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Abstract. OCB3 is the current version of the OCB authenticated en-
cryption mode which is selected for the third round in CAESAR. So far
the integrity analysis has limited to an adversary making a single forg-
ing attempt. A simple extension for the best known bound establishes
integrity security as long as the total number of query blocks (including
encryptions and forging attempts) does not exceed the birthday-bound.
In this paper we show an improved bound for integrity of OCB3 in terms
of the number of blocks in the forging attempt. In particular we show that
when the number of encryption query blocks is not more than birthday-
bound (an assumption without which the privacy guarantee of OCB3
disappears), even an adversary making forging attempts with the num-
ber of blocks in the order of 2n/`MAX (n being the block-size and `MAX

being the length of the longest block) may fail to break the integrity of
OCB3.

Keywords. OCB, OCB3, authenticated encryption, integrity, multiple verifica-
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1 Introduction

Authenticated encryption schemes [Rog02], which target both data confidential-
ity and integrity simultaneously, have received considerable attention in recent
years. The increased interest is in part due to the ongoing CAESAR compe-
tition [cae], which aims to deliver a portfolio of state-of-the-art authenticated
encryption schemes covering a spectrum of security and efficiency trade-offs.
While other possibilities exist, it is natural to build AE schemes from block-
ciphers, employing some mode of operation. Some of the known blockcipher
based authenticated encryptions are OCB [RBB03,Rog04], GCM [MV04,MV05],
COPA [ABL+13], ELmD [DN14] and AEZ [HKR15]. Due to the CAESAR com-
petition, many designs have appeared in literature. Moreover, some designs have
been refined for better performance and improved security. OCB3 (submitted to
CAESAR and now a third round candidate) is one such example, an enhance-
ment of the well known construction OCB.

OCB and OCB3. OCB is a blockcipher-based mode of operation that achieves
authenticated encryption in almost the same amount of time as the fastest con-
ventional mode, CTR mode [WHF02], which achieves privacy alone in that time.



Despite this, OCB is simple and clean, and easy to implement in either hard-
ware or software. For every message, it uses two blockcipher calls to process a
constant block 0n and a nonce, one blockcipher call for each message block and
one additional blockcipher call for the checksum.

The refined OCB or OCB3 [KR11] aims to shave off one AES encipherment per
message encrypted about 98% of the time. The nonce here is used as a counter,
i.e., in a given session, its top segment (of 122 bits) stays fixed, while, with each
successive message, the bottom segment (of 6 bits) gets bumped up by one. This
is the approach recommended in RFC 5116 [McG08, Section 3.2].

Known Security Results of OCB3. Though the original OCB has already been
proved to be secure, the security bound provided by [KR11], in particular the
authenticity bound, does not show the standard birthday-bound security when
the adversary is allowed to make multiple verification queries. More formally,
the original bound is O(σ2

T /N) +O(1/2τ ) where σT denotes the total number of
input blocks in q encryption queries and τ denotes the tag length, if the number
of verification queries is one. This bound generally implies O(q′σ2

T /N)+O(q′/2τ )
when the number of verification queries is q′ ≥ 1, hence the provable security is
degraded.

Another adaptation of the proof can be applied to obtain a bound of the form
O((σT + σ′T )2/N + q′/2τ ), where σ′T is the blocks in the decryption queries.
It still remains birthday-bound in σ′T . All known attacks exploit the collision
in the input blocks for all encryption queries and hence σ2

T /N is tight. But no
matching attack with advantage σ′2T /N is known. A recent collision attack on
PHash [GPR17] (used to process the associated data) can be applied to obtain
an integrity attack with advantage O(σ′T /N). (See [BGM04].)

Our Contribution. We show that the existing attack is the best possible by
improving the integrity advantage. We follow the combined AE security distin-
guishing game [RS06] to bound the integrity security of OCB3. We use Patarin’s
coefficients H technique [Pat08] to bound the AE distinguishing game.

Theorem 1 (Main Result). Let A be an adversary that makes q encryp-
tion queries consisting of σ message blocks in all with at most `MAX blocks per
query, and α associated data blocks in all, and q′ decryption queries in a nonce-
respecting authenticated encryption security game with associated data against a
real oracle O1 representing OCB3 and an ideal oracle O0 representing an ideal
nonce-based authenticated encryption function. Then

Advnaead
O1,O0

(A) ≤ 5σ2
T

N
+

2σ4

N2
+

64q′`MAX + 15q′

N
,

where σT = σ + α + q is the total number of blocks queried in the encryption
queries (including messages, associated data and nonces).



2 Preliminaries

N denotes the set of non-negative integers. For n ∈ N, [n] denotes the set
{1, . . . , n} ([0] is thus the empty set). For m,n ∈ N, [m..n] denotes the set
{m, . . . , n} (which is the empty set when m > n). For a binary string x ∈
{0, 1}∗, |x| will denote the number of bits in x. We fix an arbitrary block-length
n ∈ N \ {0}. If |x| = n, we call x a complete block; if |x| < n, we call x an
incomplete block; if |x| = 0 (the null string), we call x the empty block. (By
convention, the empty block is also an incomplete block.) ⊕ and · denote the
field addition (XOR) and field multiplication respectively over the finite field
{0, 1}n. During calculations, for two block x and y, we will simply write x + y
to denote x⊕ y.

For i ∈ [|x|], x[i] denotes the i-th bit of x (we begin all indexing from 1, so x[1]
is the first bit of x). For i ≥ 1 and j ≤ |x|, x[i..j] denotes the (j − i + 1)-bit
contiguous substring of x starting at the i-th bit when i ≤ j, and the empty
string otherwise. For two strings x and y, x||y denotes the concatenation of x
and y. For a bit b, bm denotes an m-bit string with each bit equal to b.

Any x ∈ {0, 1}∗ can be mapped uniquely to a sequence (x1, . . . , x`, x∗), where
` ∈ N, x1, . . . , x` are complete blocks, and x∗ is an incomplete (possibly empty)
block, such that

x = x1|| · · · ||x`||x∗.

For this mapping we take ` = b|x|/nc, xi = x[n(i − 1) + 1..ni] for i ∈ [`], and
x∗ = x[n`+1..|x|]. For an incomplete block x, pad(x) denotes the complete block

x||10∗ = x||1||0n−|x|−1.

For a complete block x, chopk(x) denotes the incomplete block x[1..k]. For some
m ∈ N, for x ∈ {0, 1}m, k ∈ [m], x� k denotes x rotated b bits to the right, i.e.,
0b||x[1..m−b], while x� b denotes x rotated b bits to the left, i.e., x[b+1..m]||0b.

We say a function f : {0, 1}n −→ {0, 1}n is partially determined if we know
the values of f on a strict subset of {0, 1}n. This subset is called Dom(f). A
partially determined state of f can be viewed as a restriction of f to Dom(f).
The range of this restricted function is called Ran(f). We will treat a partially
determined function as updatable: for some x ∈ {0, 1}n \ Dom(f) and some
y ∈ {0, 1}n, (x, y) may be added to f , so that Dom(f) expands to Dom(f) ∪
{x}, and Ran(f) becomes Ran(f) ∪ {y}. We say f is permutation-compatible if
|Dom(f)| = |Ran(f)|.

For a set S, we write x
$←− S to denote that x is sampled from S uniformly. For

a given domain D and a given co-domain R, Func[D,R] will denote the set of all
functions from D into R. We say f∗ is an ideal random function from D to R
to indicate that f∗

$←− Func[D,R]. If f∗ is an ideal random function, it can be
viewed as a with-replacement sampler fromR: for distinct inputs x1, . . . , xm ∈ D,



f∗(xi)
$←− R for i ∈ [m], and f∗(x1), . . . , f∗(xm) are all independent. Similarly

Perm[D] will denote the set of all permutations on D. We say π∗ is an ideal

random permutation on D to indicate that π∗
$←− Perm[D]. If f∗ is an ideal

random permutation, it can be viewed as a without-replacement sampler from

D: for distinct inputs x1, . . . , xm ∈ D, (π∗(x1), . . . , π∗(xm))
$←− Ds where Ds

denotes the set of all s-tuples of distinct elements from D.

2.1 Some Basic Results

We briefly state some results which would be used in our security analysis.

Property-1. Suppose X1, . . . , Xs is a random without-replacement sample from
D. Then for any 1 ≤ i1 < · · · < ir ≤ s, Xi1 , . . . , Xir is also a random without-
replacement sample from D. In other words, the joint distribution of a without-
replacement sample is independent of the ordering of the sample.

Property-2. Suppose A is a binary full row rank matrix of dimension nd× ns
for some positive integers n, d and s. Let X1, . . . , Xs be a without-replacement
sample from {0, 1}n, and X be the column vector (X1, . . . , Xn). Then

Pr [AX = c] ≤ 1

(2n − s+ r) · · · (2n − s+ 1)

for any d dimensional binary vector c. Moreover if c is not in the column space
of A then this probability is zero.

2.2 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A trying to distinguish between O0

and O1 is called a distinguishing adversary. A plays an interactive game with
Ob for some bit b unknown to A, and then outputs a bit bA. The winning event
is [bA = b]. The distinguishing advantage of A is defined as

AdvO1,O0
(A) :=

∣∣∣Pr [bA = 1 | b = 1]− Pr [bA = 1 | b = 0]
∣∣∣.

Let A[q, t] be the class of all distinguishing adversaries limited to q oracle queries
and t computations. We define

AdvO1,O0
[q, t] := max

A∈A[q,t]
AdvO1,O0

(A).

When the adversaries in A[q, t] are allowed to make both encryption queries and
decryption queries to the oracle, this is written as Adv±O0,±O1

[q, q′, t], where q
is the maximum number of encryption queries allowed and q′ is the maximum
number of decryption queries allowed. Encb and Decb denote respectively the
encryption and decryption function associated with Ob.

O0 conventionally represents an ideal primitive, while O1 represents either an
actual construction or a mode of operation built of some other ideal primitives.



Typically the goal of the function represented by O1 is to emulate the ideal
primitive represented by O0. We use the standard terms real oracle and ideal
oracle for O1 and O0 respectively. A security game is a distinguishing game with
an optional set of additional restrictions, chosen to reflect the desired security
goal. When we talk of distinguishing advantage with a specific security game G
in mind, we include G in the superscript, e.g., AdvGO1,O0

(A).

2.3 The Authenticated Encryption Security Game

A nonce-based authenticated encryption scheme with associated data consists
of a key space K, a message space M, a tag space T, a nonce space N and an
associated data space A, along with two functions Enc : K×N×A×M −→M×T
and Dec : K × N × A ×M× T −→ M ∪ {⊥}, with the correctness condition
that for any K ∈ K,N ∈ N ,A ∈ A,M ∈M, we have

Dec(K,N,A,Enc(K,N,A,M)) = M.

In addition, in most popular authenticated encryption schemes (including OCB3),
the map pM◦Enc(K,N,A, ·) for fixed K,N,A is a length-preserving permutation,
where pM :M× T −→M is the projection on M.

In the nonce-respecting authenticated encryption security game with associ-
ated data naead, Enc1 and Dec1 of the real oracle are the encryption function
Enc(K, ·, ·, ·) and decryption function Dec(K, ·, ·, ·, ·) respectively of the authenti-
cated encryption scheme under consideration for a key K randomly chosen from
K; in the ideal oracle, Enc0 : N ×A×M −→M×T is an ideal random function
from N × A ×M to M× T, and Dec0 : N × A ×M× T −→ M∪ {⊥} is the
constant function that returns ⊥ irrespective of the input. We henceforth refer
to (Enc0,Dec0) as the ideal nonce-based authenticated encryption scheme. The
distinguishing adversary operates under the following restrictions:

– no two encryption queries can have the same nonce;

– if an encryption query (N,A,M) yields (C,T), a decryption query (N,A,C,T)
is not allowed.

The distinguishing advantage of the adversary in the nonce-respecting authenti-
cated encryption security game with associated data will be denoted Advnaead

O1,O0
(A).

Note that security under this formulation covers the two standard security goals
of authenticated encryption:

– (Privacy) Security against an adversary who tries to distinguish the con-
struction from an ideal prf f∗ :M−→M× T, and

– (Integrity) Security against an adversary who tries to make a successful
forging attempt on the construction.



2.4 Coefficients H Technique

Consider a security game G where the adversary can make both encryption
queries and decryption queries. The part of the computation visible to the ad-
versary at the time of choosing its final response is known as a view. This includes
the queries and the responses, and may also include any additional information
the oracle chooses to reveal to the adversary at the end of the query-response
phase of the game. The probability of the security game with an oracle O result-
ing in a given view V is known as the interpolation probability of V , denoted
ipO[V ].

Note that for a view to be realised, two things need to happen:

– The adversary needs to make the queries listed in the view;
– The oracle needs to make the corresponding responses.

Of these, the former is deterministic; the latter, probabilistic. Thus when we talk
of interpolation probability, we are only concerned with the oracle responses,
with the assumption that the adversary’s queries are consistent with the view.
For any other adversary, the interpolation probability is trivially 0. Thus ipO[V ]
depends only on the oracle O and the view V and not on the adversary; hence
the notation.

We extend the notation of interpolation probability to a set V of views: ipO[V]
denotes the probability that the security game with O results in a view V ∈ V.
Now we state a theorem, due to Jacques Patarin, known as the Coefficient H
Technique.

Theorem 2 (Coefficient H Technique). [Pat08] Suppose there is a set Vbad
of views satisfying the following:

– ipO0
[Vbad] ≤ ε1;

– For any V /∈ Vbad,
ipO1

[V ]

ipO0
[V ]
≥ 1− ε2.

Then for an adversary A trying to distinguish between O1 and O0, we have the
following bound on its distinguishing advantage:

AdvG±O1,±O0
(A) ≤ ε1 + ε2.

3 OCB3 Construction

The OCB3 encryption and decryption algorithms are described in Algorithm 1.
We take block length n = 128. EK denotes a call to blockcipher, and HK denotes
a call to a hash function based on the stretch-then-shift xor-universal hash Hκ,
as described below in subsection 3.1. Note that they share the same key K.
Hashing of associated data A is done through parallel masked calls to EK , which
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ẼN,`,∗
K

C∗

Mtag
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ẼN,1
K

C1

M2

ẼN,2
K

C2

. . . . . .

M`
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Fig. 1. A schematic view of the OCB3 construction. Top to Bottom: encrypting
M when |M∗| = 0; encrypting M when |M∗| > 0; hashing A when |A∗| = 0;
hashing A when |A∗| > 0.



are added to get the authentication key auth. The message space M consists of
all messages with at least one full block, i.e., all strings of 128 bits or more, and
the nonce space N consists of all 128-bit strings whose first 122 bits are not all
0. The message M is encrypted in ECB mode, with masking that incorporates
the nonce N. If there is an incomplete block at the end, it is added after a 10∗

padding to an encrypted masking key. Finally, a checksum of the message blocks
is masked and encrypted through EK , and auth is added to it to produce the
authentication tag T. We ignore here the last step of OCB3, where a tag of a
desired length τ is obtained by chopping T as required. A schematic view of the
encryption is illustrated in Figure 1, which treats each masked blockcipher call
as a call to a tweakable blockcipher. The masking scheme corresponding to the
various tweakable blockcipher calls is given in Table 1. The important thing to
note here is that all the masking coefficients are distinct.

Call Definition

ẼN,i
K (x) EK(Q⊕ λi · L⊕ x)⊕ Q⊕ λi · L, i ∈ N \ {0}

ẼN,i,∗
K (x) EK(Q⊕ λ∗i · L⊕ x), i ∈ N

ẼN,i,$
K (x) EK(Q⊕ λ$

i · L⊕ x), i ∈ N

ẼN,i,∗$
K (x) EK(Q⊕ λ∗$i · L⊕ x), i ∈ N

Ẽi
K (x) EK(λi · L⊕ x), i ∈ N \ {0}

Ẽi,∗
K (x) EK(λ∗i · L⊕ x), i ∈ N

Coeff. Def.

λi 4a(i)

λ∗i 4a(i) + 1

λ$
i 4a(i) + 2

λ∗$i 4a(i) + 3

Table 1. Masking scheme corresponding to the various blockcipher calls in the
schematic view of OCB3. L = EK(0); Q = HK(N), HK being the hash function
described in subsection 3.1, and N the nonce; and the tweak space is N × ((N \
{0})∪(N×{∗, $, ∗$}))∪(N\{0}∪(N×{∗})). For i ∈ N, a(i) :=

⊕
j≤i(1� ntz(j))

denotes the Gray-code representation of i, ntz(j) being the number of trailing
0’s in the binary representation of j.

3.1 Stretch-then-Shift Hash

In this subsection we describe the hash function HK used in OCB3 to process
the nonce N. It is based on an xor-universal hash function Hκ with a 128-bit key
and a 6-bit input, defined as

Hκ(x) := ((κ||(κ⊕ (κ� 8)))� x)� 128.

This is a linear function of κ, and thus can be described as left multiplication
with a matrix H[x] as

Hκ(x) := H[x] · κ.

It is easy to show that when κ
$←− {0, 1}128, for any x ∈ {0, 1}6, we have

Hκ(x)
$←− {0, 1}128. The authors show with a computer-aided exhaustive search



that when κ is uniform over {0, 1}128, for any x, x′ ∈ {0, 1}6, x 6= x′ and any
δ ∈ {0, 1}128, we have

Pr [Hκ(x)⊕Hκ(x′) = δ] =
1

2128
.

We describe here a generalised hash H[π], based on an arbitrary permutation π.
We begin by splitting N into two parts:

TN = τ(N) := (N� 6)� 6,

BN = β(N) := N⊕ τ(N),

so as BN denotes the last 6 bits of N, and TN denotes the first 122 bits, with 6
0’s appended at the end. (Note that as long as N ∈ N , TN cannot be 0.) Next
we define

KN = κ(N) := π(τ(N)).

Finally, we define

Q = H[π](N) := Hκ(N)(β(N)) = H[β(N)] · κ(N).

The HK used in OCB3 is an instantiation H[π] with π = EK , i.e.,

HK(N) := H[EK ](N).

4 Security Result

We present the main security result of the paper, along with an overview of our
proof approach. Consider a nonce-based authenticated encryption security game
with associated data involving OCB3[π], an ideal version of OCB3 where EK is
replaced by a random permutation π. Recall Theorem 1 from section 1.

Theorem 1. Let A be an adversary that makes q encryption queries consisting
of σ message blocks in all with at most `MAX blocks per query, and α associated
data blocks in all, and q′ decryption queries in a nonce-respecting authenticated
encryption security game with associated data against the oracles O1 and O0,
where O1 simulates OCB3[π], and O0 simulates an ideal nonce-based authenti-
cated encryption scheme with associated data. Then

Advnaead
O1,O0

(A) ≤ 5σ2
T

N
+

2σ4

N2
+

64q′`MAX + 15q′

N
,

where σT = σ + α + q is the total number of blocks queried in the encryption
queries (including messages, associated data and nonces).



Encryption

input : N,A,M
output: C,T

begin
L← EK(0)
Q← HK(N)
auth← 0
for j ← 1 to k do

Uj ← λj · L⊕ Aj

Vj ← EK(Uj)
auth← auth⊕ Vj

end for
if |A∗| > 0 then

A∗ ← pad(A∗)
U∗ ← λ∗k · L⊕ A∗
V∗ ← EK(U∗)
auth← auth⊕ V∗

end if
Mtag ← 0
for j ← 1 to ` do

Xj ← Q⊕ λj · L⊕Mj

Yj ← EK(Xj)
Cj ← Q⊕ λj · L⊕ Yj

Mtag ← Mtag ⊕Mj

end for

λi
tag ← λ$

`

if |M∗| > 0 then

M∗ ← pad(M∗)
X∗ ← Q⊕ λ∗` · L
Y∗ ← EK(X∗)
C∗ ← Y∗ ⊕M∗
C∗ ← C∗ � (n− |M∗|)
Mtag ← Mtag ⊕M∗
λi
tag ← λ∗$`

end if

Xtag ← Q⊕ λi
tag · L⊕Mtag

Ytag ← EK(Xtag)
T← auth⊕ Ytag

return C
return T

end

Decryption

input : N’,A’,C’,T’
output: M’ or ⊥
begin

L’← EK(0)
Q’← HK(N’)
auth’← 0
for j ← 1 to k′ do

U’j ← λj · L’⊕ A’j
V’j ← EK(U’j)
auth’← auth’⊕ V’j

end for
if |A’∗| > 0 then

A∗ ← pad(A’∗)
U’∗ ← λ∗k′ · L’⊕ A∗
V’∗ ← EK(U’∗)
auth’← auth’⊕ V’∗

end if
M’tag ← 0
for j ← 1 to `′ do

Y’j ← Q’⊕ λj · L’⊕ C’j
X’j ← E−1

K (Y’j)
M’j ← Q’⊕ λj · L’⊕ X’j
M’tag ← M’tag ⊕M’j

end for

λ′itag ← λ$
`′

if |C’∗| > 0 then

C’∗ ← pad(C’∗)
X’∗ ← Q’⊕ λ∗`′ · L’
Y’∗ ← EK(X’∗)
M’∗ ← Y’∗ ⊕ C’∗
M’∗ ← M’∗ � (n− |C’∗|)
M’tag ← M’tag ⊕ pad(M’∗)

λ′itag ← λ∗$`′
end if
Y’tag ← auth’⊕ T’
X’tag ← E−1

K (Y’tag)
M”tag ← Q’⊕ λi

tag · L’⊕ X’tag
if M’tag = M”tag then

return M’
else

return ⊥
end if

end

Algorithm 1: The OCB3 algorithm. A∗,M∗,A’∗,C’∗ are incomplete (possi-
bly empty) blocks at the end of A,M,A’,C’ respectively. The hash function
HK is described in subsection 3.1



4.1 Proof Approach

Before delving into the details of the proof, we give an overview of it. There are
two parts to this security bound: the privacy bound, represented by the term
5σ2

T /N+2σ4/N2, and the integrity bound, represented by the term (64q′`MAX+
15q′)/N . The privacy bound is birthday in the number of encryption-query
blocks, and and relies on the simple requirement that every blockcipher out-
put is distinct. The integrity bound, being beyond-birthday in the number of
decryption-query blocks (as long as `MAX is within a reasonable bound) is trick-
ier to obtain, and is the main contribution of the paper.

We consider a slightly modified game where we let the real oracle O1 reveal
the inputs and outputs of all internal blockcipher calls in the encryption queries
at the end of the query phase. Thus, it becomes necessary for the ideal oracle
O0 to sample these values. In subsection 4.3, we describe the sampling order
for O0, which proceeds in four steps. Step 1 takes place during the encryption-
query phase itself, when O0 behaves as in a standard naead game, sampling
the ciphertext and tag blocks on the fly. (In the decryption query phase, O0

always outputs ⊥.) After the query phase, in Step 2 and Step 3, the inputs and
outputs of the internal blockcipher calls in all the encryption queries are sampled.
Finally, in Step 4, the inputs and outputs of the internal blockcipher calls in the
decryption queries which are not yet determined are sampled, completing the
sampling process.

During this sampling process, we keep checking the sampled values for various
bad events. badA occurs at the end of Step 1 if there are certain undesirable
collisions or multicollisions in the sampled ciphertext and tag blocks. badB or
badC occurs at the end of Step 2 or Step 3 respectively if there are certain
collisions in the inputs or sampled outputs of the internal blockcipher calls.
Finally, badD[i] occurs at the end of Step 4 if after sampling the inputs and
outputs of the internal blockcipher calls in the i-th decryption query it turns out
that the correct output of O0 should not have been ⊥. badD[i] corresponds to
the violation of integrity security, and the bounding of the probability of badD[i],
which is done by carefully selecting the specific collisions we need to ban, forms
the heart of this paper.

In subsection 4.5, we calculate the probabilities of the various bad cases. The
calculations for badA, badB and badC are straightforward. For badD[i], we look at
several cases, and establish a bound for badD[i] based on some lemmas the proof
of which we defer to section 5. By Property-1 in subsection 2.1, we can reorder
the sampling phase in Step 4 to first sample the blockcipher outputs required for

badD[i]. Finally, we bound the probability of ∪q
′

i=1badD[i] by the union-bound.
In section 5, we prove the lemmas through an exhaustive case-analysis.

4.2 Notation for Adversary Interactions

First we set up the notation for the adversary interactions in the game described
in Theorem 1. The i-th encryption query consists of
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Fig. 2. The OCB3[π] construction: notation for the i-th encryption query. L
denotes π(0) and Qi denotes H[π](Ni). Top to Bottom: encrypting Mi when
|Mi
∗| = 0; encrypting Mi when |Mi

∗| > 0; hashing Ai when |Ai∗| = 0; hashing Ai

when |Ai∗| > 0.



– a message Mi, consisting of `i ≥ 1 complete blocks and an incomplete (pos-
sibly empty) block Mi

∗ at the end;
– associated data Ai, consisting of ki ≥ 1 blocks and an incomplete (possibly

empty) block Ai∗ at the end;
– a nonce block Ni, with the first 122 bits not all zero, such that for any

i′ ∈ [i− 1], Ni 6= Ni
′
.

Following the notation for H[π] described in subsection 3.1, we define TNi :=
τ(Ni),BNi := β(Ni),Hi := H[BNi]. The corresponding output consists of

– a ciphertext Ci, consisting of `i complete blocks and an incomplete block Ci∗
at the end, with |Ci∗| = |M

i
∗|;

– a tag block Ti.

The i-th decryption query consists of

– a ciphertext C’i, consisting of `′i ≥ 1 complete blocks and an incomplete
(possibly empty) block C’i∗ at the end;

– a tag block T’i;
– associated date A’i, consisting of k′i blocks and an incomplete (possibly

empty) block A’i∗ at the end;
– a nonce block N’i, with the first 122 bits not all zero.

(Note that in the decryption queries, nonces are allowed to repeat.) Again, as

in the i-th encryption query, we define TN’i := τ(N’i),BN’i := β(N’i),H′
i

:=
H[BN’i]. The response is either ⊥, or a message M′i consisting of `′i complete
blocks and an incomplete block M’i∗ at the end, with |M’i∗| = |C’

i
∗|.

4.3 Oracle Behaviour

Now we describe the oracles involved in the game in greater detail. Let I
(resp. I ′) denote the indices for the encryption (resp. decryption) queries with
incomplete-block messages, and let J (resp. J ′) denote the indices for the en-
cryption (resp. decryption) queries with incomplete-block associated data. Let

F :=
{
i ∈ [q] | (@i′ < i)(TNi

′
= TNi)

}
be the set of first-appearance indices of the distinct values taken by TNi.

Real Oracle. Enc1 and Dec1 of the real oracleO1 represent the encryption and de-
cryption functions of OCB3[π] respectively. The notation we use for the internal
computations of O1 while responding to the i-th encryption (resp. decryption)
query is illustrated in Figure 2 (resp. Figure 3). In addition, still following the
notation from subsection 3.1, for i ∈ [q] we define KNi := π(TNi),Qi := Hi ·KNi,
and for i ∈ [q′] we define KN’i := π(TN’i),Q’i := H′

i · KN’i. We keep track of
Dom(π), the set of inputs to π, and Ran(π), the set of outputs from π. At the end
of the query phase, the partially determined π is also revealed to the adversary.
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Fig. 3. The OCB3[π] construction: notation for the i-th decryption query. L
denotes π(0) and Q’i denotes H[π](N’i). Top to Bottom: decrypting C’i when
|C’i∗| = 0; decrypting C’i when |C’i∗| > 0; hashing A’i when |A’i∗| = 0; hashing
A’i when |A’i∗| > 0.



Ideal Oracle. Dec0 of the ideal oracle is the constant function returning ⊥. Enc0
samples and returns (Ci,Ti) for the i-th query. At the end of the query phase,
the O0 partially samples π and gives it to the adversary. The sampling behaviour
followed by O0 is described in the subsequent paragraphs. (Note that if one of
the bad events badA, badB, badC, or badD[i] for some i ∈ [q′] is encountered by
O0, its behaviour thereafter is undefined.)

Step 1 and badA. This step is online—it takes place during the query phase. For
i ∈ [q], on the i-th encryption query, for each j ∈ [`i], sample Cij uniformly with

replacement from {0, 1}n and return Cij to the adversary; sample Ti uniformly

with replacement from {0, 1}n and return Ti to the adversary; and if i ∈ I,

sample Ci∗ uniformly with replacement from {0, 1}n, set Ci∗ = chop|Mi
∗|(C

i
∗); and

return Ci∗ to the adversary.

badA occurs when we have

Ci1j1 + Ci1j′1
= Ci2j2 + Ci2j′2

= Ci3j2 + Ci3j′2

for some i1, i2, i3 ∈ [q] and three distinct pairs (j1, j
′
1), (j2, j

′
2), (j3, j

′
3) satisfying

λj1 + λj′1 = λj2 + λj′2 = λj3 + λj′3 .

This restriction on certain multi-collisions over the ciphertexts is required in the
proof of Lemma 5 in section 5. The remaining steps of the simulation take place
after the query phase is over.

Step 2 and badB. Begin with π = {} (so that Dom(π) = Ran(π) = {}). Sample
L uniformly from {0, 1}n. For i ∈ F , sample KNi uniformly without replacement
from {0, 1}n \ {L}. Next set the following values:

– for i ∈ [q], set Qi = Hi · KNi;
– for i ∈ [q], j ∈ [`i] set Xij = Mi

j + Qi + λj · L and Yij = Cij + Qi + λj · L;

– for i ∈ I set Xi∗ = Qi + λ∗`i · L and Yi∗ = Mi
∗||10∗ + Ci∗;

– for i ∈ [q] \ I set Mi
tag =

∑`i

i=1 M
i
j and Xitag = Mi

tag + Qi + λ$`i · L;

– for i ∈ I set Mi
tag =

∑`i

i=1 M
i
j + Mi

∗ and Xitag = Mi
tag + Qi + λ∗$`i · L;

– for i ∈ [q], j ∈ [ki] set Uij = Aij + λj · L;

– for i ∈ J set Ui∗ = Ai∗||10∗ + λ∗ki · L.

badB occurs when:

– there are collisions in the values 0, TNi for i ∈ F , Xij for i ∈ [q], j ∈ [`i], Xi∗
for i ∈ I, Xitag for i ∈ [q], Uij for i ∈ [q], j ∈ [ki], Ui∗ for i ∈ J , not counting

the trivial collisions Uij = Ui
′

j when Aij = Ai
′

j ; or

– there are collisions in the values L, KNi for i ∈ F , Yij for i ∈ [q], j ∈ [`i], Yi∗
for i ∈ I.

Add the following to π:



– (0, L);
– (TNi,KNi) for i ∈ F ;
– (Xij ,Y

i
j) for i ∈ [q], j ∈ [`i];

– (Xi∗,Y
i
∗) for i ∈ I;

Note that the π sampled thus far remains permutation-compatible as long as
badB does not occur.

Step 3 and badC. For each distinct Uij , i ∈ [q], j ∈ [ki], sample Vij uniformly

without replacement from {0, 1}n\Ran(π). For each distinct Ui∗ for i ∈ J , sample
Vi∗ uniformly without replacement from {0, 1}n \(Ran(π)∪

{
Vij | j ∈ [ki]

}
). Next

set the following values:

– for i ∈ [q] \ J set authi =
∑ki

j=1 V
i
j ;

– for i ∈ J set authi =
∑ki

j=1 V
i
j + Vi∗;

– for i ∈ [q] set Yitag = Ti + authi.

badC occurs when:

– Yitag ∈ Ran(π) for some i ∈ [q];

– Yitag = Vij for some i ∈ [q], j ∈ [ki];

– Yitag = Vi∗ for some i ∈ I; or

– Yitag = Yi
′

tag for some i, i′ ∈ [q].

Add the following to π:

– (Xitag,Y
i
tag) for i ∈ [q];

– (Uij ,V
i
j) for i ∈ [q], j ∈ [ki];

– (Ui∗,V
i
∗) for i ∈ J ;

Note that the π sampled thus far remains permutation-compatible as long as
neither of badB and badC occurs.

Step 4 and badD[i]. In this step we keep updating π (and hence Dom(π) and
Ran(π)) on the fly. For each i ∈ [q′], set M’itag and M”itag as follows:

– If TN’i ∈ Dom(π), set KN’i = π(TN’i), otherwise sample KN’i uniformly
without replacement from {0, 1}n \ Ran(π), and add (TN’i,KN’i) to π;

– For j ∈ [`′i], set Y’ij = C’ij +Q’i + λj · L; if Y’ij ∈ Ran(π), set X’ij = π−1(Y’ij),

otherwise sample X’ij uniformly without replacement from {0, 1}n \Dom(π),

and add (X’ij ,Y’
i
j) to π; finally, set M’ij = X’ij + Q’i + λj · L;

– If i ∈ I ′, set Xi∗ = Q’i + λ∗`′i · L; if Xi∗ ∈ Dom(π), set Yi∗ = π(Xi∗), otherwise

sample Yi∗ uniformly without replacement from {0, 1}n \ Ran(π), and add

(Xi∗,Y
i
∗) to π; finally, set M’i∗ = C’i∗||10∗ + Yi∗;



– If i /∈ I ′, set M’itag =
∑`′i

j=1 M’ij ;

– If i ∈ I ′, set M’itag =
∑`′i

j=1 M’ij + M’i∗;

– For j ∈ [k′i], set U’ij = A’ij + λj · L; if U’ij ∈ Dom(π), set V’ij = π(U’ij),

otherwise sample V’ij uniformly without replacement from {0, 1}n \ Ran(π),

and add (U’ij ,V’
i
j) to π;

– If i ∈ J ′, set Ui∗ = Ai∗||10∗ + λ∗`′i · L; if Ui∗ ∈ Dom(π), set Vi∗ = π(Ui∗),

otherwise sample Vi∗ uniformly without replacement from {0, 1}n \ Ran(π),
and add (Ui∗,V

i
∗) to π;

– If i /∈ J ′, set auth’i =
∑k′i

j=1 V’
i
j ;

– If i ∈ J ′, set auth’i =
∑k′i

j=1 V’
i
j + V’i∗;

– Set Y’itag = T’i + auth’i; if Y’itag ∈ Ran(π), set X’itag = π−1(Y’itag), otherwise

sample X’itag uniformly without replacement from {0, 1}n \Dom(π), and add

(Y’itag,X’
i
tag) to π; finally, set M”itag = X’itag + Q’i + λ∗$`′i · L;

– Return π to the adversary.

badD[i] occurs when M’itag = M”itag.

4.4 Notation for the Proof

Before we begin the proof, we introduce some more notation. Let P ′i denote the
set of positions for the i-th decryption query, defined as

P ′i :=

{
[`′i] ∪ {tag} , i /∈ I ′,
[`′i] ∪ {∗, tag} , i ∈ I ′.

Further, let P ′i(−) := P ′i \ {tag}. For p ∈ P ′i, let ∆′ip denote the masking key
for position p in i-th decryption query, defined as

∆′ip :=


λp · L + Q’i, p ∈ [`′i],

λ′itag · L + Q’i, p = tag,

λ∗`′i · L + Q’i, p = ∗, i ∈ I ′,

where

λ′itag :=

{
λ$`′i , i /∈ I ′,
λ∗$`′i , i ∈ I ′.

For convenience, we will abuse the notation of set membership and extend it to
sequences. Thus, for a sequence S and a block Z, Z ∈ S will imply that Z occurs
somewhere in S.



4.5 Proof of Theorem

Let Vbad consist of all those transcripts where one of badA, badB, badC or badD[i]
for some i ∈ [q′] has been encountered. Then

ipO0
[Vbad] ≤ PrO0

[badA] + PrO0
[badB] + PrO0

[badC] +

q′∑
i=1

PrO0
[badD[i]] .

We make the following claim:

Claim. We have the following bounds on the bad events under O0:

PrO0 [badA] ≤ σ4

N2
, (1)

PrO0
[badB] ≤ 3σ2

T

N
, (2)

PrO0
[badC] ≤ 2qσT

N
, (3)

PrO0 [badD[i]] ≤ 64`MAX + 15

N
+

32σ2
T

N2
. (4)

From the claim we have

ipO0
[Vbad] ≤

σ4

N2
+

3σ2
T

N
+

2qσT
N

+

q′∑
i=1

(
64`MAX + 15

N
+

32σ2
T

N2

)
≤ 5σ2

T

N
+

2σ4

N2
+

64q′`MAX + 15q′

N
.

Consider a view V /∈ Vbad. In the real oracle, to obtain V , exactly σT+|F|+1 calls
are made to π: one for each message block, one for each position-wise distinct
associated data block, one for each distinct TNi, one for 0, and one for each tag.
We know that these are all distinct because neither of badB and badC has been
encountered. Hence

ipO1
[V ] =

1

NσT+|F|+1
.

In the ideal oracle, in Step 1, the σ + q online outputs are sampled uniformly
with replacement. In Steps 2 and 3, |F|+ 1 + α outputs are sampled uniformly
without replacement. Finally, since badD[i] was not encountered for any i ∈ [q′],
all decryption queries in V must have returned ⊥, which O0 always returns.
Hence

ipO0
[V ] =

1

Nσ+q
· 1

N |F|+1+α
≤ 1

NσT+|F|+1
= ipO1

[V ].

Theorem 2 then gives us the required result. ut



Proof of Claim. Suppose badA is encountered. Then we have

Ci1j1 + Ci1j′1
= Ci2j2 + Ci2j′2

= Ci3j2 + Ci3j′2
,

λj1 + λj′1 = λj2 + λj′2 = λj3 + λj′3 ,

for some i1, i2, i3 ∈ [q] and three distinct pairs (j1, j
′
1), (j2, j

′
2), (j3, j

′
3). Now for

fixed i1, i2, i3, j1, j
′
1, j2, j

′
2, j3, j

′
3, this probability is at most 1/N2. Notice that if

for any choice of (j1, j2, j3, j
′
1), there is at most one choice of j′2 and at most one

choice of j′3. For any choice of i1, there are at most σ2 choices for (i2, j2) and
(i3, j3), and at most (`i)2 choices for (j1, j

′
1). Summing over i gives us

PrO0
[badA] ≤ σ2

N2

q∑
i=1

(`i)2 ≤ σ4

N2
,

establishing (1). For badB, since we are now sampling without replacement, each
collision event has probability at most 1/(N−1). There are at most (q+1) values
among 0, TNi for i ∈ F , and they are all distinct by sampling; there are at most
α distinct values among Uij for i ∈ [q], j ∈ [ki], Ui∗ for i ∈ J ; and there are σ+ q

values among Xij for i ∈ [q], j ∈ [`i], Xi∗ for i ∈ I and Xitag for i ∈ [q]. These give
us at most (q+ 1)(σ+α+ q) + (σ+α+ q)2/2 possible collision pairs. Similarly,
among L, KNi for i ∈ F , Yij for i ∈ [q], j ∈ [`i], and Yi∗ for i ∈ I, there are at
most (q + 1)σ + σ2/2 possible collision pairs. Thus we have

PrO0 [badB] ≤ (q + 1)(σ + α+ q)

N − 1
+

(σ + α+ q)2

2(N − 1)
+

(q + 1)σ

N − 1
+

σ2

2(N − 1)

≤ 3(σ + α+ q)2

N
=

3σ2
T

N
,

establishing (2). For badC, since at this point |Ran(π)| = ρ := σ + |F| + 1, the
probability of each collision event is at most 1/(N − ρ − 1). Since there are at
most qρ+ qα+ q2/2 possible collision pairs, we have

PrO0
[badC] ≤ qρ

N − ρ− 1
+

qα

N − ρ− 1
+

q2

2(N − ρ− 1)
≤ 2qσT

N
,

establishing (3). To prove (4) we need to bound the probability of badD[i], and
for that we consider several cases. For now we assume that i ∈ I ′. Then P ′i(−) is
simply [`′i]. For some p ∈ P ′i, we say X’ip is trivially determined if the adversary

can deduce the value of X’ip from the transcript of the encryption queries. This
can happen in two ways:

– When p ∈ [`′i], X’ip is trivially determined if for some i′ we have N’i = Ni
′

and C’ip = Ci
′

p , which forces X’ip to equal Xi
′

p — then we say X’ip is i′-trivial;

– X’itag is trivially determined if for some j we have A’i = Aj and T’i = Tj ,

which forces X’itag to equal Xjtag — then we say X’itag is j-trivial.



We look at five cases:

– Case 1. X’ip is trivially determined for all p ∈ P ′i;

– Cases 2 and 3. For some p0 ∈ P ′i, X’ip0 is not trivially determined, and X’ip
is trivially determined for all p ∈ P ′i \ {p0}:

• Case 2. p0 ∈ [`′i];

• Case 3. p0 = tag;

– Case 4. For some p0 ∈ [`′i], X’ip0 and X’itag are not trivially determined, and

X’ip is trivially determined for all p ∈ [`′i] \ {p0};

– Case 5. For some distinct p0, p1 ∈ [`′i], X’ip0 and X’ip1 are not trivially
determined.

Note that the decryption query satisfies one of the five cases above, and moreover
that this case can be chosen in advance by the adversary, by appropriately setting
the query parameters. Accordingly, we can divide [q′] into five disjoint subsets
S[1], . . . ,S[5], such that for k ∈ [5], S[〈k〉] denotes the set of decryption queries
which fall under Case 〈k〉 above.

We now state five lemmas for the five separate cases, the proofs of which we
defer to section 5.

Lemma 1. For i ∈ S[1], PrO0
[badD[i]] ≤ 2

N
.

Lemma 2. For i ∈ S[2], PrO0
[badD[i]] ≤ 64`MAX + 15

N
, as long as 2σT ≤ N .

Lemma 3. For i ∈ S[3], PrO0
[badD[i]] ≤ 10

N
, as long as 2σT ≤ N .

Lemma 4. For i ∈ S[4], PrO0
[badD[i]] ≤ 2

N
+

32σ2
T

N2
.

Lemma 5. For i ∈ S[5], PrO0
[badD[i]] ≤ 64`MAX + 4

N
+

32σ2
T

N2
.

Taking the maximum over these bounds gives (4), and completes the proof of
the claim. ut

5 Proof of Lemmas

We recall that for the i-th decryption query, we first sample/set the inputs and
outputs of π, and then define M’ip as

M’ip :=

{
X’ip +∆′ip , p ∈ [`′i],

chop|C’ip|(Y’
i
p + C’ip)||10∗, p = ∗, i ∈ I ′.



Finally, we set

M’itag :=
∑

p∈P′i(−)

M’ip,

M”itag := X’itag +∆′itag,

and badD[i] is triggered when M’itag = M”itag.

The Subcase Tree. In subsection 4.5, we divide the set [q’] of decryption queries
into five subsets S[1], . . . ,S[5], depending on which of five cases a particular
decryption query satisfies. We divide each of the cases, except Case 1, into
various sub-cases. Whenever a X’ip is trivially determined for p ∈ [`′i], we let i′

be such that X’ip is i′-trivial, and whenever X’itag is trivially determined, we let

j be such that X’itag is j-trivial. (Note that there can be exactly one choice for
each of i′ and j.)

– Case 2. Here X’ip0 = π−1(C’ip0 +∆i′

p0), so we branch based on C’ip0 +∆i′

p0 :

• Subcase 2(a). C’ip0 +∆i′

p0 /∈ Ran(π);

• Subcase 2(b). C’ip0 +∆i′

p0 = KNj
′

for some j′ ∈ [q];

• Subcase 2(c). C’ip0 +∆i′

p0 = Vj
′

s0 for some j′ ∈ [q], s0 ∈ [kj
′
];

• Subcase 2(d). C’ip0 +∆i′

p0 = Cj
′

p1 +∆j′

p1 for some j′ ∈ [q], p1 ∈ [`j
′
];

• Subcase 2(e). C’ip0 +∆i′

p0 = authj
′
+ Tj

′
for some j′ ∈ [q].

– Case 3. Here X’ip0 = X’itag = π−1(auth’i + T’i), so we branch based on

auth’i + T’i:

• Subcase 3(a). auth’i + T’i /∈ Ran(π);

• Subcase 3(b). auth’i + T’i = KNj
′

for some j′ ∈ [q];

• Subcase 3(c). auth’i + T’i = Vj
′

s0 for some j′ ∈ [q], s0 ∈ [kj
′
];

• Subcase 3(d). auth’i + T’i = Cj
′

p1 +∆j′

p1 for some j′ ∈ [q], p1 ∈ [`j
′
];

• Subcase 3(e). auth’i + T’i = authj
′
+ Tj

′
for some j′ ∈ [q].

– Case 4. Here X’ip0 = π−1(C’ip0 + ∆i′

p0) and X’itag = π−1(auth’i + T’i), so we

can branch based on C’ip0 +∆i′

p0 and auth’i+T’i and get seventeen cases here:
one covering either of them being randomly sampled, and the other sixteen a
Cartesian product between Subcases 2(b)-2(e) and Subcases 3(b)-3(e). How-
ever, most of this cases can be settled using near-identical arguments, so we
make the case division to reflect the interesting cases:

• Subcase 4(a). C’ip0 +∆i′

p0 /∈ Ran(π) or auth’i + T’i /∈ Ran(π);



• Subcase 4(b). C’ip0 + ∆i′

p0 ∈ Ran(π), auth’i + T’i = Vj
′

s0 for some j′ ∈
[q], s0 ∈ [kj

′
];

• Subcase 4(c). C’ip0 +∆i′

p0 ∈ Ran(π), auth’i +T’i ∈ Ran(π), auth’i +T’i 6=
Vj
′

s0 for all j′ ∈ [q], s0 ∈ [kj
′
].

– Case 5. Here X’ip0 = π−1(C’ip0 + ∆i′

p0) and X’ip1 = π−1(C’ip1 + ∆i′

p1), so we

can branch based on C’ip0 +∆i′

p0 and C’ip1 +∆i′

p1 :

• Subcase 5(a). C’ip0 +∆i′

p0 /∈ Ran(π) or C’ip1 +∆i′

p1 /∈ Ran(π);

• Subcase 5(b). C’ip0 +∆i′

p0 = Cj
′

p2 +∆j′

p2 ,C’
i
p1 +∆i′

p1 = Cj
′′

p3 +∆j′′

p3 for some

j′, j′′ ∈ [q], j′ 6= j′′, p2 ∈ [`j
′
], p3 ∈ [`j

′′
];

• Subcase 5(c). C’ip0 +∆i′

p0 = Cj
′

p2 +∆j′

p2 ,C’
i
p1 +∆i′

p1 = Cj
′

p3 +∆j′

p3 for some

j′ ∈ [q], p2, p3 ∈ [`j
′
];

• Subcase 5(d). C’ip0 + ∆i′

p0 ∈ Ran(π) and C’ip1 + ∆i′

p1 ∈ Ran(π), either

C’ip1+∆i′

p1 6= Cj
′

p2+∆j′

p2 for any j′ ∈ [q], p2 ∈ [`j
′
] or C’ip1+∆i′

p1 6= Cj
′

p2+∆j′

p2

for any j′ ∈ [q], p2 ∈ [`j
′
].

Now we turn to the proof of the lemmas. We make the following observations:

– When X’ip is i′-trivial for some p ∈ [`′i], M’ip = Mi′

p ;

– When X’itag is j-trivial, M’itag +∆′itag = Mj
tag +∆j

tag.

For brevity, when we write the collision equation(s) that need to be satisfied
for badD[i] to occur, the random variables that contribute to the subsequent
probability calculation are indicated thus︸︷︷︸.
5.1 Proof of Lemma 1.

Lemma 1. For i ∈ S[1], PrO0 [badD[i]] ≤ 2

N
.

Proof. When i ∈ S[1], X’ip is trivially determined for all p ∈ P ′i. From observa-
tions above, for badD[i] to occur, we must have∑

p∈[`i′ ]

Mi′

p +∆′itag = Mj
tag +∆j

tag,

or Qi
′
+ Qj + (λ$`′i + λ$`j ) · L =

∑
p∈[`i′ ]

Mi′

p + Mj
tag.

If `j 6= `′i, the equation is

Hi′ · KNi
′
+ Hj · KNj + (λ$`′i + λ$`j ) · L︸︷︷︸ =

∑
p∈[`i′ ]

Mi′

p + Mj
tag,



where the coefficient of L is non-zero. The probability of this ≤ 1/(N − 2) ≤
1/2N . If `j = `′i, so j 6= i′ (the decryption query has to be non-trivial), but

TNj = TNi
′
, then Hj + Hi′ is full-rank, so

(Hi′ + Hj) · KNj︸︷︷︸ =
∑
p∈[`i′ ]

Mi′

p + Mj
tag.

The probability of this ≤ 1/N . And finally when `j = `′i and TNj 6= TNi
′
, we

have

Hi′ · KNi
′︸︷︷︸+ Hj · KNj =

∑
p∈[`i′ ]

Mi′

p + Mj
tag.

The probability of this ≤ 1/(N − 1) ≤ 2/N . This completes the proof. ut

5.2 Proof of Lemma 2.

Lemma 2. For i ∈ S[2], PrO0 [badD[i]] ≤ 64`MAX + 15

N
, as long as 2σT ≤ N .

Proof. When i ∈ S[2], for some p0 ∈ [`′i], X’ip is trivially determined for all

p ∈ P ′i \ {p0}, but X’ip0 is not trivially determined . The equation for badD[i]
becomes ∑

p∈[`i′ ]\{p0}

Mi′

p + π−1(C’ip0 +∆i′

p0) +∆i′

p0 +∆i′

tag = Mj
tag +∆j

tag

or π−1(C’ip0 +∆i′

p0) + Qj + (λp0 + λ$
`i′

+ λ$`j ) · L = MM,

where

MM :=
∑

p∈[`i′ ]\{p0}

Mi′

p + Mj
tag.

Based on the value of C’ip0 + ∆i′

p0 , we look at the subcases listed in the tree at
the beginning of this section. Note that

∆i′

p0 +∆i′

tag +∆j
tag = Qj + (λp0 + λ$

`i′
+ λ$`j ) · L.

– Subcase 2(a). C’ip0 + ∆i′

p0 /∈ Ran(π), so X’ip0 is sampled. The equation for
badD[i] is

X’ip0︸︷︷︸+ Hj · KNj + (λp0 + λ$
`i′

+ λ$`j ) · L = MM.

The probability of this ≤ 1/(N − 2) ≤ 2/N .



– Subcase 2(b). C’ip0 + ∆i′

p0 = KNj
′

for some j′ ∈ [q], so X’ip0 = TNj
′
, and a

second equation comes from the condition for badD[i]. When `i
′

= `j and

TNi
′

= TNj
′
, these two equations become

(I + Hi′) · KNj
′︸ ︷︷ ︸+ λp0 · L︸︷︷︸ = C’ip0 ,

Hj · KNj + λp0 · L︸︷︷︸ = TNj
′
+ MM.

Since there are at most 26 choices for j′, this probability ≤ 64/(N − 1)(N −
2) ≤ 256/N2 ≤ 1/N . When `i

′
= `j and TNi

′
6= TNj

′
, the two equations

become

KNj
′︸ ︷︷ ︸+ Hi′ · KNi

′
+ λp0 · L = C’ip0 ,

Hj · KNj + λp0 · L = TNj
′
+ MM.

Here there are q choices for j′, and this probability ≤ q(N − 2)(N − 3) ≤
4q/N2. When `i

′ 6= `j , the two equations become

KNj
′︸ ︷︷ ︸+ Hi′ · KNi

′
+ λp0 · L︸︷︷︸ = C’ip0 ,

Hj · KNj + (λp0 + λ$
`i′

+ λ$`j ) · L︸︷︷︸ = TNj
′
+ MM.

Here too there are q choices for j′, and this probability ≤ q/(N − 2)(N −
3) ≤ 4q/N2. Thus, the probability of badB and Subcase 2(b) simultaneously
happening is at most 2/N , as long as 2q ≤ N .

– Subcase 2(c). C’ip0 + ∆i′

p0 = Vj
′

s0 for some j′ ∈ [q], s0 ∈ [kj
′
], so X’ip0 = Uj

′

s0 ,
and a second equation comes from the condition for badD[i]. Here the two
equations are

Vj
′

s0︸︷︷︸+ Hi′ · KNi
′
+ λp0 · L = C’ip0 ,

Hj · KNj︸︷︷︸+ (λs0 + λp0 + λ$
`i′

+ λ$`j ) · L = Aj
′

s0 + MM.

There are α choices for (j′, s0), so the probability of this ≤ α/(N − 2)(N −
3) ≤ 4α/N2 ≤ 2/N , as long as 2α ≤ N .

– Subcase 2(d). C’ip0 +∆i′

p0 = Cj
′

p1 +∆j′

p1 for some j′ ∈ [q], p1 ∈ [`j
′
], so X’ip0 =

Xj
′

p1 , and a second equation comes from the condition for badD[i]. The two
equations are

Qi
′
+ Qj

′
+ (λp1 + λp0) · L = Cj

′

p1 + C’ip0 ,

Qj + Qj
′
+ (λp1 + λp0 + λ$

`i′
+ λ$`j ) · L = Mj′

p1 + MM.



When i′ = j, the two equations become

Hi′ · KNi
′
+ Hj′ · KNj

′
+ (λp1 + λp0) · L︸︷︷︸ = Cj

′

p1 + C’ip0 ,

Hi′ · KNi
′
+ Hj′ · KNj

′
+ (λp1 + λp0) · L︸︷︷︸ = Mj′

p1 + MM,

which is actually a single equation with the constraint that Cj
′

p1 + C’ip0 =

Mj′

p1 + MM, which implies that j′ must satisfy Mj′

p1 + Cj
′

p1 = C’ip0 + MM.

Since there are no collisions on Mj′

p1 + Cj
′

p1 over all pairs (j′, p1), there is
at most one choice of (j′, p1) satisfying this. Thus, the probability of this

≤ 1/(N − 2) ≤ 2/N . When i 6= j′ but KNi
′

= KNj and `i
′

= `j , the two
equations become

Hi′ · KNi
′︸︷︷︸+ Hj′ · KNj

′
+ (λp1 + λp0) · L︸︷︷︸ = Cj

′

p1 + C’ip0 ,

Hj · KNi
′︸︷︷︸+ Hj′ · KNj

′
+ (λp1 + λp0) · L︸︷︷︸ = Mj′

p1 + MM.

There are at most σ choices for (j′, p1), so the probability ≤ σ/(N − 1)(N −
2) ≤ 4σ/N2. When i 6= j′, KNi

′
= KNj 6= KNj

′
, `i
′ 6= `j , the two equations

become

Hi′ · KNi
′︸︷︷︸+ Hj′ · KNj

′
+ (λp1 + λp0) · L︸︷︷︸ = Cj

′

p1 + C’ip0 ,

Hj · KNi
′︸︷︷︸+ Hj′ · KNj

′
+ (λp1 + λp0 + λ$

`i′
+ λ$`j ) · L︸︷︷︸ = Mj′

p1 + MM.

There are at most σ choices for (j′, p1), so the probability of this ≤ σ/(N −
1)(N − 2) ≤ 4σ/N2. When i 6= j′, KNi

′
= KNj = KNj

′
, `i

′ 6= `j , the two
equations become

(Hi′ + Hj′) · KNi
′︸︷︷︸+ (λp1 + λp0) · L︸︷︷︸ = Cj

′

p1 + C’ip0 ,

(Hj + Hj′) · KNi
′︸︷︷︸+ (λp1 + λp0 + λ$

`i′
+ λ$`j ) · L︸︷︷︸ = Mj′

p1 + MM.

They may be multiples of the same equation, in which case we have at most
64 choices for j′ and at most `MAX choices for p1. Then this probability ≤
64`MAX/N . When they are different equations, this probability ≤ σ/N(N −
1) ≤ 2σ/N2. So the probability of badD[i] and Subcase 2(d) simultaneously
happening is at most (64`MAX + 7)/N as long as 2σ ≤ N .

– Subcase 2(e). C’ip0 +∆i′

p0 = authj
′
+Tj

′
for some j′ ∈ [q], so X’ip0 = Xj

′

tag, and
a second equation comes from the condition for badD[i]. When j = j′, the
two equations become

Vj1︸︷︷︸+
∑

s∈[2..kj ]

Vjs + Hi′ · KNi
′
+ λp0 · L︸︷︷︸ = Tj

′
+ C’ip0 ,

(λp0 + λ$
`i′

) · L︸︷︷︸ = Mj′

tag + MM,



and the probability of this ≤ 1/(N − kj − 1)(N − kj − 2) ≤ 4/N2. When
j 6= j′, the two equations become

Vj
′

1︸︷︷︸+
∑

s∈[2..kj′ ]

Vj
′

s + Hi′ · KNi
′
+ λp0 · L = Tj

′
+ C’ip0 ,

Hj · KNj + Hj′ · KNj
′︸ ︷︷ ︸+ (λ$

`j′
+ λp0 + λ$

`i′
+ λ$`j ) · L = Mj′

tag + MM.

and the probability of this ≤ q/(N−kj′−3)(N−kj′−4) ≤ 4q/N2. Thus, the
probability of badB and Subcase 2(e) simultaneously happening is at most
2/N , as long as 2q ≤ N .

Summing over the subcases completes the proof. ut

5.3 Proof of Lemma 3.

Lemma 3. For i ∈ S[3], PrO0
[badD[i]] ≤ 10

N
, as long as 2σT ≤ N .

Proof. When i ∈ S[3], X’ip is trivially determined for all p ∈ [`′i], but X’itag is not
trivially determined. The equation for badD[i] becomes

π−1(auth’i + T’i) +∆i′

tag =
∑
p∈[`i′ ]

Mi′

p .

Based on the value of auth’i + T’i, we look at the subcases listed in the tree at
the beginning of this section.

– Subcase 3(a). auth’i + T’i /∈ Ran(π), so X’itag is sampled. The equation for
badD[i] is

X’itag︸︷︷︸+ Hi′ · KNi
′
+ λ$

`i′
· L =

∑
p∈[`i′ ]

Mi′

p .

The probability of this ≤ 1/(N − 2) ≤ 2/N .

– Subcase 3(b). auth’i + T’i = KNj
′

for some j′ ∈ [q], so X’itag = TNj
′
, and

a second equation comes from the condition for badD[i]. The two equations
are

KNj
′︸ ︷︷ ︸+

∑
s∈[k′i]

V’is = T’i,

Hi′ · KNi
′
+ λ$

`i′
· L︸︷︷︸ = TNj

′
+
∑
p∈[`i′ ]

Mi′

p .

The probability of this ≤ 4q/N2 ≤ 2/N , as long as 2q ≤ N .



– Subcase 3(c). auth’i + T’i = Vj
′

s0 for some j′ ∈ [q], s0 ∈ [kj
′
], so X’ip0 =

Uj
′

s0 , and a second equation comes from the condition for badD[i]. The two
equations are

Vj
′

s0︸︷︷︸+
∑
s∈[k′i]

V’is = T’i,

Hi′ · KNi
′
+ (λs0 + λ$

`i′
) · L︸︷︷︸ = Aj

′

s0 +
∑
p∈[`i′ ]

Mi′

p .

When the top equation vanishes, the probability of this ≤ 1/(N −1) ≤ 2/N .
When both equations are there, the probability of this ≤ 4α/N2. So the
probability of badD[i] and Subcase 3(c) simultaneously happening is at most
2/N , as long as 2α ≤ N .

– Subcase 3(d). auth’i + T’i = Cj
′

p1 + ∆j′

p1 for some j′ ∈ [q], p1 ∈ [`j
′
], so

X’itag = Xj
′

p1 , and a second equation comes from the condition for badD[i].
The two equations are

V’i1︸︷︷︸+
∑

s∈[2..k′i]

V’is + Hj′ · KNj
′
+ λp1 · L = Cj

′

p1 + T’i,

Hj′ · KNj
′
+ Hi′ · KNi

′
+ (λp1 + λ$

`i′
) · L︸︷︷︸ = Mj′

p1 +
∑
p∈[`i′ ]

Mi′

p .

The probability of this ≤ 4σ/N2 ≤ 2/N , as long as 2σ ≤ N .

– Subcase 3(e). auth’i+T’i = authj
′
+Tj

′
for some j′ ∈ [q], so X’itag = Xj

′

tag, and

a second equation comes from the condition for badD[i]. If Aj
′

= A’i, we have

Tj
′
6= T’i (by definition of this case), or authj

′
6= auth’i, a contradiction. So

Aj
′
6= A’i. If we can find s0 ≤ kj

′
such that either s0 > k′i, or Aj

′

s0 6= A’is0 ,
then the equations are

Vj
′

s0︸︷︷︸+
∑
s∈[k′i]

V’is +
∑

s∈[kj′ ]\{s0}

Vj
′

s = T’i + Tj
′
,

Hj′ · KNj
′
+ Hi′ · KNi

′
+ (λ$

`j′
+ λ$

`i′
) · L︸︷︷︸ = Mj′

tag +
∑
p∈[`i′ ]

Mi′

p .

Otherwise we can find s0 ≤ k′i such that either s0 > kj
′
, or A’is0 6= Aj

′

s0 , then
the equations are

V’is0︸︷︷︸+
∑

s∈[k′i]\{s0}

V’is +
∑
s∈[kj′ ]

Vj
′

s = T’i + Tj
′
,

Hj′ · KNj
′
+ Hi′ · KNi

′
+ (λ$

`j′
+ λ$

`i′
) · L︸︷︷︸ = Mj′

tag +
∑
p∈[`i′ ]

Mi′

p .

The probability of either of these does not exceed 2/N as long as 2σ ≤ N .

Summing over the subcases completes the proof. ut



5.4 Proof of Lemma 4.

Lemma 4. For i ∈ S[4], PrO0 [badD[i]] ≤ 2

N
+

32σ2
T

N2
.

Proof. The bounds for Case 4 are simple to derive:

– Subcase 4(a). We get a bound of 2/N on the probability as in Subcase 2(a)
or Subcase 3(a).

– Subcase 4(b). We treat this separately because the equation

auth’i + T’i = Vj
′

s0

can vanish. When it does not vanish, we can find two independent collision
equations that need to be satisfied, which can occur together with a proba-
bility of at most 2/N2. When it does vanish, we proceed as in Subcase 3(c)

and use instead the equation where Qi
′
+ (λs0 +λ$

`i′
) · L is equated to a con-

stant. There are four possibilities here based on Subcases 2(b)-2(e). In each
possibility, there are at most σ2

T choices for these collision indices. Thus, each
possibility with badD[i] has a probability of at most 2σ2

T /N
2, and Subcase

4(b) has a probability of at most 8σ2
T /N

2.

– Subcase 4(c). There are twelve possibilites here, based on various combi-
nations of Subcases 2(b)-2(e) and Subcases 3(b),3(d),3(e). In each of these
possibilities, we can find two independent collision equations that need to
be satisfied, which can occur together with a probability of at most 2/N2.
There are at most σ2

T choices for these collision indices. Thus, each possibil-
ity with badD[i] has a probability of at most 2σ2

T /N
2, and Subcase 4(c) has

a probability of at most 24σ2
T /N

2.

Summing over the three subcases completes the proof. ut

5.5 Proof of Lemma 5.

Lemma 5. For i ∈ S[5], PrO0
[badD[i]] ≤ 64`MAX + 4

N
+

32σ2
T

N2
.

Proof. We look one by one at the subcases listed in the tree at the beginning of
this section.

– Subcase 5(a). Here we get a bound of 2/N on the probability as in Subcase
2(a).

– Subcase 5(b). This is the case when

C’ip0 + Qi
′
+ λp0 · L = Cj

′

p2 + Qj
′
+ λp2 · L,

C’ip1 + Qi
′
+ λp1 · L = Cj

′′

p3 + Qj
′′

+ λp3 · L



for some j′, j′′ ∈ [q], p2 ∈ [`j
′
], p3 ∈ [`j

′′
] with j′ 6= j′′. If TNj

′
= TNi

′
, the

equations may become dependent on each other. But here there are at most
64 choices for j′, since the nonce is distinct in every encryption query, and

only 64 distinct values of Nj
′

can yield the same TNj
′
. Thus the probability of

this does not exceed 64`MAX/N . Otherwise, we always get two independent
equations, and the bound of 2σ2

T /N
2 holds. Thus, the probability of Subcase

5(b) with badD[i] does not exceed 64`MAX/N + 2σ2
T /N

2.

– Subcase 5(c). This is trickier. Here too these two equations may become the
same equation. Since the equations can be rewritten as

Qi
′
+ Qj

′
+ (λp0 + λp2) · L = C’ip0 + Cj

′

p2 ,

Qi
′
+ Qj

′
+ (λp1 + λp3) · L = C’ip1 + Cj

′

p3 ,

they become the same equation when λp0 +λp2 = λp1 +λp3 and C’ip0 +C’ip2 =

C’ip1 + C’ip3 . Thus any valid choice of (p2, p3) must satisfy

λp2 + λp3 = λp0 + λp1 ,

C’ip2 + C’ip3 = C’ip0 + C’ip1 ,

i.e., for each such choice of (p2, p3), λp2 +λp3 takes the same fixed value, and
C’ip2 +C’ip3 take the same fixed value. Since badA has not occurred, we know
there are at most 2 such choices of (p2, p3). Thus the probability of this does
not exceed 2/N .

– Subcase 5(d). There can be fifteen possibilities, depending on various com-
binations of the subcases of Case 2. In each of these, we can find two
independent collision equations that need to be satisfied, which can occur
together with a probability of at most 2/N2. There are at most σ2

T choices
for these collision indices. Thus, each of those possibilities with badD[i] has
a probability of at most 2σ2

T /N
2, and Subcase 5(d) has a probability of at

most 30σ2
T /N

2.

Summing over the four subcases completes the proof. ut
More detailed proofs of Lemma 4 and Lemma 5 can be found in the full version
of the paper at the IACR eprint archive, at the url https://eprint.iacr.org/
2017/845.pdf.
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