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Abstract. We study the feasibility of two-message protocols for secure
two-party computation in the plain model, for functionalities that de-
liver output to one party, with security against malicious parties. Since
known impossibility results rule out polynomial-time simulation in this
setting, we consider the common relaxation of allowing super-polynomial
simulation.

We first address the case of zero-knowledge functionalities. We present
a new construction of two-message zero-knowledge protocols with super-
polynomial simulation from any (sub-exponentially hard) game-based
two-message oblivious transfer protocol, which we call Weak OT. As
a corollary, we get the first two-message WI arguments for NP from
(sub-exponential) DDH. Prior to our work, such protocols could only be
constructed from assumptions that are known to imply non-interactive
zero-knowledge protocols (NIZK), which do not include DDH.

We then extend the above result to the case of general single-output func-
tionalities, showing how to construct two-message secure computation
protocols with quasi-polynomial simulation from Weak OT. This implies
protocols based on sub-exponential variants of several standard assump-
tions, including Decisional Diffie Hellman (DDH), Quadratic Residuos-
ity Assumption, and N th Residuosity Assumption. Prior works on two-
message protocols either relied on some trusted setup (such as a common
reference string) or were restricted to special functionalities such as blind
signatures. As a corollary, we get three-message protocols for two-output
functionalities, which include coin-tossing as an interesting special case.
For both types of functionalities, the number of messages (two or three)
is optimal.

Finally, motivated by the above, we further study the Weak OT primi-
tive. On the positive side, we show that Weak OT can be based on any
semi-honest 2-message OT with a short second message. This simplifies



a previous construction of Weak OT from the N th Residuosity Assump-
tion. We also present a construction of Weak OT from Witness Encryp-
tion (WE) and injective one-way functions, implying the first construc-
tion of two-message WI arguments from WE. On the negative side, we
show that previous constructions of Weak OT do not satisfy simulation-
based security even if the simulator can be computationally unbounded.

1 Introduction

There has been a long line of work on minimizing the round complexity of pro-
tocols for secure two-party computation (see, e.g., [9,29,35,19,28] and references
therein). In the present work we continue the study of this question, focusing
on protocols in the “plain model,” which do not rely on any form of set-up, and
where security is based on standard cryptographic assumptions.

We will start by addressing the case of computing functions that depend on
the inputs of the two parties and deliver an output to one party. (The general
case will be discussed later.) For such single-output functions, it is clear that two
messages are necessary: the first by the “receiver” who receives the output and
the second by the “sender.” The main question we ask is under what assumptions
two messages are also sufficient. Two-message protocols, also referred to as “non-
interactive secure computation” (NISC) protocols [31,1], have the qualitative
advantage of allowing one party to go offline (after sending its message) while
waiting for the other party to respond.

For security against semi-honest parties, the situation is well understood:
such general two-message protocols exist if a two-message oblivious transfer (OT)
protocol with security against semi-honest parties exists [41,9]. This assumption
is also necessary, since OT is a simple special case of general secure computation.

The situation is far more complex when considering security against malicious
parties. For protocols with black-box simulation, four messages are necessary and
are also sufficient under standard assumptions [21,35]. This can be improved to
two messages by using standard setup assumptions such as a common reference
string [9,29,31]. In the plain model, however, two-message protocols that satisfy
the standard notion of security are known not to exist, even when allowing
non-black-box simulation and even for the special of zero-knowledge [23,4]. To
get around this impossibility, Pass [39] suggested considering simulation whose
running time is super-polynomial, but not necessarily unbounded, and realized
two-message zero-knowledge in this model. General secure computation with
super-polynomial simulation was first studied by Prabhakaran and Sahai [40]
and by Barak and Sahai [6] in the context of concurrent security (with protocols
requiring multiple rounds of interaction).

Secure computation with super-polynomial simulation is motivated by the
fact that it captures the desirable security goals for the typical case of comput-
ing “non-cryptographic” functions, where even an unbounded simulator does not
get a meaningful advantage. Moreover, using complexity leveraging, such proto-
cols can be “as good” as standard protocols even for computing cryptographic



functions, provided that the level of security of the primitives or other protocols
with which they interact is sufficient to protect against an adversary with the
same running time as the simulator. See Section 1.2 for further details.

The above discussion motivates the following question:

Under what assumptions can we construct two-message secure computation
protocols with super-polynomial simulation in the plain model?

A natural first step is to study the above question for the special case of zero-
knowledge, which captures functions that take input from only one party. Zero-
knowledge protocols with unbounded simulation are equivalent to witness indis-
tinguishable (WI) protocols. Two-message WI protocols for NP (also called pri-
vate coin ZAPs) can be constructed from non-interactive zero-knowledge (NIZK)
protocols [?]. These were used in [39] to obtain 2-message zero-knowledge argu-
ments with quasi-polynomial simulation. They were further used in [20] to obtain
two-message blind signatures in the plain model, which can be viewed as another
instance of general secure two-party computation.

While it is known that NIZK can be based on standard assumptions such as
trapdoor permutations and bilinear maps [8,16,10,26], there are several other well
studied assumptions, such as the DDH assumption or even a strong assumption
such as Witness Encryption [17], that are not known to imply NIZK or even
2-message WI arguments for NP. As far as we know, all non-trivial instances of
2-message protocols in the plain model appearing in the literature (even ones
with unbounded simulation) require either NIZK or bilinear maps [25].

1.1 Our Contribution

We essentially settle the above question, showing that general two-message se-
cure computation in the plain model with super-polynomial simulation is implied
by any (sub-exponentially secure) “game-based” two-message OT protocol. Such
a protocol is required to be secure with super-polynomial simulation against a
malicious receiver, and is only required to satisfy indistinguishability-based se-
curity against the sender (i.e., the sender cannot distinguish between the two
possible selection bits of the receiver). From here on, we refer to such an OT
protocol as Weak OT. Weak OT protocols can be easily constructed from the
DDH assumption [38,2] (which is not known to imply NIZK) and are also known
to follow from the Quadratic Residuosity Assumption and the N th Residuosity
Assumption (i.e., the security of the Paillier cryptosystem) [27].

The above result essentially settles our main question, since Weak OT can
be viewed as the simplest analogue of two-message semi-honest OT for the case
of security against malicious parties. As a corollary of our main result, Weak OT
implies 3-message protocols with super-polynomial simulation in the plain model
for functions that deliver outputs to both parties. This includes (multi-output)
coin-tossing as an important special case. Motivated by the usefulness of Weak
OT, we further study this primitive, obtaining several new positive and negative
results.

We now give a more detailed account of our results.



1. We start by studying the Weak OT primitive described above (and formally
defined in Section 2) and explore the feasibility of using it for secure compu-
tation with super-polynomial simulation. We show that Weak OT protocols
may not even be secure with unbounded simulation. We demonstrate this by
constructing a protocol (only a slight modification of the protocol in [38,2])
that achieves the game based notion but suffers from a real attack. Con-
cretely, we show a malicious sender strategy for this protocol such that even
a single instance of execution of the protocol with the malicious sender would
suffer from the attack. This is counter-intuitive because in a single instance
of OT, any probabilistic mapping from the receiver’s input to its output can
be realized by a malicious sender in the ideal model, and so simulation seems
easy. However, in our attack, the receiver’s output becomes a value that can-
not be known to the sender. This attack not only violates the intuitive notion
of correctness and security, but it provably cannot be simulated even by an
unbounded simulator. This impossibility result shows that proving security
using a super-polynomial simulator, which is the setting in the rest of our
work, is non-trivial and interesting.

2. Based on any (sub-exponentially secure) Weak OT, we construct a secure
protocol for two-message zero knowledge argument of knowledge with quasi-
polynomial simulation in the plain model. This implies the first such proto-
cols, and even the first 2-message WI protocols, under assumptions that are
not known to imply NIZK. More precisely, we prove the following:

Theorem 1. Assuming the existence of sub-exponentially secure Weak OT,
there exist two-message zero knowledge arguments (with argument of knowl-
edge) for NP in the plain model with quasi-polynomial simulation.

In particular, we get the following new corollary:

Theorem 2. Two-message witness indistinguishable arguments for NP can
be based on the sub-exponentially hard Decisional Diffie-Hellman Assump-
tion.

3. Using a variant of the “GMW paradigm” [22], we extend the above result to
the case of general secure computation. Concretely, we prove the following
theorem:

Theorem 3. Two Message Secure Computation protocols with quasi-polynomial
simulation in the plain model for general single-output functionalities can be
based on any sub-exponentially secure Weak OT.

As a corollary, we get the first general 2-message protocols in the plain model.

Corollary 1. Two Message Secure Computation protocols with quasi-polynomial
simulation for general single-output functionalities can be based on any of the
following sub-exponentially hard assumptions: (1) Decisional Diffie-Hellman
Assumption; (2) Quadratic Residuosity Assumption; (3) N th Residuosity
Assumption.



While such protocols are not very hard to obtain from previous two-message
zero-knowledge protocols with super-polynomial simulation, we are not aware
of such a result in the literature. Moreover, the DDH-based construction
crucially depends on our new construction of 2-message zero-knowledge pro-
tocols.
Secure two-message protocols for single-output functionalities imply secure
three-message protocols for two-output functionalities. Concretely, we get
the following corollary.

Corollary 2. Three-message secure protocols with quasi-polynomial simula-
tion for general two-output functionalities (satisfying “security with abort”)
can be based on sub-exponentially secure Weak OT, and in particular on
sub-exponential DDH.

A particularly useful special case is that of (multi-bit) coin-tossing where
neither party has any input and both parties get a uniformly random string
as output. Here quasi-polynomial simulation seems enough for all natural
applications. Despite the large body of work on coin-tossing, we are not
aware of any previous multi-bit coin-tossing protocol in the plain model that
provides a meaningful notion of security (even a game-based notion) with
only 3 messages under standard assumptions. Our coin-tossing result should
be compared with the 5-message protocol from [35] (which is optimal for
standard black-box simulation) and a recent 4-message protocol from [28]
which is secure with inverse-polynomial simulation error.

4. To further expand the class of assumptions on which we can base our general
protocols, we provide new constructions of Weak OT satisfying the game
based notion.
The first construction is based on any high rate semi-honest secure OT which
in turn can be reduced to any high rate additively homomorphic encryp-
tion. Concretely, we need a semi-honest one-out-of-two string-OT protocol
in which the output length on a pair of strings of length ` is smaller than c`
for some constant c < 2. As a corollary, by instantiating the high rate ho-
momorphic encryption scheme using a construction of Damg̊ard and Jurik
[14], we simplify the construction and analysis of Weak OT from the N th

Residuosity Assumption of Halevi and Kalai [27]. In particular, our construc-
tion only relies on the semantic security of the DJ cryptosystem and simple
“syntactic” properties (homomorphism and ciphertext length) and does not
involve smooth projective hash functions. This general new construction of
Weak OT could potentially lead to basing our general protocols on other as-
sumptions, such as lattice-based assumptions. The construction is presented
in Section 6.
Our second construction of Weak OT builds on Witness Encryption [17] and
any injective one way function. This is described in Section 7. As a corollary,
all of the results discussed above can also be based on WE (and injective
one-way functions).

At the heart of our two-message secure computation protocols is a two-
message protocol for zero-knowledge from sub-exponential security of game based



OT. Note that this is contrast to the construction of Pass [39] who gave a con-
struction based on NIZKs. Our alternative new construction avoids the use of
NIZKs and is what enables our new results that provide constructions under
alternative assumptions. This construction of zero-knowledge is provided in Sec-
tion 4. The construction of two-message secure computation using this zero-
knowledge protocol is provided in Section 5.

1.2 Discussion and Related Work

In this section we discuss the two key features of our protocols: super-polynomial
simulation and security in the plain model, and survey some related work.

What good is super-polynomial simulation? Intuitively speaking, the
notion of super-polynomial simulation (SPS) guarantees that the real world ad-
versary does not learn anything more than an ideal world adversary running in
super-polynomial time. So, what does the SPS ideal world adversary learn? For
information theoretic functionalities (example, Yao’s millionaire problem), the
running time of the ideal-world simulator does not affect security in any sense.
In particular the computational power awarded to the ideal world adversary is
useless for learning anything about the input of the honest party. It does not rule
out the possibility that the adversary learns some super-polynomial function of
its view but this is irrelevant for the task at hand. On the other hand, for crypto-
graphic functionalities, the adversary’s ability to run in super-polynomial time is
indeed problematic as it could potentially harm the security of the functionality
itself. However, at an often small cost to efficiency, it is almost always possible to
choose a higher security parameter for the cryptographic operations performed
by the functionality such that meaningful security can be obtained (see e.g. [20]
for the example of blind signatures). SPS is commonly used in cryptography. In
fact, any zero knowledge protocol with super polynomial simulation is a witness
indistinguishable protocol.

Relation to concurrently secure computation. The notion of concurrently
secure super-polynomial simulation [40,6,18] and its variants [11] have been ex-
tensively studied in the literature. This notion is known to be impossible [37,5,24]
to achieve with polynomial-time simulation. The notion of two-message secure
computation that we study implies the notion of concurrently secure computa-
tion, in the restricted setting where the adversary is allowed to play as a sender
or as a receiver across all concurrent sessions (the so-called “fixed-roles” setting).
This improves on the round complexity of known solutions.

Recently, Dottling et al. [15] constructed two round two-party computation
protocols for certain functionalities that is secure against semi-honest senders
and malicious receivers. However, they consider a game-based security notion
against a malicious receiver and this is incomparable to our setting.

Concurrent and subsequent work. Concurrent to our work, Jain et al.
[34] construct protocols that are similar to our two-round protocols. While their



focus is on polynomial time distinguisher-dependent simulation, we focus on
super-polynomial simulation. Therefore, the only result in common between the
two papers is two-round witness indistinguishability for NP from Weak OT. Our
proof of WI is significantly simpler than theirs, because our analysis is via super-
polynomial simulation. Our paper also contains additional results on Weak OT
(both negative and positive) that simplify previous constructions and extend the
set of assumptions on which both our and their round-optimal protocols can be
based.

Subsequent to our work, Khurana and Sahai [36] use our two-message se-
cure computation protocol crucially to build two-message non-malleable com-
mitments with respect to commitment from sub-exponentially hard DDH.

Even though we have a straight line simulation, our protocol doesnt extend to
the UC/concurrent setting because that requires non-malleability. A very recent
follow-up work by Badrinarayanan et al. [3] achieves concurrent security in the
MPC setting by building on our techniques (along with other techniques), using
3 rounds of simultaneous message exchange. Note that, in contrast, our protocols
use only 2 rounds of unidirectional message exchange.

1.3 Technical Overview

The new 2-round SPS-Zero Knowledge protocol from 2-round Weak
OT. The technical heart of our result is a new 2-round super-polynomial simu-
lation secure zero knowledge protocol(SPS-ZK) from a 2-round weak OT. The
weak OT protocol we use has statistical sender’s security but only T -chooser’s se-
curity. That is, the receiver’s choice bit is secure against all adversaries running in
time T .poly(λ). Additionally, we will also use a T -time extractable commitment
protocol. To ease the exposition, let’s allow the simulator to run in exponential
time. Then, by running the protocol with an appropriately smaller security pa-
rameter, we can rely on just quasi-polynomial simulation.

The main idea behind the new zero knowledge protocol is to “squash” a
parallelized version of Blum’s 3-round zero knowledge protocol for Hamiltonicity,
by making use of the 2-round Weak OT protocol. Our technique applies more
generally to parallelized Σ-protocols with “special soundness”, but here we will
focus on Blum’s protocol for clarity. Recall that in Blum’s protocol, the prover
generates an initial message α, and prepares two responses γ0, γ1. The verifier
then sends a random bit β ∈ {0, 1}, and the prover responds with γβ .

To squash this protocol to two rounds, we first have the verifier choose β at
the start, and then use β as its input in the role of receiver in the Weak OT
protocol. Note that this intuitively keeps β hidden from the prover. Then, the
prover sends α separately as part of its message, but also uses γ0 and γ1 as its
inputs in the role of sender in the Weak OT protocol. Thus, the verifier learns
only α and γβ and can then verify the original Blum proof. This protocol can
be repeated in parallel to boost soundness. We will now discuss how to establish
SPS zero knowledge and computational soundness separately.



Zero Knowledge: No rewinding allowed. First, observe that we can’t di-
rectly use the same proof strategy as in Blum’s protocol as we can not rewind
the adversary here. In our protocol, since the verifier sends just one message,
if we try rewinding the malicious verifier, it could just keep sending the same
message over and over. Thus, there is nothing to be gained from rewinding.

To establish zero-knowledge, we will use complexity leveraging to construct a
super-polynomial simulator running in time T1·poly(λ), where T1 > T , that can
extract β from the verifier’s first message in the Weak OT protocol. Now that
the simulator knows β, simulation at first glance appears to be straightforward,
since it needs to place a correct value only in γβ . This can be done by just
invoking the zero knowledge simulator of Blum’s protocol. However, there is a
subtle flaw in this argument due to the Weak OT protocol, as we discuss now
in further detail.

Before we can see the flaw, we have to briefly discuss soundness. In order
for soundness to hold, we need that the prover cannot somehow “malleate” the
verifier’s first OT message into a successful second OT response by the prover.
The way we will achieve such non-malleability is by adding a weak commitment
that can be extracted in time T < T1. Recall that it is impossible for an adver-
sary to take as input a T1-strong commitment CT1(m), and produce a T -weak
commitment CT (m′) in a way that causes m′ to depend on m. This is easy to
see: An adversary running in time T can anyway break CT (m′) and recover m′.
It could then use m′ to predict m, thereby breaking the T1-secure commitment
CT1

(m) – a contradiction to the stronger security of CT1
since T1 > T .

In the case of zero knowledge, recall that our simulator runs in time T1·poly(λ),
where T1 > T . Note that the OT protocol does not have receiver’s security
against adversaries running in time T1·poly(λ), since it needs to extract β from
the first message of the weak OT. But then, it can anyway break the commit-
ment scheme since T1 > T . Therefore, now, in order for the commitment to
be stronger than the OT, we need T1 < T , whereas for proving soundness, we
require that T1 > T . (Since we require that the time taken to break the com-
mitment is lesser than the time taken to break the chooser’s security in the OT
protocol.) This a fundamental contradiction that suggests that perhaps our goal
is impossible to achieve!

We fix this by exploiting the special structure of our protocol: Recall our
observation that a cheating verifier, which is without loss of generality deter-
ministic, if rewound, would just keep sending the same first message. Now, we
want to exploit this fact to keep T1 > T as needed by soundness, and argue
zero knowledge in a different way: The simulation strategy itself is the same as
before. That is, the simulator runs in time T1·poly(λ) and extracts β from the
first message of the weak OT. It then invokes the simulator of Blum’s proto-
col and produces the prover’s message. This second phase runs in polynomial
time. Now, let’s consider the reduction that breaks the commitment scheme by
interacting with the malicious PPT verifier. The reduction, given the commit-
ment to be broken as an external challenge, includes it as part of the prover’s
message (more specifically, includes it as a commitment to γ1−β in the string



α). Now, based on the PPT verifier’s guess it breaks the commitment. The only
stage in the reduction that runs in super-polynomial time is when it breaks the
initial message of the verifier to extract β. Therefore, let’s consider the mali-
cious verifier with the “best possible” initial message and fix this message. The
value β∗ extracted from this can just be given as auxiliary input (non-uniform
advice) to the reduction! So, now, the reduction is a non-uniform PPT machine.
Therefore, if the PPT reduction can now break the commitment scheme, we
will achieve a contradiction. Note that the auxiliary input is also given to the
external challenger of the commitment scheme.

Soundness. To establish soundness of the protocol, we in fact prove a stronger
property: that our protocol is an argument of knowledge. (We will anyway need
this later when we construct the two message secure computation protocol for
any general functionality). We will construct an extractor, that, running in super-
polynomial time T ·poly(λ), can extract out γ0 and γ1 from the prover’s initial
message by running the commitment extractor. Blum’s protocol is designed so
that α, γ0, and γ1 together yield knowledge of the Hamiltonian cycle in the
original graph and hence the extractor learns the witness. We will then show
that if the extractor fails, but the malicious prover succeeds in giving a correct
proof, we can use this prover to break the T -chooser’s security of the OT protocol
by using the external OT challenge in the verifier’s first message against this
malicious prover. Several challenges arise when trying to establish soundness.
We discuss them now.

Recall that the aim is to show that if the malicious prover succeeds in giving a
valid proof but the extractor fails, then the reduction will break the T -chooser’s
security of the OT protocol. Note that the reduction can run in time T .poly(λ).
The idea here was that the reduction interacts with the malicious prover and
embeds the external OT challenge (of the OT receiver) in one of the indices
as part of the verifier’s first message. After checking that the proof is valid, the
reduction can extract both γ0 and γ1 from α by running the T -time commitment
extractor and then run the BlumExt to obtain the choice bit of the OT challenge.
However, there is a subtle issue here that in order to check that the proof is
valid, the reduction needs to run the third stage OT algorithm to recover γβ .
But, since it did not generate the first OT message, the reduction does not have
the associated state that was used in that generation and hence cannot validate
the proof (the state output by the first OT algorithm will be needed as input
for the third stage).

We fix this by using a simple combinatorial argument. We consider a new
verifier strategy where the verifier checks the proof at all indices except one and
this choice is not revealed to the prover. It can be easily seen that the success
probability of the malicious prover is as much, if not more, against this new
verifier as well. Now, the reduction no longer needs to verify the proof at the
index where the OT challenge was embedded. Also, if the malicious prover has
to produce a valid proof, with probability close to 1, it still needs to produce
a valid proof at every index since it can guess the missed out index with very



small probability. Therefore, the Blum extraction would still work correctly on
the embedded index and the reduction can break the OT receiver’s security.

Two message secure computation. Given any weak OT protocol and
the two message secure zero knowledge protocol from above, we compile them
together using Yao’s garbled circuits construction to produce a two message
secure computation protocol for any general functionality. In fact, we don’t need
the full power of the zero knowledge protocol from above. In this construction,
we will only need the weaker notion of witness indistinguishability(WI) which is
anyway implied by SPS zero knowledge.

Consider a sender with input x and a receiver with input y and let the
function they’re computing be f . In the first round, the receiver, using each bit
of his input, computes the first message of the weak OT protocol and sends this
across. In addition, he also initiates a WI protocol with the sender and sends
the first message of the verifier. Finally, he also sends the output of a one way
function OWF that is not invertible in time T.poly(λ) (but is invertible in time
T1.poly(λ) where T1 > T ). Looking ahead, this value will help the simulator
against a cheating receiver to generate a proof using the trapdoor statement.
In response, the sender computes a garbled circuit that has his input hardwired
into it and then runs the OT algorithm using the garbled keys as his input to the
OT. Also, he computes a commitment c1 to his input and another commitment
c2 to 0 which will prove to be useful for the simulator. He then computes a WI
proof that he computed the commitment c1 correctly, ran the OT algorithm
correctly and computed the garbled circuit correctly. It is easy to see that the
receiver, after checking the validity of the proof, can recover the garbled keys
corresponding to his input using the OT and evaluate the garbled circuit to
obtain the output of the function. The trapdoor statement in the WI proof will
basically say that the prover knows the pre-image to the output of the OWF and
the commitment c2 is a commitment to this pre-image. Notice that we don’t
need the full expressiveness of the zero knowledge property. It is enough to have
just witness indistinguishability and the simulator against a malicious receiver,
just extracts the pre-image of the one-way function OWF and uses the trapdoor
statement to prove that the pre-image is correct.

Similar to the proof of the zero knowledge protocol, the key tool in order to
prove security is complexity leveraging. The main obstacle we face is very similar
to the one faced in the case of the zero knowledge protocol. In particular, for
proving security against a malicious receiver, we will need to break the chooser’s
security of the OT protocol and then reduce the security of our protocol to the
hiding of the commitment scheme. Therefore, we will need T1 < T . However, to
prove security against a malicious sender, we will require that T < T1, following a
similar argument as in the case of the soundness of the zero knowledge protocol.
As in the case of our zero knowledge protocol, we fix this issue by considering
an intermediate hybrid where non-uniform advice can provide key information
embedded in the malicious receiver’s fixed first message. This advice allows us
to consider experiments that do not incur the running time needed to actually
extract the information that was present in the first message of the receiver.



2 Preliminaries

Let λ denote the security parameter. We say that a function is negligible in
the security parameter λ, if it is asymptotically smaller than the inverse of any
fixed polynomial. Otherwise, the function is said to be non-negligible in λ. We
say that an event happens with overwhelming probability if it happens with a
probability p(λ) = 1−ν(λ) where ν(λ) is a negligible function of λ. In this section,
we define the primitives studied in this paper. We will start by defining a weaker
indistinguishability based notion for oblivious transfer and then subsequently
describe the simulation based notion for general functionalities.

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from the
set S. Some more primitives are defined in the full version.

Weak OT. In this paper, we consider a 1-out-of-2 Oblivious Transfer protocol
(similar to [38,2,27]) where one party, the sender, has input composed of two
strings (M0,M1) and the input of the second party, the chooser, is a bit c. The
chooser should learn Mc and nothing regarding M1−c while the sender should
gain no information about c. We give a definition for the setting where the
sender is protected information theoretically while the chooser is protected only
computationally.

Definition 1 (Weak OT). The chooser runs the algorithm OT1 which takes 1λ

and a choice bit c ∈ {0, 1} as input and outputs (ot1, state). Chooser then sends
ot1 to the sender, who obtains ot2 by evaluating OT2(1λ, ot1,M0,M1), where M0

and M1 (such that M0,M1 ∈ {0, 1}λ) are its inputs. The sender then sends ot2
to the chooser who obtains Mc by evaluating OT3(1λ, ot2, state).

- Perfect correctness. For every choice bit c ∈ {0, 1} of the chooser and
input messages M0 and M1 of the sender we require that, if (ot1, state) ←
OT1(1λ, c), ot2 ← OT2(1λ, ot1,M0,M1), then OT3(1λ, ot2, state) = Mc with
probability 1. We speak of statistical correctness if this probability is over-
whelming in λ.

- Chooser’s security. We require that for every non-uniform polynomial-
time adversary A, |Pr[A(OT1(1λ, 0)) = 1]−Pr[A(OT1(1λ, 1)) = 1]| is negli-
gible in λ.
We speak of T -chooser’s security if the above condition holds against all
non-uniform adversaries A running in time T · poly(λ).

- Statistical sender’s security. We define an unbounded 5 time extractor
OTExt such that OTExt on any input ot1 outputs 0 if there exists some
random coins such that OT1(1λ, 0) outputs ot1, and 1 otherwise.
Then for any value of ot1, and any K0,K1, L0, L1 with KOTExt(ot1) = LOTExt(ot1),

we have that OT2(1λ, ot1,K0,K1) and OT2(1λ, ot1, L0, L1) are statistically

5 Note that fixing the parameters of the scheme, we can bound the running time of the
extractor by some sub-exponential function but we avoid it to keep notation simple
and avoid unnecessary parameters.



indistinguishable. We speak of computational sender’s security if for all non-
uniform polynomial time adversaries A we have that |Pr[A(OT2(1λ, ot1,K0,K1)) =
1]− Pr[A(OT2(1λ, ot1, L0, L1)) = 1]| is negligible in λ.

T -secure Weak OT. Finally, we define T -secure Weak OT to be a Weak
OT protocol with T -chooser’s security. Note that we can claim that any Weak
OT protocol with chooser’s security based on a set of assumptions Υ , is also a
T -secure Weak OT protocol if each assumption in Υ is additionally assumed to
be secure against all non-uniform adversaries running in time T · poly(λ). Note
that this additionally relies on the fact that the security reduction for prov-
ing chooser’s security of the underlying protocol is tight up to a multiplicative
polynomial factor, in the security parameter.

Naor-Pinkas and Aiello et al. [38,2] provided a construction of a Weak OT pro-
tocol based on the Decisional Diffie-Hellman assumption. Subsequently, Halevi
and Kalai [27] provided an instantiation based on any smooth projective hash
function. Further, note that the above definition is not a simulation-based def-
inition but rather an indistinguishability-based one. Although it is a meaning-
ful notion and is sufficient for some applications, it is still weaker than the
simulation-based (described next) notion.

Two Message Secure Computation via super-polynomial simulation. The
simulation-based definition compares the “real world,” where the parties (the
sender and the receiver) execute the protocol, to an “ideal world,” where no
message is exchanged between the parties; rather, there is a trusted party that
takes an input from both parties, computes the output of the functionality on
these inputs, and sends the corresponding output to each party. Loosely speak-
ing, the simulation (resp., super-polynomial simulation)-based definition asserts
that for every efficient adversary A (controlling either the sender or the receiver)
in the real world there exists an efficient (resp., super-polynomial) simulator S,
controlling the same party in the “ideal world,” so that the outputs of the parties
in the ideal world are computationally indistinguishable from their outputs in
the real world. In particular, the simulator S needs to simulate the view of the
adversary A in a computationally indistinguishable manner.

Next, we formally define a Two Message Secure Computation protocol 〈S,R〉,
between a sender S with input x and a receiver R with input y. The receiver
should learn f(x, y) and nothing else6 while the sender should gain no informa-
tion about y. More formally we will define this notion by comparing a two-round
realization in the real-world with an ideal world scenario.

Real World. A Two Message Secure Computation protocol 〈S,R〉 is defined by
three probabilistic algorithms (NISC1,NISC2,NISC3) as follows. The receiver runs
the algorithm NISC1 which takes the receiver’s input y ∈ {0, 1}λ as input and
outputs (nisc1, state). The receiver then sends nisc1 to the sender, who obtains

6 Unlike Weak OT in which the sender is protected information theoretically this
notion will provide only computational security for the sender.



nisc2 by evaluating NISC2(nisc1, x), where x ∈ {0, 1}λ is the sender’s input.7

The sender then sends nisc2 to the receiver who obtains f(x, y) by evaluating
NISC3(nisc2, state).

At the onset of the computation the real world adversary A corrupting either
the sender S or the receiver R, receives some auxiliary information z. Next, the
computation proceeds as described above where the honest party sends messages
as prescribed by the protocol and the adversary A sends arbitrary messages on
behalf on the corrupted party. At the end of the computation the uncorrupted
party outputs whatever is specified in the protocol. The corrupted party outputs
any arbitrary PPT function of the view of A. The overall output of the real-
world experiment consists of all the values output by all parties at the end of

the protocol, and this random variable is denoted by REAL
〈S,R〉
A (1k, x, y, z). Let

REAL
〈S,R〉
A denote the ensemble {REAL〈S,R〉A (1k, x, y, z)}k∈N,x,y∈{0,1}λ,z∈{0,1}∗ .

Ideal World. In the ideal world experiment, the sender S and the receiver R
interact with a trusted party for computing a function f : {0, 1}λ × {0, 1}λ →
{0, 1}λ. The ideal world computation in presence of the ideal world adversary S
corrupting either the sender S or the receiver R, and an (incorruptible) trusted
party F , proceeds as follows. First, as in the real-life model, S gets auxiliary
information z. Next, the ideal world adversary S generates any arbitrary input on
behalf of the corrupted party, which it sends to the trusted party F . The honest
party sends its input to the trusted party F . At this point the ideal functionality
evaluates the output and sends it to the receiver. The honest receiver outputs
this value. The adversarial receiver S outputs an arbitrary value. Note that S is
allowed to run in super-polynomial time. In this work, we will focus by default
on simulators running in quasi-polynomial time - i.e npoly(log(n)) where n is the
security parameter. (See Definition 6 in [39] for a definition of quasi-polynomial
simulation in the context of zero-knowledge protocols.)

The ideal world output consists of all the values output by all parties at the
end of the protocol. We denote this random variable by IDEALFS (1k, x, y, z) and
IDEALFS denotes the ensemble {IDEALFS (1k, x, y, z)}k∈N,x,y∈{0,1}λ,z∈{0,1}∗ .

Equivalence of Computations. Informally, we require that executing a pro-
tocol 〈S,R〉 in the real world roughly emulates the ideal process for evaluating
f .

Definition 2. Let f be any polynomial time computable function on two inputs
and let 〈S,R〉 be a protocol between a sender S and a receiver R. We say that
〈S,R〉 two-message securely evaluates f if for every PPT real world adversary

A there exists an ideal world adversary S, such that REAL
〈S,R〉
A

c
≈ IDEALFS .

Stricter Simulation. As described above the ideal world adversary is allowed
to execute in super-polynomial time. We will consider a stricter notion of sim-
ulation under which a simulator is allowed to execute in super-polynomial time

7 For simplicity of notation we denote the lengths of the inputs of the sender and
the receiver by λ. In general they could be arbitrary polynomials in the security
parameter λ.



prior to its interaction with the ideal functionality. The simulator is subsequently
restricted to be polynomial time. We discuss this more formally in the full ver-
sion.

In the full version, we define the notion of Two Message Secure Computa-
tion for two specific functionalities, namely, zero-knowledge and Parallel OT.

3 Difficulties in constructing Two Message Secure
Computation protocols

Goldreich and Oren [23] showed that it is impossible to construct 2-round zero-
knowledge arguments for languages outside BPP. As explained in [13], this result
extends in a straightforward manner to show the impossibility of construct-
ing 2-round T -zero-knowledge8 arguments for T -hard languages, that are sound
against cheating provers running in time T · poly(λ). More recent works [13,12]
gave a black-box impossibility result ruling out 2-round zero-knowledge sound
against polynomial-time cheating provers (based on T -hard falsifiable assump-
tions). Note that since Two Message Secure Computation for OT implies 2-round
zero-knowledge arguments we can obtain analogous impossibility results for Two
Message Secure Computation for OT. It is also interesting to note that the pos-
itive result for Two Message Secure Computation for OT obtained in this paper
assume that the underlying assumption is T ′-hard for T ′ that is strictly more
than the running time of the distinguisher. Thus, these results are essentially
tight.

The aforementioned impossibility result only rules out black-box reductions
to falsifiable assumptions. As a starting point, based on the premise that known
instances of Weak OT protocols such as [38,2,27] are not known to be susceptible
to any attacks in the simulation setting, one may conjecture that that in fact
all Weak OT protocols can be proven secure under a simulation based defini-
tion when unbounded simulation is allowed and we are willing to make strong
(possibly non-falsifiable) assumptions.

In fact, it is argued in [27] (Section 3) that any Weak OT protocol provides
simulation-based security in the standard sense for the case of a malicious sender,
assuming that the simulator is allowed to reset the sender. This is argued as
follows. The simulator (who does not know the choice bit of the actual receiver)
simulates the (honest) receiver first with choice bit b = 0, and then it resets
the sender and simulates the honest receiver with choice bit b = 1. This way
the simulator extracts both messages M0 and M1 from the corrupted sender.
It then gives (M0,M1) to the trusted party. Then the simulator uses the view
of the cheating sender in the first execution (with the choice-bit b = 0). They
argue that this view is indistinguishable from the “real world” view based on
the receiver’s security of the Weak OT protocol, and from the fact that the
sender does not receive any output from the trusted party. On the other hand,

8 Recall that in T -zero-knowledge protocols the simulator and the distinguisher run
in time T · poly(λ).



they argue that Weak OT does not give standard simulation-based guarantee
in the case that the receiver is corrupted, because a malicious receiver is not
guaranteed to “know its own choice bit b,” and therefore the simulator does not
know which input bit to send to the trusted party. However, they point out that
this does guarantee an exponential time simulation of the receiver’s view of the
interaction.

Note that the argument from [27] is only applicable when the view of a
cheating sender or the view of a cheating receiver is considered by itself. We
show that if (as per standard definitions) joint distributions of the outputs of
both parties are considered, then proving simulation based security for a Weak
OT protocol even when unbounded simulation is allowed is very problematic.
We demonstrate this by constructing a protocol that can be proved to be Weak
OT under reasonable assumptions but suffers for a real attack under a simulation
based definition. In particular, we show a malicious sender strategy such that
even a single instance of execution of the protocol with a malicious sender can
not be simulated by any unbounded simulator.

The protocol that we construct is only a slight modification of known pro-
tocols [38,2] and highlights at the very least, the obstacles that we face even
in proving security of specific protocols. We start by recalling the ElGamal en-
cryption scheme abstractly. Let G be a multiplicative subgroup of Z∗q of order
p, where p and q are primes and p is of length λ that divides q− 1. Let g be the
generator of this group G. The public key for ElGamal encryption is generated
by sampling x ← Z∗p and setting the public key to be (p, q, g, h) where h = gx.
The encryption procedure Enc((p, q, g, h),m) is defined follows: Choose r ∈ Z∗p
and output (gr,m ·hr). The decryption procedure Dec((u, v), x) outputs v

ux . Let
e(·) be some invertible encoding function mapping Zp to G. Then circular secu-
rity of ElGamal implies that the encryption scheme remains semantically secure
even when an encryption of e(x) is given to the adversary. In particular semantic
security is preserved when Enc((p, q, g, h), e(x)) is included in the public key. As
pointed out in [?], it is unlikely that it would follow from the DDH assumption.

Lemma 1. Assuming that ElGamal is circularly secure, there exists a Weak
OT protocol and a real world cheating sender S∗ strategy for this protocol such
that it can not be simulated by any (unbounded) ideal world simulator.

Proof. We will start by giving the protocol. The protocol used in our counter
example is very similar to the DDH based Weak OT protocols from [38,2]. The
only difference being that our protocol includes an encryption E of e(a) along
with its first message. This value is not used by the protocol itself but however
will be useful for the malicious sender that we will construct.

1. (ot1, state) ← OT1(c): Sample a, b ← Zp. Compute x := ga, y := gb, z :=
gab+c and E = (gr, e(a) · gbr). The output ot1 is then the tuple (x, y, z, E).

2. ot2 ← OT2(ot1,M0,M1): sample t0, s0, t1, s1 ← Zp. For each i ∈ {0, 1},
compute wi := xsigti and ui :=

(
z · g−i

)si
ytiMi. The output ot2 is then the

tuple (w0, u0, w1, u1).
3. OT3(ot2, state): Compute Mc as uc · w−bc .



The above protocol is a Weak OT protocol. The argument follows directly
from the proof of [38,2] except that in our case the chooser’s security will be
based on the circular security of ElGamal.

We will now provide an attack that specifies a particular cheating strategy
for a malicious sender (in a single instance of execution of the protocol) that can
not be simulated by any unbounded simulator. In particular we will provide an
efficient malicious sender strategy such that for every unbounded simulator we
have that the joint distributions of the sender’s view and the receiver’s output
in the real world and the ideal world are efficiently distinguishable.

Our cheating sender proceeds as follows: On receiving the message (x, y, z, E)
it proceeds by setting ot2 to be the tuple (E,E). On receiving this message R,
regardless of the value of b, outputs e(a). Note that in the real world the joint
distribution of the view of the sender and the output of the honest receiver
((x, y, z, E), e(a)) is sufficient for the distinguisher to efficiently compute the
input of the honest receiver. The distinguisher computes the honest receiver’s
input c as follows:

– Given : (x, y, z, E, a)
– Compute gab as ya. (since y = gb)
– Then, compute c as z

gab
(since z = gab+c).

However no unbounded simulator can simulate this distribution in the ideal
world.

The protocol used in describing the above attack is a simple modification of
the Naor-Pinkas/Aiello-Ishai-Reingold protocol where the honest receiver with
its first message includes an encryption of the secret key. It is reasonable to as-
sume that ElGamal is indeed circularly secure. Furthermore if it was possible to
efficiently obtain an encryption of the secret key given the public key then the
counterexample presented above would extend to the Naor-Pinkas/Aiello-Ishai-
Reingold protocol. We do not believe that such a procedure exists. But it seems
likely that the existence of such a procedure that efficiently concocts an encryp-
tion of the secret key can not be ruled out under the DDH assumption alone.
Based on this conjecture we can claim that Naor-Pinkas/Aiello-Ishai-Reingold
protocol can not be proved secure with an unbounded simulator under the DDH
assumption. We stress that we do not make any of these speculative assumptions
elsewhere in the paper. We use them here just to possibly explain obstacles in
coming up with proofs for known protocols under reasonable assumptions.

4 Zero-Knowledge from Weak OT

In the following two sections, we will prove that a secure realization of T -secure
Weak OT protocol (Weak OT with T -chooser’s security), where T is an appro-
priate super-polynomial function in the security parameter, suffices for realizing
Two Message Secure Computation for any functionality. We will provide this
construction in two steps. First, in this section, we will show that a T -secure



Weak OT protocol suffices for constructing a Two Message Secure Computa-
tion protocol for the zero-knowledge functionality. In the next section, we will
show that zero-knowledge and Weak OT suffice for realizing Two Message Secure
Computation for any functionality.

Before we describe the protocol, let’s list the primitives used. Let T, T1 be
some super-polynomial functions in the security parameter λ with T < T1.
Parameters:

– (OT1,OT2,OT3) be functions corresponding to a T-secure Weak OT proto-
col. That is, it is secure against all adversaries running in time T .poly(λ),
but can be broken by adversaries running in time T1.poly(λ).

– C = (Com,Open) be a non-interactive T -extractable commitment scheme
with non-uniform hiding. (see the full version for definition).

The construction of the protocol appears in Figure 1.

Notation for (modified) Blum’s Hamiltonicity Protocol.

- The distribution D(·, ·) on input x and witness w generates (α, γ0, γ1) as fol-
lows. Sample (a, b0, b1) such that a is the first message of Blum’s Hamiltonic-
ity protocol (instantiated with commitment C) and b0 and b1 are the response
on challenges 0 and 1 respectively. Let α = (a, c0, c1) where c0 = Com(b0; r0)
and c1 = Com(b1; r1) and let γ0 = (b0, r0) and γ1 = (b1, r1).

- Let VBlum be the (modified) verification algorithm for the Blum’s Hamil-
tonicity protocol. More specifically, VBlum on input (x, α, β, γ) outputs 1 if
it the underlying transcript is an accepting transcript of the Blum’s Hamil-
tonicity protocol.

- SBlum on input (x, β) generates a simulated accepting transcript (α, β, γ0, γ1)
such that it is computationally indistinguishable from a real transcript.

- Finally, we will also use the extractor for Blum’s Hamiltonicity protocol,
denoted by BlumExt. The extractor on input x, α, γ0 and γ1 outputs the
Hamiltonian cycle in x or (⊥, β) such that for no value of γ, VBlum(x, α, 1−
β, γ) = 1. The extractor BlumExt runs in time T .poly(λ).

Lemma 2. Assuming that (OT1,OT2,OT3) is a 2λ
ε

-secure Weak OT proto-
col and C = (Com,Open) is a 2λ

ε

-extractable and non-uniformly hiding non-
interactive9 commitment scheme for some constant 0 < ε < 1, we have that the
protocol πZK described in Figure 1 with the parameters described above is a two
message zero-knowledge argument for NP with quasi-polynomial simulation.

This lemma immediately implies the following theorem.

9 Note that we present our protocol in terms of non-interactive commitments (implied
by one-to-one OWFs) just for simplicity of notation. We can instead use Naor’s two
round commitment scheme [?] that can be based on one-way functions. The only
difference being that Naor’s commitment is statistically binding instead of being
perfectly binding. All claims which rely on this lemma will be stated keeping this
simplification in mind.



πZK

Common Input: A graph x.
Auxiliary Input for P : w such that w is a Hamiltonian cycle in the graph x.

1. (zk1, zkst)← ZK1(1λ):
– For each i ∈ [λ], V samples βi ← {0, 1} and generates (ot1,i, statei) ←

OT1(βi).
– It sets zk1 := {ot1,i}i∈[λ] and zkst := {statei}i∈[λ].

2. zk2 ← ZK2(1λ, zk1, x, w):
– P parses zk1 as {ot1,i}i∈[λ].
– For each i ∈ [λ], P generates (αi, γ

0
i , γ

1
i ) ← D(x,w), ot2,i ←

OT2(ot1,i, γ
0
i , γ

1
i ).

– It then sets zk2 := {ot2,i, αi}i∈[λ].
3. ZK3(1λ, zk2, x, zkst):

– V parses zkst as {statei}i∈[λ] and zk2 as {ot2,i, αi}i∈[λ].
– For each i ∈ [λ], V obtains γβii as OT3(ot2,i, statei) and checks to see if
VBlum(x, αi, βi, γ

βi
i ) = 1.

– Output 1 if all the checks pass and 0 otherwise.

Fig. 1: Two Message Secure Computation for Zero-Knowledge

Theorem 4. Two round protocols for the zero-knowledge functionality with quasi-
polynomial simulation can be based on sub-exponentially hard Decisional Diffie-
Hellman Assumption.

4.1 Security Proof

The correctness of the scheme follows from the correctness of Blum’s Hamiltonic-
ity protocol. We will now give proofs for the simulation of the prover (argument
of knowledge) and of the verifier (zero-knowledge).

Remark: In the security proofs in this section and the next, the simulator
will run in time T1 · poly(λ). Notice that when we instantiate the primitives,
T = 2λ

ε

and T1 = 2λ. This corresponds to an exponential time simulator whereas
we require the simulator to only run in quasi-polynomial time. We will use
the standard trick of using a smaller security parameter to address this. Let
λ = log2(k). We will now use k as the security parameter in our protocols.
Note that the assumptions are still sub-exponentially secure with respect to
λ. However, the simulator now runs in time 2log

2(k) = klog(k) which is quasi-
polynomial in the security parameter k.

Argument of Knowledge First, we note that arguing argument of knowledge
also implicitly captures soundness of the protocol. In order to argue the argument
of knowledge property, we need to construct an extractor Ext with the following



property: we require that for any PPT malicious prover P∗ such that (zk2, x
∗)←

P∗(1λ, zk1) and ZK3(1λ, zk2, x
∗, zkst) = 1 where (zk1, zkst) ← ZK1(1λ) we have

that the extractor algorithm Ext running in time T ·poly(λ) on input (zk2, x
∗, zkst)

outputs a Hamiltonian cycle in the graph x∗. The extractor is described in
Figure 2.

Input: (zk2, x
∗, zkst).

The extractor does the following:

– For each i ∈ [λ], recall that αi = (ai, c
0
i , c

1
i ) where c0i and c1i are commitments

to strings γ0
i and γ1

i respectively. Run the T -time extractor ComExt on inputs
c0i and c1i to obtain γ0

i and γ1
i .

– For each i ∈ [λ], execute the T -time extractor BlumExt on input (α, γ0
i , γ

1
i ).

If BlumExt outputs a Hamiltonian cycle in graph x∗, then abort everything
else and output the extracted cycle. On the other hand, if BlumExt outputs
(⊥, ·) for every i ∈ [λ], then output ⊥.

Fig. 2: Extraction strategy against a malicious prover

Now we will argue that this extraction procedure described above success-
fully extracts a cycle in x∗ with overwhelming probability. We will prove this by
reaching a contradiction. Lets assume that there exists a PPT cheating prover
P∗ such that it succeeds in generating accepting proofs even though the ex-
traction of the witness fails. More formally, lets P∗ be a PPT adversary such
that, ε = Pr[ZK3(1λ, zk2, x

∗, zkst) = 1
∧

Ext(zk2, x
∗, zkst) = ⊥ : (zk1, zkst) ←

ZK1(1λ), (zk2, x
∗)← P∗(1λ, zk1)] is non-negligible.

Then we will use such an adversarial prover P ∗ and construct an adversary
contradicting T -chooser’s security of the Weak OT protocol. We proceed with
the following hybrids:

- H0: This is the real game with the guarantee that ε is non-negligible.

- H1: Recall than in H0 ZK3 outputs 1 only if VBlum(x, αi, βi, γ
βi
i ) = 1 for

every i ∈ [λ]. In H1 we modify ZK3 and denote it by ZK′3. ZK′3 samples a ran-

dom subset S ⊂ [λ] such that |S| = (λ−1) and check VBlum(x, αi, βi, γ
βi
i ) = 1

for all i ∈ S (as opposed to all i ∈ [λ]). We have that, Pr[ZK′3(1λ, zk2, x
∗, zkst) =

1
∧
Ext(zk2, x

∗, zkst) = ⊥ : (zk1, zkst)← ZK1(1λ), (zk2, x
∗)← P ∗(1λ, zk1)] is

at least ε.

Let R ⊆ [λ]\S, be a set such that j ∈ R if VBlum(x, αj , βj , γ
βj
j ) = 1. Clearly,

0 ≤ |R| ≤ 1 since there is only one index not in S. Further, let E be the event
such that |R| = 1. Now, its easy to see that the only way |R| could be 0 is if
the malicious prover P∗ was able to guess S correctly. This can happen with
probability at most 1

λ (i.e probability that P∗ correctly guesses which random
index was not part of S). Therefore, Pr[¬E] = 1

λ and so, Pr[E] = (1− 1
λ ). That



is, probability that the other index not part of set S belongs to set R is at least
(1− 1

λ ).
Using this malicious prover P∗, we will construct an adversary A that contra-

dicts the T -chooser’s security of the Weak OT protocol. Note that commitments
can be broken in time T.poly(λ) but the chooser’s bit in the OT protocol is as-
sumed to be secure against adversaries running in time T.poly(λ). The adversary
A obtains an external challenge OT1(b) for a random b ∈ {0, 1}, and it needs to
guess b. It does the following:

– Invoke P∗ and embed the challenge in one of the random locations i∗ ← [λ].
That is, as part of the first message of the verifier, for index i∗, set the
external challenge OT1(b) as ot1,i∗ and statei∗ = i∗. For all other indices
i ∈ [λ], choose a random bit βi and compute (ot1,i, statei)← OT1(βi).

– Set zkst := {statei}i∈[λ] and send zk1 = {ot1,i}i∈[λ].
– Obtain the message zk2 from P∗ and run the algorithm ZK′3 on input (1λ, x∗, zk2, zkst)

using the random set S to be [λ]\{i∗}.
– If the algorithm ZK′3 outputs 0 then A outputs a random bit.
– On the other hand if ZK′3 outputs 1, similar to the extractor described above,
A first runs ComExt to extract γ0i∗ and γ1i∗ . Then, it outputs b′ where (⊥, b′)
is the output of BlumExt on input (α∗i , γ

0
i∗ , γ

1
i∗).

Analysis :
When ZK′3 outputs 0 (which happens with probability 1 − ε) then A’s guess
about b will be correct with probability at least 1

2 . On the other hand when ZK′3
outputs 1, we will have that with probability at least (1− 1

λ ) i∗ ∈ R and hence
b′ where (⊥, b′) is the output of BlumExt on input (α, γ0i∗ , γ

1
i∗) will be the correct

guess for b. Compiling together the two cases we have that A guesses the bit b
correctly with probability at least (1 − ε).1/2 + ε(1 − 1

λ ) = 1
2 + ε

2 −
ε
λ which is

non-negligible if ε is non-negligible. This contradicts the T-chooser’s security of
the OT protocol.

This completes the proof of argument of knowledge.

Zero-Knowledge In order to show zero-knowledge (or simulating a malicious
verifier V∗) we need to construct a simulator S satisfying Definition 2. Let’s
consider a malicious verifier V∗ described using a pair of algorithms (V∗1,V

∗
2).

The simulation strategy is described in Figure 3. Note that the simulator runs
in time T1.poly(λ).

Claim. The simulation strategy described in Figure 3 is secure against a mali-
cious verifier.

Proof. Using a series of hybrid arguments, we will show that the view of the
malicious verifier in the ideal world is computationally indistinguishable from
its view in the real world.

Let’s assume to the contrary that there exists a PPT malicious verifier
V∗ = (V∗1,V

∗
2) that has a non negligible probability ε of distinguishing its view



Common Input: A graph x.

1. (zk1, zkst) ← V∗1(x, 1λ): The malicious verifier runs V∗1 computes its first
message zk1 to be sent to the prover and some associated state zkst.

2. The simulator S does the following:
– Parse zk1 as {ot1,i}i∈[λ].
– For each i ∈ λ, run OTExt(ot1,i) to extract the challenge bit βi of the

verifier. By the sender’s security in the OT protocol, we know that the
extraction succeeds with non negligible probability. Note that this re-
quires time T1.poly(λ).

– For each i ∈ λ, run SBlum on input (x, βi) to produce (αi, γ
0
i , γ

1
i ). (where

γ1−b
i is in fact a dummy message)

– Compute ot2,i ← OT2(ot1,i, γ
0
i , γ

1
i ).

– Set zk2 := {ot2,i, αi}i∈[λ] and send it to the verifier.
3. V∗2(x, λ, zkst, zk2): The malicious verifier runs V∗2 outputs either 0 or 1.

Fig. 3: Simulation strategy against a malicious verifier

in the real world from the ideal world. Let’s consider the “best possible” initial
message of the verifier - i.e the output of the algorithm V∗1 that produces the
highest distinguishing probability between the views in the real and ideal worlds.
Let’s fix this message as the initial message zk∗1 of the verifier. That is, consider
V∗1 to be a deterministic algorithm that takes as input the randomness used to
output this best possible message.

Essentially, given any PPT malicious adversary R̂∗ that can distinguish the
two views with non-negligible probability ε, we are transforming it into a new
deterministic adversary R∗ such that the randomness used to produce this best
possible initial message is hardwired inside it. Therefore, even R∗ can distinguish
the two views with probability at least ε.

Using this malicious verifier, we can construct a non-uniform PPT adversary
A that breaks either the hiding property of the commitment scheme or the
sender’s security of the OT protocol. Note that the commitment scheme is secure
against all PPT adversaries (it is only assumed to be broken by an adversary
running in time T.poly(λ)) and the OT protocol in fact has statistical security
and hence is secure against all PPT adversaries. Thus, this would lead to a
contradiction. In our reduction, the non-uniform advice (or auxiliary input) given
to the adversary A is the set of challenge bits {β∗i }i∈[λ] of the verifier V∗1 that
was used to generate the fixed first message (observe that this is exactly what
the simulator in the ideal world extracts in the first step by running the OTExt
algorithm). These challenge bits are also accessible to the second stage verifier
V∗2 as part of the state - zkst that is output by V∗1. We will now describe the
reduction. A acts as the prover in its interaction with the malicious verifier V∗.



1. Hybrid 0: This is the real experiment where the message sent to the verifier
zk2 = {ot2,i, αi}i∈[λ] is computed using the algorithm ZK2(1λ, zk∗1, x, w).
Here, αi = (ai, c

0
i , c

1
i ) where c0i = Com(b0i ; r

0
i ), c

1
i = Com(b1i ; r

1
i ), γ

0
i = (b0i , r

0
i )

and γ1i = (b1i , r
1
i ). Also, ot2,i ← OT2(ot1,i, γ

0
i , γ

1
i ).

2. Hybrid 1: For each i ∈ λ, compute γ
(1−β∗

i )
i = (⊥,⊥).

3. Hybrid 2: For each i ∈ λ, compute c
(1−β∗

i )
i = Com(⊥; r

(1−β∗
i )

i ). Observe
that this is same as the ideal world experiment since the simulator would do
exactly this: replace the entries corresponding to the positions not challenged
by the verifier (i.e positions (1− β∗i )) using ⊥.

We defer the argument for the indistinguishability of the hybrids to the full
version.

5 Two Message Secure Computation from Weak OT

In this section, we show that Weak OT together with two message witness indis-
tinguishability gives an immediate construction of Two Message Secure Compu-
tation for the general functionality. This construction is obtained by compiling
the Yao’s garbled circuit construction (see the full version for the definition)
and Weak OT protocol with our zero-knowledge protocol. Note that the zero
knowledge protocol from Section 4 already satisfies this requirement. (and gives
a much stronger functionality).

Let’s consider two parties : the sender S with input x and the receiver R with
input y that wish to securely compute any general function f . Before we describe
the protocol, let’s list the primitives used. Let T, T1 be some super-polynomial
functions in the security parameter λ with T < T1.
Parameters:

– (OT1,OT2,OT3) be functions corresponding to a T-secureWeak OT proto-
col. That is, its secure against all adversaries running in time T .poly(λ), but
can be broken by adversaries running in time T1.poly(λ).

– (WI1,WI2,WI3) be a two message secure computation protocol for the wit-
ness indistinguishability functionality. This protocol is secure against all ad-
versaries running in time T .poly(λ), but can be broken by adversaries run-
ning in time T1.poly(λ).

– (Garble,GCEval) be the algorithms corresponding to Yao’s garbled circuit
construction that is secure against all adversaries running in time T .poly(λ),
but can be broken by adversaries running in time T1.poly(λ).

– com be a commitment scheme that is extractable in time T .poly(λ).
– let OWF be a one-way function that is not invertible in time T .poly(λ) but

can be inverted by an attacker AOWF running in time T1.poly(λ).

In Figure 4 we describe the construction of our Two Message Secure Computa-
tion protocol. We will next prove its security.



〈S,R〉

Inputs: The sender S gets input x and the receiver R gets input y. Both S and
R get the function f they want to evaluate as input.
Output: R expects to receive f(x, y) as output.

1. (nisc1, state)← NISC1(1λ, y):
– R generates (ot1,i, statei) ← OT1(yi) for each i ∈ [λ] and (wi1,wist) ←

WI1(1λ).
– R chooses a random string z ← {0, 1}λ and computes Z = OWF(z).
– It sets nisc1 := (ot1,1, . . . , ot1,λ,wi1, Z),
state = (state1, . . . , stateλ,wist, z, Z) and sends nisc1 to S.

2. nisc2 ← NISC2(nisc1, x):
– S parses nisc1 as (ot1,1, . . . , ot1,λ,wi1, Z).
– It computes c1 = com(x; r1) and c2 = com(0; r2) using randomness r1, r2

respectively.
– S samples a 2λ key tuple K = {Ki,b}i∈[λ],b∈{0,1}, where Ki,b ∈ {0, 1}λ

and generates a garbled circuit GC := Garble(K,C;ω) where Cx(y) is a
circuit that evaluates f(x, y) on input y.

– Then, S generates ot2,i := OT2(ot1,i,Ki,0,Ki,1;ωi) for each i ∈ [λ].
– After that, S computes wi2 ←WI2(1λ,wi1, (ot2,1, . . . , ot2,λ, GC, c1, c2, Z),

(ω, {ωi}i∈[λ], x, r1,⊥,⊥)) for the statement (ot2,1, . . . , ot2,λ, GC, c1, c2, Z)
∈ L, where L contains tuples for which there exists
either a witness Ω = (K,C, ω, ω1, . . . , ωλ, x, r1) such that:

(1) GC := Garble(K,C;ω)
∧
c1 = com(x; r1)

∧
∀i ∈ [λ], ot2,i = OT2(ot1,i,Ki,0,Ki,1;ωi)

(OR) there exists a witness Ω2 = (z, r2) such that:

(2) OWF(z) = Z
∧
c2 = com(z; r2)

– Finally, S sets nisc2 := (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2) and sends it to R.
3. NISC3(nisc2, state):

– R parses nisc2 as (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2) and state as
(state1, . . . , stateλ,wist, z, Z).

– If WI3(1λ,wi2, (ot2,1, . . . , ot2,λ, GC, c1, c2),wist) = 0 then R outputs ⊥.
– Otherwise, for each i ∈ [λ] it obtains Ki,yi = OT3(ot2,i, statei) and out-

puts GCEval(Ky, GC).

Fig. 4: Two Message Secure Computation for a general function f

Lemma 3. If (OT1,OT2,OT3) is a sub-exponentially secure Weak OT protocol,
(WI1,WI2,WI3) is a sub-exponentially secure two message witness indistinguish-
able argument for NP and sub-exponentially secure one-way functions exist, the
protocol presented in Figure 4 with the parameters described above is a Two



Message Secure Computation protocol with quasi-polynomial simulation for any
general function.

This lemma immediately implies the following theorem.

Theorem 5. Two Message Secure Computation protocols with quasi-polynomial
simulation for general functionalities can be based on any of the following sub-
exponential assumptions: (1) Decisional Diffie-Hellman Assumption; (2) Quadratic
Residuosity Assumption; (3) N th Residuosity Assumption; or (4) Witness En-
cryption (together with one-to-one one-way functions).

We can easily transform the above protocol to a setting where both parties
are required to receive outputs by adding an extra round. Now, for the special
case of coin tossing, we get the following corollary:

Corollary 3. Three round secure coin tossing protocols with quasi-polynomial
simulation can be based on any of the following sub-exponential assumptions: (1)
Decisional Diffie-Hellman Assumption; (2) Quadratic Residuosity Assumption;
(3) N th Residuosity Assumption; or (4) Witness Encryption (together with one-
to-one one-way functions)

In order to get better efficiency we can use the Two Message Secure Compu-
tation protocol in Figure 4 and obtain a protocol (Parallel OT) for realizing
the functionality that allows for poly(λ)-parallel oblivious transfer invocations.
We can then use this protocol in order to instantiate the protocols of Ishai et
al. [33,31].

We defer the proof to the full version.

6 Weak OT from High Rate Semi-Honest OT

In this section, we first give a generic construction of two message Weak OT
from any high rate two message semi-honest OT.

Parameters:
As defined earlier, let λ be the security parameter. Consider a sender S with
inputs m0,m1 ∈ {0, 1}n where n = poly(λ) and a receiver R with choice bit b
who wish to run a Weak OT protocol. Let OTsh = (OTsh1 ,OT

sh
2 ,OT

sh
3 ) be a two

message semi-honest secure OT protocol with high rate c (> 0.5). The rate of
the OT protocol is defined as the ratio of the size of one of the sender’s input

strings to the size of the sender’s message. That is, rate = |m0|
|OTsh2 (m0,m1,OTsh1 (b))| .

Let Ext : { 0, 1 }s × { 0, 1 }d → { 0, 1 }n be a (k, ε) strong seeded randomness
extractor (defined in the full version), where s = c

2c−1 · (n + 2 log(1/ε)), d = s

and k = (n+ 2 log(1/ε)) for any ε = 2−λ. Recall that we know how to construct
such a strong seeded extractor using the Leftover Hash Lemma [30]. We prove
the following theorem.



Theorem 6. Assuming OTsh = (OTsh1 ,OT
sh
2 ,OT

sh
3 ) is a high rate (> 0.5) two

message semi-honest OT protocol, the protocol in Figure 5 with the parameters
described above is a Weak OT protocol

We defer the proof to the full version.

πWeakOT

1. (ot1, state)← OT1(b):
– Compute (otsh1 , state) = OTsh1 (b).
– Set the output ot1 = otsh1 .

2. ot2 ← OT2(ot1,m0,m1):
– Pick two random strings r0, r1 ∈ {0, 1}s(n) and two random seeds s0, s1 ∈
{0, 1}d.

– Compute otsh2 = OTsh2 (ot1, r0, r1).
– Compute S0 = m0 ⊕ Ext(r0, s0) and S1 = m1 ⊕ Ext(r1, s1).
– Output ot2 = (otsh2 ,S0, s0, S1, s1).

3. OT3(ot2, state):
– Parse ot2 as (otsh2 , S0, s0,S1, s1)
– Compute rb = OTsh3 (otsh2 , state).
– Compute the output mb = (Sb ⊕ Ext(rb, sb)).

Fig. 5: Weak OT from semi-honest OT

6.1 Weak OT from High Rate Linear Homomorphic Encryption

In this section, we describe the construction of two message semi-honest OT from
any linear homomorphic encryption as in [32]. Let LHE = (Setup,Enc,Dec,Add,Const.Mul)
be any linear homomorphic encryption scheme (defined in the full version). We
prove the following theorem.

Theorem 7. Assuming LHE is a high rate (> 0.5) linear homomorphic en-
cryption scheme, the protocol in Figure 6 is a high rate (> 0.5) two message
semi-honest OT protocol.

We defer the proof to the full version.
Finally, as a corollary of the Theorem 6 and Theorem 7, we get a construc-

tion of Weak OT from any high rate linear homomorphic encryption scheme.
Formally:

Corollary 4. High rate (> 0.5) linear homomorphic encryption implies Weak
OT.



πOTsh

1. (otsh1 , state)← OTsh1 (b):
– Generate (sk, pk)← Setup(1λ) for the encryption scheme.
– Compute the output otsh1 := (pk,Encpk(b; r)) usign randomness r. Let
state be (b, pk, sk).

2. otsh2 ← OTsh2 (ot1,m0,m1):
– Compute ct0 = Const.Mul(ot1,m1).
– Let ct1,1 = Const.Mul(Encpk(1; r′),m0) where r′ is a random string. Let

ct1,2 = Const.Mul(ot1,−1) and ct1,3 = Const.Mul(ct1,2,m1).
– Compute ct1 = Add(ct1,1, ct1,3).
– Compute ct = Add(ct0, ct1). That is, ct = Encpk(b ·m1 + (1− b) ·m0).
– Output ot2 = ct.

3. OT3(ot2, state):
– Parse state as (b, pk, sk) and ot2 as (ct)
– Compute the output mb = Decsk(ct).

Fig. 6: OTsh from linear homomorphic encryption

6.2 Weak OT from N th Residuosity Assumption

Finally, we instantiate the high rate linear homomorphic encryption scheme using
a construction where the size of the ciphertext is λ more than the size of the
plaintext. Such an encryption scheme can be built based on the Nth Residuosity
Assumption [14,32]. As a result, we get the following corollary:

Corollary 5. The Nth Residuosity Assumption implies Weak OT.

An earlier construction of Weak OT based on the N th Residuosity Assump-
tion appeared in [27]. In that construction, they first construct Weak OT from
any smooth projective hash function which is then instantiated based on the
N th Residuosity Assumption using a complex transformation. Our construction
and analysis are arguably simpler.

7 Weak OT from Witness Encryption

We defer the details of this section to the full version. Formally, we show the
following lemma:

Lemma 4. Assuming injective one-way functions exist and a non-uniform wit-
ness encryption scheme exists, there exists a secure Weak OT protocol.
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