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Abstract. The Fiat-Shamir construction (Crypto 1986) is an efficient transfor-
mation in the random oracle model for creating non-interactive proof systems
and signatures from sigma-protocols. In classical cryptography, Fiat-Shamir is a
zero-knowledge proof of knowledge assuming that the underlying sigma-protocol
has the zero-knowledge and special soundness properties. Unfortunately, Am-
bainis, Rosmanis, and Unruh (FOCS 2014) ruled out non-relativizing proofs
under those conditions in the quantum setting.
In this paper, we show under which strengthened conditions the Fiat-Shamir
proof system is still post-quantum secure. Namely, we show that if we require the
sigma-protocol to have computational zero-knowledge and statistical soundness,
then Fiat-Shamir is a zero-knowledge simulation-sound proof system (but not
a proof of knowledge!). Furthermore, we show that Fiat-Shamir leads to a
post-quantum secure unforgeable signature scheme when additionally assuming
a “dual-mode hard instance generator” for generating key pairs.

Keywords. Post-quantum security. Fiat-Shamir. Non-interactive proof systems.
Signatures.

1 Introduction

1.1 Background

Fiat-Shamir signatures. Signatures are (next to encryption) probably one of
the most important constructs in modern cryptography. In search for efficient
signature schemes, Fiat-Shamir [12] gave a construction for transforming many
three-round identification schemes into signatures, using the random oracle. (The
transformation was stated only for a specific case, but the general construction
is an easy generalization. [12] also does not contain a complete security proof,
but a proof was later provided by Pointcheval and Stern [20].) The Fiat-Shamir
transform and variations thereof have since been used in a large number of
constructions (signatures [23,21], group signatures [7], anonymous credentials
[10], e-voting [1], anonymous attestation [9], etc.) The benefit of the Fiat-Shamir
transform is that it combines efficiency with universality: The underlying iden-
tification scheme can be any so-called sigma-protocol (see below), this allows
for great flexibility in how public and secret key are related and enables the
construction of more advanced signature schemes and related schemes such as
group signatures, etc.

Non-interactive zero-knowledge proofs. At the first glance unrelated, but
upon closer inspection intimately connected to signatures are non-interactive



zero-knowledge proof of knowledge (NIZKPoK). In fact, Fiat-Shamir can also be
seen as a highly efficient construction for NIZKPoKs in the random oracle model
[11]. Basically, a NIZKPoK allows a prover to show his knowledge of a witness
sk that stands in a given relation to a publicly known statement pk . From a
NIZKPoK, we can derive a signature scheme: To sign a message m, the signer
constructs a proof that he knows the secret key corresponding to the public key
pk . (Of course, the message m needs to be included in the proof as well, we
omit the details for now.) For this construction to work, the NIZKPoK needs
to satisfy certain advanced security notions (“simulation-sound extractability”);1
Fiat-Shamir satisfies this notion in the classical setting [11]. Thus Fiat-Shamir
doubles both as a signature scheme and as a NIZKPoK, leading to simple and
highly efficient constructions of both.

The construction. In order to understand the rest of this introduction more
easily, we sketch the construction of Fiat-Shamir (the precise definition is given
in Definition 11). We will express it as a NIZKPoK since this makes the analysis
more modular. (We study Fiat-Shamir as a signature scheme in Section 6.)

A sigma-protocol Σ is a three-message protocol: The prover (given a statement
x and a corresponding valid witness w) sends a message com, called “commitment”,
to the verifier. The verifier (who knowns only the statement x) responds with a
uniformly random “challenge” ch. Then the prover answers with his “response”
resp, and the verifier checks whether (com, ch, resp) is a valid interaction. If so,
he accepts the proof of the statement x. In the following, we will assume that
ch has superlogarithmic length, i.e., there are superpolynomially many different
challenges. This can always be achieved by parallel-composing the sigma-protocol.

Given the sigma-protocol Σ, the Fiat-Shamir transform yields a non-
interactive proof system: The prover PFS internally executes the prover of the
sigma-protocol to get the commitment com. Then he computes the challenge
as ch := H(x‖com) where H is a hash function, modeled as a random oracle.
That is, instead of letting the verifier generate a random challenge, the prover
produces it by hashing. This guarantees, at least on an intuitively level, that
the prover does not have any control over the challenge, it is as if it was chosen
randomly. Then the prover internally produces the response resp corresponding
to com and ch and sends the non-interactive proof com‖resp to the verifier.

The Fiat-Shamir verifier VFS computes ch := H(x‖com) and checks whether
(com, ch, resp) is a valid interaction of the sigma-protocol.

Note that numerous variants of the Fiat-Shamir are possible. For example, one
could compute ch := H(com) (omitting x). However, this variant of Fiat-Shamir
is malleable, see [11].

Difficulties with Fiat-Shamir. The Fiat-Shamir transform is a deceptively
simple construction, but proving its security turns out to be more involved that
one would anticipate. To prove security (specifically, the unforgeability property
in the signature setting, or the extractability in the NIZKPoK setting), we need

1 We do not know where this was first shown, a proof in the quantum case can be
found in [26].
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simulate the interaction of the adversary with the random oracle, and then rerun
the same interaction with slightly changed random oracle responses (“rewinding”).
The first security proof by Fiat and Shamir [12] overlooked that issue.2 Bellare and
Rogaway [5, Section 5.2] also prove the security of the Fiat-Shamir transform (as a
proof system) but simply claim the soundness without giving a proof (we assume
that they also overlooked the difficulties involved).3 The first complete security
proof of the Fiat-Shamir as a signature scheme is by Pointcheval and Stern [20]
who introduced the so-called “forking lemma”, a central tool for analyzing the
security of Fiat-Shamir (it allows us to analyze the rewinding used in the security
proof). When considering Fiat-Shamir as a NIZKPoK, the first proof was given
by Faust, Kohlweiss, Marson and Venturi [11]; they showed that Fiat-Shamir
is zero-knowledge and simulation-sound extractable.4 This short history of the
security proofs indicates that Fiat-Shamir is more complicated than it may look
at the first glance.

Further difficulties were noticed by Shoup and Gennaro [24] who point out
that the fact that the Fiat-Shamir security proof uses rewinding can lead to
considerable difficulties in the analysis of more complex security proofs (namely, it
may lead to an exponential blowup in the running time of a simulator; Pointcheval
and Stern [19] experienced similar problems). Fischlin [13] notes that the rewind-
ing also leads to less tight reductions, which in turn may lead to longer key sizes
etc. for protocols using Fiat-Shamir.

Another example of unexpected behavior: Assume Alice gets a n pairs of
public keys (pk i0, pk i1), and then can ask for one of the secret keys for each
pair (i.e., sk i0 or sk i1 is revealed, never both), and then Alice is supposed to
prove using Fiat-Shamir that he knows both secret keys for one of the pairs.
Intuitively, we expect Alice not to be able to do that (if Fiat-Shamir is indeed a
proof of knowledge), but as we show in the full version [27], Fiat-Shamir does
not guarantee that Alice cannot successfully produce a proof in this situation!

To circumvent all those problems, Fischlin [13] gave an alternative construc-
tion of NIZKPoKs and signature schemes in the random oracle model whose
security proof does not use rewinding. However, their construction seems less
efficient in terms of the computation performed by the prover (although this is
not fully obvious if the tightness of the reduction is taken into account), and

2 The proof of [12, Lemma 6] claims without proof that a successful adversary cannot
find a square root mod n of

∏k
j=1 v

cj
j . In hindsight, this proof step would implicitly

use the forking lemma [20] that was developed only nine years later. [12] also mentions
a full version of their paper, but to the best of our knowledge no such full version
has ever appeared.

3 A “final paper” is also mentioned, but to the best of our knowledge never appeared.
4 They only sketch the zero-knowledge property, though. Their proof sketch overlooks
one required property of the sigma-protocol: unpredictable commitments (Defini-
tion 6). Without this (easy to achieve) property, at least the simulator constructed
in [11] will not work correctly. Concurrently and independently, [6] also claims the
same security properties, but the theorems are given without any proof or proof idea.
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their construction requires an additional property (unique responses5) from the
underlying sigma-protocol.

We do not claim that those difficulties in proving and using Fiat-Shamir
necessarily speak against Fiat-Shamir. But they show one needs to carefully
analyze which precise properties Fiat-Shamir provably has, and not rely on what
Fiat-Shamir intuitively achieves.

Post-quantum security. In this paper we are interested in the post-quantum
security of Fiat-Shamir. That is, under what conditions is Fiat-Shamir secure
if the adversary has a quantum computer? In the post-quantum setting, the
random oracle has to be modeled as a random function that can be queried in
superposition6 since a normal hash function can be evaluated in superposition
as well (cf. [8]). Ambainis, Rosmanis, and Unruh [2] showed that in this model,
Fiat-Shamir is insecure in general. More precisely, they showed that relative to
certain oracles, there are sigma-protocols such that: The sigma-protocol satisfies
the usual security properties. (Such as zero-knowledge and special soundness.
These are sufficient for security in the classical case.) But when applying the
Fiat-Shamir transform to it, the resulting NIZKPoK is not sound (and thus, as
a signature, not unforgeable). Since this negative result is relative to specific
oracles, it does not categorically rule out a security proof. However, it shows
that no relativizing security proof exists, and indicates that it is unlikely that
Fiat-Shamir can be shown post-quantum secure in general. Analogous negative
results [2] hold for Fischlin’s scheme [13].

Unruh [26] gave a construction of a NIZKPoK/signature scheme in the random
oracle model that is avoids these problems and is post-quantum secure (simulation-
sound extractable zero-knowledge / strongly unforgeable). However, Unruh’s
scheme requires multiple executions of the underlying sigma-protocol, leading
to increased computational and communication complexity in comparison with
Fiat-Shamir which needs only a single execution.7 Furthermore, Fiat-Shamir is
simpler (in terms of the construction, if not the proof), and more established in
the crypto community. In fact, a number of papers have used Fiat-Shamir to
construct post-quantum secure signature schemes (e.g., [15,18,17,3,16,4]). The
negative results by Ambainis et al. show that the post-quantum security of these
schemes is hard to justify.8 Thus the post-quantum security of Fiat-Shamir would
be of great interest, both from a practical and theoretical point of view.
5 Unique responses: It is computationally infeasible to find two valid responses for the
same commitment/challenge pair. See Definition 6 below.

6 E.g., the adversary can produce states such as
∑
x 2
−|x|/2|x〉 ⊗ |H(x)〉.

7 This assumes that the underlying sigma-protocol has a large challenge space. If
the underlying sigma-protocol has a small challenge space (e.g., the challenge is a
bit) then for Fiat-Shamir the sigma-protocol needs to be parallel composed first to
increase its challenge space. In this case, the complexity of Fiat-Shamir and Unruh
are more similar. (See, e.g., [14] that compares (optimizations of) Fiat-Shamir and
Unruh for a specific sigma-protocol and concludes that Unruh has an overhead in
communication complexity of merely 60% compared to Fiat-Shamir.)

8 We stress that the classical security of these schemes is not in question. Also, not all
these papers explicitly claim to have post-quantum security. However, they all give
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Is there a possibility to show the security of Fiat-Shamir notwithstanding the
negative results from [2]? There are two options (besides non-relativizing proofs):
(a) Unruh [25] introduced an additional condition for sigma-protocols, so-called
“perfectly unique responses”.9 Unique responses means that for any commitment
and challenge in a sigma-protocol, there exists at most one valid response. They
showed that a sigma-protocol that additionally has perfect unique responses is
a proof of knowledge while [2] showed that without unique responses, a sigma
protocol will not in general be a proof of knowledge (relative to some oracle).
Similarly, [2] does not exclude that Fiat-Shamir is post-quantum secure when
the underlying sigma-protocol has perfectly unique responses.10 (b) If we do not
require extractability, but only require soundness (i.e., if we only want to prove
that there exists a witness, not that we know it), then [2] does not exclude a
proof that Fiat-Shamir is sound based on a sigma-protocol with perfect special
soundness (but (computational) special soundness is not sufficient). In this paper,
we mainly follow approach (b), but we also have some results related to research
direction (a).

1.2 Our contribution

Security of Fiat-Shamir as a proof system. We prove that Fiat-Shamir
is post-quantum secure as a proof system. More precisely, we prove that it is
zero-knowledge (using random-oracle programming techniques from [26]), and
that it is sound (i.e., a proof of knowledge, using a reduction to quantum search).
More precisely:

Theorem 1 (Post-quantum security of Fiat-Shamir – informal). As-
sume that Σ has honest-verifier zero-knowledge and statistical soundness.

Then the Fiat-Shamir proof system (PFS , VFS ) is zero-knowledge and sound.11

The assumptions are the same as in the classical setting, except that instead of
computational special soundness (as in in the classical case), we need statistical
soundness.12 This is interesting, because it means that we need one of the
properties of the sigma-protocol to hold unconditionally, even though we only
want computational security in the end. However, [2] shows that this is necessary:
when assuming only computational (special) soundness, they construct a counter-
example to the soundness of Fiat-Shamir (relative to some oracle).

constructions that are based on supposedly quantum hard assumptions. Arguably, one
of the main motivations for using such assumptions is post-quantum security. Thus
the papers do not claim wrong results, but they would be considerably strengthened
by a proof of the post-quantum security of Fiat-Shamir.

9 It is called “strict soundness” in [25] but we use the term “unique responses” to match
the language used elsewhere in the literature, e.g., [13].

10 Interestingly, computational unique responses as in footnote 5 are shown not to be
sufficient, even when we want only computational extractability / unforgeability.

11 We stress: It is sound in the sense of a proof system, but not known to be a proof of
knowledge.

12 That is, soundness has to hold against computationally unlimited adversaries.
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Simulation-soundness. In addition to the above, we also show that Fiat-Shamir
has simulation-soundness. Simulation-soundness is a property that guarantees
non-malleability, i.e., that an adversary cannot take a proof gotten from, say,
an honest participant and transform it into a different proof (potentially for a
different but related statement).13 This is particularly important when using
Fiat-Shamir to construct signatures (see below) because we would not want the
adversary to transform one signature into a different signature. Our result is:

Theorem 2 (Simulation-soundness of Fiat-Shamir – informal). Assume
that Σ has honest-verifier zero-knowledge, statistical soundness, and unique
responses.

Then the Fiat-Shamir proof system (PFS , VFS ) has simulation-soundness.

Note that unique responses are needed for this result even in the classical case. If
we only require a slightly weaker form of simulation-soundness (“weak” simulation-
soundness), then we can omit that requirement.

Signatures. Normally, the security of Fiat-Shamir signatures is shown by re-
ducing it to the simulation-sound extractability of Fiat-Shamir (implicitly or
explicitly). Unfortunately, we do not know whether Fiat-Shamir is extractable in
the quantum setting. Thus, we need a new proof of the security of Fiat-Shamir
signatures that only relies on simulation-soundness. We can do so by making addi-
tional assumptions about the way the key generator works: We call an algorithm
G a “dual-mode hard instance generator” if G outputs a key pair (pk , sk) in such
a way that pk is computationally indistinguishable from an invalid pk (i.e., a pk
that has no corresponding sk). An example of such an instance generator would
be: sk is chosen uniformly at random, and pk := F (sk) for a pseudo-random
generator F . Then we have:

Theorem 3 (Fiat-Shamir signatures – informal). Assume that G is a dual-
mode hard instance generator. Fix a sigma-protocol Σ (for showing that a given
public key has a corresponding secret key). Assume that Σ has honest-verifier
zero-knowledge, statistical soundness.

Then the Fiat-Shamir signature scheme is unforgeable.

Note that classically, we only require that G is a hard instance generator. That
is, given pk , it is hard to find sk . We leave it as an open problem whether this is
sufficient in the post-quantum setting, too.

Organization. In Section 2, we fix some simple notation. In Section 3, we
discuss the (relatively standard) security notions for sigma-protocols used in this
paper. In Section 4, we define security notions for non-interactive proof systems
in the random oracle model. In Section 5 we give out main results, the security
properties of Fiat-Shamir (zero-knowledge, soundness, simulation-soundness, . . . ).
In Section 6, we show how to construct signature schemes from non-interactive
zero-knowledge proof systems, in particular from Fiat-Shamir.
13 Formally, simulation-soundness is defined by requiring that soundness holds even

when the adversary has access to a simulator that produces fake proofs.
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Readers who are interested solely in conditions under which Fiat-Shamir
signatures are post-quantum secure but not in the security proofs may restrict
their attention to Sections 3 and 6 (in particular Corollary 23).

A full version with additional material on extractability appears online [27].

2 Preliminaries

Fun(n,m) is the set of all functions from {0, 1}n to {0, 1}m. a⊕ b denotes the
bitwise XOR between bitstrings (of the same length).

If H is a function, we write H(x := y) for the function H ′ with H ′(x) = y
and H ′(x′) = H(x′) for x′ 6= x. We call a list ass = (x1 := y1, . . . , xn := yn) an
assignment-list . We then write H(ass) for H(x1 := y1)(x2 := y2) . . . (xn := yn).
(That is, H is updated to return yi on input xi, with assignments occurring later
in ass taking precedence.)

We write x← A(. . . ) to denote that the result of the algorithm/measurement
A is assigned to x. We write Q ← |Ψ〉 or Q ← ρ to denote that the quantum
register Q is initialized with the quantum state |Ψ〉 or ρ, respectively. We write
x

$←M to denote that x is assigned a uniformly randomly chosen element of the
set M .

If H is a classical function, then AH means that A has oracle access to H in
superposition (i.e., to the unitary |x, y〉 → |x, y ⊕H(x)〉).

Theorem 4 (Random oracle programming [26]). Let `in , `out ≥ 1 be a
integers, and H $← Fun(`inη , `

out
η ). Let AC be an algorithm, and A0, A2 be oracles

algorithms, where AH0 makes at most qA queries to H, AC is classical, and the
output of AC has collision-entropy at least k given AC ’s initial state (which is
classical). A0, AC , A2 may share state. Then∣∣∣Pr[b = 1 : AH0 (), xcom ← AC(), ch := H(xcom), b← AH2 (ch)]

−Pr[b = 1 : AH0 (), xcom ← AC(), ch
$← {0, 1}m, H(xcom) := ch, b← AH2 (ch)]

∣∣∣
≤ (4 +

√
2)
√
qA 2−k/4.

Lemma 5 (Hardness of search [27]). Let H : {0, 1}n → {0, 1}m be a uni-
formly random function. For any q-query algorithm A, it holds that Pr[H(x) =
0 : x← AH()] ≤ 32 · 2−m · (q + 1)2.

3 Sigma protocols

In this paper, we will consider only proof systems for fixed-length relations. A
fixed-length relation Rη is a family of relations on bitstrings such that:

For every η, there are values `xη and `wη such that (x,w) ∈ Rη implies |x| = `xη
and |w| = `wη , and such that `xη , `wη can be computed in time polynomial in η.
Given x,w, it can be decided in polynomial-time in η whether (x,w) ∈ Rη.
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We now define sigma protocols and related concepts. The notions in this
section are standard in the classical setting, and easy to adapt to the quantum
setting. Note that the definitions are formulated without the random oracle, we
only use the random oracle later for constructing non-interactive proofs out of
sigma protocols.

A sigma protocol for a fixed-length relation Rη is a three-message proof system.
It is described by the lengths `com

η , `ch
η , `

resp
η of the “commitments”, “challenges”,

and “responses” (those lengths may depend on η), by a quantum-polynomial-
time14 prover (P 1

Σ , P
2
Σ) and a deterministic polynomial-time verifier VΣ . We

will commonly denote statement and witness with x and w (with (x,w) ∈ R
in the honest case). The first message from the prover is com ← P 1

Σ(1
η, x, w)

and is called the commitment and satisfies com ∈ {0, 1}`com

, the uniformly
random reply from the verifier is ch $← {0, 1}`ch

(called challenge), and the prover
answers with a message resp ← P 2

Σ(1
η, x, w, ch) (the response) that satisfies

resp ∈ {0, 1}`resp

. We assume P 1
Σ , P

2
Σ to share classical or quantum state. Finally

VΣ(1
η, x, com, ch, resp) outputs 1 if the verifier accepts, 0 otherwise.

Definition 6 (Properties of sigma protocols). Let (`com
η , `ch

η , `
resp
η , P 1

Σ ,
P 2
Σ , VΣ) be a sigma protocol. We define:
– Completeness: For any quantum-polynomial-time algorithm A, there is a
negligible µ such that for all η,

Pr[(x,w) ∈ Rη ∧ VΣ(1
η, x, com, ch, resp) = 0 : (x,w)← A(1η),

com ← P 1
Σ(1

η, x, w), ch
$← {0, 1}`

ch
η , resp ← P 2

Σ(1
η, x, w, ch)] ≤ µ(η).

– Statistical soundness: There is a negligible µ such that for any stateful
classical (but not necessarily polynomial-time) algorithm A and all η, we have
that

Pr[ok = 1 ∧ x /∈ LR : (x, com)← A(1η), ch
$← {0, 1}`

ch

,

resp ← A(1η, ch), ok ← VΣ(1
η, x, com, ch, resp)] ≤ µ(η).

– Honest-verifier zero-knowledge (HVZK): There is a quantum-
polynomial-time algorithm SΣ (the simulator) such that for any stateful
quantum-polynomial-time algorithm A there is a negligible µ such that for all
η and (x,w) ∈ Rη,∣∣Pr[b = 1 : (x,w)← A(1η), com ← P 1

Σ(1
η, x, w), ch

$← {0, 1}`
ch
η ,

resp ← P 2
Σ(1

η, x, w, ch), b← A(1η, com, ch, resp)]

−Pr[b = 1 : (x,w)← A(1η), (com, ch, resp)← S(1η, x),

b← A(1η, com, ch, resp)]
∣∣ ≤ µ(η).

14 Typically, P 1
Σ and P 2

Σ will be classical, but we do not require this since our results
also hold for quantum P 1

Σ , P
2
Σ . But the inputs and outputs of P 1

Σ , P
2
Σ are classical.
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– Perfectly unique responses: There exist no values η, x, com, ch, resp, resp′
with resp 6= resp′ and VΣ(1

η, x, com, ch, resp) = 1 and
VΣ(1

η, x, com, ch ′, resp′) = 1.
– Unique responses: For any quantum-polynomial-time A, the following is
negligible:

Pr
[
resp 6= resp′∧VΣ(1η, x, com, ch, resp) = 1∧VΣ(1η, x, com, ch ′, resp′) = 1 :

(x, com, ch, resp, resp′)← A(1η)
]
.

– Unpredictable commitments: The commitment has superlogarithmic
collision-entropy. In other words, there is a negligible µ such that for all
η and (x,w) ∈ Rη,

Pr[com1 = com2 : com1 ← P 1
Σ(1

η, x, w), com2 ← P 1
Σ(1

η, x, w)] ≤ µ(η).

Note: the “unpredictable commitments” property is non-standard, but satisfied
by all sigma-protocols we are aware of. However, any sigma-protocol without
unpredictable commitments can be transformed into one with unpredictable
commitments by appending superlogarithmically many random bits to the com-
mitment (that are then ignored by the verifier).

4 Non-interactive proof systems (Definitions)

In the following, let H always denote a function {0, 1}`
in
η → {0, 1}`

out
η where

`inη , `
out
η may depend on the security parameter η. Let Fun(`inη , `out

η ) denote the
set of all such functions.

A non-interactive proof system (P, V ) for a relation Rη consists of a quantum-
polynomial-time algorithm P and a deterministic polynomial-time algorithm
V , both taking an oracle H ∈ Fun(`inη , `

out
η ). π ← PH(1η, x, w) is expected to

output a proof π for the statement x using witness w. We require that |π| = `πη
for some length `πη . (I.e., the length of a proof π depends only on the security
parameter.) And ok ← V H(1η, x, π) is supposed to return ok = 1 if the proof π
is valid for the statement x. Formally, we define:

Definition 7 (Completeness). (P, V ) has completeness for a fixed-length re-
lation Rη iff for any polynomial-time oracle algorithm A there is a negligible µ
such that for all η,

Pr[(x,w) ∈ Rη ∧ V H(1η, x, π) = 0 : H
$← Fun(`inη , `

out
η ),

(x,w)← AH(1η), π ← PH(1η, x, w)] ≤ µ(η).

For the following definition, a simulator is a classical stateful algorithm S.
Upon invocation, S(1η, x) returns a proof π. Additionally, S may reprogram the
random oracle. That is, S may choose an assignment-list ass, and H will then
be replaced by H(ass).
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Definition 8 (Zero-knowledge). Given a simulator S, the oracle S′(x,w)
runs S(1η, x) and returns the latter’s output. Given a prover P , the oracle
P ′(x,w) runs P (1η, x, w) and returns the latter’s output.

A non-interactive proof system (P, V ) is zero-knowledge iff there is a quantum-
polynomial-time simulator S such that for every quantum-polynomial-time oracle
algorithm A there is a negligible µ such that for all η and all normalized density
operators ρ,∣∣∣Pr[b = 1 : H

$← Fun(`inη , `
out
η ), b← AH,P

′
(1η, ρ)]

−Pr[b = 1 : H
$← Fun(`inη , `

out
η ), b← AH,S

′
(1η, ρ)]

∣∣∣ ≤ µ(η). (1)

Here we quantify only over A that never query (x,w) /∈ R from the P ′ or S′-oracle.

Definition 9 (Soundness). A non-interactive proof system (P, V ) is sound
iff for any quantum-polynomial-time oracle algorithm A, there is a negligible
function µ, such that for all η and all normalized density operators ρ,

Pr[okV = 1 ∧ x /∈ LR : (x, π)← AH(1η, ρ), okV ← V H(1η, x, π)] ≤ µ(η).

Here LR := {x : ∃w.(x,w) ∈ R}.

In some applications, soundness as defined above is not sufficient. Namely,
consider a security proof that goes along the following lines: We start with a
game in which the adversary interacts with an honest prover. We replace the
honest prover by a simulator. From the zero-knowledge property it follows that
this leads to an indistinguishable game. And then we try to use soundness to
show that the adversary in the new game cannot prove certain statements.

The last proof step will fail: soundness guarantees nothing when the adversary
interacts with a simulator that constructs fake proofs. Namely, it could be that
the adversary can take a fake proof for some statement and changes it into a
fake proof for another statement of its choosing. (Technically, soundness cannot
be used because the simulator programs the random oracle, and Definition 9
provides no guarantees if the random oracle is modified.)

An example where this problem occurs is the proof of Theorem 21 below
(unforgeability of Fiat-Shamir signatures).

To avoid these problems, we adapt the definition of simulation-soundness [22]
to the quantum setting. Roughly speaking, simulation-soundness requires that
the adversary cannot produce wrong proofs π, even if it has access to a simulator
that it can use to produce arbitrary fake proofs. (Of course, it does not count if
the adversary simply outputs one of the fake proofs it got from the simulator.
But we require that the adversary cannot produce any other wrong proofs.)

Definition 10 (Simulation-soundness). A non-interactive proof system
(P, V ) is simulation-sound with respect to the simulator S iff for any quantum-
polynomial-time oracle algorithm A, there is a negligible function µ, such that

10



for all η and all normalized density operators ρ,

Pr[okV = 1 ∧ x /∈ LR ∧ (x, π) /∈ S-queries :

(x, π)← AH,S
′′
(1η, ρ), okV ← V Hfinal (1η, x, π)] ≤ µ(η). (2)

Here the oracle S′′(x) invokes S(1η, x). And Hfinal refers to the value of the
random oracle H at the end of the execution (recall that invocations of S may
change H). S-queries is a list containing all queries made to S′′ by A, as pairs of
input/output. (Note that the input and output of S′′ are classical, so such a list
is well-defined.)

We call (P, V ) weakly simulation-sound if the above holds with the following
instead of (2), where S-queries contains only the query inputs to S′′:

Pr[okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries :

(x, π)← AH,S
′′
(1η, ρ), okV ← V Hfinal (1η, x, π)] ≤ µ(η). (3)

When considering simulation-sound zero-knowledge proof systems, we will
always implicitly assume that the same simulator is used for the simulation-
soundness and for the zero-knowledge property.

5 Fiat-Shamir

For the rest of this paper, fix a sigma-protocol Σ = (`com
η , `ch

η , `
resp
η , P 1

Σ , P
2
Σ , VΣ)

for a fixed-length relation Rη. Let H : {0, 1}`
x
η+`

com
η → {0, 1}`

ch
η be a random

oracle.

Definition 11. The Fiat-Shamir proof system (PFS , VFS ) consists of the algo-
rithms PFS and VFS defined in Figure 1.

In the remainder of this section, we show the following result, which is an
immediate combination of Theorems 14, 16, 17, and Lemma 13 below.

Theorem 12. If Σ has completeness, unpredictable commitments, honest-
verifier zero-knowledge, statistical soundness, then Fiat-Shamir (PFS , VFS ) has
completeness, zero-knowledge, and weak simulation-soundness.

If Σ additionally has unique responses, then Fiat-Shamir has simulation-
soundness.

5.1 Completeness

Lemma 13. If Σ has completeness and unpredictable commitments, then Fiat-
Shamir (PFS , VFS ) has completeness.

11



Interestingly, without unpredictable commitments, the lemma does not hold.
Consider the following example sigma-protocol: LetRη := {(x,w) : |x| = |w| = η},
`com := `ch := `resp := η. Let P 1

Σ(1
η, x, w) output com := 0η. Let P 2

Σ(1
η, x, w, ch)

output resp := ch if ch 6= w, and resp := ch else (ch is the bitwise negation of ch).
Let VΣ(1η, x, com, ch, resp) = 1 iff |x| = η and ch = resp. This sigma-protocol
has all the properties from Definition 6 except unpredictable commitments. Yet
(PFS , VFS ) does not have completeness: A can chose x := 0η and w := H(0η‖0η).
For those choices of (x,w), PFS (x,w) will chose com = 0η and ch = H(x‖com) =
w and thus resp = ch and return π = (com, ch). This proof will be rejected by
VFS with probability 1.

Proof of Lemma 13. Fix a polynomial-time oracle algorithm A. We need to show
that Pr[win = 1 : Game 1] is negligible for the following game:

Game 1 (Completeness) H $← Fun(`inη , `
out
η ), (x,w) ← AH(1η), π ←

PHFS (1
η, x, w), okV ← V HFS (1

η, x, π), win := ((x,w) ∈ Rη ∧ okV = 0).

Let P 1,class
Σ , P 2,class

Σ be classical implementations of P 1
Σ , P

2
Σ . (I.e.,

P 1,class
Σ , P 2,class

Σ have the same output distribution but do not perform quantum
computations or keep a quantum state. P 1,class

Σ , P 2,class
Σ might not be polynomial-

time, and the state they keep might not be polynomial space.)
We use Theorem 4 to transform Game 1. For a fixed η, let AH0 run

(x,w) ← AH(1η) (and return nothing). Let AC() run com ← P 1,class
Σ (1η, x, w)

and return x‖com. Let AH2 (ch) run resp ← P 2,class
Σ (1η, x, w, ch) and okV ←

VΣ(1
η, x, com, ch, resp) and return b := win := ((x,w) ∈ Rη ∧ okV = 0). (Note:

AC and AH2 are not necessarily polynomial-time, we will only use that AH0 is
polynomial-time.)

Let p1, p2 denote the first and second probability in Theorem 4, respectively.
By construction, p1 = Pr[win = 1 : Game 1].

Furthermore, p2 = Pr[win = 1 : Game 2] for the following game:

Game 2 H
$← Fun(`inη , `

out
η ), (x,w) ← AH(1η), com ← P 1

Σ(1
η, x, w), ch

$←
{0, 1}`ch

, resp ← P 2
Σ(1

η, x, w, ch), okV ← VΣ(1
η, x, com, ch, resp), win :=

((x,w) ∈ Rη ∧ okV = 0).

Then Theorem 4 implies that∣∣Pr[win = 1 : Game 1]−Pr[win = 1 : Game 2]
∣∣ = |p1−p2| ≤ (4+

√
2)
√
qA2

−k/4 =: µ
(4)

where qA is the number of queries performed by AH0 , and k the collision-entropy
of x‖com. Since A is polynomial-time, qA is polynomially bounded. And since Σ
has unpredictable commitments, k is superlogarithmic. Thus µ is negligible.

Since Σ has completeness, Pr[win = 1 : Game 2] is negligible. From (4) it
then follows that Pr[win = 1 : Game 1] is negligible. This shows that (PFS , VFS )
has completeness. �
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PFSPFSPFS :

Input: 1η, x, w
Oracles: Classical

queries to H.

com ← P 1
Σ(1

η, x, w)
ch := H(x‖com)
resp ← P 2

Σ(1
η, x, w, ch)

return π := com‖resp

VFSVFSVFS :

Input: 1η, x, π
Oracles: Classical

queries to H.

com‖resp := π
ch := H(x‖com)
return
VΣ(1

η, x, com, ch, resp)

SFSSFSSFS :

Input: 1η, x
Oracles: Write access to H.

(com, ch, resp)← SΣ(1
η, x)

if VΣ(1η, x, com, ch, resp) = 1
then
H(x‖com) := ch

return π := com‖resp

Fig. 1. Prover PFS and verifier VFS of the Fiat-Shamir proof system. SFS is the simulator
constructed in the proof of Theorem 14.

5.2 Zero-knowledge

Theorem 14 (Fiat-Shamir is zero-knowledge). Assume that Σ is honest-
verifier zero-knowledge and has completeness and unpredictable commitments.

Then the Fiat-Shamir proof system (PFS , VFS ) is zero-knowledge.

Proof. In this proof, we will in many places omit the security parameter η for
readability. (E.g., we write {0, 1}`ch

instead of {0, 1}`
ch
η and SΣ(x) instead of

SΣ(1
η, x).) It is to be understood that this is merely a syntactic omission, the

variables and algorithms still depend on η.
To show that Fiat-Shamir is zero-knowledge, we first define a simulator SFS ,

see Figure 1. In the definition of SFS we use the honest-verifier simulator SΣ
for Σ (see Definition 6) which exists since Σ is HVZK by assumption. Fix a
quantum-polynomial-time adversary A, and a quantum state ρ (that may depend
on η). Let qH and qP denote polynomial upper bounds on the number of queries
performed by A to the random oracle H and the prover/simulator, respectively.
We need to show that (1) is negligible (with P := PFS and S := SFS ). For this,
we transform the lhs of (1) into the rhs of (1) using a sequences of games.

Game 1 (Real world) b← AH,PFS (ρ).

Game 2 (Programming H) b← AH,P
∗
(ρ) with the following oracle P ∗:

P ∗(x,w) runs com ← P 1
Σ(x,w), ch

$← {0, 1}`ch

, H(x‖com) := ch, resp ←
P 2
Σ(x,w, ch). Then it returns π := com‖resp.

Notice that P ∗ reprograms the random oracle in a similar way as the simulator
does. Thus, P ∗ is not a valid prover any more, but the game is well-defined
nonetheless.

In order to relate Game 1 and Game 2, we define a hybrid game:

Game 3 i (Hybrid) b← AH,P
′
(ρ) where P ′ behaves as PFS in the first i invo-

cations, and as P ∗ (see Game 2) in all further invocations.

13



Fix some i ≥ 0 and some η. We will now bound
∣∣Pr[b = 1 : Game 3i]−Pr[b =

1 : Game 3i+1]
∣∣ by applying Theorem 4. Let AH0 () be an algorithm that executes

AH,P
′
(ρ) until just before the i-th query to P ′.15 Note that at that point, the

query input x,w for the (i + 1)-st P ′-query are fixed. Let P 1,class
Σ , P 2,class

Σ be
classical implementations of P 1

Σ , P
2
Σ . (I.e., P

1,class
Σ , P 2,class

Σ have the same output
distribution but do not perform quantum computations or keep a quantum
state. P 1,class

Σ , P 2,class
Σ might not be polynomial-time.) Let AC() compute com ←

P 1,class
Σ (x,w) and return x‖com if (x,w) ∈ R. (If (x,w) /∈ R, AC() instead out-

puts a η uniformly random bits.) Let AH2 (ch) compute resp ← P 2,class
Σ (x,w, ch),

set π := com‖resp, and then finish the execution of AH using π as the response of
the (i+1)-st P ′-query. AH2 outputs the output of AH . Note that in the execution
of AH2 , P ′ will actually behave like P ∗ and thus reprogram the random oracle
H. AH2 does not actually reprogram H (it only has readonly access to it), but
instead maintains a list of all changes performed by P ∗ to simulate queries to H
performed by A accordingly.

Since Σ has unpredictable commitments, the output of P 1
Σ has collision-

entropy ≥ k(η) for some superlogarithmic k, assuming (x,w) ∈ R. Hence the
output of AC has collision-entropy ≥ k′ := min{η, k}.

Since A makes at most qH queries to H, and at most qP queries to the prover,
and since PFS and P ∗ make one and zero queries to H, respectively, AH0 makes
at most qA := qH + qP queries to H.

Let

Plhs := Pr[b = 1 : H
$← Fun(`x + `com , `ch), AH0 (), x‖com ← AC(),

ch := H(x‖com), b← AH2 (ch)],

Prhs := Pr[b = 1 : H
$← Fun(`x + `com , `ch), AH0 (), x‖com ← AC(),

ch
$← {0, 1}`

ch

, H(x‖com) := ch, b← AH2 (ch)]

Then, by Theorem 4,∣∣Plhs − Prhs

∣∣ ≤ (4 +
√
2)
√
qA2

−k/4 =: µ1. (5)

Since k is superlogarithmic, and qA = qH + qP is polynomially bounded, we have
that µ1 is negligible.

With those definitions, we have that

Plhs = Pr[b = 1 : Game 3i+1] (6)

because x‖com ← AC(), ch := H(x‖com) together with the steps resp ←
P 2,class
Σ (x,w, ch) and π := com‖resp executed by AH2 compute what PFS would

compute,16 hence the (i+ 1)-st query is exactly what it would be in Game 3i+1.
15 Note that AH0 has both ρ and the security parameter η hardcoded. This is no problem

in the present case because Theorem 4 does not need AH0 , AC , AH2 to be efficient.
16 The case that AC() outputs η random bits when (x,w) /∈ R does not occur since A

queries the prover only with (x,w) ∈ R by Definition 8, and hence AH0 only chooses
x,w with (x,w) ∈ R.
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And we have that
Prhs = Pr[b = 1 : Game 3i] (7)

because x‖com ← AC(), ch
$← {0, 1}`ch

, H(x‖com) := ch, together with the
steps resp ← P 2,class

Σ (x,w, ch) and π := com‖resp executed by AH2 compute
what P ∗ would compute, hence the i-st query is exactly what it would be in
Game 3i.

From (5)–(7), we have (for all i and η):∣∣Pr[b = 1 : Game 3i+1]− Pr[b = 1 : Game 3i]
∣∣ ≤ µ1 (8)

Furthermore, we have that

Pr[b = 1 : Game 30] = Pr[b = 1 : Game 2]

and Pr[b = 1 : Game 3qP ] = Pr[b = 1 : Game 1]
(9)

by definition of the involved games. (For the second equality, we use that AH,P
′

makes at most qP queries to P ′.)
Thus we have∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 2]

∣∣
(9)
=
∣∣Pr[b = 1 : Game 3qP ]− Pr[b = 1 : Game 30]

∣∣
≤
qP−1∑
i=0

∣∣Pr[b = 1 : Game 3i+1]− Pr[b = 1 : Game 3i]
∣∣

(8)

≤
qP−1∑
i=0

µ1 = qPµ1 =: µ2. (10)

Since µ1 is negligible and qP is polynomially bounded, µ2 is negligible.

Game 4 b← AH,P
∗∗
(ρ) with the following oracle P ∗∗:

P ∗∗(x,w) runs: com ← P 1
Σ(x,w), ch

$← {0, 1}`ch

, resp ← P 2
Σ(x,w, ch), if

VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch. Then it returns π := com‖resp.

By assumption, Σ has completeness. Furthermore, A never queries
(x,w) /∈ R from P ∗∗ (see Definition 8). Thus with overwhelming probability,
VΣ(x, com, ch, resp) = 1 holds in each query to P ∗∗. Thus with overwhelming
probability, the condition VΣ(x, com, ch, resp) = 1 in the if-statement is satisfied
in each invocation of P ∗∗, and P ∗∗ performs the same steps as P ∗. Thus for some
negligible µ3 we have∣∣Pr[b = 1 : Game 2]− Pr[b = 1 : Game 4]

∣∣ ≤ µ3. (11)

Let SFS be as in Figure 1.

Game 5 b← AH,S
′
FS . (Here S′FS (x,w) runs SFS (x), analogous to S′ in Defini-

tion 8.)
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By definition, P ∗∗(x,w) performs the following steps:
– com ← P 1

Σ(x,w), ch ← {0, 1}`ch

, resp ← P 2
Σ(x,w, ch), if

VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch.
In constract, S′FS performs:
– (com, ch, resp)← SΣ(x), if VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch.

By definition of honest-verifier zero-knowledge, (com, ch, resp) as chosen in the
first item is indistinguishable by a quantum-polynomial-time algorithm from
(com, ch, resp) as chosen second item, assuming (x,w) ∈ R. (And (x,w) ∈
R is guaranteed since by Definition 8, A only queries (x,w) ∈ R from the
prover/simulator.) A standard hybrid argument then shows that no quantum-
polynomial-time adversary can distinguish oracle access to P ∗∗ from oracle access
to S′FS . Hence ∣∣Pr[b = 1 : Game 4]− Pr[b = 1 : Game 5]

∣∣ ≤ µ4 (12)

for some negligible µ4.
Altogether, we have∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 5]

∣∣(10)–(12)≤ µ2 + µ3 + µ4.

Since µ2, µ3, and µ4 are negligible, so is µ2 +µ3 +µ4. Thus (1) from Definition 8
is negligible. This shows that SFS is a simulator as required by Definition 8, thus
Fiat-Shamir is zero-knowledge. �

5.3 Soundness

Theorem 15. Assume that Σ has statistical soundness. Then the Fiat-Shamir
proof system (PFS , VFS ) is sound.

It may seem surprising that we need an information-theoretical property (sta-
tistical soundness ofΣ) to get a computational property (soundness of (PFS , VFS )).
Might it not be sufficient to assume that Σ has computational soundness (or the
somewhat stronger, computational special soundness)? Unfortunately, [2] shows
that (relative to certain oracles), there is a sigma-protocol Σ with computational
special soundness such that (PFS , VFS ) is not sound. So, we cannot expect Theo-
rem 15 to hold assuming only computational special soundness, at least not with
a relativizing proof.17

The proof is based on the following observation: To produce a fake Fiat-Shamir
proof, the adversary needs to find an input (x, com) to the random oracle H such
that ch := H(x‖com) is a challenge for which there exists a valid response. We
call such a challenge promising. (Additionally, the adversary needs to also find
that response, but we do not make use of that fact.) So, to show that forging a
17 [2] leaves the possibility of a relativizing proof that Fiat-Shamir is secure if Σ has

perfectly unique responses and computational special soundness, though. But then we
have another information-theoretical assumption, namely perfectly unique responses.
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proof is hard, we need to show that outputs of H that are promising are hard
to find. Since the sigma-protocol has statistical soundness, there cannot be too
many promising challenges (otherwise, an unlimited adversary would receive a
promising challenge with non-negligible probability, compute the corresponding
response, and break the statistical soundness of the sigma-protocol). By reduction
to existing bounds on the quantum hardness of search in a random function, we
then show that finding a promising challenge in H is hard.

Proof of Theorem 15. In this proof, we will in most places omit the security
parameter η for readability. (E.g., we write `ch instead of `ch

η and SΣ(x) instead
of SΣ(η, x).) It is to be understood that this is merely a syntactic omission, the
variables and algorithms still depend on η.

Let x ∈ {0, 1}`x , com ∈ {0, 1}com . We call a ch ∈ {0, 1}`ch

promising for
(x, com) iff there exists a resp ∈ {0, 1}`resp

such that VΣ(x, com, ch, resp) = 1.

Claim 1 There is a negligible µ such that for any x ∈ {0, 1}`x \ LR and any
com ∈ {0, 1}`com

, there exist at most µ2`
ch

promising ch.

Since Σ has statistical soundness, by definition (Definition 6) there exists a
negligible function µ such that for all x /∈ LR, all com ∈ {0, 1}`

com

, and all A, we
have:

Pr[VΣ(x, com, ch, resp) = 1 : ch
$← {0, 1}`

ch

, resp ← A(x, com, ch)] ≤ µ. (13)

Let A be the adversary that, given (x, com, ch) outputs some resp with
VΣ(x, com, ch, resp) = 1 if it exists, and an arbitrary output otherwise.
That is, whenever ch is promising for (x, com), A outputs resp such that
VΣ(x, com, ch, resp) = 1. For any x, com, let promx,com denote the number
of promising ch. Then for all x /∈ LR and all com ∈ {0, 1}`com

, we have

promx,com = 2`
ch

Pr[ch is promising for (x, com) : ch
$← {0, 1}`

ch

]

≤ 2`
ch

Pr[VΣ(x, com, ch, resp) = 1 : ch
$← {0, 1}`

ch

, resp ← A(x, com, ch)]
(13)

≤ 2`
ch

µ.

This shows the claim.
We now define an auxiliary distribution D on functions f : {0, 1}`x+`com →

{0, 1}`ch

as follows: For each x, com, let f(x‖com) be an independently cho-
sen uniformly random promising ch. If no promising ch exists for (x, com),
f(x‖com) := 0`

ch

.
Let A be a quantum-polynomial-time adversary that breaks the soundness of

Fiat-Shamir given some initial state ρ. That is, δ is non-negligible where

δ := Pr[okV = 1 ∧ x /∈ LR : (x, com‖resp)← AH(ρ), okV ← V HFS (x, com‖resp)].

By definition of VFS , we have that okV = 1 implies that VΣ(x, com, ch, resp) = 1
where ch := H(x‖com). In particular, ch = H(x‖com) is promising for (x, com).
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Thus, if okV = 1∧ x /∈ LR then f(x‖com) = H(x‖com) with probability at least
1/(µ2`

ch

) for f ← D. Hence for uniformly random H,

Pr[f(x‖com) = H(x‖com) : (x, com‖resp)← AH(ρ)] ≥ δ

µ2`ch . (14)

Let BH(ρ) perform the following steps: It defines H ′(x‖com) := H(x‖com)⊕
f(x‖com). It invokes (x, com‖resp)← AH

′
(ρ). It returns x‖com.

Let q be a polynomial upper bound for the number of queries performed
by A. Although B may not be quantum-polynomial-time (f may not be efficiently
computable),B performs only q queries since each query toH ′ can be implemented
using one query to H.18

If H is uniformly random, then H ′ is uniformly random. Thus by (14),
H ′(x‖com) = f(x‖com) with probability ≥ 2−`

ch

δ/µ. Thus H(x‖com) = 0`
ch

with probability ≥ 2−`
ch

δ/µ. In other words, B finds a zero-preimage of H with
probability ≥ 2−`

ch

δ/µ. By Lemma 5, this implies that 2−`
ch

δ/µ ≤ 32 · 2−`ch ·
(q + 1)2. Hence δ ≤ 32µ · (q + 1)2. Since q is polynomially bounded (as A is
quantum-polynomial-time) and µ is negligible, we have that δ is negligible.

Since this holds for all quantum-polynomial-time A, it follows that (PFS , VFS )
is sound. �

5.4 Simulation-soundness

We give two theorems on simulation-soundness, depending on whether the sigma-
protocol has unique responses or not.

Theorem 16 (Fiat-Shamir is weakly simulation-sound). Assume that Σ
has statistical soundness.

Then the Fiat-Shamir proof system (PFS , VFS ) is weakly simulation-sound
with respect to the simulator SFS from Figure 1.

Proof. In this proof, we will in most places omit the security parameter η for
readability. (E.g., we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).)
It is to be understood that this is merely a syntactic omission, the variables
and algorithms still depend on η. For brevity, we will also omit the choosing of
the random oracle H from all games. That is, every game implicitly starts with
H

$← Fun(`in , `out).
Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let

qH and qP denote polynomial upper bounds on the number of queries performed
by A to the random oracle H and the prover/simulator, respectively. We need
to show that (3) holds with V := VFS and S := SFS for some negligible µ. For

18 To implement the unitary UH′ : |a‖b〉 7→ |a‖(b ⊕ H ′(a))〉, B first invokes UH :
|a‖b〉 7→ |a‖(b⊕H(a))〉 by using the oracle H, and then Uf : |a‖b〉 7→ |a‖(b⊕ f(a))〉
which B implements on its own.
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this, we transform the game from (3) using a sequence of games until we reach
a game where the adversary has a negligible success probability. The following
game encodes the game from (3): (We write com‖resp instead of π to be able to
explicitly refer to the two components of π.)

Game 1 (Real world) SA ← ρ. x‖com‖resp ← AH,SFS (SA). okV ←
V
Hfinal

FS (x, com‖resp). win :=
(
okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries

)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal

to the value of H after it has been reprogrammed by SFS . (See Definition 10.)
We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ x /∈ S-queries =⇒ V HFS (x, com‖resp) = 1. (15)

Assume for contradiction that (15) does not hold, i.e., that V Hfinal

FS (x, com‖resp) =
1 and x /∈ S-queries, but V HFS (x, com‖resp) = 0 in some execution of Game 1.
Since V HFS queries H only for input x‖com, this implies that Hfinal(x‖com) 6=
H(x‖com). Since H is only reprogrammed by invocations of SFS , H(x‖com)
must have been reprogrammed by SFS . Consider the last query to SFS that
programmed H(x‖com) (in case there are several). By construction of SFS , that
query had input x, in contradiction to x /∈ S-queries. Thus our assumption that
(15) does not hold was false. Thus (15) follows.

We now consider a variant of Game 1 where the verifier in the end gets access
to H instead of Hfinal . (That is, we can think of H being reset to its original
state without the simulator’s changes.)

(In this and the following games, we will not need to refer to com and resp
individually any more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H) SA ← ρ. x‖π ← AH,SFS (SA). okV ← V HFS (x, π).
win :=

(
okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries

)
.

By (15), we get

Pr[win : Game 2] ≥ Pr[win : Game 1]. (16)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 2] ≥ Pr[win : Game 2].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an
execution of AH,SFS (SA). Note that SFS can program the random oracle H. In
order to simulate this, BH keeps track of the assignments assS made by SFS , and
then provides A with the oracle H(assS) (i.e., H reprogrammed according to the
assignment-list assS) instead of H. Then BH(SA) will have the same distribution
of outputs as AH,SFS (SA). (But of course, any reprogramming of H performed
by the SFS simulated by B will not have any effect beyond the execution of B.
That is, the function H before and after the invocation of BH will be the same.)
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By construction of B (and because VFS gets access to H and not Hfinal in
(16)), we then have

Pr[win : Game 3] = Pr[okV = 1 ∧ x /∈ LR : Game 2].

Game 3 (Adversary B) SA ← ρ. x‖π ← BH(SA). okV ← V HFS (x, π). win :=(
okV = 1 ∧ x /∈ LR

)
.

By Theorem 15, (PFS , VFS ) is sound. Furthermore, since A and SFS are
quantum-polynomial-time, B is quantum-polynomial-time. Thus by definition of
soundness (Definition 9), there is a negligible µ such that

Pr[win : Game 3] ≤ µ.

Combining the inequalities from this proof, we get Pr[win : Game 1] ≤ µ+ µ′.
And µ+ µ′ is negligible. Since Game 1 is the game from the definition of weak
simulation soundness (Definition 10) for (PFS , VFS ), and since A was an arbitrarily
quantum-polynomial-time oracle algorithm, it follows that (PFS , VFS ) is weakly
simulation-sound. �

If we add another assumption about the sigma-protocol, we even can get
(non-weak) simulation-soundness:

Theorem 17 (Fiat-Shamir is simulation-sound). Assume that Σ has sta-
tistical soundness and unique responses.

Then the Fiat-Shamir proof system (PFS , VFS ) is simulation-sound with re-
spect to the simulator SFS from Figure 1.

Unique responses are necessary in this theorem. As pointed out in [11], if
Σ does not have unique responses, it cannot be simulation-sound, even in the
classical case. Namely, if we do not require unique responses, it could be that
whenever (com, ch, resp‖0) is a valid proof in Σ, so is (com, ch, resp‖1), and
vice versa. Thus any valid Fiat-Shamir proof com‖(resp‖0) could be efficiently
transformed into another valid Fiat-Shamir proof com‖(resp‖1) for the same
statement. This would contradict the simulation-soundness of (PFS , VFS ).

Proof. In this proof, we will in most places omit the security parameter η for
readability. (E.g., we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).)
It is to be understood that this is merely a syntactic omission, the variables
and algorithms still depend on η. For brevity, we will also omit the choosing of
the random oracle H from all games. That is, every game implicitly starts with
H

$← Fun(`in , `out).
Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let

qH and qP denote polynomial upper bounds on the number of queries performed
by A to the random oracle H and the prover/simulator, respectively. We need
to show that (2) holds with V := VFS and S := SFS for some negligible µ. For
this, we transform the game from (2) using a sequence of games until we reach
a game where the adversary has a negligible success probability. The following
game encodes the game from (2): (We write com‖resp instead of π to be able to
explicitly refer to the two components of π.)
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Game 4 (Real world) SA ← ρ. x‖com‖resp ← AH,SFS (SA). okV ←
V
Hfinal

FS (x, com‖resp). win :=
(
okV = 1 ∧ x /∈ LR ∧ (x, com‖resp) /∈ S-queries

)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal

to the value of H after it has been reprogrammed by SFS . (See Definition 10.)
We define a variant of the random variable S-queries. Let S-queries∗ be the list

of all SFS -queries (x′, com ′‖resp′, ch ′) where x′ was the input to SFS , com ′‖resp′
was the response of SFS , and ch ′ was the value of H(x′‖com ′) right after the
query to SFS . (Note that H(x′‖com ′) may change later due to reprogramming.)
Notice that the only difference between S-queries and S-queries∗ is that in the
latter, we additionally track the values ch ′ = H(x′‖com ′).

Let RespConflict denote the event that VΣ(x, com, Hfinal(x‖com), resp) = 1
and that there is a query (x′, com ′‖resp′, ch ′) ∈ S-queries with x′ = x, com ′ =
com, ch ′ = Hfinal(x‖com), and resp′ 6= resp and VΣ(x, com, ch ′, resp′) = 1.

Since Σ has unique responses, it follows that

Pr[RespConflict : Game 4] ≤ µ′

for some negligible µ′. (Otherwise, we could construct an adversary that
simulates Game 4, and then searches for (x, com‖resp′, ch) ∈ S-queries with
VΣ(x, com, ch, resp

′) = 1 and resp′ 6= resp.)
Thus ∣∣∣Pr[win : Game 4]− Pr[win ∧ ¬RespConflict : Game 4]

∣∣∣ ≤ µ′.
We now show that in Game 4, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ (x, com‖resp) /∈ S-queries ∧ ¬RespConflict

=⇒ V HFS (x, com‖resp) = 1. (17)

Assume for contradiction that (17) does not hold, i.e., that V Hfinal

FS (x, com‖resp) =
1 and (x, com‖resp) /∈ S-queries and ¬RespConflict, but V HFS (x, com‖resp) = 0
in some execution of Game 4. Since V HFS queries H only for input x‖com, this
implies that Hfinal(x‖com) 6= H(x‖com). Since H is only reprogrammed by
invocations of SFS , H(x‖com) must have been reprogrammed by SFS . Consider
the last query to SFS that programmed H(x‖com) (in case there are several). By
construction of SFS , that query had input x, and returns (com, resp′) for some
resp′. In particular, (x, com‖resp′) ∈ S-queries. Let ch be the challenge chosen by
SFS in that query. Then (x, com‖resp′, ch) ∈ S-queries∗. By construction of SFS ,
we have VΣ(x, com, ch, resp′) = 1 (else H would not have been reprogrammed
in that query) and Hfinal(x‖com) = ch (because we are considering the last
SFS -query that programmed H(x‖com)). Since (x, com‖resp) /∈ S-queries and
(x, com‖resp′) ∈ S-queries, we have resp 6= resp′. Since V Hfinal

FS (x, com‖resp) = 1
and ch = Hfinal(x‖com), we have that VΣ(x, com, ch, resp) = 1 by definition of
VFS . Summarizing, we have VΣ(x, com, ch, resp) = 1 and ch = Hfinal (x‖com) and
VΣ(x, com, ch, resp

′) = 1 and (x, com‖resp′, ch) ∈ S-queries∗ and resp 6= resp′.

21



By definition of RespConflict, this contradicts ¬RespConflict. Thus our assumption
that (17) does not hold was false. Thus (17) follows.

We now consider a variant of Game 4 where the verifier in the end gets access
to H instead of Hfinal . (That is, we can think of H being reset to its original
state without the simulator’s changes.)

(In this and the following games, we will not need to refer to com and resp
individually any more, so we just write π instead of com‖resp.)

Game 5 (Unchanged H) SA ← ρ. x‖π ← AH,SFS (SA). okV ← V HFS (x, π).
win :=

(
okV = 1 ∧ x /∈ LR ∧ (x, π) /∈ S-queries

)
.

By (17), we get

Pr[win : Game 5] ≥ Pr[win ∧ ¬RespConflict : Game 4]. (18)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 5] ≥ Pr[win : Game 5].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an
execution of AH,SFS (SA). Note that SFS can program the random oracle H. In
order to simulate this, BH keeps track of the assignments assS made by SFS , and
then provides A with the oracle H(assS) (i.e., H reprogrammed according to the
assignment-list assS) instead of H. Then BH(SA) will have the same distribution
of outputs as AH,SFS (SA). (But of course, any reprogramming of H performed
by the SFS simulated by B will not have any effect beyond the execution of B.
That is, the function H before and after the invocation of BH will be the same.)

By construction of B (and because VFS gets access to H and not Hfinal in
(18)), we then have

Pr[win : Game 6] = Pr[okV = 1 ∧ x /∈ LR : Game 5].

Game 6 (Adversary B) SA ← ρ. x‖π ← BH(SA). okV ← V HFS (x, π). win :=(
okV = 1 ∧ x /∈ LR

)
.

By Theorem 15, (PFS , VFS ) is sound. Furthermore, since A and SFS are
quantum-polynomial-time, B is quantum-polynomial-time. Thus by definition of
soundness (Definition 9), there is a negligible µ such that

Pr[win : Game 6] ≤ µ.

Combining the inequalities from this proof, we get Pr[win : Game 4] ≤ µ+µ′. And
µ+ µ′ is negligible. Since Game 4 is the game from Definition 10 for (PFS , VFS ),
and since A was an arbitrarily quantum-polynomial-time oracle algorithm, it
follows that (PFS , VFS ) is simulation-sound. �
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6 Signatures

Originally, Fiat-Shamir was constructed as a signature scheme [12]. Only later,
[5] used the same idea to construct a non-interactive zero-knowledge proof. The
fact that Fiat-Shamir gives rise to a secure signature scheme can be seen as
a special case of its properties as a proof system. Namely, any non-interactive
zero-knowledge proof system with simulation-sound extractability can be used as
a signature scheme. In the quantum setting, [26] showed that their construction
of simulation-sound extractable non-interactive proofs gives rise to a signature
scheme in the same way. However, this approach does not show that Fiat-Shamir
gives rise to a secure signature scheme because we are not able to prove that
Fiat-Shamir is extractable. For analyzing Fiat-Shamir, we show under which
conditions a simulation-sound zero-knowledge non-interactive proof system gives
rise to a signature scheme. Combined with our results from Section 5, this implies
security for Fiat-Shamir based signatures.

The basic idea of the construction of signatures from non-interactive proof
systems (e.g., Fiat-Shamir) is the following: To sign a message m, one needs to
show the knowledge of one’s secret key. Thus, we need a relation Rη between
public and secret keys, and we need an algorithm G to generate public/secret key
pairs such that it is hard to guess the secret key (a “hard instance generator”).
We formalize the definition below (Definition 20).

An example of a hard instance generator would be: Rη := {(x,w) : |w| =
η ∧ x = f(w)} for some quantum-one-way function f , and G picks w uniformly
from {0, 1}η, sets x := f(w), and returns (x,w).

Now a signature is just a proof of knowledge of the secret key. That is, the
statement is the public key, and the witness is the secret key. However, a signature
should be bound to a particular message. For this, we include the message m
in the statement that is proven. That is, the statement that is proven consists
of a public key and a message, but the message is ignored when determining
whether a given statement has a witness or not. (In the definition below, this is
formalized by considering an extended relation R′.) The simulation-soundness of
the proof system will then guarantee that a proof/signature with respect to one
message cannot be transformed into a proof/signature with respect to another
message because this would mean changing the statement.

A signature scheme consists of three oracle algorithms: Keys are generated
with (pk , sk) ← KeyGenH(1η). The secret key sk is used to sign a message m
using the signing algorithm σ ← SignH(1η, sk ,m) to get a signature σ. And the
signature is considered valid iff VerifyH(1η, pk , σ,m) = 1.

An instance generator for a relation Rη is an algorithm G such that G(1η)
outputs (x,w) ∈ Rη with overwhelming probability.

We now describe how to use a simulation-sound zero-knowledge protocol (e.g.,
Fiat-Shamir) to construct a signature scheme:

Definition 18 (Signatures from non-interactive proofs). Let G be an in-
stance generator for a relation Rη. Fix a length `mη . Let R′η := {(x‖m,w) :
|m| = `mη ∧ (x,w) ∈ Rη}. Let (P, V ) be a non-interactive proof system for

23



R′η (in the random oracle model). Then we construct the signature scheme
(KeyGen,Sign,Verify) with message space {0, 1}`

m
η as follows:

– KeyGenH(1η): Pick (x,w) ← G(1η). Let pk := x, sk := (x,w). Return
(pk , sk).

– SignH(1η, sk ,m) with sk = (x,w): Run σ ← PH(1η, x‖m,w). Return σ.
– VerifyH(1η, pk , σ,m) with pk = x: Run ok ← V H(1η, x‖m,σ). Return ok .

Note that we use a proof system for the relation R′η instead of Rη. However,
in most cases (including Fiat-Shamir) it is trivial to construct a proof system
for R′η given one for Rη. This is because any sigma-protocol for Rη is also a
sigma-protocol for R′η.19 The only reason why we need to use R′η is that we want
to include the message m inside the statement (without logical significance), and
R′η allows us to do precisely that. (In the case of Fiat-Shamir, the overall effect
will simply be to include m in the hash, see Definition 22.)

The security property we will prove is unforgeability. Unforgeability comes in
two variants: weak unforgeability that ensures that the adversary cannot forge a
signature for a message that has not been signed before, and strong unforgeability
that additionally ensures that the adversary cannot even produce a different
signature for a message that has been signed before. (Weak unforgeability is often
just called unforgeability.) The definitions are standard, we include them here
for completeness:

Definition 19 (Strong/weak unforgeability). A signature scheme
(KeyGen,Sign,Verify) is strongly unforgeable iff for all polynomial-time oracle
algorithms A there exists a negligible µ such that for all η, we have

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries :

H ← Fun(`inη , `
out
η ), (pk , sk)← KeyGenH(1η),

(σ∗,m∗)← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ µ(η). (19)

Here Sig is a classical20 oracle that upon classical input m returns
SignH(1η, sk ,m). (But queries to H are quantum.) And Sig-queries is the list
of all queries made to Sig. (I.e., when Sig is queried with m and σ, (m,σ) is
added to the list Sig-queries.) And `inη , `out

η denote the input/output length of the
random oracle used by the signature scheme.

We call (KeyGen,Sign,Verify) weakly unforgeable if the above holds with the
following instead of (19), where Sig-queries contains only the query inputs made
to Sig (i.e., m instead of (m,σ)):

Pr[ok = 1 ∧m∗ /∈ Sig-queries : H ← Fun(`inη , `
out
η ), (pk , sk)← KeyGenH(1η),

(σ∗,m∗)← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ µ(η).

In [26], a hard instance generator was defined as an algorithm that outputs a
statement/witness pair such that it is hard on average to find a valid witness given
19 This is made formal by the construction of Σ′ in the proof of Corollary 23.
20 Formally, this means that Sig measures its input at the beginning of the each query.
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only the statement. However, since we will do not assume a proof system with
extractability, we need a stronger variant of this definition: A dual-mode hard
instance generator requires more. While a hard instance generator requires that
is it hard to find a witness for x, a dual-mode hard instance generator requires
that it is hard to distinguish whether x even has a witness. In other words, we
should not be able to distinguish x as returned by G from x∗ as returned by an
algorithm G∗ that returns statements that do not have a witness (except with
negligible probability). Formally:

Definition 20 (Dual-mode hard instance generator).We call an algorithm
G a dual-mode hard instance generator for a fixed-length relation Rη iff
– G is quantum-polynomial-time, and
– there is a negligible µ such that for every η, Pr[(x,w) ∈ Rη : (x,w) ←
G(1η)] ≥ 1− µ(η), and

– for all quantum-polynomial-time algorithm A, there is a quantum-polynomial-
time algorithm G∗ and negligible µ1, µ2 such that for all η,∣∣∣Pr[b = 1 : (x,w)← G(1η), b← A(1η, x)]

− Pr[b = 1 : x← G∗(1η), b← A(1η, x)]
∣∣∣ ≤ µ1(η).

and
Pr[x ∈ LR : x← G∗(1η)] ≤ µ2(η).

Note that we allow G∗ to depend on A. This is a slightly weaker requirement
than requiring a universal G∗. We chose the weaker variant because it is sufficient
for our proof below.

An example of a dual-mode hard instance generator is: Let Rη := {(x,w) :
|w| = η ∧ x = F (w)} for some quantum pseudorandom generator F : {0, 1}η →
{0, 1}2η, and G picks w uniformly from {0, 1}η, sets x := F (w), and returns (x,w).
The conditions from Definition 20 are satisfied for G∗ which returns x $← {0, 1}2η.

With this definition, we can state the main results of this section, namely
the strong (weak) unforgeability of signatures constructed from non-interactive
zero-knowledge proof systems that are (weakly) simulation-sound:

Theorem 21 (Unforgeability from simulation-soundness). Fix a relation
Rη. Let R′η be defined as in Definition 18. If (P, V ) is zero-knowledge and
simulation-sound (weakly simulation-sound) for R′η, and G is a dual-mode hard
instance generator for Rη, then the signature scheme (KeyGen,Sign,Verify) from
Definition 18 is strongly unforgeable (weakly unforgeable).

The proof is given in Section 6.1 below.

Fiat-Shamir. The two preceding theorems are formulated for generic simulation-
sound zero-knowledge proof systems. By specializing Theorem 21 to the case
that (P, V ) is the Fiat-Shamir proof system, we get a signature scheme based on
a dual-mode hard instance generator and a zero-knowledge sigma-protocol with
statistical soundness. The resulting signature scheme is the following:
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Definition 22 (Fiat-Shamir signatures). Let G be an instance generator
for a relation Rη. Fix a length `mη . Then we construct the signature scheme
(KeyGen,Sign,Verify) with message space {0, 1}`

m
η as follows:

– KeyGenH(1η): Pick (x,w) ← G(1η). Let pk := x, sk := (x,w). Return
(pk , sk).

– SignH(1η, sk ,m) with sk = (x,w): com ← P 1
Σ(1

η, x, w). resp ←
P 2
Σ(1

η, x, w,H(x‖m‖com)). Return σ := com‖resp.
– VerifyH(1η, pk , σ,m) with pk = x and σ = com‖resp: Run ok ←
VΣ(1

η, x, com, H(x‖m‖com), resp). Return ok .

Corollary 23 (Fiat-Shamir signatures). Assume that Σ is honest-verifier
zero-knowledge, has completeness, has unpredictable commitments, and has sta-
tistical soundness for Rη, and that `ch

η is superlogarithmic. Assume that G is a
dual-mode hard instance generator for Rη.

Then the signature scheme (KeyGenFS ,SignFS ,VerifyFS ) from Definition 22
is weakly unforgeable.

If Σ additionally has unique responses, the signature scheme is strongly
unforgeable.

Proof. Let Σ′ be the following sigma-protocol for R′: The message lengths
`com
η , `ch

η , `
resp
η are the same as for Σ. For x ∈ {0, 1}`

x
η , m ∈ {0, 1}`

m
η , the

prover P 1
Σ′(1

η, (x‖m), w) runs P 1
Σ(1

η, x, w), and P 2
Σ′(1

η, (x‖m), w, ch) runs
P 2
Σ(1

η, x, w, ch). And VΣ′(1η, x‖m, com, ch, resp) runs VΣ(1η, x, com, ch, resp).
It is easy to check that Σ′ is honest-verifier zero-knowledge, has completeness,

has unpredictable commitments, and has statistical soundness for R′η. (Using the
fact that Σ has these properties for Rη.) And `ch is superlogarithmic.

We apply the Fiat-Shamir construction (Definition 11) to Σ′. The resulting
proof system (PFS , VFS ) is zero-knowledge and weakly simulation-sound for R′η by
Theorems 14 and 16. Then we apply the construction of signatures (Definition 18)
to (PFS , VFS ) and G. By Theorem 21, the resulting signature scheme S is weakly
unforgeable.

Finally, notice that this signature scheme S is the signature scheme from
Definition 22. (By explicitly instantiating the constructions from Definition 11
and Definition 18 and the definition of Σ′.)

If Σ additionally has unique responses, then Σ′ also has unique responses.
Thus by Theorem 17, (PFS , VFS ) is simulation-sound. Hence by Theorem 21, S
is strongly unforgeable. �

6.1 Security proof

Proof of Theorem 21. We prove the case of strong unforgeability (assuming
simulation-soundness). The case of weak unforgeability is proven almost iden-
tically, we just have to replace all occurrences of (m∗, σ∗) /∈ Sig-queries by
m∗ /∈ Sigqueries and (x∗, π∗) /∈ S-queries by x∗ /∈ S-queries.
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In this proof, we will in many places omit the security parameter η for readabil-
ity. (E.g., we write `m instead of `mη and Sign(sk ,m) instead of Sign(1η, sk ,m).)
It is to be understood that this is merely a syntactic omission, the variables and
algorithms still depend on η.

In the following, H will always denote a uniformly random function from
Fun(`in , `out). That is, every game written below implicitly starts with H

$←
Fun(`in , `out).

Fix a polynomial-time oracle algorithm A. By definition of strong unforge-
ability (Definition 19), we need to show

Pr[win = 1 : Game 1] ≤ µ(η)

for some negligible µ and the following game:

Game 1 (Unforgeability) (pk , sk) ← KeyGenH(), (σ∗,m∗) ← AH,Sig(pk),
ok ← VerifyH(pk , σ∗,m∗). win := (ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries).

We will transform this game in several steps. First, we inline the definitions
of Sig (Definition 19) and KeyGen, Sign, and Verify (Definition 18). This leads
to the following game:

Game 2 (x,w) ← G(1η). (x∗, π∗) ← BH,P
H

(x,w). ok ← V H(x∗, π∗). win :=
(ok = 1 ∧ (x∗, π∗) /∈ S-queries).

Here B is a polynomial-time oracle algorithm that runs A with input pk := x,
and that, whenever A queries Sig with input m, invokes PH with input (x‖m,w)
instead. And when A returns some (m∗, σ∗), then B returns (x∗, π∗) with x∗ :=
x‖m∗ and π∗ := σ∗. And S-queries is the list of queries made to PH . More
precisely, when PH is invoked with (x′, w′) and responds with π′, then (x′, π′) is
appended to S-queries.

We then have:

Pr[win = 1 : Game 1] = Pr[win = 1 : Game 2]

We now use the zero-knowledge property of (P, V ). Let S be the simulator
whose existence is guaranteed by Definition 8. Let S′ be the oracle that on input
(x,w) ∈ R′ runs S(x) and returns the latter’s output (as in Definition 8).

Then ∣∣∣Pr[win = 1 : Game 2]− Pr[win = 1 : Game 3]
∣∣∣ ≤ µ1

for some negligible µ1, and with the following game:

Game 3 (x,w) ← G(1η). (x∗, π∗) ← BH,S
′H
(x,w). ok ← V Hfinal (x∗, π∗).

win := (ok = 1 ∧ (x∗, π∗) /∈ S-queries).

Here Hfinal is as in Definition 10, i.e., the value of the random oracle H after it
has been reprogrammed by S.

By x ≤ x∗, we mean that x consists of the first `x bits of x∗. (I.e., x∗ = x‖m
for some m.)
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Game 4 (x,w) ← G(1η). (x∗, π∗) ← BH,S
′H
(x,w). ok ← V Hfinal (x∗, π∗).

win := (ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since B by construction always outputs x∗ = x‖m∗, we have

Pr[win = 1 : Game 3] = Pr[win = 1 : Game 4].

Let CH,S
H

(x) be a polynomial-time oracle algorithm that runs A with input
pk := x, and that, whenever A queries Sig with input m, instead invokes SH
with input x‖m. And when A returns some (m∗, σ∗), then C returns (x∗, π∗)
with x∗ := x‖m∗ and π∗ := σ∗.

Note that there are two differences between BH,S
′H

and CH,S
H

: First, C does
not take w as input. Second, C invokes SH instead of S′H . Since S′(x‖m,w)
invokes S(x‖m) whenever (x‖m,w) ∈ R′, B and C will differ only when
(x‖m,w) /∈ R′. By definition of R′, this happens only when (x,w) /∈ R. And this,
in turn, happens with negligible probability since (x,w) are chosen by G, and G
is a dual-mode hard instance generator. Thus there exists a negligible µ2 such
that ∣∣∣Pr[win = 1 : Game 4]− Pr[win = 1 : Game 5]

∣∣∣ ≤ µ2 with

Game 5 (x,w) ← G(1η). (x∗, π∗) ← CH,S
H

(x). ok ← V Hfinal (x∗, π∗). win :=
(ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since G is a dual-mode hard instance generator, and since the computation
in Game 5 after (x,w)← G(1η) is quantum-polynomial-time21 and does not use
w, we have (by Definition 20) that there exists a quantum-polynomial-time G∗
and a negligible µ3 such that:∣∣∣Pr[win = 1 : Game 5]− Pr[win = 1 : Game 6]

∣∣∣ ≤ µ3 with

Game 6 x← G∗(1η). (x∗, π∗)← CH,S
H

(x). ok ← V Hfinal (x∗, π∗). win := (ok =
1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since G∗ was chosen as in Definition 20, we have that x ∈ LR with some
negligible probability µ4 in Game 6. Thus∣∣∣Pr[win = 1 : Game 6]− Pr[win = 1 : Game 7]

∣∣∣ ≤ µ4 with

Game 7 x← G∗(1η). (x∗, π∗)← CH,S
H

(x). ok ← V Hfinal (x∗, π∗). win := (ok =
1 ∧ x /∈ LR ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

21 Note: to simulate the oracle H (which is a random function and thus has an exponen-
tially large value-table), we use the fact from [28] that a 2q-wise hash function cannot
be distinguished from random by a q-query adversary. This allows us to simulate H
using a 2q-wise hash function for suitable polynomially-bounded q (that may depend
on A).
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By definition of R′, we have that x /∈ LR ∧ x ≤ x∗ =⇒ x∗ /∈ LR. Thus

Pr[win : Game 7] ≤ Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7].

Since (P, V ) is simulation-sound (Definition 10), and “x← G∗(1η). (x∗, π∗)←
CH,S

H

(x)” can be executed by a quantum-polynomial-time oracle algorithm with
oracle access to H and SH , we have that there is a negligible µ5 such that

Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7] ≤ µ5.

Combining all inequalities from this proof, we get that

Pr[win : Game 1] ≤ µ1 + · · ·+ µ5 =: µ.

The function µ is negligible since µ1, . . . , µ5 are. Since A was arbitrary and
quantum-polynomial-time, and Game 1 is the game from Definition 19, it follows
that (KeyGen,Sign,Verify) is strongly unforgeable. �
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