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Abstract. We construct the most e�cient known pairing-based NIZK
shu�e argument. It consists of three subarguments that were carefully
chosen to obtain optimal e�ciency of the shu�e argument:
1. A same-message argument based on the linear subspace QANIZK

argument of Kiltz and Wee,
2. A (simpli�ed) permutation matrix argument of Fauzi, Lipmaa, and

Zaj¡c,
3. A (simpli�ed) consistency argument of Groth and Lu.
We prove the knowledge-soundness of the �rst two subarguments in the
generic bilinear group model, and the culpable soundness of the third
subargument under a KerMDH assumption. This proves the soundness
of the shu�e argument. We also discuss our partially optimized imple-
mentation that allows one to prove a shu�e of 100 000 ciphertexts in less
than a minute and verify it in less than 1.5 minutes.

Keywords: Common reference string, generic group model, mix-net, shu�e
argument, zero knowledge

1 Introduction

Consider the case of using mix-networks [9] in e-voting, where n voters individ-
ually encrypt their vote using a blindable public-key cryptosystem and send the
encrypted votes to a bulletin board. After the vote casting period ends, the �rst
mix-server gets all encrypted votes from the bulletin board. The mix-servers are
ordered sequentially, creating a mix-network, and it is assumed that some of
them are honest. The kth mix-server obtains input ciphertexts (Mi)

n
i=1, shu�es

them, and sends the resulting ciphertext tuple (M′i)
n
i=1 to the next mix-server.

Shu�ing means that the mix-server generates a random permutation σ ←r Sn
and a vector t of randomizers, and sets M′i = Mσ(i) + Encpk(0; ti).

4

If at least one of the mix-servers behaves honestly, the link between a voter
and his votes is completely hidden. However, in the malicious model, a corrupt
mix-server can do an incorrect shu�e, resulting in a set of decrypted votes that

4 Throughout this paper, we use additive notation combined with the bracket notation
of [13]. We also denote group elements by using the Fraktur script as in Mi or 0.
Thus, adding Encpk(0; ti) results in a blinded version of Mσ(i).



do not re�ect the original voters' votes. Hence there needs to be some additional
steps to achieve security against corruption.

The cryptographically prudent way to proceed is to get each mix-server to
prove in zero-knowledge [18] that her shu�e was done correctly. The result-
ing proof is known as a (zero-knowledge) shu�e argument. Based on earlier
work [25,34], in CT-RSA 2016, Fauzi and Lipmaa (FL, [14]) proposed the then
most e�cient shu�e argument in the common reference string (CRS, [8]) model
in terms of prover's computation.5 Importantly, the FL shu�e argument is based
on the standard Elgamal cryptosystem. The culpable soundness [25,26] of the FL
shu�e argument is proven under a knowledge assumption [10] and three com-
putational assumptions. Intuitively, culpable soundness means that if a cheating
adversary produces an invalid shu�e (yet accepted by the veri�er) together with
the secret key, then one can break one of the underlying knowledge or compu-
tational assumptions.

While the FL shu�e argument is quite e�cient for the prover, it is quite
ine�cient for the veri�er. More precisely, while the prover's online cost is only
dominated by 4n exponentiations in G1, the veri�er's online cost is dominated by
8n pairings. (See Tbl. 1.) Depending on the concrete implementation, a pairing
can be up to 8 times slower than a G1 exponentiation. Such a large gap is
non-satisfactory since veri�cation time is more important in practice.

In ACNS 2016, González and Ràfols [20] proposed a new shu�e argument
that importantly relies only on standard (falsi�able) assumptions. However, they
achieve this (and e�cient computation) by allowing the CRS to be quadratically
long in n. Since in e-voting applications one could presumably have n > 220,
quadratic CRS length will not be acceptable in such applications.

In Asiacrypt 2016, Fauzi, Lipmaa and Zaj¡c (FLZ, [15]) improved on the e�-
ciency of the FL shu�e argument by proving knowledge-soundness (not culpable
soundness) in the generic bilinear group model (GBGM, [39,35]). By additionally
using batching techniques, they sped up the veri�cation time of the FL shu�e ar-
gument approximately 3.5 times and the online veri�cation time approximately
twice. Here, the precise constants depend on how e�cient operations such pair-
ings and exponentiations in di�erent groups are relative to each other; they do
not provide an implementation of their shu�e.

However, due to the construction of the FLZ argument, they need each mes-
sage to be encrypted twice, in G1 and G2. Since Elgamal cannot guarantee
security in such a case, they use the non-standard ILin cryptosystem of Escala
et al. [13]. This means that each ciphertext in this case will consist of 6 group
elements, which makes storing and transmitting them more burdensome.

This results in several concrete drawbacks. First, since the prover's online
complexity includes shu�ing the ciphertexts and uses a non-standard cryptosys-
tem (amongst other things), the prover's online complexity in the FLZ shu�e

5 Many random-oracle model shu�e arguments are known, such as [16,3,22]. We will
not provide comparisons with such arguments or discussions about the bene�ts of
the CRS vs the random oracle model. We remark that the CRS can be created by
using multi-party computation, see, e.g., [5]
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argument is more than 4 times worse (using the comparison given in [15]) than
in the FL shu�e argument. Second, since plaintexts in this shu�e argument
are elements of Zq, decryption requires computing a discrete logarithm, which
means that plaintexts must be small elements of Zq (e.g. only 40 bits long).
This rules out voting mechanisms with su�ciently complex ballots, such as the
single transferable vote. Third, the GBGM knowledge-soundness proof of this
shu�e argument means that there must exist a generic adversary that knows
the discrete logarithm of each ballot submitted by each individual voter. Such
a version of soundness (named white-box soundness in [14]) seems to be more
dubious than culpable soundness achieved by the Groth-Lu [25] and FL shu�e
arguments. (See [14] for more thorough comparison of these two soundness def-
initions.) Fourth, the CRS of this shu�e argument has public keys in both G1

and G2, which makes it more di�cult to design an e�cient shu�e or to prove its
soundness in the GBGM. Indeed, [15] used a computer algebra system to derive
knowledge-soundness of their shu�e argument.

This brings us to the main question of this paper:

Is it possible to construct a NIZK shu�e argument that shares the best
features of the FL and the FLZ shu�e arguments? That is, it would
use standard Elgamal (and in only one group), be (non-whitebox) sound,
have linear-length CRS, have prover as e�cient or better than in the FL
shu�e argument, and have veri�er as e�cient or better than in the FLZ
shu�e argument. Moreover, can one simplify (signi�cantly?) the sound-
ness proof of the FLZ shu�e argument while not losing in e�ciency?

Our Constructions. We answer the main question positively, constructing a
new pairing-based NIZK shu�e argument that is more e�cient than prior work
in essentially all parameters. As in [14], we use the Elgamal cryptosystem (with
plaintexts in G2), which means that unlike [15], compatible voting mechanisms
are not restricted by the size of the plaintext space. We construct more e�cient
subarguments, which sometimes leads to a signi�cant e�ciency gain. Since the
CRS has very few elements from G2, the new shu�e has much simpler soundness
proofs than in the case of the FLZ shu�e argument. Moreover, as in [25,14] (but
not in [34,15]), we do not give the generic adversary in our soundness proof access
to the discrete logarithms of encrypted messages. Our high-level approach in the
shu�e argument is as follows; it is similar to the approach in the FL shu�e
argument except that we use (signi�cantly) more e�cient subarguments.

We �rst let the prover choose a permutation matrix and commit separately
to its every row. The prover then proves that the committed matrix is a per-
mutation matrix, by proving that each row is a unit vector, including the last
row which is computed explicitly, see Sect. 4.2. We construct a new unit vector
argument based on the square span programs of Danezis et al. [11]; it is simi-
lar to but somewhat simpler than the 1-sparsity argument of [15]. Basically, to
show that a vector a is unit vector, we choose polynomials (Pi(X))i∈[0 .. n] that
interpolate a certain matrix (and a certain vector) connected to the de�nition
of �unit vectorness�, and then commit to a by using a version of the extended
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Pedersen commitment scheme, c =
∑n
i=1 ai[Pi(χ)]1 + r[%]1 for trapdoor values

(χ, %) and randomizer r. (This commitment scheme, though for di�erent poly-
nomials Pi(X), was implicitly used �rst by Groth [24] in EUROCRYPT 2016,
and then used in the FLZ shu�e argument; similar commitment schemes have
been used before [19,23,32].) The new unit vector argument di�ers from the cor-
responding (1-sparsity) argument in [15] by a small optimization that makes it
possible to decrease the number of trapdoor elements by one. If the unit vector
argument for each row is accepting, it follows that the committed matrix is a
permutation matrix [14]. The knowledge-soundness proof of the new unit vec-
tor argument is almost trivial, in contrast to the very complex machine-assisted
knowledge-soundness proof in [15].

We then use the same high-level idea as previous NIZK shu�e argu-
ments [25,34,14,15] to obtain a shu�e argument from a permutation matrix ar-
gument. Namely, we construct a veri�cation equation that holds tautologically
under a corresponding KerMDH [36] assumption. That is, if the permutation
matrix argument is knowledge-sound, the mentioned veri�cation equation holds,
and the KerMDH assumption holds, then the prover has used his committed
permutation matrix to also shu�e the ciphertexts.

However, as in [25,34,14,15], the resulting KerMDH assumption itself will
not be secure if we use here the same commitment scheme as before. Intuitively,
this is since the polynomials Pi(X) were carefully chosen to make the permuta-
tion matrix argument as e�cient as possible. Therefore, we de�ne an alternative
version of the extended Pedersen commitment scheme with the commitment
computed as ĉ =

∑
ai[P̂i(χ)]1 + r[%̂]1 for trapdoor values (χ, %̂) and random-

izer r. Here, P̂i(X) are well-chosen polynomials that satisfy a small number of
requirements, including that {Pi(X)P̂j(X)}1≤i,j≤n is linearly independent.

Before going on, we obviously need an e�cient argument (that we call, fol-
lowing [14], a same-message argument) to show that c and ĉ commit to the
same vector a (and use the same randomness r) while using di�erent shrink-
ing commitment schemes. We �rst write down the objective of this argument
as the requirement that ( ar ) belongs to a subspace generated by a certain ma-
trix M . After doing that, we use the quasi-adaptive NIZK (QANIZK, [28,29])
argument of Kiltz and Wee (EUROCRYPT 2015, [30]) for linear subspaces to
construct an e�cient same-message argument. Since we additionally need it to
be knowledge-sound, we give a proof in GBGM.

The new consistency argument is similar to but again more e�cient than the
consistency arguments of previous pairing-based shu�es. Here, we crucially use
the fact that neither the permutation matrix argument nor the same-message
argument add �too many� G2 elements to the CRS. Hence, while the Groth-Lu
and FL shu�e arguments require two consistency veri�cation equations, for us
it su�ces to only have one. (The Lipmaa-Zhang [34] and FLZ shu�e arguments
have only one consistency veri�cation equation, but this was compensated by
using a non-standard cryptosystem with ciphertexts of length 6.)

In fact, we generalize the consistency argument to prove that given a com-
mitted matrix E and two tuples of ciphertexts M′ and M, it holds that
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Decsk(M
′) = E ·Decsk(M). Moreover, we prove that the consistency argument is

culpably sound [25,26] under a suitable KerMDH [36] assumption, and we prove
that the concrete KerMDH assumption holds in the GBGM.

Finally, we will give a standard (i.e., non-culpable) soundness proof for the full
shu�e argument, assuming that the used commitment scheme is computationally
binding, the same-message argument and the permutation matrix argument are
knowledge-sound, and the consistency argument is culpably sound. Additionally,
as in the FLZ shu�e argument, we use batching techniques [4] to speed up
veri�cation time. However, we use batching in a more aggressive manner than
in the FLZ shu�e argument.

E�ciency Comparison. We provide the �rst implementation of a pairing-
based shu�e argument. Our implementation is built on top of the freely avail-
able libsnark library, [6]. In fact, we implement two versions of the new shu�e
argument, where in the second version we switch the roles of the groups G1 and
G2. In the �rst case we get better overall prover's computation, while in the
second case we get the most e�cient online computation for both prover and
veri�er, and overall the most e�cient veri�er.

Tbl. 1 shows a comparison between both versions of the new shu�e argument
and prior state of the art CRS-based shu�e arguments with either the best
prover's computational complexity or best veri�er's computational complexity.
Hence, we for instance do not include in this comparison table prior work by
Groth and Lu [25] or Lipmaa and Zhang [34], since their shu�e arguments are
slower than [14] and [15] in both prover's and veri�er's computation. We also
do not include the shu�e argument of González and Ràfols [20] since it has
quadratic CRS length. In each row, the argument with best e�ciency or best
security property is highlighted.

Units (the main parameter) are de�ned in Tbl. 3 in Sect. 7. One should com-
pare the number of units, which is a weighted sum of di�erent exponentiations
and pairings, and hence takes into account the fact that (say) computations in G1

and G2 take di�erent time. Moreover, this table counts separately the number of
general exponentiations, multi-exponentiations, and �xed-base exponentiations,
since the last two can be much more e�cient than general exponentiations. We
take this into account by using di�erent unit values for these three types of
exponentiations, see Tbl. 3 for the number of units required for each type of
operation. Note that we use our implementation of each operation in libsnark to
compute the number of units.

Tbl. 2 gives the running time of the new shu�e argument (without and
with switching the groups) on our test machine. As seen from this table, our
preliminary implementation enables one to prove a shu�e argument in less than
1 minute and verify it in less than 1.5 minutes for n = 100 000. After switching
the groups, the prover's online computation takes less than 15 seconds and online
veri�cation takes less than 3 minutes for n = 300 000. This means that the new
shu�e argument is actually ready to be used in practice. Sect. 7 provides more
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Table 1. A comparison of the new NIZK shu�e argument and prior work by Fauzi
and Lipmaa (FL, [14]), and Fauzi, Lipmaa and Zaj¡c (FLZ, [15]). We include shu�ing
itself to the e�ciency analysis of communication and prover's computation.

FL FLZ Current Work
Current Work
(G1/G2 switched)

|CRS| in (G1, G2, GT ) (6n+ 8, 2n+ 8, 1) (2n+ 6, n+ 7, 1) (4n+ 7, n+ 7, 1) (n+ 7, 4n+ 7, 1)
Communication (7n+ 2, 2n, 0) (5n+ 1, 4n+ 2, 0) (4n− 1, 3n+ 1, 0) (3n+ 1, 4n− 1, 0)

Prover's computation

Exp. in (G1,G2) (2n− 1, 0) (2n, 0) (n, 0) (0, n)
Fb-exp. in (G1,G2) (8n− 2, 2n− 2) (4n− 1, 4n− 1) (3n− 1, 3n− 1) (3n− 1, 3n− 1)
M. exp. in (G1,G2) (6n+ 6, 2n+ 2) (3n+ 3, 5n+ 5) (n+ 1, 2n+ 2) (2n+ 2, n+ 1)
Units 4.84 5.34 2.87 4.25

Prover's online computation

M. exp. in (G1,G2) (2n+ 2, 0) (3n+ 3, 3n+ 3) (0, 2n+ 2) (2n+ 2, 0)
Units 0.26 1.2 0.54 0.26

Veri�er's computation

Exp. in (G1,G2,GT ) (0, 0, 0) (7n+ 6, 7, 1) (n, 2n+ 3, 1) (2n+ 3, n, 1)
M. exp. in (G1,G2) (0, 0) (4n, 3n) (4n− 4, 0) (0, 4n− 4)
Pairing product 18n+ 6 3n+ 6 3n+ 6 3n+ 6
Units 38.52 14.75 12.98 12.02

Veri�er's online computation

Exp. in (G1,G2) (0, 0) (6n+ 3, 3) (0, 2n+ 1) (2n+ 1, 0)
M. exp. in (G1,G2) (0, 0) (3n, 3n) (0, 0) (0, 0)
Pairing product 8n+ 4 2n+ 3 2n+ 1 2n+ 1
Units 17.12 11.48 9.32 6.28

Lifted encryption No Yes No No
Soundness Culpable White-box Full Full

information about implementation, including the de�nition of units and data
about the test machine.

2 Preliminaries

Let Sn be the symmetric group on n elements, i.e., all elements of the group
are permutations on n elements. All vectors will be by default column vectors.
By a = (ai)

n
i=1 we denote column vectors and by a = (a1, . . . , an) we denote

row vectors. For a matrix A, Ai is its ith row vector and A(i) is its ith column
vector. A Boolean n×n matrix A is a permutation matrix representing σ ∈ Sn,
when Aij = 1 i� σ(i) = j. Clearly, in this case Ax = (xσ(i))

n
i=1 for any vector x.

For a �eld F, let F[X] be the ring of multivariate polynomials over F, and
let F[X±1] be the ring of multivariate Laurent polynomials over F. For any
(Laurent) polynomials fi(X), i ∈ [1 .. n], we denote f(X) = (fi(X))ni=1.

Let (ωi)
n+1
i=1 be n+1 di�erent values in Zq. For example, one can de�ne ωi = i.

De�ne the following polynomials:

� Z(X) =
∏n+1
i=1 (X−ωi): the unique degree n+1 monic polynomial such that

Z(ωi) = 0 for all i ∈ [1 .. n].

6



Table 2. E�ciency of the shu�e implementation (in minutes and seconds) using the
libsnark library: the original argument (left) and the one with switched groups (right),
for various values of n.

10,000 100,000 300,000

CRS generation 1.7s 13.4s 37.0s

Prover 6.4s 56.7s 2m38.3s
Prover (online) 1.1s 10.2s 32.3s

Veri�er 8.5s 1m27.8s 5m18.8s
Veri�er (online) 5.7s 1m0.5s 3m29s

10,000 100,000 300,000

CRS generation 2.6s 20.5s 55.0s

Prover 9.1s 1m24.0s 4m2.4s
Prover (online) 0.5s 4.1s 13.5s

Veri�er 8.3s 1m22.0s 4m49.2s
Veri�er (online) 5.0s 49.9s 2m55.5s

� `i(X) =
∏n+1
j=1,j 6=i

X−ωj
ωi−ωj : the ith Lagrange basis polynomial, i.e., the unique

degree n polynomial such that `i(ωi) = 1 and `i(ωj) = 0 for j 6= i.

Cryptography. Let κ be the security parameter; intuitively it should be dif-
�cult to break a hardness assumption or a protocol in time O(2κ). If f(κ) is
a negligible function then we write f(κ) ≈κ 0. We use type-III, asymmetric,
pairings [17]. Assume we use a secure bilinear group generator BG that on input
(1κ) returns (q,G1,G2,GT , g1, g2, •), where G1, G2, and GT are three groups
of prime order q, • : G1 × G2 → GT , g1 generates G1, g2 generates G2, and
gT = g1 • g2 generates GT . It is required that • is e�ciently computable, bilin-
ear, and non-degenerate.

To implement pairing-based cryptography, we use the libsnark library [6]
which currently provides (asymmetric) Ate pairings [27] over Barreto-Naehrig
curves [2,37] with 256 bit primes. Due to recent advances in computing dis-
crete logarithms [31] this curve does not guarantee 128 bits of security, but still
roughly achieves 100 bits of security [1].

Within this paper, we use additive notation combined with the bracket no-
tation [13] and denote the elements of Gz, z ∈ {1, 2, T}, as in [a]z (even if a is
unknown). Alternatively, we denote group elements by using the Fraktur font as
in b. We assume that · has higher precedence than •; for example, ba•c = (ba)•c;
while this is not important mathematically, it makes a di�erence in implemen-
tation since exponentiation in G1 is cheaper than in GT . In this notation, we
write the generator of Gz as gz = [1]z for z ∈ {1, 2, T}. Hence, [a]z = agz, so the
bilinear property can be written as [a]1 • [b]2 = (ab)[1]T = [ab]T .

We freely combine additive notation with vector notation, by de�ning say
[a1, . . . , as]z = ([a1]z, . . . , [as]z), and [A]1 • [B]2 = [AB]T for matrices A and
B of compatible size. We sometimes misuse the notation and, say, write [A]2B
instead of the more cumbersome (B>[A]>2 )>. Hence, if A, B and C have com-
patible dimensions, then (B>[A]>1 )> • [C]2 = [A]1B • [C]2 = [A]1 •B[C]2.

Recall that a distribution Dpar that outputs matrices of group elements
[M ]1 ∈ Gn×t1 is witness-sampleable [28], if there exists a distribution D′par that
outputs matrices of integers M ′ ∈ Zn×tq , such that [M ]1 and [M ′]1 have the
same distribution.
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We use the Elgamal cryptosystem [12] (Gen,Enc,Dec) in group G2. In Elga-
mal, the key generator Gen(1κ) chooses a secret key sk←r Zq and a public key
pk← [1, sk]2 for a generator [1]2 ofG2 �xed by BG. The encryption algorithm sets
Encpk(m; r) = ([0]2,m)+r ·pk for m ∈ G2 and r ←r Zq. The decryption algorithm
sets Decsk(M1,M2) = M2− sk ·M1. Note that Encpk(0; r) = r · pk. The Elgamal
cryptosystem is blindable, with Encpk(m; r1) + Encpk(0; r2) = Encpk(m; r1 + r2).
Clearly, if r2 is uniformly random, then r1 + r2 is also uniformly random.

Finally, for [a]1 ∈ G1, and [b]2 ∈ G1×2
2 , let [a]1 ◦ [b]2 := [a · b]T = [a · b1, a ·

b2]T ∈ G1×2
T . Analogously, for [a]1 ∈ Gn1 , and [B]2 ∈ Gn×22 , let [a]>1 ◦ [B]2 :=∑n

i=1[ai]1 ◦ [Bi]2 ∈ G2
T . Intuitively, here [b]2 is an Elgamal ciphertext and [B]2

is a vector of Elgamal ciphertexts.

Kernel Matrix Assumptions [36]. Let k ∈ N. We call Dk+d,k a matrix

distribution [13] if it outputs matrices in Z(k+d)×k
q of full rank k in polynomial

time. W.l.o.g., we assume that the �rst k rows of A← Dk+d,k form an invertible
matrix. We denote Dk+1,k as Dk.

Let Dk+d,k be a matrix distribution and z ∈ {1, 2}. The Dk+d,k-KerMDH
assumption [36] holds in Gz relative to algorithm BG, if for all probabilistic
polynomial-time A,

Pr

[
gk← BG(1κ),M ←r Dk+d,k, [c]3−z ← A(gk, [M ]z) :

M>c = 0 ∧ c 6= 0

]
≈κ 0 .

By varying the distribution Dk+d,k, one can obtain various assumptions (such
as the SP assumption of Groth and Lu [25] or the PSP assumption of Fauzi and
Lipmaa [14]) needed by some previous shu�e arguments.

Since we use KerMDH to prove soundness of subarguments of the shu�e
argument, we de�ne a version of this assumption with an auxiliary input that
corresponds to the CRS of the shu�e argument. We formalize it by de�ning a
valid CRS distribution Dn+d,d to be a joint distribution of an (n+ d)× d matrix
distribution and a distribution of auxiliary inputs aux, such that

1. aux contains only elements of the groups G1, G2, and GT ,
2. Dn+d,d outputs as a trapdoor td all the used random coins from Zq.
We denote this as (M , aux; td) ←r Dn+d,d. We prove the culpable soundness
of the consistency argument under a variant of the KerMDH assumption that
allows for an auxiliary input.

De�nition 1 (KerMDH with an auxiliary input). Let Dn+d,d be a valid
CRS distribution. The Dn+d,d-KerMDH assumption with an auxiliary input
holds in Gz, z ∈ {1, 2}, relative to algorithm BG, if for all probabilistic
polynomial-time A,

Pr

[
gk← BG(1κ), ([M ]z, aux)←r Dn+d,d, [c]3−z ← A(gk, [M ]z, aux) :

M>c = 0 ∧ c 6= 0

]
≈κ 0 .
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Commitment Schemes. A (pairing-based) trapdoor commitment scheme is a
pair of e�cient algorithms (K, com), where K(gk) (for gk ← BG(1κ)) outputs a
commitment key ck and a trapdoor td, and the commitment algorithm outputs
a ← com(gk, ck,a; r). A commitment scheme is computationally binding if for
any ck output by K, it is computationally infeasible to �nd (a, r) 6= (a′, r), such
that com(gk, ck,a; r) = com(gk, ck,a′; r′). A commitment scheme is perfectly
hiding if for any ck output by K, the distribution of the output of com(gk, ck,a; r)
does not depend on a, assuming that r is uniformly random. A commitment
scheme is trapdoor, if given access to td it is trivial to open the commitment to
any value.

Throughout this paper, we use the following trapdoor commitment scheme,
�rst implicitly used by Groth [24]. Fix some linearly independent polynomials
Pi(X). Let gk ← BG(1κ), and td = (χ, %) ←r Z2

q. Denote P = (Pi(χ))ni=1. Let

ck ← [P% ]1, and com(gk, ck,a; r) := ( ar )
> · ck = [

∑n
i=1 aiPi(χ) + r%]1. We will

call it the ((Pi(X))ni=1, X%)-commitment scheme.
Several variants of this commitment scheme are known to be perfectly

hiding and computational binding under a suitable computational assump-
tion [19,23,32]. Since this commitment scheme is a variant of the extended Ped-
ersen commitment scheme, it can be proven to be computationally binding under
a suitable KerMDH assumption [36].

Theorem 1. Let D((Pi(X))ni=1,X%)
n = {[P% ]1 : (χ, %) ←r Zq × Z∗q} be

the distribution of ck in this commitment scheme. The ((Pi(X))ni=1, X%)-
commitment scheme is perfectly hiding, and computationally binding under the

D((Pi(X))ni=1,X%)
n -KerMDH assumption. It is trapdoor with td = (χ, %).

Proof (Sketch). Given two di�erent openings (a, r) and (a′, r′) to a commitment,
(a− a′, r− r′) is a solution to the KerMDH problem. Perfect hiding is obvious,
since % is not 0, and hence r[%]1 is uniformly random. Given (a, r), one can open
com(gk, ck,a; r) to (a′, r′) by taking r′ = r + (

∑n
i=1(ai − a′i)Pi(χ))/%. ut

Generic Bilinear Group Model. A generic algorithm uses only generic group
operations to create and manipulate group elements. Shoup [39] formalized it
by giving algorithms access to random injective encodings 〈〈a〉〉 instead of real
group elements a. Maurer [35] considered a di�erent formalization, where the
group elements are given in memory cells, and the adversary is given access
to the address (but not the contents) of the cells. For simplicity, let's consider
Maurer's formalization. The memory cells initially have some input (in our case,
the random values generated by the CRS generator together with other group
elements in the CRS). The generic group operations are handled through an
oracle that on input (op, i1, . . . , in), where op is a generic group operation and
ij are addresses, �rst checks that memory cells in ij have compatible type z ∈
{1, 2, T} (e.g., if op = +, then i1 and i2 must belong to the same group Gz),
performs op on inputs (i1, . . . , in), stores the output in a new memory cell,
and then returns the address of this cell. In the generic bilinear group model
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(GBGM), the oracle can also compute the pairing •. In addition, the oracle can
answer equality queries.

We will use the following, slightly less formal way of thinking about the
GBGM. Each memory cell has an implicit polynomial attached to it. A random
value generated by the CRS generator is assigned a new indeterminate. If an
(+, i1, i2) (resp., (•, i1, i2)) input is given to the oracle that successfully returns
address i3, then the implicit polynomial attached to i3 will be the sum (resp.,
product) of implicit polynomials attached to i1 and i2. Importantly, since one
can only add together elements from the same group (or, from the memory cells
with the same type), this means that any attached polynomials with type 1 or
2 can only depend on the elements of the CRS that belong to the same group.

A generic algorithm does not know the values of the indeterminates (for her
they really are indeterminates), but she will know all attached polynomials. At
any moment, one can ask the oracle for an equality test between two memory
cells i1 and i2. A generic algorithm is considered to be successful if she makes �
in polynomial time � an equality test query (=, i1, i2) that returns success (the
entries are equal) but i1 and i2 have di�erent polynomials F1(X) and F2(X)
attached to them. This is motivated by the Schwartz-Zippel lemma [38,40] that
states that if F1(X) 6= F2(X) as a polynomial, then there is negligible probabil-
ity that F1(χ) = F2(χ) for uniformly random χ.

Zero Knowledge. Let R = {(u,w)} be an e�ciently computable binary re-
lation with |w| = poly (|u|). Here, u is a statement, and w is a witness. Let
L = {u : ∃w, (u,w) ∈ R} be an NP-language. Let n = |u| be the input length.
For �xed n, we have a relation Rn and a language Ln. Since we argue about
group elements, both Ln and Rn are group-dependent and thus we add gk (out-
put by BG) as an input to Ln and Rn. Let Rn(gk) := {(u,w) : (gk, u, w) ∈ Rn}.

A non-interactive argument for a group-dependent relation family R con-
sists of four probabilistic polynomial-time algorithms: a setup algorithm BG,
a common reference string (CRS) generator K, a prover P, and a veri�er V.
Within this paper, BG is always the bilinear group generator that outputs
gk← (q,G1,G2,GT , g1, g2, •). For gk← BG(1κ) and (crs, td)← K(gk, n) (where
n is input length), P(gk, crs, u, w) produces an argument π, and V(gk, crs, u, π)
outputs either 1 (accept) or 0 (reject). The veri�er may be probabilistic, to speed
up veri�cation time by the use of batching techniques [4].

A non-interactive argument Ψ is perfectly complete, if for all n = poly(κ),

Pr

[
gk← BG(1κ), (crs, td)← K(gk, n), (u,w)← Rn(gk) :

V(gk, crs, u,P(gk, crs, u, w)) = 1

]
= 1 .

Ψ is adaptively computationally sound for L, if for all n = poly (κ) and all
non-uniform probabilistic polynomial-time adversaries A,

Pr

[
gk← BG(1κ), (crs, td)← K(gk, n),

(u, π)← A(gk, crs) : (gk, u) 6∈ Ln ∧ V(gk, crs, u, π) = 1

]
≈κ 0 .
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We recall that in situations where the inputs have been committed to using
a computationally binding trapdoor commitment scheme, the notion of com-
putational soundness does not make sense (since the commitments could be to
any input messages). Instead, one should either prove culpable soundness or
knowledge-soundness.

Ψ is adaptively computationally culpably sound [25,26] for L using a
polynomial-time decidable binary relation Rglt = {Rglt

n } consisting of elements
from L̄ and witnesses wglt, if for all n = poly(κ) and all non-uniform probabilistic
polynomial-time adversaries A,

Pr

[
gk← BG(1κ), (crs, td)← K(gk, n), (u, π, wglt)← A(gk, crs) :

(gk, u, wglt) ∈ Rglt
n ∧ V(gk, crs, u, π) = 1

]
≈κ 0 .

For algorithms A and ExtA, we write (y; y′) ← (A||ExtA)(χ) if A on input
χ outputs y, and ExtA on the same input (including the random tape of A)
outputs y′. Ψ is knowledge-sound, if for all n = poly(κ) and all non-uniform
probabilistic polynomial-time adversaries A, there exists a non-uniform prob-
abilistic polynomial-time extractor ExtA, such that for every auxiliary input
aux ∈ {0, 1}poly(κ),

Pr

[
gk← BG(1κ), (crs, td)← K(gk, n), ((u, π);w)← (A||ExtA)(crs, aux) :

(gk, u, w) 6∈ Rn ∧ V(gk, crs, u, π) = 1

]
≈κ 0 .

Here, aux can be seen as the common auxiliary input to A and ExtA that is
generated by using benign auxiliary input generation [7].

Ψ is perfectly (composable) zero-knowledge [21], if there exists a probabilistic
polynomial-time simulator S, such that for all stateful non-uniform probabilistic
adversaries A and n = poly(κ), ε0 = ε1, where

εb := Pr

 gk← BG(1κ), (crs, td)← K(gk, n), (u,w)← A(gk, crs),

if b = 0 then π ← P(gk, crs, u, w) else π ← S(gk, crs, u, td) endif :

(gk, u, w) ∈ Rn ∧ A(gk, crs, u, π) = 1

 .

Shu�e Argument. In a (pairing-based) shu�e argument [25], the prover aims
to convince the veri�er that, given system parameters gk output by BG, a public
key pk, and two tuples of ciphertexts M and M′, the second tuple is a permu-
tation of rerandomized versions of the �rst. More precisely, we will construct a
shu�e argument that is sound with respect to the following relation:

Rsh =

{
((gk, pk,M,M′) , (σ, r)

)
: σ ∈ Sn∧

r ∈ Znq ∧
(
∀i : M′i = Mσ(i) + Encpk(0; ri)

)} .

A number of pairing-based shu�e arguments have been proposed in the lit-
erature, [25,34,14,15,20].
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3 New Shu�e Argument

Intuitively, in the new shu�e argument the prover �rst commits to the per-
mutation σ (or more precisely, to the corresponding permutation matrix), then
executes three subarguments (the same-message, the permutation matrix, and
the consistency arguments). Each of the subarguments corresponds to one check
performed by the veri�er (see Prot. 2). However, since all subarguments use
the same CRS, they are not independent. For example, the permutation matrix
argument uses the ((Pi(X))ni=1, X%)-commitment scheme and the consistency

argument uses the ((P̂i(X))ni=1, X%̂)-commitment scheme for di�erent polynomi-

als (P̂i(X))ni=1. (See Eq. (3) and Eq. (5) for the actual de�nition of Pi(X) and

P̂i(X).) Both commitment schemes share a part of their trapdoor (χ), while the
second part of the trapdoor is di�erent (either % or %̂). Moreover, the knowledge-
soundness of the same-message argument is a prerequisite for the knowledge-
soundness of the permutation matrix argument. The veri�er recovers explicitly
the commitment to the last row of the permutation matrix (this guarantees that
the committed matrix is left stochastic), then veri�es the three subarguments.

The full description of the new shu�e argument is given in Prot. 1 (the CRS
generation and the prover) and in Prot. 2 (the veri�er). The CRS has entries that
allow to e�ciently evaluate all subarguments, and hence also both commitment
schemes. The CRS in Prot. 1 includes three substrings, crssm, crspm, and crscon,
that are used in the three subarguments. To prove and verify (say) the �rst
subargument (the same-message argument), one needs access to crssm. However,
the adversary of the same-message argument will get access to the full CRS.
For the sake of exposition, the veri�er's description in Prot. 2 does not include
batching. In Sect. 6, we will explain how to speed up the veri�er considerably
by using batching techniques.

We will next brie�y describe the subarguments. In Sect. 4, we will give more
detailed descriptions of each subargument, and in Sect. 5, we will prove the
security of the shu�e argument.

Same-Message Argument. Consider the subargument of the new shu�e argu-
ment where the veri�er only computes an and then performs the check on Step 4
of Prot. 2 for one concrete i. We will call it the same-message argument [14].
In Sect. 4.1 we motivate this name, by showing that if the same-message ar-
gument accepts, then the prover knows a message a and a randomizer r, such
that ai = [

∑
aiPi(χ) + r%]1 and âi = [

∑
aiP̂i(χ) + r%̂]1 both commit to a with

randomizer r, by using respectively the ((Pi(X))ni=1, X%)-commitment scheme

and the ((P̂i(X))ni=1, X%̂)-commitment scheme.
For the same-message argument to be knowledge-sound, we will require that

{Pi(X)}ni=1 and {P̂i(X)}ni=1 are both linearly independent sets.

Permutation Matrix Argument. Consider the subargument of Prot. 1 and
Prot. 2, where (i) the prover computes a and πpm, and (ii) the veri�er computes
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K(gk, n): Generate random (χ, β, β̂, %, %̂, sk) ←r Z3
q × (Z∗q)2 × Zq. Denote

P = (Pi(χ))
n
i=1, P0 = P0(χ), and P̂ = (P̂i(χ))

n
i=1. Let crssm ←(

[(βPi + β̂P̂i)
n
i=1, β%+ β̂%̂]1, [β, β̂]

>
2

)
,

crspm ←

(
[1, P0, (((Pi + P0)

2 − 1)/%)ni=1,
∑n
i=1 Pi,

∑n
i=1 P̂i]1,

[P0,
∑n
i=1 Pi]2, [1]T

)
,

crscon ← [ P̂%̂ ]1. Set crs←
(
pk = [1, sk]2, [

P
% ]1, [

P
% ]2, crssm, crspm, crscon

)
. Set td←

(χ, %̂). Return (crs, td).
P(gk, crs,M ∈ Gn×2

2 ;σ ∈ Sn, t ∈ Znq ):
1. For i = 1 to n− 1: // commits to the permutation σ

(a) ri ←r Zq; ri ← ri[%]1;
(b) ai ← [Pσ−1(i)]1 + ri; bi ← [Pσ−1(i)]2 + ri[%]2; âi ← [P̂σ−1(i)]1 + ri[%̂]1;

2. an ← [
∑n
i=1 Pi]1 −

∑n−1
j=1 aj ; bn ← [

∑n
i=1 Pi]2 −

∑n−1
j=1 bj ;

3. ân ← [
∑n
i=1 P̂i]1 −

∑n−1
j=1 âj ;

4. rn ← −
∑n−1
i=1 ri; rn ← rn[%]1;

5. For i = 1 to n:
(a) di ← [βPσ−1(i) + β̂P̂σ−1(i)]1 + ri[β%+ β̂%̂]1;

(b) ci ← ri · (2(ai + [P0]1)− ri) + [((Pσ−1(i) + P0)
2 − 1)/%]1;

6. rt ←r Zq; t← t>[P̂ ]1 + rt[%̂]1;
7. For i = 1 to n: t′i ← ti · pk;
8. M′ ← (Mσ(i) + t′i)

n
i=1; // Shu�ing, online

9. N← r>M+ rt · pk; // Online
10. πsm ← d; // Same-message argument
11. πpm ← ((bi)

n−1
i=1 , c); // Permutation matrix argument

12. πcon ← ((âi)
n−1
i=1 , t,N); // Consistency argument

13. Return πsh ← (M′, (aj)
n−1
j=1 , πsm, πpm, πcon).

Protocol 1: The CRS generation and the prover of the new shu�e argument.

V(gk, crs,M;M′, (aj)
n−1
j=1 , πsm, πpm, πcon):

1. Parse (πsm, πpm, πcon) as in the prover's Steps 11�12, abort if unsuccessful;
2. Compute an, bn, and ân as in the prover's Steps 2 and 3;
3. α←r Zq;
4. For i = 1 to n: check that di•[1]2

?
= (ai, âi)•

[
β

β̂

]
2
; // Same-message argument

5. For i = 1 to n: check that // Permutation matrix argument

(ai + α[1]1 + [P0]1) • (bi − α[1]2 + [P0]2)
?
= ci • [%]2 + (1− α2)[1]T ;

6. Check that // Consistency argument

[P̂ ]>1 ◦M′ − â> ◦M ?
= t ◦ pk− [%̂]1 ◦N;

Protocol 2: The non-batched veri�er of the new shu�e argument.

an and then checks the veri�cation equation on Step 5 of Prot. 2. We will call it
the permutation matrix argument. In Sect. 4.2 we motivate this name, by prov-
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ing in the GBGM that if the veri�er accepts the permutation matrix argument,
then either the prover knows how to open (a1, . . . , an) as a ((Pi(X))ni=1, X%)-
commitment to a permutation matrix or we can break the same-message argu-
ment. For this, we �rst prove the security of a subargument of the permutation
matrix argument � the unit vector argument [14] � where the veri�er performs
the veri�cation Step 5 for exactly one i.

For the unit vector argument to be e�cient, we need to make a speci�c choice
of the polynomials Pi(X) (see Eq. (3)). For the knowledge-soundness of the unit
vector argument, we additionally need that {Pi(X)}ni=0 and {Pi(X)}ni=1 ∪ {1}
are linearly independent.

In [15], the verifer adds [α]1 +[P0]1 from the CRS to ai (and adds [α]2− [P0]2
from the CRS to bi), while in our case, the veri�er samples α itself during
veri�cation. Due to this small change, we can make the CRS independent of α. (In
fact, it su�ces if the veri�er chooses α once and then uses it at each veri�cation.)
This makes the CRS shorter, and also simpli�es the latter soundness proof. For
this optimization to be possible, one has to rely on the same-message argument
(see Sect. 5).

Consistency Argument. Consider the subargument of the new shu�e argu-
ment where the prover only computes πcon and the veri�er performs the check
on Step 6 of Prot. 2. We will call it the consistency argument. In Sect. 4.3 we
motivate this name, by showing that if â ({P̂i(X)}, X%̂)-commits to a permuta-
tion, then Dec(M′i) = Dec(Mσ(i)) for the same permutation σ that the prover
committed to earlier. We show that the new consistency argument is culpably
sound under a (novel) variant of the KerMDH computational assumption [36]
that we describe in Sect. 4.3. In particular, the KerMDH assumption has to hold
even when the adversary is given access to the full CRS of the shu�e argument.

For the consistency argument to be sound (and in particular, for the Ker-
MDH variant to be secure in the GBGM), we will require that {P̂i(X)}ni=1 and

{Pi(X)P̂j(X)}1≤i,j≤n are both linearly independent sets.

4 Subarguments

Several of the following knowledge-soundness proofs use the GBGM and there-
fore we will �rst give common background for those proofs. In the GBGM, the
generic adversary in each proof has only access to generic group operations, pair-
ings, and equality tests. However, she will have access to the full CRS of the new
shu�e argument.

Let χ = (χ, α, β, β̂, %, %̂, sk) be the tuple of all random values generated by
either K or V. Note that since α is sampled by the veri�er each time, for an
adversary it is essentially an indeterminate. Thus, for the generic adversary each
element of χ will be an indeterminate. Let us denote the tuple of corresponding
indeterminates by X = (X,Xα, Xβ , Xβ̂ , X%, X%̂, XS).

The adversary is given oracle access to the full CRS. This means that for
each element of the CRS, she knows the attached (Laurent) polynomial in X.
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E.g., for the CRS element [β% + β̂%̂]1, she knows that the attached polynomial
is XβX% + Xβ̂X%̂. Each element output by the adversary can hence be seen as

a polynomial in X. Moreover, if this element belongs to Gz for z ∈ {1, 2}, then
this polynomial has to belong to the span of attached polynomials corresponding
to the elements of CRS from the same group. Observing the de�nition of crs in
Prot. 1, we see that this means that each Gz element output by the adversary
must have an attached polynomial of the form crsz(X, T, t) for symbolic values
T and t:

crs1(X, T, t) =t(X) + T0P0(X) + T%X% + T †(X)Z(X)/X% + T ∗(X)+

T%̂X%̂ +

n∑
i=1

Tβ,i(XβPi(X) +Xβ̂P̂i(X)) + Tβ%(XβX% +Xβ̂X%̂) ,

crs2(X, T, t) =t(X) + T0P0(X) + T%X% + TSXS + TβXβ + Tβ̂Xβ̂ ,

where T †(X) is in the span of {((Pi(X) + P0(X))2 − 1)/Z(X)}ni=1 (it will be
a polynomial due to the de�nition of Pi(X) and P0(X)), T ∗(X) is in the span
of {P̂i(X)}ni=1, and t(X) is in the span of {Pi(X)}ni=1. (Here we use Lem. 1,
given below, that states that {Pi(X)}ni=1 ∪ {1} and {Pi(X)}ni=0 are two bases
of degree-≤ n polynomials.) We will follow the same notation in the rest of the
paper. E.g., polynomials with a star (like b∗(X)) are in the span of {P̂i(X)}ni=1.

4.1 Same-Message Argument

For the sake of this argument, let P (X) = (Pi(X))ni=1 and P̂ (X) = (P̂i(X))ni=1

be two families of linearly independent polynomials. We do not specify the pa-
rameters X, X% and X%̂ in the case when they take their canonical values χ, %,
and %̂.

In the same-message argument, the prover aims to prove that given a, â ∈ G1,
she knows a and r, such that ( a

â ) = [M ]1( ar ) for

[M ]>1 := (ck, ĉk) =

[
P P̂
% %̂

]
1

∈ G(n+1)×2
1 (1)

and ck = [P% ]1 and ĉk = [ P̂%̂ ]1. That is, a and â are commitments to the same vec-

tor a with the same randomness r, but using the ((Pi(X))ni=1, X%)-commitment

scheme and the ((P̂i(X))ni=1, X%̂)-commitment scheme correspondingly.
We construct the same-message argument by essentially using the (second)

QANIZK argument of Kiltz and Wee [30] for the linear subspace

LM = {( a
â ) : ∃( ar ) ∈ Zn+1

q : ( a
â ) = [M ]1( ar )} .

However, as we will see in the proof of the permutation matrix argument, we
need knowledge-soundness of the same-message argument. Therefore, while we
use exactly the QANIZK argument of Kiltz and Wee, we prove its knowledge-
soundness in the GBGM: we show that if the veri�er accepts then the prover
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knows a witness w such that (a, â) = w> · [M ]1. Moreover, we need it to stay
knowledge-sound even when the adversary has access to an auxiliary input.

More precisely, denote by Dsmn,2 the distribution of matrices M in Eq. (1)
given that (χ, %, %̂)←r Zq × (Z∗q)2. For k ≥ 1, let Dk be a distribution such that
the Dk-KerMDH assumption holds. Clearly, Dsmn,2 is witness-sampleable.

For a matrix A ∈ Z(k+1)×k
q , let Ā ∈ Zk×kq denote the upper square matrix

of A. The same-message argument (i.e., the Kiltz-Wee QANIZK argument that
( a
â ) = [M ]1( ar )) for witness-sampleable distributions is depicted as follows:

Ksm(gk, [M ]1 ∈ G2×(n+1)
1 ): A ←r Dk; K ←r Z2×k

q ; [Q]1 ← [M ]>1K ∈
G(n+1)×k

1 ; C ← KĀ ∈ Z2×k
q ; crssm ← ([Q]1, [C]2, [Ā]2); tdsm ← K;

Return (crssm, tdsm);

Psm(gk, crssm, (
a
â ), ( ar )): Return πsm ← ( ar )

>
[Q]1 ∈ G1×k

1 ;

Ssm(gk, crssm, tdsm, (
a
â )): Return πsm ← ( a

â )
>
K ∈ G1×k

1 ;

Vsm(gk, crssm, (
a
â ), πsm): Check that πsm • [Ā]2

?
= ( a

â )
> • [C]2;

Clearly, the veri�cation accepts since πsm • [Ā]2 = ( ar )
>

[Q]1 • [Ā]2 =

( ar )
>

[M ]>1K • [Ā]2 = ( a
â )
> • [C]2.

For the sake of e�ciency, we will assume k = 1 and D1 = L1 = {( 1
a ) : a←r

Zq}. Then, Ā = 1, K = (β, β̂)>, Q = (βP1 + β̂P̂1, . . . , βPn + β̂P̂n, β% + β̂%̂)>,
and C = K. Thus, crssm and tdsm are as in Prot. 1. In the case of a shu�e,
( ar ) =

( eσ−1(i)
r

)
, and thus πsm ← [βPσ−1(i) + β̂P̂σ−1(i)]1 + r[β% + β̂%̂]1 as in

Prot. 1. The veri�er has to check that πsm • [1]2 = a• [β]2 + â• [β̂]2, as in Prot. 2.

The simulator, given the trapdoor tdsm = (β, β̂)>, sets πsm ← βa + β̂â.

Theorem 2. Assume crs = (crssm, aux) where aux does not depend on β or β̂.
The same-message argument has perfect zero knowledge for LM . It has adaptive
knowledge-soundness in the GBGM.

Proof. Zero Knowledge: follows from πsm = [Q>χ]1 = [K>M>χ]1 =
[K>y]1.

Knowledge-soundness: In the generic group model, the adversary knows
polynomials A(X) = crs1(X, A, a), Â(X) = crs1(X, Â, â), and π(X) =
crs1(X, Π, π), such that a = [A(χ)]1, â = [Â(χ)]1, πsm = [π(χ)]1.

Because the veri�cation accepts, by the Schwartz�Zippel lemma, from this it
follows (with all but negligible probability) that π(X) = XβA(X) + Xβ̂Â(X)
as a polynomial. Now, the only elements in crs in group G1 that depend on Xβ

and Xβ̂ are the elements from crssm: (a) XβPi(X) + Xβ̂P̂i(X) for each i, and

(b) XβX% +Xβ̂X%̂. Thus, we must have that for some a and r,

π(X) =

n∑
i=1

ai(XβPi(X) +Xβ̂P̂i(X)) + r(XβX% +Xβ̂X%̂)

= Xβ(

n∑
i=1

aiPi(X) + rX%) +Xβ̂(

n∑
i=1

aiPi(X) + rX%̂)
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Hence, A(X) =
∑n
i=1 aiPi(X) + rX% and Â(X) =

∑n
i=1 aiP̂i(X) + rX%̂. Thus,

a and â commit to the same vector a using the same randomness r. ut

Remark 1. Here, the only thing we require from the distribution Dsmn,2 is witness-
sampleability and therefore exactly the same zero-knowledge argument can be
used with any two shrinking commitment schemes. ut

4.2 Permutation Matrix Argument

In this section, we show that a subargument of the new shu�e argument (see
Prot. 1 and Prot. 2), where the veri�er only computes an as in prover Step 2 and
then checks veri�cation Step 5, gives us a permutation matrix argument. How-
ever, we �rst de�ne the unit vector argument, prove its knowledge-soundness,
and then use this to prove knowledge-soundness of the permutation matrix argu-
ment. The resulting permutation matrix argument is signi�cantly simpler than
in the FLZ shu�e argument [15].

Unit Vector Argument. In a unit vector argument [14], the prover aims to
convince the veri�er that he knows how to open a commitment a to (a, r), such
that exactly one coe�cient aI , I ∈ [1 .. n], is equal to 1, while other coe�cients

of a are equal to 0. Recall [14,15] that if we de�ne V :=
(

2·In×n
1>n

)
∈ Z(n+1)×n

q

and b :=
(
0n
1

)
∈ Zn+1

q , then a is a unit vector i�

(V a+ b− 1n+1) ◦ (V a+ b− 1n+1) = 1n+1 , (2)

where ◦ denotes the Hadamard (entry-wise) product of two vectors. Really, this
equation states that ai ∈ {0, 1} for each i ∈ [1 .. n], and that

∑
ai = 1.

Similar to the 1-sparsity argument in [15], we construct the unit vector ar-
gument by using a variant of square span programs (SSP-s, [11]). To proceed,
we need to de�ne the following polynomials. For i ∈ [1 .. n], set Pi(X) to be the
degree n polynomial that interpolates the ith column of the matrix V , i.e.,

Pi(X) := 2`i(X) + `n+1(X) . (3)

Set

P0(X) := `n+1(X)− 1 , (4)

i.e., P0(X) is the polynomial that interpolates b − 1n+1. De�ne Q(X) =
(
∑n
i=1 aiPi(X) + P0(X))2 − 1. Due to the choice of the polynomials, Eq. (2)

holds i� Q(ωi) = 0 for all i ∈ [1 .. n+ 1], which holds i� Z(X) | Q(X), [15].

Lemma 1 ([14,15]). The sets {Pi(X)}ni=1∪{P0(X)} and {Pi(X)}ni=1∪{1} are
both linearly independent.

Clearly, both {Pi(X)}ni=1 ∪ {P0(X)} and {Pi(X)}ni=1 ∪ {1} are a basis of all
polynomials of degree ≤ n.
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Let
P̂i(X) := X(i+1)(n+1) . (5)

As explained before, {P̂i(X)}ni=1 are needed in the same-message argument and
in the consistency argument. Due to that, the CRS has entries allowing to ef-
�ciently compute [P̂i(χ)]1, which means that a generic adversary of the unit
vector argument of the current section has access to those polynomials.

Let Un be the set of all unit vectors of length n. The unit vector argument
is the following subargument of the new shu�e argument:

Kuv(gk, n): the same as in Prot. 1.
Puv(gk, crs, aj , (a ∈ Un, r)): Compute (bj , cj) as in Prot. 1.
Vuv(gk, crs, aj , (bj , cj)): α←r Zq; Check that (aj +[α]1 +[P0]1)• (bj +[−α]2 +

[P0]2)
?
= ci • [%]2 + [1− α2]T ;

This argument is similar to the 1-sparsity argument presented in [15], but with a
di�erent CRS, meaning we cannot directly use their knowledge-soundness proof.
Moreover, here the veri�er generates α randomly, while in the argument of [15],
α is generated by K. Fortunately, the CRS of the new shu�e argument is in a
form that facilitates writing down a human readable and veri�able knowledge-
soundness proof while [15] used a computer algebra system to solve a complicated
system of polynomial equations.

The only problem of this argument is that it guarantees that the committed
vector is a unit vector only under the condition that A0 = 0 (see the statement
of the following theorem). However, this will be �ne since in the soundness proof
of the shu�e argument, we can use the same-message argument to guarantee
that A0 = 0.

Theorem 3. The described unit vector argument is perfectly complete and per-
fectly witness-indistinguishable. Assume that {Pi(X)}ni=1∪{1}, and {Pi(X)}ni=1∪
{P0(X)} are two linearly independent sets. Assume that the same-message ar-
gument accepts. The unit vector argument is knowledge-sound in the GBGM in
the following sense: there exists an extractor Ext such that if the veri�er accepts
Eq. 6 for j = i, then Ext returns (rj , Ij ∈ [1 .. n]), such that

aj =[PIj (χ) + rjX%]1 . (6)

We note that the two requirements for linear independence follow from Lem. 1.

Proof. Completeness: For an honest prover, and I = σ−1(j), aj =
[PI(χ) + rj%]1, bj = [PI(χ) + rj%]2, and cj = [rj(2(PI(χ) + rj% +
P0(χ)) − rj%) + h(χ)Z(χ)/%]1 for rj ∈ Zq. Hence, the veri�cation equa-
tion assesses that (PI(χ) + rj% + α + P0(χ)) · (PI(χ) + rj% − α + P0(χ)) −
(rj(2(PI(χ) + rj%+ P0(χ))− rj%) + h(χ)Z(χ)/%) · % − (1 − α2) = 0. This sim-
pli�es to the claim that (PI(χ) + P0(χ))2 − 1 − h(χ)Z(χ) = 0, or h(χ) =
((PI(χ) + P0(χ))2 − 1)/Z(χ) which holds since the prover is honest.

Knowledge-Soundness: Assume a generic adversary has returned a =
[A(χ)]1, b = [B(χ)]2, c = [C(χ)]2, for attached polynomials A(X) =
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crs1(X, A, a), B(X) = crs2(X, B, b), and C(X) = crs1(X, C, c), such that
veri�cation in Step 5 of Prot. 2 accepts. Observing this veri�cation equation, it
is easy to see that for the polynomial Vuv(X) := (A(X)+Xα+P0(X))·(B(X)−
Xα + P0(X)) − C(X) · X% − (1 − X2

α), the veri�cation equation assesses that
Vuv(χ) = 0. Since we are in the GBGM, the adversary knows all coe�cients of
A(X), B(X), C(X), and Vuv(X).

Moreover, due to the knowledge-soundness of the same-message argument,
we know that A(X) = a(X)+A%X% for a(X) ∈ span{Pi(X)}ni=1. This simpli�es
correspondingly the polynomial Vuv(X).

Now, let Vuv(X \X) be equal to Vuv(X) but without X being considered as
an indeterminate; in particular, this means that the coe�cients of Vuv(X \X)
can depend on X. Since the veri�er accepts, Vuv(χ) = 0, so by the Schwartz�
Zippel lemma, with all but negligible probability Vuv(X) · X% = 0 and hence
also Vuv(X \X) ·X% = 0 as a polynomial. The latter holds i� all coe�cients of
Vuv(X \ X) · X% are equal to 0. We will now consider the corollaries from the
fact that coe�cients CM of the following monomials M of Vuv(X \X) ·X% are
equal to 0, and use them to prove the theorem:

M = XαX%: CM = b(X) − a(X) + B0P0(X) = 0. Since {Pi(X)}ni=0 is linearly
independent, we get that B0 = 0, b(X) = a(X).

M = X%: CM = −Z(X)c†(X)−1+(a(X)+P0(X))(b(X)+(B0 +1)P0(X)) = 0:
since B0 = 0 and b(X) = a(X), we get that CM = −Z(X)c†(X)−1+(a(X)+
P0(X))2 = 0, or alternatively

C†(X) =
(a(X) + P0(X))2 − 1

Z(X)

and hence, Z(X) | ((a(X) + P0(X))2 − 1).

Therefore, due to the de�nition of Pi(X) and the properties of square span
programs, a(X) = PIj (X) for some Ij ∈ [1 .. n], and Eq. (6) holds. Denote
rj := A%. The theorem follows from the fact that we have a generic adversary
who knows all the coe�cients, and thus we can build an extractor that just
outputs two of them, (rj , Ij).

Witness-indistinguishability: Consider a witness (a, rj). If a is �xed and
the prover picks rj ←r Zq (as in the honest case), then an accepting argument
(aj , bj) has distribution {([a′]1, [a′]2) : a′ ←r Zq} and cj is uniquely �xed by
(aj , bj) and the veri�cation equation. Hence an accepting argument (aj , bj , cj)
has equal probability of being constructed from any valid a ∈ Un. ut

Remark 2. While a slight variant of this subargument was proposed in [15],
they did not consider its privacy separately. It is easy to see that neither the
new argument nor the 1-sparsity argument [15] is zero-knowledge in the case
of type-III pairings. Knowing the witness, the prover can produce bj such that
aj • [1]2 = [1]1 •bj . On the other hand, given an arbitrary input a ∈ G1 as input,
the simulator cannot construct such b since there is no e�cient isomorphism
from G1 to G2. Witness-indistinguishability su�ces in our application. ut
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Permutation Matrix Argument. A left stochastic matrix (i.e., its row vectors
add up to 1>) where every row is 1-sparse is a permutation matrix, [34]. To
guarantee that the matrix is left stochastic, it su�ces to compute an explicitly,
i.e., an = [

∑n
j=1 Pj(χ)]1 −

∑n−1
j=1 aj . After that, we need to perform the unit

vector argument on every aj ; this guarantees that Eq. (6) holds for each row.
Since a unit vector is also a 1-sparse vector, we get the following result.

Theorem 4. The permutation matrix argument of this section is perfectly com-
plete and perfectly witness-indistinguishable. Assume that {Pi(X)}ni=1 ∪{1} is a
linearly independent set. The permutation matrix argument is knowledge-sound
in the GBGM in the following sense: there exists an extractor Ext such that if the
veri�er accepts the veri�cation equation on Step 5 of Prot. 2 for all j ∈ [1 .. n],
and an is explicitly computed as in Prot. 2, then Ext outputs (σ ∈ Sn, r), such
that for all j ∈ [1 .. n], aj = [Pσ−1(j)(χ) + rj%]1.

Proof. Knowledge-soundness follows from the explicit construction of an,
and from the fact that we have a generic adversary that knows all the coe�-
cients, and thus also knows (σ, r). More precisely, from the knowledge-soundness
of the unit vector argument, for each j ∈ [1 .. n] there exists an extractor that out-
puts (aj , rj) such that aj is a unit vector with a 1 at some position Ij ∈ [1 .. n]
and aj = [PIj (χ) + rj%]1. Since [

∑n
j=1 PIj (χ)]1 =

∑n
j=1 aj = [

∑n
j=1 Pj(χ)]1,

by the Schwartz-Zippel lemma we have that with overwhelming probability∑n
j=1 PIj (X) =

∑n
j=1 Pj(X) as a polynomial. Since due to Lem. 1 {Pi(X)}ni=1

is linearly independent, this means that (I1, . . . , In) is a permutation of [1 .. n],
so (aj)

n
j=1 is a permutation matrix.

Witness-indistinguishability follows from the witness-
indistinguishability of the unit vector argument. ut

4.3 Consistency Argument

The last subargument of the shu�e argument is the consistency argument. In
this argument the prover aims to show that, given â that commits to a matrix
E ∈ Zn×nq and two tuples (M and M′) of Elgamal ciphertexts, it holds that
Decsk(M

′) = E ·Decsk(M). Since we use a shrinking commitment scheme, each
â can commit to any matrix E. Because of that, we use the fact that the permu-
tation matrix argument is knowledge-sound in the GBGM, and thus there exists
an extractor (this is formally provern in Sect. 3) that, after the same-message
and the permutation matrix argument, extracts E and randomizer vectors r and

t, such that â =
(
E
r>

)>
[ P̂%̂ ]1. Hence, the guilt relation is

Rglt
con,n =

{
(gk, pk, (M,M′, â), (E, r)) :

â =
(
E
r>

)>
[ P̂%̂ ]1 ∧ Decsk(M

′) 6= E · Decsk(M)

}
.

We note that in the case of a shu�e argument, E is a permutation matrix.
However, we will prove the soundness of the consistency argument for the general
case of arbitrary matrices.
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The new (general) consistency argument for a valid CRS distribution Dn+1,1,
such that tdcon = (χ, %̂), works as follows. Note that the prover should be able
to work without knowing the Elgamal secret key, and that [M ]1 = ck.

Kcon(gk, n): Return (crscon; td) = ([M ]1 = [ P̂%̂ ]1, aux; (χ, %̂))← Dn+1,1.

Pcon(gk, crs, (M,M′), (E, r)): // M′ = EM + (ti · pk)ni=1

â ←
(
E
r>

)>
[ P̂%̂ ]1; rt ←r Zq; t ← t>[P̂ ]1 + rt[%̂]1; N ← r>M + rt · pk;

Return (πcon ← (â, t,N)).

Vcon(gk, crs, (M,M′), πcon): Check that [P̂ ]>1 ◦M′−â>◦M ?
= t◦pk−[%̂]1◦N.

Next, we prove that the consistency argument is culpably sound under a suitable
KerMDH assumption (with an auxiliary input). After that, we prove that this
variant of the KerMDH assumption holds in the GBGM, given that the auxiliary
input satis�es some easily veri�able conditions.

Theorem 5. Assume that Dconn is a valid CRS distribution, where the matrix

distribution outputs [M ]1 = [ P̂ (χ)
%̂

]1 ∈ Zn+1
q for (χ, %̂)←r Zq × Z∗q . The consis-

tency argument is perfectly complete and perfectly zero knowledge. Assume that
the Dconn -KerMDH assumption with an auxiliary input holds in G1. Then the con-
sistency argument is culpably sound using Rglt

con with the CRS crs = ([M ]1, aux).

Proof. Perfect completeness: In the case of the honest prover, [P̂ ]>1 ◦M′−
â> ◦M = [P̂ ]>1 ◦ (EM+ (ti · pk)ni=1)−

(
E
r>

)>
[ P̂%̂ ]>1 ◦M = [P̂ ]>1 ◦ ((ti · pk)ni=1) +

rt[%̂]1 ◦ pk− [%̂]1 ◦ rtpk− [%̂]1 ◦ r>M = t ◦ pk− [%̂]1 ◦N.
Culpable soundness: Assume that Acon is an adversary that, given in-

put (gk, crscon) for crscon = (M , aux) ←r Dconn , returns u = (M,M′), πcon =
(â, t,N) and wglt = (E, r). Acon succeeds i� (i) the veri�er of the consistency

argument accepts, (ii) â =
(
E
r>

)>
[ P̂%̂ ]1, and (iii) Decsk(M

′) = E · Decsk(M).
Assume Acon succeeds with probability ε.

We construct the following adversary Aker that breaks the Dconn -KerMDH
assumption with auxiliary input. Aker gets an input (gk, [M ]1, aux) where gk←
BG(1κ) and crsker = ([M ]1, aux)←r Dconn , and is supposed to output [c]2, such
that M>c = 0 but c 6= 0.

On such an input, Aker �rst parses the auxiliary input as aux = (aux′, pk),
then picks sk′ ←r Zq and creates crscon = ([M ]1, (aux

′, pk′)), where pk′ =
([1]2, [sk

′]2). Note that crsker and crscon have the same distribution. Aker makes
a query to Acon with input (gk, crscon).

After obtaining the answer u = (M,M′), πcon = (â, t,N) and wglt = (E, r)
from Acon, he does the following:
1. If [P̂ ]>1 ◦M′ − â> ◦M 6= t ◦ pk′ − [%̂]1 ◦N then abort.
2. Use sk′ to decrypt: m← Decsk′(M), m′ ← Decsk′(M

′), n← Decsk′(N).

3. Return [c]2 ←
(

m′−Em

n−r>m

)
.

Let us now analyze Aker's success probability. With probability 1− ε, Aker
fails, in which case Aker will abort. Otherwise, the veri�cation equation holds.
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Decrypting the right-hand sides of each ◦ in the veri�cation equation in Step 6,
we get that [M ]>1 •

(
m′

n

)
− â> •m = [0]T .

Since Acon is successful, then a =
(
E
r>

)>
[M ]1, hence we get

[0]T =[M ]>1 •
(
m′

n

)
− [M ]>1

(
E
r>

)
•m

=[M ]>1 •
(
m′

n

)
− [M ]>1

(
E
r>

)
•m

=[M ]>1 •
(
m′

n

)
− [M ]>1 •

(
E
r>

)
m

=[M ]>1 •
(
m′ −Em
n− r>m

)
.

Since Acon is successful, then m′ 6= Em, which means that c 6= 0 butM>c = 0.
Thus, Aker solves the Dconn -KerMDH problem with probability ε.

Perfect Zero-Knowledge: The simulator Scon(gk, crs, (M,M′), tdcon =
(χ, %̂)) proceeds like the prover in the case E = I (the identity matrix) and
t = 0, and then computes an N that makes the veri�er accept. More precisely,
the simulator sets r ←r Zq, â ← [P̂ ]1 + r[%̂]1, rt ←r Zq, t ← rt[%̂]1, and

N← (P̂ /%̂+ r)>M− (P̂ /%̂)>M′ + rt · pk. Scon then outputs πcon ← (â, t,N).
Due to the perfect hiding property of the commitment scheme, (â, t) has the

same distribution as in the real protocol. Moreover,

[P̂ ]>1 ◦M′ − â> ◦M =[P̂ ]>1 ◦M′ − ([P̂ ]1 + r[%̂]1)> ◦M
=[%̂]1 ◦ (P̂ /%̂)>M′ − [%̂]1 ◦ (P̂ /%̂+ r)>M

=[%̂]1 ◦ (rt · pk− rt · pk + (P̂ /%̂)>M′ − (P̂ /%̂+ r)>M)

=t ◦ pk− [%̂]1 ◦N

and thus this choice of N makes the veri�er accept. Since t is uniformly random
and N is uniquely de�ned by (â, t) and the veri�cation equation, we have a
perfect simulation. ut

Example 1. In the case of the shu�e argument, E is a permutation matrix with

Eij = 1 i� j = σ(i). Thus, [â]1 =
(
E
r>

)>
[ P̂%̂ ]1 = [(P̂σ−1(i))

n
i=1 + r%̂]1, and

Em = (mσ(i))
n
i=1. Hence in the shu�e argument, assuming that it has been

already established that E is a permutation matrix, then after the veri�cation
in Step 6 one is assured that m′ = (mσ(i))

n
i=1. ut

We will now prove that the used variant of KerMDH with auxiliary input
is secure in the GBGM. Before going on, we will establish the following linear
independence result.

Lemma 2. The set Ψ× := {Pi(X)P̂j(X)}1≤i,j≤n ∪ {P̂i(X)}ni=1 is linearly inde-
pendent.

Proof. By Lemma 1, for each j ∈ [1 .. n] we have that {Pi(X)P̂j(X)}1≤i≤n ∪
{P̂j(X)} is linearly independent. Hence to show that Ψ× is linearly indepen-
dent, it su�ces to show that for all 1 ≤ j < k ≤ n, the span of sets

22



{Pi(X)P̂j(X)}1≤i≤n ∪ {P̂j(X)} and {Pi(X)P̂k(X)}1≤i≤n ∪ {P̂k(X)} only in-
tersect at 0. This holds since for non-zero vectors (a, b) and integers (A,B),∑n
i=1 aiPi(X)P̂j(X) +AP̂j(X) = (

∑n
i=1 aiPi(X) +A)X(j+1)(n+1) has degree at

most n+ (j+ 1)(n+ 1) < (k+ 1)(n+ 1), while
∑n
i=1 biPi(X)P̂k(X) +BP̂k(X) =

(
∑n
i=1 biPi(X) +B)X(k+1)(n+1) has degree at least (k + 1)(n+ 1). ut

Theorem 6. Assume that (P̂i(X))ni=1 satisfy the following properties:

� {P̂i(X)}ni=1 is linearly independent,

� {Pi(X)P̂j(X)}1≤i,j≤n is linearly independent,
Assume also that the second input aux output by Dconn satis�es the following
property. The subset aux2 of G2-elements in aux must satisfy that
� aux2 does not depend on %̂,
� the only element in aux2 that depends on % is [%]2,
� the only elements in aux2 that depend on χ are [Pi(χ)]2 for i ∈ [0 .. n].

Then in the GBGM, the Dconn -KerMDH assumption with an auxiliary input holds
in G1.

Clearly, (Pi(X))ni=1, (P̂i(X))ni=1, and crs in Prot. 1 (if used as aux) satisfy the
required properties.

Proof. Consider a generic group adversary Aker who, given ([ P̂ (χ)
%̂

]1, aux) as an

input, outputs a non-zero solution ( m
n ) ∈ Gn+1

2 to the KerMDH problem, i.e.,
[M ]>1 • ( m

n ) = [0]T . In the generic model, each element in aux2 has some poly-
nomial attached to it. Since Aker is a generic adversary, he knows polynomials
Mi(X) (for each i) and N(X), such that mi = [Mi(χ)]2 and n = [N(χ)]2. Those
polynomials are linear combinations of the polynomials involved in aux2.

Hence, if ( m
n ) ∈ Gn+1

2 is a solution to the KerMDH problem, then [M ]>1 •
( m
n ) = [0]T or equivalently, V̂ker(χ) = 0, where

V̂ker(X) :=
n∑
i=1

P̂i(X)Mi(X) +X%̂ ·N(X) , (7)

for coe�cients known to the generic adversary. By the Schwartz�Zippel lemma,
from this it follows (with all but negligible probability) that V̂ker(X) = 0 as a
polynomial.

Due to the assumptions on aux2, and since {Pi(X)}ni=0∪{1} and {Pi(X)}ni=0∪
{P0(X)} are interchangeable bases of degree-(≤ n) polynomials, we can write

Mi(X) =
∑n
j=1MijPj(X) +M ′iX% +mi(X) ,

where mi(X) does not depend on X, X% or X%̂.

Since
∑
P̂i(X)Mi(X) does not depend on X%̂, we get from V̂ker(X) = 0 that∑n

i=1 P̂i(X)Mi(X) = N(X) = 0.

Next, we can rewrite
∑n
i=1 P̂i(X)Mi(X) = 0 as

n∑
i=1

n∑
j=1

MijP̂i(X)Pj(X) +X%

n∑
i=1

M ′i P̂i(X) +

n∑
i=1

P̂i(X)mi(X) = 0 .
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Due to assumptions on aux2, this means that
�
∑n
i=1

∑n
j=1MijP̂i(X)Pj(X) = 0. Since {P̂i(X)Pj(X)}i,j∈[1 .. n] is linearly

independent, Mij = 0 for all i, j ∈ [1 .. n],

�
∑n
i=1M

′
i P̂i(X) = 0. Since {P̂i(X)}i∈[1 .. n] is linearly independent, M ′i = 0

for all i ∈ [1 .. n].
�
∑n
i=1mi(X)P̂i(X) = 0. Since mi(X) does not depend on X and

{P̂i(X)}i∈[1 .. n] is linearly independent, we get mi(X) = 0 for all i ∈ [1 .. n].
Hence, Mi(X) = 0 for each i ∈ [1 .. n]. Thus, with all but negligible probability,
we have that N(X) = Mi(X) = 0, which means ( m

n ) = [0]2. ut

5 Security Proof of Shu�e

Theorem 7. The new shu�e argument is perfectly complete.

Proof. We showed the completeness of the same-message argument (i.e., that the
veri�cation equation on Step 4 holds) in Sect. 4.1, the completeness of the unit
vector argument (i.e., that the veri�cation equation on Step 5 holds) in Thm. 3,
and the completeness of the consistency argument (i.e., that the veri�cation
equation on Step 6 holds) in Sect. 4.3. ut

Theorem 8 (Soundness of Shu�e Argument). Assume that the following
sets are linearly independent:
� {Pi(X)}ni=0,
� {Pi(X)}ni=1 ∪{1},
� {Pi(X)P̂j(X)}1≤i,j≤n.

Let Dconn be as before with ([M ]1, aux), such that aux is equal to the CRS in
Prot. 1 minus the elements already in [M ]1. If the D1-KerMDH assumption holds

in G2, the D
((Pi(X))ni=1,X%)
n -KerMDH and D((P̂i(X))ni=1,X%̂)

n -KerMDH assumptions
hold and the Dconn -KerMDH assumption with auxiliary input holds in G1, then
the new shu�e argument is sound in the GBGM.

Proof. First, from the linear independence of {Pi(X)P̂j(X)}1≤i,j≤n, we get

straightforwardly that {P̂j(X)}nj=1 is also linearly independent. We construct
the following simple sequence of games.

GAME0: This is the original soundness game. Let Ash be an adversary that
breaks the soundness of the new shu�e argument. That is, given (gk, crs), Ash
outputs u = (M,M′) and an accepting proof π, such that for all permutations
σ, there exists i ∈ [1 .. n], such that Decsk(M

′
i) 6= Decsk(Mσ(i)).

GAME1: Here, we let Acon herself generate a new secret key sk ←r Zq and
set pk← [1, sk]2. Since the distribution of pk is witness-sampleable, then for any
(even omnipotent) adversary B, |Pr[GAME1(B) = 1] − Pr[GAME0(B) = 1]| = 0
(i.e., GAME1 and GAME0 are indistinguishable).

Now, consider GAME1 in more detail. Clearly, under given assumptions and
due to the construction of crs in Prot. 1 the same-message and permutation
matrix arguments are knowledge-sound. Hence there exist extractors ExtAsm:i

and ExtApm such that the following holds:
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1. Generate a new random tape r′ for Ash
2. Run Ash(gk, crssh; r′) to obtain a shu�e argument πsh =

(M′, (ai)
n−1
i=1 , πsp, πsm, (âi)

n−1
i=1 , t,N). Compute an and ân as in Prot. 1.

3. Abort when πsh is not accepting.
4. For i = 1 to n:

(a) Extract (E′i, r
′
i)← ExtAsm:i(gk, crssh; r

′).
(b) Abort when (E′i, r

′
i) is not a valid opening of ai or âi.

5. Extract (E, r)← ExtApm(gk, crssh; r
′).

6. Abort when E′ 6= E or r′ 6= r.
7. // At this point Acon knows a permutation matrix E and vector r, such that

â = [E>P̂ + r%̂]1 and Decsk(M
′) 6= E · Decsk(M).

8. Return u = (M,M′), πcon = (â, t,N), and wglt = (E, r).

Protocol 3: Adversary Acon on input (gk, crscon)

� If the same-message argument veri�er accepts (ai, âi, πsm:i) ←
Asm(gk, crssh; r′), then ExtAsm:i(gk, crssh; r′) outputs the common open-
ing (E′i, ri) of ai and âi.

� If the permutation matrix argument veri�er accepts ((ai)
n−1
i=1 , πpm) ←

Apm(gk, crssh; r′), then ExtApm(gk, crssh; r′) outputs a permutation matrix E

and vector r such that a = [E>P +r%]1 (here, an is computed as in Prot. 1).

We construct the following adversary Acon, see Prot. 3, that breaks the cul-
pable soundness of the consistency argument using Rglt

con with auxiliary input.
Acon gets an input (gk, crscon) where gk← BG(1κ), and crscon ← ([M ]1, aux)←r

Dconn . Acon is supposed to output (u, πcon, w
glt) where u = (M,M′), πcon =

(â, t,N), and wglt = (E, r) such that â = [E>P̂ + r%̂]1, πcon is accepting, and
Decsk(M

′) 6= E · Decsk(M).

It is clear that if Acon does not abort, then he breaks the culpable soundness
of the consistency argument. Let us now analyze the probability that Acon does
abort in any step.

1. Acon aborts in Step 3 if Ash fails, i.e., with probability 1− εsh.
2. Acon will never abort in Step 4b since by our de�nition of knowledge-

soundness, ExtAsm:i always outputs a valid opening as part of the witness.
3. Acon aborts in Step 6 only when he has found two di�erent openings of ai

for some i ∈ [1 .. n]. Hence, the probability of abort is upper bounded by
nεbinding, where εbinding is the probability of breaking the binding property
of the ((Pi(X))ni=1, %)-commitment scheme.

Thus, Acon aborts with probability ≤ 1 − εsh + nεbinding, or succeeds with
probability εcon ≥ εsh−nεbinding. Hence εsh ≤ εcon+nεbinding. Since under the
assumptions of this theorem, both εcon and εbinding are negligible, we have that
εsh is also negligible. ut

Theorem 9. The new shu�e argument is perfectly zero-knowledge.
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1. For i = 1 to n− 1: // commits to the permutation σ = Id
(a) ri ←r Zq; ri ← ri[%]1;
(b) ai ← [Pi]1 + ri; bi ← [Pi]2 + ri[%]2; âi ← [P̂i]1 + ri[%̂]1;

2. an ← [
∑n
i=1 Pi]1 −

∑n−1
j=1 aj ; bn ← [

∑n
i=1 Pi]2 −

∑n−1
j=1 bj ;

3. ân ← [
∑n
i=1 P̂i]1 −

∑n−1
j=1 âj ;

4. rn ← −
∑n−1
i=1 ri; rn ← rn[%]1;

5. For i = 1 to n:
(a) ci ← ri · (2(ai + [P0]1)− ri) + [((Pi + P0)

2 − 1)/%]1;
(b) di ← [βPi + β̂P̂i]1 + ri[β%+ β̂%̂]1;

6. Set rt ←r Zq;
7. t← rt[%̂]1; // Commits to 0
8. N← (P̂ /%̂+ r)>M− (P̂ /%̂)>M′ + rt · pk;
9. πsm ← d; // Same-message argument
10. πuv ← ((bi)

n−1
i=1 , c); // Unit vector argument

11. πcon ← ((âi)
n−1
i=1 , t,N); // Consistency argument

12. Return πsh ← ((M′i)
n
i=1, (ai)

n−1
i=1 , πuv, πsm, πcon).

Protocol 4: The simulator of the shu�e argument

Proof. We proved that the permutation matrix argument is witness-
indistinguishable (Thm. 4), and that the same-message argument is zero-
knowledge (Thm. 2) and hence also witness-indistinguishable.

We will construct a simulator Ssh, that given a CRS crs and trapdoor
td = (χ, %̂) simulates the prover in Prot. 1. Ssh takes any pair (M,M′)
as input and performs the steps in Prot. 4. Clearly, the simulator computes
((ai)

n−1
i=1 , (âi)

n−1
i=1 , πuv, πsm) exactly as an honest prover with permutation σ = Id

would, which ensures correct distribution of these values. Moreover, since the
commitment scheme is perfectly hiding and the permutation matrix and same-
message arguments are witness-indistinguishable, the distribution of these values
is identical to that of an honest prover that uses a (possibly di�erent) permuta-
tion σ′ and randomness values to compute M′ from M.

On the other hand, on the last step, Ssh uses the simulator Scon of the
consistency argument from Thm. 5. Since πcon output by Ssh has been computed
exactly as by Scon in Thm. 5, the veri�cation equation in Step 6 of Prot. 2 accepts.
Moreover, as in Thm. 5, (â, t) has the same distribution as in the real protocol
due to the perfect hiding of the commitment scheme, and N is uniquely �xed
by (â, t) and the veri�cation equation. Hence the simulation is perfect. ut

6 Batching

The following lemma, slightly modi�ed from [33,15] (and relying on the batching
concept introduced in [4]), shows that one can often use a batched version of the
veri�cation equations.

Lemma 3. Assume 1 < t < q. Assume y is a vector chosen uniformly random
from [1 .. t]k−1 ×{1}, χ is a vector of integers in Zq, and (fi)i∈[1 .. k] are some
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V(gk, crs,M; (M′i)
n
i=1, (aj)

n−1
j=1 , πuv, πsm, πcon):

1. Parse (πuv, πsm, πcon) as in the prover's Steps 11�12,
2. Compute an, bn, and ân as in the prover's Step 2,
3. Set (y1j)j∈[1 .. n−1] ←r [1 .. t]

n−1, Set y1n ← 1,
4. Set y21 ←r [1 .. t], y22 ← 1,
5. α←r Zq;
6. Check that // Permutation matrix argument∑n

j=1 ((y1j(aj + α[1]1 + [P0(χ)]1)) • (bj − α[1]2 + [P0(χ)]2)) = (y>1 c)• [%]2+
(
∑n
j=1 y1j)(1− α

2)[1]T ;

7. Check that (y>1 d) • [1]2 = (y>1 (a, â)) •
[
β

β̂

]
2
// Same-message argument

8. Set q← t • (pk · y2).
9. Check that // Consistency argument, online

[P̂ ]>1 • (M′y2)− â> • (My2) = q− [%̂]1 • (Ny2).

Protocol 5: The batched veri�er of the new shu�e argument.

polynomials of arbitrary degree. If there exists i ∈ [1 .. k] such that fi(χ)([1]1 •
[1]2) 6= [0]T then

∑k
i=1 fi(χ)yi · ([1]1 • [1]2) = [0]T with probability ≤ 1

t .

Proof. Let us de�ne a multivariate polynomial V (Y1, . . . , Yk−1) =∑k−1
i=1 fi(χ)Yi + fk(χ) 6= 0. By the Schwartz�Zippel lemma V (y1, . . . , yk−1) = 0

with probability ≤ 1
t . Since [1]1 • [1]2 6= [0]T , we get that∑k

i=1 fi(χ)yi · ([1]1 • [1]2) = [0]T with probability ≤ 1
t . ut

For the sake of concreteness, the full batched version of the veri�er of the
new shu�e argument is described in Prot. 5. The following corollary follows
immediately from Lem. 3. It implies that if the non-batched veri�er in Prot. 2
does not accept then the batched veri�er in Prot. 5 only accepts with probability
≤ 3

t . This means that with all but negligible probability, the non-batched veri�er
accepts i� the batched veri�er accepts. In practice a veri�er could even set (say)
t = 3 · 240.

Corollary 1. Let 1 < t < q. Assume χ = (χ, α, β, β̂, %, %̂, sk) ∈ Z4
q× (Z∗q)2×Zq.

Assume (y1j)j∈[1 .. n−1], and y21 are values chosen uniformly random from [1 .. t],
and set y1n = y22 = 1.

� If there exists i ∈ [1 .. n] such that the ith veri�cation equation on Step 5
of Prot. 2 does not hold, then the veri�cation equation on Step 6 of Prot. 5
holds with probability ≤ 1

t .
� If there exists i ∈ [1 .. n] such that the ith veri�cation equation on Step 4
of Prot. 2 does not hold, then the veri�cation equation on Step 7 of Prot. 5
holds with probability ≤ 1

t .
� If the veri�cation equation on Step 6 of Prot. 2 does not hold, then the
veri�cation equation on Step 9 of Prot. 5 holds with probability ≤ 1

t .
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Table 3. E�ciency comparison of various operations based on libsnark. Units in the
last column show e�ciency relative to n exponentiations in G1 for n = 100, 000.

10,000 100,000 1000,000 units

Multi-exp. G1 0.26s 2.54s 24.2s 0.13
Fixed-base exp. G1 0.28s 2.40s 18.44s 0.12
Multi-exp. G2 0.65s 5.54s 48.04s 0.27
Fixed-base exp. G2 0.75s 5.62s 44.34s 0.28
Exp. G1 2.15s 20.29s 207.11s 1
Exp. G2 5.54s 51.10s 506.26s 2.52
Pairing product 4.38s 43.37s 471.72s 2.14
Pairings 10.24s 97.07s 915.21s 4.78
Exp. GT 10.65s 100.20s 1110.53s 4.94

7 Implementation

We implement the new shu�e argument in C++ using the libsnark library [6].
This library provides an e�cient implementation of pairings over several di�er-
ent elliptic curves. We run our measurements on a machine with the following
speci�cations: (i) Intel Core i5-4200U CPU with 1.60GHz and 4 threads; (ii) 8
GB RAM; (iii) 64bit Linux Ubuntu 16.10; (iv) Compiler GCC version 6.2.0.

In addition, libsnark provides algorithms for multi-exponentiation and �xed-
base exponentiation. Here, an n-wide multi-exponentiation means evaluating an
expression of the form

∑n
i=1 Liai, and n �xed-base exponentiations means eval-

uating an expression of the form (L1b, . . . , Lnb), where Li ∈ Zq and b, ai ∈ Gk.
Both can be computed signi�cantly faster than n individual scalar multiplica-
tions. (See Tbl. 3.) Importantly, most of the scalar multiplications in the new
shu�e argument can be computed by using either a multi-exponentiation or a
�xed-base exponentiation.

We also optimize a sum of n pairings by noting that the �nal exponentiation
of a pairing can be done only once instead of n times. All but a constant number
of pairings in our protocol can use this optimization. We use parallelization to
further optimize computation of pairings and exponentiations.

To generate the CRS, we have to evaluate Lagrange basis polynomials
(`i(X))i∈[1 .. n+1] at X = χ. In our implementation, we pick ωj = j and make

two optimizations. First, we precompute Z(χ) =
∏n+1
j=1 (χ− j). This allows us to

write `i(χ) = Z(χ)/((χ− i)
∏n+1
j=1,j 6=i(i− j)). Second, denote Fi =

∏n+1
j=1
j 6=i

(i− j).

Then for i ∈ [1 .. n], we have Fi+1 = (iFi)/(i−n− 1). This allows us to compute

all Fi with 2n multiplications and n divisions. Computing all `i(χ) = Z(χ)
(χ−i)Fi

takes 4n+ 2 multiplications and 2n+ 1 divisions.
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