of the message into a subgroup of prime order p. We use the formalism
of a cyclic group with an easy DL subgroup. Our approach is based on the
enhanced variant of the CL scheme, described in Fig. 2b. The resulting scheme
over Z/pZ can be viewed as an adaptation of the DDH scheme of [ALS16] to
this setting, thereby removing the restriction on the size of the inner product.

The proof technique somewhat differs from the general approach of [ALS16].
We start from the ind-cpa proof of the enhanced variant of CL and then deal
with the information leaked by key queries. Instead of computing the global dis-
tribution of the keys given this information, so as to make the proof go through,
we carefully simplify the description of the adversary’s view. A technical point is
that even if we are only interested in what happens mod p, as the plaintexts are
defined in (Z/pZ)`, we cannot restrict the adversary’s view mod p: this could
potentially result in a loss of information, as the key queries are defined in Z.

We first present an FE scheme for inner products over Z (Section 4.1) and
then consider a scheme for inner products over Z/pZ (Section 4.2).

4.1 DDH-f-based FE for inner product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2b, we use the output
(p, s̃, g, f, gp, G, F,G

p) of the GenGroup generator of Def. 6, ignoring the group
Gp and its generator gp. We require that p is a µ-bit prime, with µ ≥ λ.

From Lemma 4, Item 2, choosing σ > s̃ · p ·
√
λ suffices to ensure that the

distribution {gx, x←↩ DZ,σ} is at distance less than 2−λ from the uniform distri-
bution in G, however for security we must take a larger σ > s̃·p3/2 ·

√
2λ (cf. proof

of Theorem 5). The Encrypt algorithm operates on plaintext messages y ∈ Z`

and the key derivation algorithm derives keys from vectors x ∈ Z`. Norm bounds
X and Y are chosen s.t. X,Y < (p/2`)1/2 to ensure decryption correctness. In-
deed key vectors x and message vectors y are assumed to be of bounded norm
||x||∞ ≤ X and ||y||∞ ≤ Y . The decryption algorithm recovers 〈x,y〉 mod p
(using a centered modulus), which is exactly 〈x,y〉 over the integers, thanks to
the Cauchy–Schwarz inequality and the norm bounds, since X · Y < p/2`.

Construction. Fig. 3 depicts the FE scheme for inner products in Z secure under
the DDH-f assumption (cf. Def. 8).

Correctness. We have∏
i∈[`]

Exii /(C
sx ·Dtx) =

∏
i∈[`]

(fyi(gsi · hti)r)xi/((gr)〈x,s〉 · (hr)〈x,t〉)

= (f
∑`
i=1 yixi)(gr

∑`
i=1 sixi)(hr

∑`
i=1 tixi)/(gr〈x,s〉 · hr〈x,t〉)

= f 〈x,y〉.
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Algorithm Setup(1λ, 1µ, 1`)

1. (p, s̃, g, f,G, F )← Gen(1λ, 1µ)
2. Pick α←↩ DZ,σ

3. Compute h = gα

4. Pick s, t←↩ DZ`,σ

5. For 1 ≤ i ≤ ` :
6. Compute hi = gsihti

7. Return msk = (s, t)
and mpk = (s̃, g, h, f, p, {hi}i∈[`])

Algorithm KeyDer(msk,x)

1. Compute in Z:
skx = (sx, tx) = (〈x, s〉, 〈x, t〉)

2. Return skx = (sx, tx)

Algorithm Encrypt(mpk,y)

1. Pick r ←↩ DZ,σ

2. Set C = gr and D = hr

3. For 1 ≤ i ≤ ` :
4. Compute Ei = fyihri
5. Return Cy = (C,D, {Ei}i∈[`])

Algorithm Decrypt(mpk,Cy, skx)

1. Compute Cx = (
∏
i∈[`]E

xi
i )/(Csx ·Dtx)

2. sol = Solve(Cx)
3. If sol ≥ p/2 :
4. Return (sol− p)
5. Else:
6. Return sol

Fig. 3: FE scheme for inner product over Z under the DDH-f assumption.

Applying the Solve algorithm to Cx yields 〈x,y〉 mod p, which, thanks to the
norm bounds, is either 〈x,y〉 or 〈x,y〉 + p. Since the absolute value of 〈x,y〉 is
lower than p/2, if sol < p/2 then 〈x,y〉 = sol in Z, otherwise 〈x,y〉 = (sol− p).

Theorem 5. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z of Fig. 3 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting in Game 0 with
the real ind-fe-cpa game and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary A’s point of
view. The beginning of the proof is similar to the proof of Theorem 3 on ind-cpa
security. Then we take into account the fact that A has access to a key derivation
oracle. For each Game i, we denote Si the event β = β′.

Game 1

1. mpk,msk ← Setup(1λ, 1µ, 1`)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ

5. Compute C = gr, D = hr

6. For 1 ≤ i ≤ `:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C,D, {Ei}i∈[`])
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

Game 2

1. mpk,msk ← Setup(1λ, 1µ, 1`)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ and u←↩ Z/pZ
5. Compute C = gr, D = hrfu

6. For 1 ≤ i ≤ `:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C,D, {Ei}i∈[`])
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)
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Game 0 ⇒ Game 1: In Game 1 the challenger, who has access to the master
secret keymsk, computes the ciphertext usingmsk instead ofmpk. The resulting
ciphertext has exactly the same distribution therefore Pr[S0] = Pr[S1].

Game 1 ⇒ Game 2: In Game 1, the tuple (h = gα, C = gr, D = hr = gαr),
with α, r ←↩ DZ,σ, is a DH triplet as σ > p3/2 · s̃ ·

√
2λ ensures that the induced

distribution is at distance less than 2−λ of the uniform distribution inG. In Game
2, the challenger samples a random u ←↩ Z/pZ and computes D = hrfu. Both
games are indistinguishable under the DDH-f assumption: |Pr[S2] − Pr[S1]| =
AdvDDH-f

B (λ, µ). Now in Game 2 the challenge ciphertext is:

(C = gr, D = hrfu, {Ei = fyβ,i · Csi ·Dti = fyβ,i+utihri }i∈[`]).

Lemma 5. In Game 2 the ciphertext (C,D,E1, . . . , E`) ∈ G`+2 statistically
hides β such that |Pr[S2]− 1/2| ≤ 2−λ.

Intuition. Following the proof methodology of [ALS16], we first delimit the
information that is leaked in the challenge ciphertext by only considering the
dimension in which both potential challenge ciphertexts differ. Indeed, denoting
zβ = yβ+u·t mod p, then projecting zβ onto the subspace generated by y0−y1

encapsulates all the information revealed by the challenge ciphertext.
Next, we consider the distribution of the projection of the secret key component
t on the subspace generated by y0 − y1, conditionally on A’s view (i.e. on the
information leaked by private key queries and the public key). This amounts to a
distribution over a one dimensional lattice Λ0. We then reduce this distribution
modulo a sub-lattice Λ′0 such that Λ0/Λ

′
0 ' Z/nZ, and using Lemma 3 we

demonstrate that for an appropriate choice of the standard deviation σ (which
defines DZ`,σ, from which t is sampled), the projection of t on the subspace
generated by y0−y1 is statistically close to the uniform distribution over Z/nZ.
As a result, 〈y, t〉 modulo p is also close to the uniform distribution over Z/pZ,
and thus yβ (and therefore β) is statistically hidden in zβ .

Proof (Lemma 5). The ciphertext component C = gr information theoretically
reveals r mod n. Furthermore, ∀i ∈ [`], Ei information theoretically reveals
yβ,i+uti mod p as the value of hri is fixed from C and the public key. Therefore
the challenge ciphertext information theoretically reveals zβ = yβ+u ·t mod p.

Throughout the rest of this proof we demonstrate that yβ is statistically
hidden mod p, thanks to the distribution of t conditioned on A’s view.

We denote xi A’s ith query to the key derivation oracle. It must hold that,
for all i, 〈xi,y0〉 = 〈xi,y1〉. Let d 6= 0 be the gcd of the coefficients of y1 − y0

and define y = (y1, . . . , y`) = 1/d · (y1 − y0) ∈ Z`. It holds that 〈xi,y〉 = 0
over Z for all i. Therefore if we consider the lattice y⊥ = {x ∈ Z` : 〈x,y〉 = 0},
all the queries xi must belong to that lattice. W.l.o.g., we assume the n0 first
coordinates of y are zero (for some n0), and all remaining entries are non-zero.
Further, the rows of the following matrix form a basis of y⊥:
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Xtop =


In0

−yn0+2 yn0+1

−yn0+3 yn0+2

. . . . . .
−y` y`−1

 ∈ Z(`−1)×`.

We define the matrix:
X =

[
Xtop

yT

]
∈ Z`×`, (1)

and claim that X is invertible mod p (proof provided in the full version [CLT18,
Aux. Material VI]). Now since X does not depend on β ∈ {0, 1}, it suffices
to show that X · zβ ∈ (Z/pZ)` is statistically independent of β. Moreover by
construction Xtop · y0 = Xtop · y1 (over the integers), so Xtop · zβ is clearly
independent of β and we only need to worry about the last row of X · zβ mod p,
i.e. the information about β leaked by the challenge ciphertext is contained in:

〈y, zβ〉 = 〈y,yβ〉+ u · 〈y, t〉 mod p. (2)

We hereafter prove that, from A’s perspective, 〈y, t〉 follows a distribution statis-
tically close to the uniform distribution mod p, thus proving that β is statistically
hidden: since u is sampled uniformly at random from Z/pZ, u 6= 0 mod p with
all but negligible probability as p is a µ-bit prime, with µ ≥ λ. To this end, we
analyse the information that A gains on t mod n. From this, we will prove that
the distribution of 〈y, t〉 is close to uniform mod n, and thus, mod p.

As in the proof of Theorem 3, A learns z = s + αt mod n from the public
key as ∀i ∈ [`], hi = gsihti . Knowing z, the joint distribution of (s, t) mod n is
(z − αt mod n, t mod n) where t ←↩ DZ`,σ. As a result, knowing z does not
give more information on t modulo n to A.

One may assume that through its secret key queries, the information learned
by A is completely determined by Xtop ·s and Xtop ·t ∈ Z(`−1), as all the queried
vectors xi can be obtained as linear combinations of the rows of Xtop.

The value of Xtop ·s does not give A more information on t mod n than what
he obtains fromXtop ·t. Indeed the remainder of the Euclidean division ofXtop ·s
by n can be deduced from z and Xtop · t; while the quotient is independent of
t mod n and Xtop · t, as s and t are sampled independently and z only brings
a relation mod n. It is thus sufficient to analyse the distribution of t mod n
knowing Xtop · t.

Let t0 ∈ Z` be an arbitrary vector s.t. Xtop · t0 = Xtop · t. Knowing Xtop · t,
the distribution of t is t0 + DΛ,σ,−t0 where Λ = {t ∈ Z` : Xtop · t = 0}. This
lattice has dimension 1 and contains y · Z. In fact, as gcd(y1, . . . , y`) = 1, one
has y · Z = Λ (there exits y′ ∈ Z` s.t. Λ = y′ · Z and y = αy′ so α must divide
gcd(y1, . . . , y`) = 1). Therefore, applying Lemma 2, we see that conditioned on
Xtop · t, 〈y, t〉 is distributed according to 〈y, t0〉+D||y||22Z,||y||2σ,−〈t0,y〉.

Now consider the distribution obtained by reducing D||y||22Z,||y||2σ,−〈t0,y〉 over
Λ0 = ||y||22 ·Z modulo the sublattice Λ′0 = n · ||y||22 ·Z. In order to apply Lemma 3
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we need ||y||2·σ > ηε(Λ
′
0), which – applying a bound on the smoothing parameter

from [MR07] for ε = 2−λ−1 – is guaranteed by choosing ||y||2 · σ > λ1(Λ
′
0) ·
√
λ.

Moreover since λ1(Λ′0) = n · ||y||22, we require ||y||2 · σ > p · s̃ · ||y||22 ·
√
λ,

thus σ > p · s̃ · ||y||2 ·
√
λ. Now from the norm bounds on y0 and y1 it holds

that ||y||2 <
√
2p, so choosing σ > p3/2 · s̃ ·

√
2λ suffices to ensure that from

A′s view, 〈y, t〉 modulo n is within distance 2−λ from the uniform distribution
over Λ0/Λ

′
0 ' Z/nZ. As a result, 〈y, t〉 modulo p is also close to the uniform

distribution over Z/pZ.
We have therefore demonstrated that with overwhelming probability the term

〈y,yβ〉 in eq. (2) is statistically hidden modulo p and |Pr[S2]− 1/2| ≤ 2−λ. ut

Combining the different transition probabilities provides a bound for A’s advan-
tage, thus concluding the proof: Advind-fe-cpa

A (λ, µ) ≤ AdvDDH-f
B (λ, µ) + 2−λ. ut

4.2 DDH-f-based FE for inner product over Z/pZ

As in the LWE and Paillier-based IPFE modulo p of [ALS16], the main problem
here is that private key queries are performed over Z. An adversary may therefore
query keys for vectors that are linearly dependant over (Z/pZ)` but indepen-
dent over Z`. To solve this issue we require, as in [ALS16], that the authority
distributing private keys keeps track of previously revealed private keys.

Setting the parameters. We use the output (p, s̃, f, gp, G, F,Gp) of the GenGroup
generator of Def. 6, with p a µ bit prime, and with µ ≥ λ. We sample the
coordinates of the secret key from DZ`,σ. Choosing σ > s̃ · p` ·

√
λ · (
√
`)`−1

suffices for security to hold (cf. proof of Theorem 6), and ensures the distribution
{gx, x← DZ,σ} is at distance less than 2−λ from the uniform distribution in G
(cf. Lemma 4, Item 2). The Encrypt algorithm encrypts plaintexts y ∈ (Z/pZ)`

and the key derivation algorithm derives keys from vectors x ∈ (Z/pZ)`.

Construction. Algorithms Setup and Encrypt proceed exactly as in the construc-
tion for inner products over Z under DDH-f (cf. Fig. 3). Algorithms KeyDer
and Decrypt, which differ from those of the previous construction, are defined in
Fig. 4. Again, correctness follows from the linearity of the inner product.

Theorem 6. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z/pZ of Fig. 4 provides full security (ind-fe-cpa).

Proof. The proof proceeds similarly to that of Theorem 5, only we must define
the matrix Xtop differently, as we can no longer guarantee that it is invertible
modulo p. So we here follow the same steps as in the previous proof up until the
definition of Game 2. The only difference being that the adversary A queries the
stateful key derivation algorithm. We denote Game i′ the variant of Game i in
which the key derivation algorithm is stateful. From the proof of Theorem 5, it
holds that |Pr[S′2]− Pr[S′0]| = AdvDDH-f

B (λ, µ).
As in the original Game 2, here in Game 2′ the challenge ciphertext infor-

mation theoretically reveals zβ = yβ + u · t mod p
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Algorithm KeyDer(msk,x, st)

Answering the jth key request skx where x ∈ (Z/pZ)`. At any time the internal state
st contains at most ` tuples (xi,xi, zxi) where (xi, zxi) are previously queried secret
keys and the xi’s are corresponding vectors.

1. If x is linearly independent of the xi’s modulo p :
2. Set x ∈ {0, . . . , p− 1}` with x = x mod p
3. zx = (sx, tx) = (〈x, s〉, 〈x, t〉) ∈ Z× Z
4. st = (st, (x,x, zx))
5. If ∃{ki}1≤i≤j−1 ∈ Zj−1 s.t. x =

∑j−1
i=1 kixi ∈ (Z/pZ)` then:

6. x =
∑j−1
i=1 kixi ∈ Z`

7. zx = (
∑j−1
i=1 kisxi ,

∑j−1
i=1 kitxi) ∈ Z× Z

8. Return skx = (x, zx)

Algorithm Decrypt(mpk,Cy, skx)

1. Parse (x = (x1, . . . , x`); zx = (sx, tx)) = skx
2. Compute Cx = (

∏
i∈[`]E

xi
i )/(Csx ·Dtx)

3. Return Solve(Cx)

Fig. 4: Stateful FE scheme for inner products over Z/pZ from DDH-f.

We define y = (y1, . . . , y`) = y1 − y0 ∈ (Z/pZ)`; and, assuming A has
performed j private key queries, for 1 ≤ i ≤ j, we denote xi ∈ (Z/pZ)` the
vectors for which keys have been derived.

We want to demonstrate that from A’s view, the bit β is statistically hidden
in Game 2′. However we cannot use the same matrix Xtop as in the proof of
Theorem 5; indeed, if we define X as in eq. (1) we cannot guarantee that X is
invertible modulo p, since det(XXT ) could be a multiple of p. Therefore, so as
to ensure that the queried vectors xi do not in some way depend on β, we prove
via induction that after the j first private key queries (where j ∈ {0, . . . , `− 1}),
A’s view remains statistically independent of β, thus proving that the challenge
ciphertext in Game 2′ statistically hides β such that |Pr[S′2]− 1/2| ≤ 2−λ. The
induction proceeds on the value of j.

Recall that Game 2 and Game 2′ are identical but for the key derivation
algorithm. Therefore if A can make no calls to its key derivation oracle, the
indistinguishability of ciphertexts in Game 2′ follows immediately from that in
Game 2, demonstrated in proof of Theorem 5, thus the induction hypothesis
holds for j = 0. Now consider j ∈ {0, . . . , `− 1}. From the induction hypothesis
one may assume that at this point the state st = {(xi,xi, zxi)}i∈[j] is indepen-
dent of β. Indeed if A’s view after j − 1 requests is independent of β then the
jth request performed by A must be so.

W.l.o.g. we assume that the key requests xi performed by A are linearly
independent. This implies that the xi’s are linearly independent mod p and
generate a subspace of y⊥p = {x ∈ (Z/pZ)` : 〈x,y〉 = 0 mod p}. The set
{xi}i∈[j] can be extended to a basis {xi}i∈[`−1] of y⊥p. We defineXtop ∈ Z(`−1)×`
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to be the matrix whose rows are the vectors xi for i ∈ [`−1]. Let x′ ∈ (Z/pZ)` be
a vector chosen deterministically, x′ /∈ y⊥p, such that A can also easily compute
x′. We define xbot to be the canonical lift of x′ over Z, and X as:

X =

[
Xtop

xTbot

]
∈ Z`×`.

The matrix X is invertible mod p, statistically independent of β by induction
and by construction, and computable by A, thus we need only prove that X ·zβ
is statistically independent of β. And since Xtop · (y1−y0) = 0 mod p, we need
only consider 〈xbot, zβ〉 = 〈xbot,yβ〉+ u · 〈xbot, t〉 mod p.

We hereafter prove that, from A’s view, 〈xbot, t〉 follows a distribution statis-
tically close to the uniform distribution mod p, thus proving that β is statistically
hidden (since u is sampled uniformly at random from Z/pZ, u 6= 0 mod p with
all but negligible probability as p is a µ bit prime, with µ ≥ λ). To this end, we
analyse the information A gets on t mod n, so as to prove that t mod p follows
a distribution statistically close to the uniform distribution over y · Z/pZ, thus
proving that 〈xbot, t〉 follows a distribution statistically close to uniform mod p.

As in the proof of Theorem 3, A learns z := s + αt mod n from the public
key as ∀i ∈ [`], hi = gsihti . Knowing z, the joint distribution of (s, t) mod n is
(z − αt mod n, t mod n) where t ←↩ DZ`,σ. As a result, knowing z does not
give A more information on t mod n. Then, as in the proof of Theorem 5, private
key queries give A the knowledge of Xtop · s and Xtop · t in Z`−1. The value of
Xtop ·s does not give A more information on t mod n than what he obtains from
Xtop · t. It thus suffices to analyse the distribution of t mod n knowing Xtop · t.

We define Λ = {x ∈ Z`|Xtop · x = 0 ∈ Z`}. This one dimensional lattice
can equivalently be defined as Λ = y′ · Z where y′ = γ · y mod p for some
γ ∈ (Z/pZ)∗. One should note that all the coefficients of y′ are co-prime since
y′/ gcd(y′1, . . . , y

′
`) ∈ Λ.

Let t0 ∈ Z` be an arbitrary vector such that Xtop · t0 = Xtop · t. Knowing
Xtop · t, the distribution of t is t0 + DΛ,σ,−t0 . Now consider the distribution
obtained by reducing the distribution DΛ,σ,−t0 over Λ modulo the sublattice
Λ′ := n · Λ. We first bound ||y′||2 so as to bound λ1(Λ

′). We can then apply
Lemma 3 by imposing a lower bound for σ.

Since Λ = y′ · Z, it holds that ||y′||2 = det(Λ). We define Λtop as the lattice
generated by the rows of Xtop, then applying results from [Mar03] and [Ngu91],
one gets ||y′||2 = det(Λ) ≤ det(Λtop). We now apply Hadamard’s bound, which
tells us that, since the coordinates of each xi are smaller than p and since we
assumed all requested xi’s are linearly independent, det(Λtop) ≤

∏`−1
i=1 ||xi||2 ≤

(
√
`p)`−1. Therefore ||y′||2 ≤ (

√
`p)`−1, this implies λ1(Λ′) ≤ n · (

√
`p)`−1 <

s̃ · p` · (
√
`)`−1. From [MR07] we know that the smoothing parameter verifies

ηε(Λ
′) ≤

√
ln(2(1+1/ε))

π · λ1(Λ′). Thus for ε = 2−λ−1, we have ηε(Λ′) ≤ s̃ · p` ·
√
λ · (
√
`)`−1. Therefore setting σ > s̃ · p` ·

√
λ · (
√
`)`−1 and applying Lemma 3

ensures that the distribution DΛ,σ,−t0 mod Λ′, and therefore that of t mod n is
within distance 2−λ from the uniform distribution over Λ/Λ′ ' y′ · Z/nZ. This
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entails that t mod p is within distance 2−λ from the uniform distribution over
y′ · Z/pZ ' y · Z/pZ since y′ = γ · y mod p for some γ ∈ (Z/pZ)∗.

Since by construction 〈xbot,y〉 6= 0 mod p, we get that 〈xbot, t〉 mod p is
statistically close to the uniform distribution over Z/pZ. Moreover, with over-
whelming probability u 6= 0 mod p, so u · 〈xbot, t〉 statistically hides 〈xbot,yβ〉
which implies that 〈xbot, zβ〉 does not carry significant information about β, thus
concluding the proof. ut

5 Inner product FE relying on the HSM assumption

We here build IPFE schemes from the HSM assumption and the ind-cpa scheme
described in Fig. 2a, using the formalism of a cyclic group with an easy DL
subgroup. Our approach is inspired by, and somewhat generalises, the approach
of [ALS16] with Paillier’s DCR assumption (an RSA integer N plays the role of
p in this scheme so one should invoke the factoring assumption in our proof in
order to encompass this construction). We first present an FE scheme for inner
products over Z and then consider a scheme for inner products over Z/pZ.

5.1 HSM-based FE for inner product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2a, we use the output
(p, s̃, g, f, gp, G, F,G

p) of the GenGroup generator of Def. 6, ignoring the generator
g. We require that p is a µ bit prime, with µ ≥ λ. The message space and
decryption key space is Z`. As in Subsection 4.1 norm bounds X,Y < (p/2`)1/2

are chosen to ensure decryption correctness. Key vectors x and message vectors
y are of bounded norm ||x||∞ ≤ X and ||y||∞ ≤ Y . The decryption algorithm
uses a centered modulus to recover 〈x,y〉 over Z. To guarantee the scheme’s
security we sample the coordinates of the secret key s = (s1, . . . , s`)

T ←↩ DZ`,σ

with discrete Gaussian entries of standard deviation σ >
√
2λ · p3/2 · s̃. Setting

σ′ > s̃
√
λ ensures that {grp, r ←↩ DZ`,σ′} is at distance less than 2−λ from the

uniform distribution in Gp.

Construction. Fig. 5 depicts our IPFE construction over Z relying on the HSM
assumption. The proof of correctness is similar to that of the DDH-f construction.

Theorem 7. Under the HSM assumption, the functional encryption scheme for
inner products over Z depicted in Fig. 5 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting with the real ind-
fe-cpa game (Game 0) and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary A’s point of
view. The beginning of the proof is similar to the proof of Theorem 2 on ind-cpa
security. Then we take into account the fact that A has access to a key derivation
oracle. For each Game i, we denote Si the event β = β′.
Game 0 ⇒ Game 1: In Game 1 the challenger uses the secret key s =
(s1, . . . , s`) to compute ciphertext elements Ci = fyβ,i · (grp)si = fyβ,i · Csi0 .
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Algorithm Setup(1λ, 1µ, 1`, X, Y )

1. (p, s̃, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. s = (s1, . . . , s`)
T ←↩ DZ`,σ

3. For 1 ≤ i ≤ ` :
4. Compute hi = gsip
5. Return mpk = (s̃, gp, f, p, {hi}i∈[`]),

msk = s.

Algorithm KeyDer(msk,x)
x = (x1, . . . , x`)

T ∈ Z`,

1. Compute skx = 〈s,x〉 over Z.
2. Return skx

Algorithm Encrypt(mpk,y)
y = (y1, . . . , y`)

T ∈ Z`,

1. Pick r ←↩ DZ,σ′

2. Compute C0 = grp
3. For 1 ≤ i ≤ ` :
4. Compute Ci = fyi · hri
5. Return Cy = (C0, C1, . . . , C`)

Algorithm Decrypt(mpk,Cy, skx)

1. Compute Cx =
(∏

i∈[`] C
xi
i

)
· C−skx0

2. sol← Solve(Cx)
3. If sol ≥ p/2 :
4. Return (sol− p)
5. Else return sol

Fig. 5: FE scheme for inner product over Z from the HSM assumption.

This does not impact the distribution of the obtained ciphertext, therefore A’s
success probability in both games is identical: Pr[S0] = Pr[S1].
Game 1 ⇒ Game 2: In Game 1, the distribution of C0 is at distance less
than 2−λ of the uniform distribution in the subgroup Gp. Thus under the HSM
assumption, we can, in Game 2, substitute C0 by grp ·fa ∈ G, with r ←↩ Dp, a←↩
Z/pZ, which, as stated in Lemma 4, Item 5, is also at distance less than 2−λ of
the uniform distribution in G. Therefore, |Pr[S2]− Pr[S1]| ≤ AdvHSMB (λ, µ).
Now in Game 2 we have, for a←↩ Z/pZ and r ←↩ DZ,σ′ :{

C0 = fa · grp
Ci = fyβ,i+a·si · hri

. (3)

Game 1

1. mpk,msk ← Setup(1λ, 1µ, 1`, X, Y )
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ′

5. Compute C0 = grp ∈ Gp
6. For 1 ≤ i ≤ ` :
7. Compute Ci = fyβ,i · Csi0
8. Cy = (C0, C1, . . . , C`)
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

Game 2

1. mpk,msk ← Setup(1λ, 1µ, 1`, X, Y )
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ′ and a←↩ Z/pZ
5. Compute C0 = fa · grp ∈ G
6. For 1 ≤ i ≤ ` :
7. Compute Ci = fyβ,i · Csi0
8. Cy = (C0, C1, . . . , C`)
9. β′ ← AKeyDer(msk,·)(Cy)
10. Return (β = β′)
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Lemma 6. In Game 2 the ciphertext Cy = (C0, C1, . . . , C`) ∈ G`+1 statistically
hides β such that |Pr[S2]− 1/2| ≤ 2−λ.

Proof (sketch). We here give an overview of the proof, details are deferred to the
full version [CLT18]. As in proof of Lemma 5, we first delimit the information
leaked via the challenge ciphertext by considering the dimension in which both
potential challenge ciphertexts differ. Indeed, denoting zβ = yβ + as mod p,
then projecting zβ onto the subspace generated by y0 − y1 encapsulates all the
information revealed by the challenge ciphertext.

Next, we consider the distribution of the projection of the secret key s on the
subspace generated by y0−y1, conditionally on A’s view (given the information
leaked by private key queries and the public key). This amounts to a distribution
over a one dimensional lattice Λ0. We then reduce this distribution modulo a
sub-lattice Λ′0 s.t. Λ0/Λ

′
0 ' Z/pZ, and Lemma 3 tells us that choosing σ >√

2λ · s̃ · p3/2 suffices to ensure the distribution of the projection of s on the
subspace generated by y0−y1 is within distance 2−λ of the uniform distribution
over Z/pZ, and thus yβ (and therefore β) is statistically hidden in zβ . ut

Over all game transitions, after adding up the different probabilities, we
find that A’s advantage in the real game can be bounded as |Pr[S0] − 1/2| ≤
AdvHSMB (λ, µ) + 2−λ which is negligible if the HSM assumption holds in G. ut

5.2 HSM-based FE for inner product over Z/pZ

As in the DDH-f based scheme for inner products over Z/pZ of Section 4.2, the
key generation algorithm is stateful to ensure the adversary cannot query keys
for vectors that are linearly dependant over (Z/pZ)` but independent over Z`.

Setting the parameters. As in the previous construction, we use the output
(p, s̃, f, gp, G, F,G

p) of the GenGroup generator of Def. 6, with p a µ-bit prime,
and µ ≥ λ. The message space and vector space from which decryption keys are
derived are now (Z/pZ)`. Given an encryption of y ∈ (Z/pZ)` and a decryption
key for x ∈ (Z/pZ)`, the decryption algorithm recovers 〈x,y〉 ∈ Z/pZ. To guar-
antee the scheme’s security we sample the coordinates of the secret key s from
DZ`,σ with discrete Gaussian entries of standard deviation σ >

√
λ·p·s̃·(

√
`p)`−1.

We require σ′ > s̃
√
λ to ensure that {grp, r ←↩ DZ`,σ′} is at distance less than

2−λ from the uniform distribution in Gp.

Construction. The Setup and Encrypt algorithms proceed exactly as in Fig. 5,
only Encrypt operates on message vectors y ∈ (Z/pZ)` instead of y ∈ Z`. In
Fig. 6 we only define algorithms KeyDer and Decrypt, since they differ from
those of the previous construction.

Theorem 8. Under the HSM assumption the above stateful functional encryp-
tion scheme for inner products over Z/pZ provides full security (ind-fe-cpa).
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Algorithm KeyDer(msk,x, st)

Answering the jth key request skx where x ∈ (Z/pZ)`. At any time the internal state
st contains at most ` tuples (xi,xi, zxi) where (xi, zxi) are previously queried secret
keys and the xi’s are corresponding vectors.

1. If x is linearly independent of the xi’s modulo p :
2. Set x ∈ {0, . . . , p− 1}` with x = x mod p
3. zx = 〈s,x〉 ∈ Z ; st = (st, (x,x, zx))
4. If ∃{ki}1≤i≤j−1 ∈ Zj−1 such that x =

∑j−1
i=1 kixi ∈ (Z/pZ)` then:

5. x =
∑j−1
i=1 kixi ∈ Z` ; zx =

∑j−1
i=1 kizxi ∈ Z

6. Return skx = (x, zx)

Algorithm Decrypt(mpk,Cy, skx)

1. Parse (x = (x1, . . . , x`), zx) = skx

2. Compute Cx =
(∏

i∈[`] C
xi
i

)
· (C−zx0 )

3. Return Solve(Cx)

Fig. 6: Functional encryption scheme for inner products over Z/pZ from HSM.

The proof resembles that of Theorem 7 and is adapted from the proofs of
[ALS16], so we defer it to the full version [CLT18]. The main issue is that we can
no longer guarantee X is invertible modulo p. We need to compute on-the-fly a
basis for {x ∈ (Z/pZ)` : 〈x,y〉 = 0 mod p} to apply the same techniques as in
Theorem 7. The analysis gives significantly larger standard deviations as men-
tioned above due a bad approximation of the determinant of a related matrix.

6 Instantiation and efficiency considerations

Both generic constructions we put forth of IPFE are based on variants of Elga-
mal in the same group and both sample their master secret keys from Gaussian
distributions with the same standard deviation. As a result their asymptotic
complexities are the same. The second scheme’s security relies on a hard sub-
group membership assumption (HSM) and this scheme appears to be the most
efficient FE evaluating inner products modulo a prime p. At the (small) expense
of a single additional element in the keys and in the ciphertext, the first scheme’s
security relies on a weaker DDH-like assumption, which is also weaker than the
DDH assumption in the group. We compare, in Table 1, an implementation of
our HSM-based IPFE mod p of Subsection 5.2 within the class group of an imag-
inary quadratic field and Paillier’s variant of [ALS16]. This is the most relevant
comparison since their DDH variant does not allow a full recovery of large in-
ner products over Z/pZ, and, as detailed in the following paragraph, the LWE
variant is far from being efficient, as ciphertexts are computed using arithmetic
modulo q = 2` where ` is the dimension of the plaintext vectors.

Comparison with the LWE based scheme of [ALS16]. Parameter choices for
lattice-based cryptography are complex, indeed [ALS16] do not provide a con-
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crete set of parameters. This being said, using [ALS16, Theorem 3], and setting
log p = λ as in Table 1, we give rough bit sizes for their LWE based scheme over
Z/pZ. Basic elements are integers mod q of size ` since q ≈ 2` for security to
hold. The largest component in the public key mpk consists of λ2`3 elements, so
mpk is of size greater than λ2`4. The component zx in secret keys is the product
of a vector of (Z/pZ)` with a matrix, resulting in a vector made up of λ`2 inner
products, where each inner product is of size `λ. Thus these keys are of size λ2`3.
Finally ciphertexts consist of λ`2 elements, and are thus of size λ`3. As a result,
although it is hard to compare the complexities in λ, for a fixed security level,
the complexity in ` for all the parameters of the LWE based scheme is in `3 or
`4 whereas we are linear in ` (see Table 1). For example, for λ = 128, ` = 100,
their skx is of approximately 234 bits vs. 13852 bits in our instantiation.

Instantiation. To instantiate the protocol of Section 5.2, we must first define
the algorithm GenGroup of Def. 6. We follow the lines of [CL15], starting from
a fundamental discriminant ∆K = −p · q with its class group Cl(∆K), where q
is a prime such that p · q ≡ −1 (mod 4) and (p/q) = −1. Then, we consider a
non-maximal order of discriminant ∆p = p2 · ∆K and its class group Cl(∆p).
The order of Cl(∆p) is h(∆p) = p · h(∆K). It is known [Coh00, p. 295], that
h(∆K) < 1

π log |∆K |
√
|∆K | which is the bound we take for s̃ (a slightly better

bound can be computed from the analytic class number formula, cf. [McC89]).
In [CL15, Fig. 2] the authors show how to build a generator of a cyclic group of
order ps of the class group of discriminant∆p and a generator for the subgroup of
order p (in which the DL problem is easy). We need to modify their generator s.t.
it outputs a generator gp of the subgroup of p−th powers. The computation of
such an element is actually implicit in their generator: this is done by computing
an ideal r in the maximal order with norm a small prime r such that

(
∆K
r

)
= 1.

Then the ideal r2 is lifted into a class of Cl(∆p) which is then raised to the
power p to define gp. A second modification is to output s̃ instead of their larger
bound B (since they sampled elements using a folded uniform distribution). We
refer to [CL15] for a full description of the implementation. The manipulated
objects are reduced ideals represented by two integers smaller than

√
p3q, and

the arithmetic operations in class groups are very efficient, since the reduction
and composition of quadratic forms have a quasi linear time complexity using
fast arithmetic (see for instance [Coh00]).

The sole restriction on the size of the prime p is that it must have at least λ
bits, where λ is the security parameter. The size of∆K , and thus of q, is chosen to
thwart the best practical attack, which consists in computing discrete logarithms
in Cl(∆K) (or equivalently the class number h(∆K)). An index-calculus method
to solve the DL problem in a class group of imaginary quadratic field of discrimi-
nant ∆K was proposed in [Jac00]. It is conjectured in [BJS10] that a state of the
art implementation of this algorithm has complexity O(L|∆K |[1/2, o(1)]). They
estimate that the DL problem with a discriminant ∆K of 1348 (resp. 1828 bits)
is as hard as factoring a 2048 (resp. 3072 bits) RSA integer. This is our reference
to estimate the bit size of the different elements in Table 1.
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Table 1: Comparing our IPFE from HSM and the [ALS16] IPFE from DCR

λ = 112 λ = 128

size this work [ALS16] this work [ALS16]

(p, s̃) (112, 684) (1024, 2046) (128, 924) (1536, 3070)
group element 1572 4096 2084 6144
secret key* (zx) 112(`+ 1) + 684 2048(`+ 2) 128(`+ 1) + 924 3072(`+ 2)
ciphertext 1572(`+ 1) 4096(`+ 1) 2084(`+ 1) 6144(`+ 1)
enc. expo. 687 2046 928 3070
dec. expo. 112(`+ 1) + 684 2048(`+ 2) 128(`+ 1) + 924 3072(`+ 2)

* ignoring an additive term (`± 1) log(
√
`)

Note that in this case, the size of our group elements (reduced ideals in the class
group of discriminant p3q), are significantly smaller than those of the Paillier
variant of [ALS16] (elements of Z/N2Z). This is also the case for ciphertexts
(which consist in both protocols of ` + 1 group elements). We have the same
situation with secret keys: to simplify the comparison we consider linearly inde-
pendent queries (thus ignoring the vectors in Z`). As a result, we have, for our
scheme, the inner product of a vector from (Z/pZ)` with a vector sampled from
a discrete Gaussian with standard deviation greater than

√
λps̃(
√
`p)`−1 over

Z` vs. the inner product of a vector of (Z/NZ)` with a vector sampled from a
discrete Gaussian with standard deviation greater than

√
λ(
√
`N)`+1 over Z`.

We note however that our underlying message space Z/pZ is much smaller
than their message space Z/NZ. Using larger message spaces would be more fa-
vorable to their Paillier based scheme. But in practice, a 128 bits message space
is large enough, if for instance, one needs to perform computations with double
or quadruple precision. Our protocols are the most suited for such intermedi-
ate computations, since Paillier’s construction from [ALS16] would add a large
overhead cost, while their DDH construction could not decrypt the result.

In terms of timings, a fair comparison is difficult since to our knowledge,
no library for the arithmetic of quadratic forms is as optimized as a standard
library for the arithmetic of modular integers. Nevertheless, we note that the
exponents involved in the (multi-)exponentiations for encryption and decryp-
tion are significantly smaller than those in [ALS16], as is the group size. Indeed,
the encryption of Paillier’s variant involves (`+1) exponentiations to the power
a (|N | − 2)-bit integer modulo N2, whereas our protocol involves one expo-
nentiation to the power a |σ′|-bit integer in Cl(p3q), where σ′ > s̃

√
λ and `

(multi-)exponentiations whose maximum exponent size is also |σ′|. Decryptions
involve respectively a multi-exponentiation whose maximum exponent size is
lower than `σN = `

√
λ(
√
`N)`+1N for [ALS16] and `pσ = `p

√
λps̃(
√
`p)`−1 for

our protocol. We performed timings with Sage 8.1 on a standard laptop with
a straight-forward implementation. Using the settings of [CL15], the exponen-
tiation in class groups uses a PARI/GP function (qfbnupow), which is far less
optimised than the exponentiation in Z/NZ, implying a huge bias in favour of
Paillier. Despite this bias, the efficiency improvement we expected from our pro-
tocols is reflected in practice, as showed in Table 2. We gain firstly from the
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fact that we can use smaller parameters for the same security level and secondly,
because our security reductions allow to replace N ` with p` in the derived keys.
Thus the gain is not only in the constants and our scheme becomes more and
more interesting as the security level and the dimension ` increase.

Table 2: Timings: our IPFE from HSM vs. [ALS16]’s IPFE from DCR

λ = 112, ` = 10* λ = 128, ` = 10*

this work [ALS16] this work [ALS16]

secret key bitsize 1920 24592 2340 36876
encryption time 40ms 27ms 78ms 85ms
decryption time 110ms 301ms 193ms 964ms
* For all parameters our dependency in ` is linear which allows to extrapolate
timings for ` > 10.
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