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Inria Paris, France
firstname.lastname@inria.fr

Abstract. The cryptographic community has widely acknowledged that
the emergence of large quantum computers will pose a threat to most
current public-key cryptography. Primitives that rely on order-finding
problems, such as factoring and computing Discrete Logarithms, can be
broken by Shor’s algorithm ([51]).
Symmetric primitives, at first sight, seem less impacted by the arrival of
quantum computers: Grover’s algorithm [33] for searching in an unstruc-

tured database finds a marked element among 2n in time Õ(2n/2), pro-
viding a quadratic speedup compared to the classical exhaustive search,
essentially optimal. Cryptographers then commonly consider that dou-
bling the length of the keys used will be enough to maintain the same
level of security.
From similar techniques, quantum collision search is known to attain
Õ(2n/3) query complexity [21], compared to the classical O(2n/2). How-
ever this quantum speedup is illusory: the actual quantum computation
performed is actually more expensive than in the classical algorithm.
In this paper, we investigate quantum collision and multi-target preimage
search and present a new algorithm, that uses the amplitude amplifica-
tion technique. As such, it relies on the same principle as Grover’s search.
Our algorithm is the first to propose a time complexity that improves
upon O(2n/2), in a simple setting with a single processor. This time com-

plexity is Õ(22n/5) (equal to its query complexity), with a polynomial
quantum memory needed (O(n)), and a small classical memory com-

plexity of Õ(2n/5). For multi-target preimage attacks, these complexities

become Õ(23n/7), O(n) and Õ(2n/7) respectively. To the best of our
knowledge, this is the first proof of an actual quantum time speedup for
collision search. We also propose a parallelization of these algorithms.
This result has an impact on several symmetric cryptography scenar-
ios: we detail how to improve upon previous attacks for hash function
collisions and multi-target preimages, how to perform an improved key
recovery in the multi-user setting, how to improve the collision attacks
on operation modes, and point out that these improved algorithms can
serve as basic tools for some families of cryptanalytic techniques.
In the end, we discuss the implications of these new attacks on post-
quantum security.

Keywords: post-quantum cryptography, symmetric cryptography, collision search,
amplitude amplification.



1 Introduction

The emergence of large-scale quantum computing devices would have enormous
consequences in physics, mathematics and computer science.

While quantum hegemony has yet to be achieved by these machines, the
field of post-quantum cryptography has become very active in the last twenty
years, as it is of foremost importance to achieve today security against possible
adversaries from tomorrow. As a consequence, post-quantum asymmetric primi-
tives are being developed and standardized, to protect public-key cryptography
against the ravages of Shor’s period-finding algorithm ([51]), that provides an
exponential advantage to a quantum adversary compared to all known classical
factorization algorithms.

Symmetric Cryptography in the Quantum World. In the symmetric setting,
Grover’s algorithm can speed up quadratically the classical exhaustive key search.
As a result, ideal ciphers with k-bit keys would provide only k/2-bit security in
a post-quantum world. The confidence we have on real symmetric primitives is
based on cryptanalysis, i.e. the more we analyze a primitive without finding any
weakness, the more trust we can put in it. Until recently, little was known on
how quantum adversaries could try to attack symmetric primitives. Therefore,
as little was known about their security and confidence they should inspire in a
quantum world.

This is why turning classical attacks into quantum attacks was studied in [38]
and [36]. By transposing the weaknesses of an encryption function to the post-
quantum world, it is indeed possible to improve on the naive, all-purpose Grover
search. How classical attacks can be “quantized” requires, however, a careful
analysis.

Besides, if the adversary has stronger capacities than the mere access to a
quantum computing device (e.g, if she can ask superposition chosen-plaintext
queries), an exponential speedup has been shown to occur for some construc-
tions. This was first noted by Kuwanado and Morii against the Even-Mansour
construction ([44]) and the three-round Feistel ([43]), later extended to slide at-
tacks and modes of operation for MACs ([37]). All these attacks use Simon’s
algorithm [52].

Quantum Collision and Multi-target Preimage Search. In a classical setting, it is
well known that finding a collision for a random function H on n bits, i.e. a pair
x, y with x 6= y such that H(x) = H(y), costs O

(
2n/2

)
in time and queries [50].

A parallelization of this algorithm was proposed in [49], that has a product of
time and memory complexities of also O

(
2n/2

)
.

In a quantum setting, an algorithm was presented by Brassard, Høyer and
Tapp in [21] that, given superposition query access to a (2-to-1) function H

on n bits, outputs a collision using Õ
(
2n/3

)
superposition queries to H. This

algorithm is optimal, but only in terms of query complexity, while its product
of time and memory complexities is as high as Õ

(
22n/3

)
and makes it non-

competitive when compared to the classical attack.
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Regarding the multi-target preimage search, i.e. given t values of H(xi) for
i from 1 to t, find one out of the t values of the xi, the best classical algorithm
finds a preimage in time O (2n−t). In the quantum setting, the best algorithm

takes time Õ(2n/2), it consists in fact of finding the preimage of a single chosen
target with Grover’s algorithm.

1.1 Contributions.

The contributions we present in this paper are two folded:

Improved Algorithms for Collision and Multi-target Preimage Search. First, we
propose a new quantum algorithm for collision search, based on amplitude am-
plification, which runs in real time Õ

(
22n/5

)
with a single quantum processor,

uses O(n) qubits of memory, and Õ
(
2n/5

)
bits of classical storage, accessed via

a classical processor. The algorithm can be adapted to solve the multi-target
preimage problem, with a running time Õ

(
23n/7

)
, the same quantum require-

ments and Õ
(
2n/7

)
bits of classical storage.

We also extend these results if quantum parallelization is allowed. These
quantum algorithms are the first ones to significantly improve on the best classi-
cal algorithms for those two problems. These results also solve an open problem
and contradict a conjecture on the complexity of quantum collision and multi-
target preimage search, as we will detail in section 7.2.

Implications of these Algorithms. We have studied the impact of these new
algorithms on several cryptographic settings, and obtained the following conclu-
sions:

• Hash functions: We are able to improve the best known collision and multi-
target preimage attacks when the attacker has only access to a quantum
computer.
• Multi-user setting: We are able to improve the best known attacks in a

multi-user setting, i.e. recover one key out of many, thanks to the multi-
target preimage search improved algorithm. The model for the attacker here
is also not very strong, and we only suppose she has access to a quantum
computer.
• Operation Modes: Considering collision attacks on operation modes, we are

able to improve them with our new algorithms. In this case, the attacker is
placed in a more powerful model: she can make superposition queries to a
quantum cryptographic oracle. The question of a new data limit enforcement
is raised.
• Bricks for cryptanalysis techniques: we show how these algorithms can be

used as building blocks in more complex cryptanalytic techniques.

We also discuss the implications of these attacks with respect to security bounds
for symmetric cryptographic primitives.
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Organisation. In the next section, we detail some security notions that will
be considered in our applications and some basic notions of quantum comput-
ing. In Section 3, we present the considered problems: collision and multi-target
preimage search, and we report the state-of-the-art of the previous best known
quantum and classical algorithms for solving them. We also present some cryp-
tographic scenarios where these problems are shown to be useful. In Section 4,
we develop a prerequisite building block of our algorithms, while Section 5 is
dedicated to detail the new algorithms and possible trade-offs. In Section 6 we
analyze the impact of these algorithms with respect to the cryptographic sce-
narios previously presented. A discussion on our results and a conclusion are
provided in Section 7. In the auxiliary supporting material appended to this
submission, we deal with the algorithmic imperfections of the amplitude ampli-
fication algorithm.

2 Preliminaries

This section describes some concepts that will be needed for presenting our
results: we first provide some classical security notions. Next we describe the
two models most commonly considered for quantum adversaries, as both will
be considered in applications (Section 6). Finally, we will briefly describe the
basic quantum computing notions that we will need in order to explain our new
algorithms in section 5.

2.1 Some Classical Security Notions

In this section we briefly describe some notions from symmetric key cryptography
that will be used through the paper.

Key Recovery Attack. Consider a cipher EK , that is a pseudo-random permu-
tation parameterized by a secret key K of size k. This cipher takes as input a
plaintext of size n and generates a ciphertext of the same size. In the common
known-plaintext setting (KPA), the attacker gets access to some pairs of plain-
texts and ciphertexts (Pi, Ci). Sometimes the attacker is also allowed to choose
the plaintexts: this is called chosen-plaintext attacks (CPA).

It is always possible to perform an exhaustive search on the key and to find
the correct one as the one that verifies Ci = EK(Pi) for all i. The cost of this is
2k encryptions, and this is the security an ideal cipher provides: the best attack
is the generic attack. Therefore, a cipher is broken if we are able to recover its key
with a complexity smaller than 2k. The data complexity will be the number of
calls to the cryptographic oracle EK , i.e. the number of pairs (Pi, Ci) needed to
successfully perform the attack; the time complexity is the overall time needed
to recover the key, and the memory complexity is the amount of memory needed
to perform the attack.
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Distinguisher and Plaintext Recovery. Key recovery attacks are the strongest,
but being able to distinguish the generated ciphertexts from random values is
also considered as a weakness. Moreover, when the attacker only captures cipher-
texts, she shouldn’t able to recover information of any kind on the corresponding
plaintexts.

Modes of Operations. In order to be able to treat messages of different lengths
and to provide specific security properties, as confidentiality and integrity, block
ciphers are typically used in operation modes. One of the security properties that
these modes should offer is, for instance, not to allow an attacker to identify when
the same two blocks have been encrypted under the same key, without having to
change the key for each block (which wouldn’t be very efficient). Some popular
modes are Cipher Block Chaining, CBC [28], or Counter Mode, CTR [27]. It is
also possible to build authenticated encryption primitives by using authentica-
tion modes, as the Offset Codebook Mode, OCB [41] proposed by Krovetz and
Rogaway. Their securities have been widely studied in the classical setting ([8]),
as well as recently in a post-quantum setting ([5]).

A plaintext m is split in blocks m0 . . .ml−1, that will be encrypted with the
help of the cipher EK and combined; the ciphertext is c = c0 . . . cl−1 .

CBC. The Code Block Chaining (CBC) mode of operation defines the ciphertext
blocks as follows: c0 = EK(m0 ⊕ IV ) and for all i ≤ l − 1:

ci = EK(mi ⊕ ci−1)

where IV is a public initial value.
The block size being n, some restrictions on the maximal number of blocks

encrypted under the same key must be enforced. Indeed, the birthday paradox
implies that after recovering 2n/2 encrypted blocks, there is a high (and constant)
probability that two of them are equal, leading to:

EK(mi ⊕ ci−1) = EK(mj ⊕ cj−1) .

And since EK is a permutation, we get mi⊕ci−1 = mj⊕cj−1 hence mi⊕mj ,
the XOR of two plaintext blocks, from the knowledge of the ciphertexts.

CTR. In the counter mode (CTR), blocks mi are encrypted as ci = EK(IV ⊕
i)⊕mi where IV is an initial public value, and i is a counter initialized to zero.
As all the inputs of the encryption function are different, we won’t have collisions
due to the birthday paradox as in the CBC case, but this lack of collisions can
exploited to distinguish the construction if more than the 2n/2 recommended
bound of data was generated with the same key.

2.2 Quantum Adversary Models

In this section we describe and justify the two models most commonly considered
for quantum adversaries. The application scenarios described in section 6 will
use both of them.
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Model Q1. The adversary has access to a quantum computer: this is the case, for
instance, in [15, 19, 57, 53]. The adversary can query a quantum random oracle
with arbitrary superpositions of the inputs, but is only able to make classical
queries to a classical encryption oracle (and therefore no quantum superposition
queries to the cryptographic oracle).

Model Q2. In this case, the adversary is allowed to perform quantum super-
position queries to a remote quantum cryptographic oracle (qCPA): she obtains
a superposition of the outputs. This model has been considered for instance
in [24, 17, 55, 37, 31, 16]. This is a strong model, but it has the advantages of be-
ing simple, inclusive of any possible intermediate and more realistic model, and
achievable. In particular, in several of these publications, secure constructions
were provided for this scenario.

2.3 Quantum Computing

In this section we provide some basic notions from quantum computing that
will be used through the paper. The interested reader can see [48] for a detailed
introduction to quantum computing.

Quantum Oracles for Functions. Any function f : {0, 1}n → {0, 1}m with a
known circuit description can be efficiently implemented as a quantum unitary
Of on n+m qubits, with:

Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 .

The quantum running time of Of is twice 1 the running time of f .

Projection Oracle. Let P a projector acting on n qubits. We define OP as the
following unitary acting on n+ 1 qubits

OP (|ψ〉 |b〉) :=

{
|ψ〉 |b⊕ 1〉 if |ψ〉 ∈ Im(P )
|ψ〉 |b〉 if |ψ〉 ∈ Ker(P )

.

The above expression defines OP on a basis of the n + 1 qubit pure states and
OP is therefore defined for all states by linearity.

Amplitude Amplification. One of the main tools we will use in our algorithms
is the quantum amplitude amplification routine.

1 Computing f makes use of ancillary (additional) qubits. Properly initialized to |0〉,
those end up in a state |g(x)〉 that cannot be simply dismissed: instead, by uncom-
puting, we can restore these qubits to their initial state |0〉 and make sure that the
oracle has no side-effects.
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Theorem 1 ([20], Quantum amplitude amplification). Let P a projector
acting on n qubits and OP a projection oracle for P . Let A be a quantum unitary
that produces a state |φ〉 = α |φP 〉 + β

∣∣φ⊥P 〉 where |φP 〉 ∈ Im(P ) and
∣∣φ⊥P 〉 ∈

Ker(P ). Notice that tr(P |φ〉〈φ|) = |α|2. We note |α| = sin(θ) for some θ ∈
[0, π/2]. There exists a quantum algorithm that:

• Consists of exclusively N =
⌊
π
4θ −

1
2

⌋
calls to OP , O

†
P ,A,A† and a final

measurement.
• Produces a quantum state close to |φP 〉. For simplicity, we do not specify the

error here and dedicate instead the supplementary material to it.

The algorithm A is called the setup and the projection P the projector of the
quantum amplification algorithm. This whole procedure will be denoted

QAA(setup, proj) = QAA(A, P )

and its running time is

N (|A|RT + |OP |RT ) .

where the notation |·|RT represents the running time of the respective algorithms.

If both A and OP can be done in time polynomial in n, the above is Õ (N).

This projection P can be sometimes characterized by a test function f , such
that |x〉 ∈ Im(P ) when f(x) = 1 and |x〉 ∈ Ker(P ) when f(x) = 0. Amplitude
amplification can be seen as a generalization of Grover’s algorithm. Let us briefly
show how to retrieve it.

Grover’s Algorithm. We are given an efficiently computable function f : {0, 1}n 7→
{0, 1} and we want to find an element x such that f(x) = 1. We take P such
that |x〉 ∈ Im(P ) when f(x) = 1 and |x〉 ∈ Ker(P ) when f(x) = 0. OP can
be constructed with a single call to Of . We use as setup the algorithm A that
produces the state |φ〉 = 1

2n/2

∑
x∈{0,1}n |x〉. In order to produce |φ〉, we perform

a Hadamard operation on each qubit, which is very efficient.
We write |φ〉 = 1

2n/2

∑
x:f(x)=1 |x〉+

1
2n/2

∑
x:f(x)=0 |x〉. We have tr(P |φ〉〈φ|) =

|{x:f(x)=1}|
2n . Using the above quantum amplitude amplification procedure QAA(A, P ),

and by measuring the obtained state, we can find with high probability an ele-

ment x such that f(x) = 1 in time Õ
(√

2n

|{x:f(x)=1}|

)
.

For most applications, e.g quantum exhaustive key search, there is only one
“marked” element x such that f(x) = 1 (e.g, the key). Then Grover search

attains a complexity Õ
(√

2n
)
.

Quantum Query, Memory and Time Complexity. Most of the complexity lower
bounds on quantum algorithms in the literature, as well as the algorithms that
meet these bounds, are based on query complexity. As such, they count the
number of oracle queries Of used, where Of is a quantum oracle for a function
f or more generally the data that is being accessed.
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Notice that classical queries are a particular case of superposition queries, so
we consider them alike in what follows.

However, query complexity can be completely different from time complexity :
the latter represents the number of elementary quantum gates (unitaries) suc-
cessively applied to a qubit or a qubit register. It has the same flavor as classical
time complexity, since it counts elementary operations applied sequentially.

We emphasize that memory complexity has a different meaning in the quan-
tum and the classical setting. While classical memory is thought of as a database
with fast access, quantum memory denotes the number of qubits in the circuit.
Having more qubits means that more operations can be applied in parallel, hence
decreases the time complexity: it rather corresponds to classical parallelization.

3 State-of-the-Art on Collision and Multi-target
Preimage Search

The two problems that we consider in a quantum setting, collision search and
multi-target preimage search, are described in this section. We also briefly de-
scribe the best known classical algorithms for solving them and their complex-
ities, as well as the previously best known quantum algorithms, that we will
improve in section 5. We will provide a discussion on the comparison of both
previous algorithms. In the end of this section we additionally provide some
examples of common applications of this problems on cryptanalysis.

3.1 Studied Problems

In this work we consider the two following problems:

Problem 1 (Collision finding). Given access to a random function H : {0, 1}n →
{0, 1}n, find x, y ∈ {0, 1}n with x 6= y such that H(x) = H(y).

We consider here a random function which models best the cryptographic
functions (encryption functions or hash functions) that we want to study.

Problem 2 (Multi-target preimage search). Given access to a random permuta-
tion H : {0, 1}n → {0, 1}n and a set T = {y1, . . . , y2t}, find the preimage of one
of the yi by E i.e. find i ∈ {1, . . . , `} and x ∈ {0, 1}n such that E(x) = yi.

The above problem can also be considered when replacing H with a random
function.

Previous quantum algorithms in the literature ([20]) for Prob. 1 and 2 con-
sider sometimes the case of r-to-1 functions. Although we restrict ourselves to the
case of random functions and permutations, which is relevant in cryptographic
applications, we remark that the algorithms presented below could be rewritten
for r-to-1 functions.
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3.2 Classical Algorithms to Solve Them

Collision search. The birthday paradox states that if we draw at random 2n/2

elements xi ∈ {0, 1}n we will find a collision between two of their images, i.e.
H(xi) = H(xj), with good probability (i.e. 0.5), and a collision can be found
with O(2n/2) time and memory. Pollard’s rho algorithm [50] allows to reduce the
memory complexity to a negligible amount while keeping the same time com-
plexity. No classical algorithm with a single processor exists for finding collisions
on a set of 2n elements with a lower time complexity than O(2n/2).

Parallelizing collision search. In [49] a method for reducing the time complexity
efficiently through parallelization is proposed. The total amount of computations
is slightly increased, and the time-space product is not smaller than O(2n/2), but
the speed up will be linear. The method is based in considering a common list
were all found distinguished points will be stored, until a collision on them is
found. The time complexity becomes O(2n/2/m + 2.5θ), for a case where all
collisions are useful and must be located when considering m processors, and θ
is the proportion of distinguished points, that will have a direct impact in the
memory needs.

Multi-target preimage attacks. With respect to this second problem, the best
classical algorithm finds one out of ` = 2t targets with an exhaustive search in
Ω(2(n−t)) (see for instance [6]). This complexity can be trivially derived by the

fact that the probability of finding one out of the 2t preimages is 2t

2n .

3.3 Previous Quantum Algorithms

Quantum Algorithms for the Collision Problem The quantum collision
search problem was first studied by Brassard, Høyer and Tapp ([21]). Using
Grover’s algorithm as a subroutine, they showed that the collision problem for
a 2-to-1 function f could be solved using Õ(2n/3) queries to Of and Õ(2n/3)
quantum memory. After, there has been many results on query lower bounds for
the collision problem, ([1, 2, 42]), until a bound Ω(2n/3) was reached. Zhandry
also extended the collision problem to random functions, which is relevant in a
cryptographic setting ([56]), and proved that this bound still held.

Another related and well studied problem is element distinctness, where the
question is to decide whether the outputs of the function f are all distinct (or,
equivalently, to find a collision if there is at most one). In particular, Ambainis
([3]) presented a quantum walk algorithm for this problem and showed a time

complexity of Õ(22n/3), using Õ(22n/3) quantum bits of memory. In [1] Ω(22n/3)
was shown to be a query lower bound for this problem, so those results are
essentially optimal. It is known that element distinctness can be reduced to
collision by gaining a root in the time complexity, which gives an essentially
optimal quantum time and memory of Õ(2n/3).

Here, we show the original algorithm for collision search from ([21]), that

uses Grover. This algorithm has query complexity Õ(2n/3) but running time
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Õ(22n/3). It is also possible to reduce the running time of the algorithm below

to Õ(2n/3) by using Õ(2n/3) quantum processors in parallel.

Algorithm 1: Collision search in a 2-to-1 function using Grover ([21])

Input. Quantum query access to the 2-to-1 function H : {0, 1}n → {0, 1}n
(oracle OH).
Membership oracle. We query H on an arbitrary set of 2n/3 values T ,
obtaining a set H(T ). The algorithm queries a quantum oracle O for testing if

H(x) ∈ H(T ). Either each query to O needs quantum time Õ(|T |) = Õ(2n/3),
either each is performed in O(1) but the implementation requires quantum

memory Õ(2n/3).
Grover instance. We find x such that x /∈ T ∧H(x) ∈ H(T ) using Grover’s
algorithm. The search space is the set {0, 1}n of size 2n, while the test function
is g(x) = 1 ⇐⇒ x /∈ T ∧H(x) ∈ T . Computing g requires a query to OH and a
query to O.
The number of good states is |{x,H(x) ∈ H(T ) ∧ x /∈ T}|, expected to be
|T | = 2n/3, since H is 2-to-1. Hence, this Grover instance needs

Õ(
√

2n−n/3) = Õ(2n/3) iterations.

Limits of existing work. The practical downside of the currently available al-
gorithms for collision is that, although they might require as little as Õ(2n/3)

time, they would need Õ(2n/3) quantum memory, as in ([3]) or even sometimes

Õ(2n/3) quantum processors as in ([21]), see also ([35]). Contrarily to the classi-
cal memory, which is cheap, quantum memory is a very costly part in quantum
computers. It was argued by Grover and Rudolph ([35]) that a large amount of
quantum memory is almost equivalent to a large amount of quantum processors.
Even if one disagrees with this statement, it is widely believed that if any imple-
mentations of such algorithms will ever exist, they cannot use a large amount of
quantum memory. A general discussion on the impracticality of known quantum
algorithms for collision was also made by Bernstein in [9].

In summary, even if the collision problem can be solved in quantum time
Õ(2n/3), the current algorithms require the same amount of quantum memory:
the quantum time-memory product of such algorithms is O(22n/3), and are ar-
guably considered impractical, even with a functioning quantum computer. The
goal of our work is to present a quantum algorithm for those problems with
a small number of qubits required, which will clarify the real advantage of a
quantum adversary.

Quantum Algorithms for Multi-target Preimage Search The multi-
target preimage search has been much less studied than quantum collisions.
As said before, in the classical setting, the best known algorithm requires time
Ω(2n−t). In the quantum setting, we present here a basic algorithm, that uses
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Grover search, inspired by [21]. Independently of our work, Banegas and Bern-
stein presented at SAC 2017 a method to perform quantum parallel multi-target
preimage search ([7]). It has however little to do with the techniques studied in
this paper.

Algorithm 2: Multi-target preimage search using Grover ([21])

Input. The set T = {y1, . . . y2t} of targets, quantum query access to the
permutation H : {0, 1}n → {0, 1}n (oracle OH).
Membership oracle. The algorithm needs a quantum oracle OT for

membership in T . A query to OT costs quantum time Õ(|T |) = Õ(2t) (it can be
turned to a cost in quantum memory).
Grover instance. We find x such that H(x) ∈ T using Grover’s algorithm. The
search space is the set of possible plaintexts {0, 1}n of size 2n, while the test
function is g(x) = 1 ⇐⇒ H(x) ∈ T . Computing g requires a query to OH and
a query to OT .
The number of good states is |{x,H(x) ∈ T}|, expected to be |T |, since H is a
permutation. Hence, this Grover instance needs O(

√
2n−t) iterations.

Algorithm 2 has a query complexity of Õ(2
n−t
2 ). However, the actual time

complexity can be much larger. Given a classical description of the set T , the
membership oracle OT costs either Õ(2t) quantum memory, either Õ(2t) quan-
tum time. In any case, the time-memory product of this algorithm is at least

Õ(2t2
n−t
2 ) = Õ(2

n+t
2 ). Surprisingly (and quite annoyingly), the best tradeoff

would be obtained for t = 0, i.e one preimage only.

Comparison of our Work and Existing Work Using Different Bench-
marks. The comparisons between quantum and classical time-memory products
are summarized in Tables 1 and 2. Let us now consider different benchmarking
scenarios and compare our work with existing work for the collision problem.
When considering multiple processors in parallel, we will use the variable s,
such that we have access to 2s processors in parallel.

• If quantum memory is expensive: our quantum algorithms are the only ones
that beat classical algorithms with only O(n) quantum bits, with a single
quantum processor. Our algorithms also beat existing quantum algorithms
if we compare in terms of quantum time-space product.
• If quantum memory becomes as cheap as classical memory, but paralleliza-

tion is hard then Ambainis’ algorithm will have better performances than
ours.
• When comparing to classical algorithms, how should we treat classical vs.

quantum memory? If we consider just a time-space product (including clas-
sical space) then our single processor algorithm has a time-space product

of Õ(23n/5). However, if this is the quantity of interest then we can take
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s = n/5 in our quantum parallel algorithm and we will obtain a time-space

product of Õ(212n/25) < Õ(2n/2) which again beats the best classical algo-
rithms with this benchmarking. If we consider that classical memory is very
cheap then our algorithms compare even better to the classical ones (if we
still reasonably consider the parallelization cost).

Table 1. Algorithms for collision search. The last line is valid for s ≤ n/4.

Time Q-memory C-storage # Processors

Improved Grover search ([21]) 2n/3 2n/3 - 2n/3

Ambainis’ algorithm ([3]) 2n/3 2n/3 - no

Classical parallelization ([49]) 2n/2−s - 2s 2s

Our work - single processor 22n/5 O(n) 2n/5 no

Our work - parallelization 22n/5−3s/5 O(2sn) 2n/5+s/5 2s

Table 2. Algorithms for multi-target preimage search. We consider 2s processors for
the two parallelized algorithms and a single one for the rest.

Time Q-memory C-storage

Classical algorithm 2n−t - 2t

Classical algorithm - parallel 2n−t−s - 2t + 2s

Naive quantum algorithm 2n/2 O(n) -

Our work - single processor 2n/2−t/6 + min{2t, 23n/7} O(n) min{2t/3, 2n/7}
Our work - parallelization 2n/2−t/6−s/2 + min{2t, 2

3n−4s
7 } O(2sn) min{2t/3, 2n/7+s/7}

3.4 Cryptographic Applications of the Problems

Searching for collisions and (multi-target) preimages are recurrent generic prob-
lems in symmetric cryptanalysis. We describe here several scenarios whose se-
curity would be considerately affected by an improvement in the resolution of
these problems by quantum adversaries. The improvements permitted by our
algorithms will be detailed in section 6.

Hash Functions. A hash function is a functionH that, given a messageM of an
arbitrary length, returns a value H(M) = h of a fixed length n. They have many
applications in computer security, as in message authentication codes, digital
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signatures and user authentication. Hash functions must be easy to compute.
An “ideal” hash function verifies the following properties:

• Collision resistance: Finding two messagesM andM ′ 6= M such thatH(M) =
H(M ′) should cost Ω(2n/2) by the birthday paradox [54].

• Second preimage resistance: Given a message M and its hash H(M), find-
ing another message M ′ such that H(M) = H(M ′) should cost Θ(2n) by
exhaustive search. 2

• Preimage resistance: From a hash h, finding a message M so that H(M) = h
should cost Θ(2n) by exhaustive search.

We can see how, if the algorithms for solving collision search or preimages
are improved, the offered security of hash functions would be reduced.

Multi-user Setting. In what follows, EK will always denote a symmetric ci-
pher under key K of length k, of block size n. We consider EK as a random
permutation of bit-strings EK : {0, 1}n → {0, 1}n. We consider the setting
where an adversary tries to recover the keys of many users of EK in parallel.
One of the considered scenarios [13, 14, 23, 47] tries to recover one key out of the
2t more efficiently than in the single key setting. It is easy to see how this can be
associated to the multi-target preimage problem: we can for instance consider
that all the 2t users are encrypting the same message, each with a different key,
and we recover the corresponding encrypted blocks. This setting seems realis-
tic: it could be the case of users using the CTR operation mode [27], which is
one of the two most popular and recommended modes (see for instance [45]),
in protocols like for instance TLS [26]. The users consider IV = 0 and different
secret keys. Recovering one key out of the 2t would cost in a generic and classical
way 2k−t encryptions, for a key of length k. Similar scenarios have been stud-
ied in [30] with respect to the Even-Mansour cipher [29] and the Prince block
cipher [18].

Collision Attacks on Operation Modes. Using operation modes such as
CBC or CTR, block ciphers are secure up to 2n/2 encryptions with the same
key [46], where collisions start to occur and reveal information about the plain-
texts (see Section 2.1). The recommendation from the community is to limit
the number of blocks encrypted with the same key to ` � 2n/2, but this is not
always respected by standards or actual applications. Such an attack scenario is
not merely theoretical, as the authors of [11] pointed out.

They proved that when the birthday bound was only weakly enforced, col-
lision attacks were practical against 64-bit block ciphers when using CBC. In
their scenario, the attacker lures the user into sending a great number of HTTP
requests to a target website, then captures the server’s replies: blocks of sensitive
data encrypted under the same key. This attack has time and data complexity
O(2n/2) (practical when n = 64).

2 For single pipe constructions this is reduced by the blocks of length of the message
M .
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Bricks for Cryptanalysis Techniques. Both collision search and multi-target
preimage search are often bricks used in some evolved cryptanalysis techniques,
as for instance in truncated differential attacks [40] or in impossible differential
attacks [39, 12] where the adversary needs to find partial output collisions to
perform the attacks. Consequently, any acceleration of the algorithms solving
these problems would be directly translated in an acceleration of one of the
terms of the complexity, and potentially, on an improvement of the complexity
of the cryptanalysis technique.

4 The Membership Oracle

In the algorithm of Brassard et al., as well as in the algorithm that will be
detailed in Section 5, a quantum oracle is needed for computing membership in
a large, unstructured set. We formalize here this essential building block.

Definition 1. Given a set T of 2t n-bit strings, a classical membership oracle
is a function fT that computes: fT (x) = 1 if x ∈ T and 0 otherwise.

A quantum membership oracle for T is an operator OT that computes fT :

OT (|x〉 |b〉) = |x〉 |b⊕ fT (x)〉 .

The model of computation and memory. The set T = {x1, . . . , x2t} for which
we want to construct a quantum membership oracle is stored in some classical
memory, and we require only classical access to it, meaning that for any i ∈
[1, . . . , 2t], we can efficiently obtain element xi. Notice that all xi are distinct;
this is ensured e.g by the data structure itself or by a preliminary in-place sort
in Õ(2t). We use the following quantum operations:

• A quantum creation algorithm that takes a classical input x of n bits, and
n qubits initialized at |0〉 and outputs |x〉 in this register. This can be done
in time n by constructing each qubit of |x〉 separately.

• A quantum unitary COMP defined as follows:

∀x, y ∈ {0, 1}n,∀b ∈ {0, 1}, COMP (|x〉 |y〉 |b〉) := |x〉 |y〉 |b⊕ (δxy)〉 .

• A quantum deletion algorithm that takes a classical input x and |x〉 and
outputs |0〉. This is just done by inverting the creation algorithm.

Using those operations, we describe now how to construct OT . We start from
an input |x〉 |b〉 and want to construct |x〉 |b⊕ fT (x)〉. Our construction will be
clearly linear and will correspond to a quantum unitary. The idea is simple: for
each xi ∈ T , we will check whether x = xi and update the second register ac-
cordingly.
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Algorithm 3: Quantum algorithm for set membership

Start from the input |φ1〉 := |x〉 |b〉 on n+ 1 qbits. For i = 1 to 2t :
• Get element xi from T and construct a quantum register |xi〉 using the

creation operator to which we concatenate the current state |φi〉.
• Apply COMP on the state |xi〉 |φi〉.
• Discard the first register using the deletion operator. Let |φi+1〉 be the

remaining state.

The final state |φ2t+1〉 is exactly equal to |x〉 |b⊕ fT (x)〉.

Proposition 1. The above procedure implements OT perfectly, in time n2t us-
ing 2n+ 1 bits of quantum memory.

Proof. The proof is by a straightforward induction. It is easy to see that |φi+1〉
is the state:

|x〉 |b⊕ (δxx1
)⊕ (δxx2

) . . .⊕ (δxxi
)〉 .

By definition:

fT (x) = 1 ⇐⇒ x ∈ T ⇐⇒ (x = x1 ∨ . . . ∨ x = x2t)

which implies (all xi are distinct):

δxx1 ⊕ δxx2 . . .⊕ δxxi = (x = x1 ∨ . . . ∨ x = xi) .

The result follows:

|φ2t+1〉 = |x〉
∣∣b⊕ δxx1

⊕ δxx2
. . .⊕ δxx2t

〉
= |x〉 |b⊕ fT (x)〉 .

5 Description of our Quantum Algorithms

In this section we describe our new algorithms for collision and multi-target
preimage search. They use three (resp. two) instances of the amplitude amplifi-
cation procedure (see Theorem 1 in Section 2).

5.1 Quantum Algorithm for Collision Finding

Our algorithm, described in Algorithm 4, relies on a balance between the cost
of queries to the function and queries to the membership oracle. This balance
principle was in fact already considered in [34] to improve the running time
of Grover’s algorithm. In the algorithm of Brassard et al., when using only
logarithmic quantum memory, each query costs O(2n/3) time, so there is much
room for improvement.

The way we construct the input space SHr and the membership oracle fHL
allow us to decrease the projecting time while increasing the setup time. Inde-
pendently from the choice of t and r, the quantum memory complexity remains
O(n).
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Algorithm 4: Quantum algorithm for collision finding

The input is a random function H : {0, 1}n → {0, 1}n to which we have
quantum oracle access. The output is a collision (x, x′) such that x 6= x′ and
H(x) = H(x′)). The parameters r and t are fixed and will be optimized later.
For r ∈ [1, . . . , n], let SHr := {(x,H(x)) : ∃z ∈ {0, 1}n−r, H(x) = 0 . . . 0︸ ︷︷ ︸

r times

||z}.

SHr consists of input/output pairs (x,H(x)) such that H(x) starts with r
zeros. The algorithm works as follows:
1. Construct a list L consisting of 2t−r elements from SHr . Let fHL (x) := 1 if
∃(x′, H(x′)) ∈ L, H(x) = H(x′) and fHL (x) := 0 otherwise.

2. Apply a quantum amplification algorithm where
• The setup is the construction of |φr〉 := 1√

|SH
r |

∑
x∈SH

r
|x,H(x)〉.

• The projector is a quantum oracle query to OfH
L

meaning that

OfH
l

(|x,H(x)〉 |b〉) = |x,H(x)〉
∣∣b⊕ fHL (x)

〉
.

The above quantum amplification algorithm is essentially a Grover search
algorithm for fHL but on input space SHr . The algorithm will output an element
(x,H(x)) such that fHL (x) = 1, which means that
∃(x′, H(x′)) ∈ L, H(x) = H(x′). We will finally argue that with constant
probability, (x,H(x)) /∈ L which will imply x 6= x′ and a collision for H.

Analysis of the Algorithm In this section, we make some simplifying as-
sumptions. A more rigorous analysis including all the calculation appears in the
auxiliary supplementary material. These assumptions are the following:

• The QAA used in our setting outputs exactly the desired state.

• |SHr | ≈ 2n−r.

• Let us define Solf := {x : fHL (x) = 1}. We have |Solf | ≈ 2 × 2t−r. Indeed,
each element of L can be mapped with its first coordinate to an element of
Solf which corresponds to 2t−r elements. Each x such that (x,H(x)) /∈ L is
in Solf with probability 2−n+(t−r). Since there are 2n− 2t−r such elements,
this corresponds to approximately 2t−r − 22(t−r)−n ≈ 2t−r elements.

• We omit all factors polynomial in n and consider that the running time of
OH is 1.

With those assumptions, we get a running time of 2
2n
5 as we show below.

If we remove all the above assumptions, we will still obtain a running time
of 2

2n
5 (|OH |RT +O(n)). Details of this general running time are given in the

auxiliary supplementary material.

Probability of success. We constructed a list L of 2t−r elements of the form
(x,H(x)). The algorithm outputs a random x ∈ Solf . Our protocol succeeds if
that element is not in L. Since |L| = 2t−r and |Solf | ≈ 2× 2t−r, we get a good
outcome with probability 1

2 .
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Time analysis. Recall that an amplification procedure QAA uses two algorithms:
a projection oracle OP as well as a setup setup that produces a state |φ〉 =
α |φP 〉+ β

∣∣φ⊥P 〉.
We decompose our algorithm into four subroutines.

1. Constructing the list L: an element of L can be constructed in time 2r/2 by
applying Grover’s search algorithm on the function f(x) := 1 if x ∈ SHr and
f(x) := 0 otherwise. Since the whole list L contains 2t−r elements, it can be
constructed in time 2t−

r
2 .

2. Constructing |φr〉: we use an algorithm A = QAA(setupA, projA), where
setupA builds the superposition |φ0〉 = 1

2n/2

∑
x∈{0,1}n |x〉 using a query to

OH and projA =
∑
x∈SH

r
|x〉〈x| .

tr(P |φ0〉〈φ0|) = 2−r so we have to perform 2r/2 iterations, i.e. make 2r/2

calls to setupA and projA. Algorithm A takes therefore time 2r/2.
3. Constructing OfH

L
. The details of this construction appear in Section 4. In

particular, we saw that OfH
L

runs in time 2t−r by testing sequentially against

the elements of L (recall we dismissed the factor n for simplicity).
4. Performing the main amplitude amplification: Algorithm B = QAA(setupB =
A, projB), where A is the setup routine that constructs state |φr〉, and
projB =

∑
x:fH

L
(x)=1 |x〉〈x|. OprojB

can be done with 2 calls to OfH
L

.

The probability that a random x ∈ SHr satisfies fHL (x) = 1 is
|Solf |
|Sr| = 2∗2t−r

2n−r

so tr(projB |φr〉〈φr|) = 2∗2t−r

2n−r = 2−n+t+1 and Algorithm B makes 2
n−t−1

2 calls
to A and OfH

L
. As a result, algorithm B runs in time:

2
n−t−1

2 (setupB + projB) = 2
n−t−1

2

(
2r/2 + 2t−r

)
.

The running time of the procedure is the time to create the list L plus the
time to run algorithm B, which is

2
n−t−1

2

(
2r/2 + 2t−r

)
+ 2t−

r
2 .

A quick optimization of the above expression imposes t = 3n
5 and r = 2t

3 =
2n
5 . This realizes a balance in B between the cost of the setup and the cost of a

projection, and between the cost of B and the cost of computing L.
This gives a total running time of 2

2n
5 , up to a small multiplicative factor in

n.

Memory analysis. The quantum amplitude amplification algorithms and the
circuit OfH

L
only require quantum circuits of size O(n): the quantum memory

(number of qubits) needed is low. As for the classical memory required, the only
data we need to store is the list L that contains 2t−r = 2

n
5 elements.

Theorem 2. Let H : {0, 1}n → {0, 1}n be a random function computable

efficiently. There exists a quantum algorithm running in time Õ
(

2
2n
5

)
, using

Õ
(
2

n
5

)
classical memory and O(n) quantum space, that outputs a collision of

H.
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5.2 Quantum Algorithm for Multi-target Preimage Search

Here, we are given a function H and a list L′ = {y1, . . . , y2t} of elements of size
2t. The goal is to find x such that ∃yi, H(x) = yi, the preimage of one of them.
The algorithm used is very similar to Algorithm 4.

Algorithm 5: Quantum algorithm for multi-target preimage search

The input is a random permutation H : {0, 1}n → {0, 1}n to which we have
quantum oracle access, and a list L′ = {y1, . . . , y2t}. The output is the
preimage of one of the yi. For r ∈ [1, . . . , n], let
SHr := {x : ∃z ∈ {0, 1}n−r, H(x) = 0 . . . 0︸ ︷︷ ︸

r times

||z}. SHr consists of elements x such

that H(x) starts with r zeros. The algorithm works as follows:
1. Construct a list L consisting of all elements of L′ that start with r zeros. L

contains 2t−r elements on average (and the deviation is actually small). Let
fHL (x) := 1 if H(x) ∈ L and fHL (x) := 0 otherwise.

2. Apply a quantum amplification algorithm where
• The setup is the construction of |φr〉 := 1√

|SH
r |

∑
x∈SH

r
|x〉.

• The projector is a quantum oracle query to OfH
L

meaning that

OfH
l

(|x〉 |b〉) = |x〉
∣∣b⊕ fHL (x)

〉
.

The above quantum amplification algorithm is essentially a Grover search
algorithm for fHL but on input space SHr . The algorithm will output an element
x such that fHL (x) = 1, which means that H(x) ∈ L. Notice that we slightly
changed the definitions here. In particular, we didn’t need to keep the couples
(x,H(x)) and we could just work on x.

The only difference with respect to the previous algorithm is that the list L′

of targets has to be read, even in an online manner, to create the sublist L. This
operation will take time 2t.

Because the rest of the algorithm remains unchanged, the total running time
is:

2
n−t
2

(
2

r
2 + 2t−r

)
+ 2t

which is minimized for r = 2t
3 and t = 3n

7 . We distinguish 2 cases:

• if t ≤ 3n
7 , we take r = 2t

3 and the above running time becomes

2n/2−t/6 + 2t ≤ 2n/2−t/6+1.

• if t ≥ 3n
7 , we truncate the list L′ beforehand so that it has 23n/7 elements

and we apply our algorithm on this list. The running time will therefore be
23n/7.
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Memory analysis. The only data we need to store is the list L that contains
2t−r = 2

t
3 elements. The reason why we do not have to store all elements of L′

is that we can discard all elements of L′ that are not in SHr as soon as we receive
them and locally (L′ is analyzed in an online way). The quantum algorithm is
still a circuit of size O(n), without external quantum memory.

Theorem 3. Let H : {0, 1}n → {0, 1}n be a random permutation. Given a
list of 2t elements, with t ≤ 3n

7 , there exists a quantum algorithm running in

time Õ
(
2n/2−t/6

)
, using Õ

(
2

t
3

)
classical memory and O(n) quantum space,

that finds the preimage of one of them.

Theorem 4. Let H : {0, 1}n → {0, 1}n be a random permutation. Given a

list of 2
3n
7 elements, there exists a quantum algorithm running in time Õ

(
2

3n
7

)
,

using Õ
(
2

n
7

)
classical memory and O(n) quantum space, that finds the preimage

of one of them.

A similar analysis can be done with only marginal differences if we replace
the random permutation by a random function.

5.3 Parallelization and Time-space tradeoff

Assume that the adversary has now 2s registers of n qubits available. A simple
way to trade space (more qubits) for time is to run in parallel multiple instances
of the algorithm. We call this process outer parallelization, and emphasize that
quantum memory corresponds to the number of quantum processors working in
parallel.

List computation. In the case of collision search, computing the list L now costs
only 2t−r/2−s time. Notice, however, that the number of queries to OH remains
2t−r/2.

Outer parallelization. Our algorithm consists of iterations of an operator that

amplifies the amplitude of the good states (recall that 2
n−t
2 such iterations are

performed). So, instead of running only one instance and getting a good result
with probability close to 1, we can run multiple instances in parallel with less
iterations for each. The number of queries made to OH will be the same.

By running O(2s) instances, to ensure success probability O(1), we need each

of them to have success probability O(2−s). So instead of running 2
n−t
2 iterations

of the outer amplification procedure, only 2
n−t−s

2 suffice. The running time for
collision becomes

2
n−t−s

2

(
2r/2 + 2t−r

)
+ 2t−r/2−s .

In collision search, this is t = 3n
5 + 3s

5 which gives r = 2n
5 + 2s

5 , a classical
memory t− r = n

5 + s
5 and a time complexity exponent t− r

2 − s = 2n
5 −

3s
5 .
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In order for those parameters to be valid for collision, we need n− t− s ≥ 0
with t = 3n

5 + 3s
5 which gives s ≤ n

4 .
For multi-target preimage, the running time becomes

2
n−t−s

2

(
2r/2 + 2t−r

)
+ 2t−s .

The optimal value of r is still r = 2
3 t. In multi-target preimage search, the

optimal value of t is achieved for n
2 −

t
6 −

s
2 = t− s or equivalently t = 3n

7 + 3s
7 .

The running time becomes 23n/7−4s/7 and the used classical memory is 2
n+s
7 .

Theorem 5 (Outer parallelization). Let H : {0, 1}n → {0, 1}n be a random
permutation. Given a list of 2t elements, with t ≤ 3n+3s

7 , there exists a quantum

algorithm with 2s quantum processors running in time Õ
(
2n/2−t/6−s/2

)
, using

Õ
(

2
t
3

)
classical memory, that finds the preimage of one of them.

Theorem 6 (Outer parallelization). Let H : {0, 1}n → {0, 1}n be a random
permutation. Given a list of 2t elements, with t = 3n+3s

7 , there exists a quantum

algorithm with 2s quantum processors running in time Õ
(
23n/7−4s/7

)
, using

Õ
(

2
n+s
7

)
classical memory, that finds the preimage of one of them.

0 10 20 30 40

50

55

60

65

70

75

s for n = 128

T
im

e-
sp

a
ce

p
ro

d
u
ct

3
7
n+ 3

7
s (preimage)

2
5
n+ 2

5
s (collision)

n
2

(classical)

Fig. 1. Quantum time-space product for outer parallelization

As shown on Figure 1, there is a range of values of s where the time-space
product is effectively smaller than in the classical setting (where all current
algorithms obtain an exponent n

2 ). The limit value is s = n
6 for preimage search

and s = n
4 for collisions.
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Inner parallelization. It is also possible to parallelize computations in the al-
gorithm itself, especially its most costly building block: the membership oracle
OfH

L
. We studied this and concluded that this way of parallelizing is not as

efficient as outer parallelization.

5.4 Accurate Computations and Parameters

In what precedes, we didn’t take into account four sources of possible differences
between theory and practice. First, hidden constants: we dismiss the π/4 factor
that stems from amplitude amplification. Second, the logarithmic factor n that
appears in the membership oracle. Third, the errors that propagate in the am-
plitude amplification procedure. Fourth, the cost of a query to the oracle OH .
This last one is actually the most relevant parameter.

Let 2c be the time complexity of a query. We adapt the parameters r and t
as follows:

• In any case, r = 2
3 (t− c+ ln2(n)) balances the costs;

• In multi-target preimage search, t = 3n
7 + 4c

7 + 2 ln2(n)
7 is the new complexity

exponent. Notice that our method also amortizes the cost of OH w.r.t a
simple Grover search.

• In collision search, t = 3n
5 −

4c
5 + 4 ln2(n)

5 and time complexity exponent is
2n
5 + 4c

5 + ln2(n)
5 .

These computations mean that there is no surprise: the n factor missing
above does no more than multiplying the time complexity by 4 (n = 128) or 16
(n = 256), and by taking into account the cost of a query 2c, the time complexity
does not exceed the previous one multiplied by 2c. It even behaves better.

In tables 4 and 3, we give some complexity results without taking into account
the n and 2c factors. We do not take into account ancilla qubits, i.e additional
qubits used during the computation. Detailed studies on the quantum cost of
implementing Grover’s algorithm have been made, e.g in [32] for an AES exhaus-
tive key search and [4] for preimage search on SHA-2 and SHA-3 using Grover.
Due to space constraints, we cannot go into the technicalities of quantum im-
plementations and restrict ourselves to high-level comparisons ; notice, however,
that the two aforementioned articles could help in deriving precise hardware
costs for our algorithms.

Errors that Propagate in the Amplitude Amplification Procedure. We
perform many instances of QAA in our algorithm so it is important to understand
how the errors propagate and see if it doesn’t create a large cost in the algorithm.
We want to briefly describe here the behavior of those errors in our algorithm;
more detailed computations are available in the long version of this paper [22].
Let us consider our first QAA algorithm to construct |φr〉. There are 2 factors that
can induce errors here: (1) the fact that we do not know exactly |SHr | and (2) the
fact that even with perfect knowledge of the angle used in QAA, the algorithm
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Table 3. Quantum collision attack – rounded exponents

n Space Classical Quantum Quantum Classical
(registers) memory time comp. time-space prod. time-space prod.

128 O(1)(s = 0) 26 51 51 64
128 s = n/6 = 21 30 39 60 64
256 O(1)(s = 0) 51 102 102 128
256 s = n/6 = 43 60 77 119 128

Table 4. Quantum multi-target preimage attack – rounded exponents

n Space Targets Classical Quantum Quantum Classical
(registers) memory time comp. time-space prod. time comp.

128 O(1)(s = 0) 55 18 55 55 73
128 s = n/8 = 16 62 21 47 63 66
256 O(1)(s = 0) 110 37 110 110 146
256 s = n/8 = 32 124 41 92 124 132

will construct a state close to |φr〉 but can’t hit it exactly. The second problem
is solved by using a construction from [20]. In order to solve the first problem,
we will use the fact that H is random so that the uncertainty will remain very
small. To give a rough idea, the first QAA will give a state |φoutput〉 such that

|〈φoutput|φr〉| ≥ cos(2r/2−n/2 + o(2r/2−n/2)) .

This error will then propagate to the second QAA. We have two possible
scenarios:

• For the collision problem, we have r = 2n/5 and we repeat the second QAA

2n/5 times. The error in the angle will increase by this factor so the final
error will be ≈ 2n/52r/2−n/2 � 1.
• For the preimage problem, we have r = 2n/7 and we repeat the second QAA

22n/7 times. The error in the angle will increase by this factor so the final
error will be ≈ 22n/72r/2−n/2 � 1.

This means that the final probability of success will be reduced only marginally.

5.5 Many Collisions

For some purposes, it happens that we do not want to retrieve only one collision
pair, but many of them. Suppose 2c are needed. We modify the parameters in our
algorithm to take this into account: now t = 3n/5 + 6c/5 and r = 2n/5 + 4c/5.
Each call returns a collision involving one element of the arbitrary list L of
size 2t−r. Hence, we expect 2t−r such collisions to be found by repeating our
algorithm and sharing the list L: this forces t − r > c ⇒ c < n

3 . Outside this
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range, c constraints the size of L: we must have t − r = c, t = 3c, computing
L now costs 2t−(t−c)/2 = 22c and the list has 2c elements. The time complexity
exponent becomes n

2 + c
2 ; it still presents an advantage over classical collision

search.

Theorem 7 (Searching many collisions.). Given a random function H :
{0, 1}n → {0, 1}n on n bits, there exists a quantum algorithm using O(n) qubits
and outputting 2c collisions:

• If c < n
3 , in time Õ

(
22n/5+4c/5

)
, using 2n/5+2c/5 classical memory;

• If c > n
3 , in time Õ

(
2n/2+c/2

)
, using 2c classical memory.

To ensure that the collisions found are all distinct, one should also multiply
this requirements by a small (logarithmic) factor.

6 Impact on Symmetric Cryptography

We discuss below the applications of our new algorithms on the cryptographic
scenarios detailed in section 3.4.

We ask the reader to keep in mind that these results seemed particularly sur-
prising as it was conjectured that quantum algorithms for solving these problems
wouldn’t be more efficient than classical ones.

6.1 On Hash Functions

We consider the setting presented in section 3.4: finding collisions and multi-
target preimages on hash functions in a post-quantum world can be considerably
accelerated by using the new algorithms. It is important to point out that this
can be done considering the Q1 setting for the attacker described in Section 2.2:
that is, just having access to a quantum computer will allow her to accelerate
the attack, and she has no need of access to quantum encryption oracles with
superposition queries.

To correspond precisely to the description of the problem, we can consider
messages with the same length as the hash value.3 Indeed, to find a collision,
the attacker just has to provide the hash function itself as input for Algorithm 4
(Section 5.1). Algorithm 4 will output a collision with a complexity of Õ(22n/5)

in time and queries, using Õ(2n/5) classical memory and O(n) qubits. This is to
compare with the previous best time complexity of O(2n/2).

Finding a preimage out of a set of 2t generated hash values can be done
with Algorithm 5 from Section 5.2. It is optimal for t = 3n/7 with a cost of

Õ(23n/7) in time and queries, using Õ(2n/7) classical memory and O(n) qubits.
This should be compared to a classical time complexity of 2n−t = 24n/7, or to
the previous best quantum attack in 2n/2, ours being the most performant one.
Tables 3 and 4 give concrete values when the time-space tradeoff is used.

3 Some blocks fixed to a random value can be considered previously for randomization.

23



6.2 On the Multi-User Setting

The scenario that we presented in section 3.4 can also be accelerated by Algo-
rithm 5 of Section 5.2. In this case, the attacker recovers a list of ciphertexts
generated from the same plaintext, each encrypted under a different key on size
k (one key per user).

The goal is to recover one key out of the total 2t. In this case, we can consider
the attacker scenario Q1: we do not need access to a quantum encryption oracle,
but instead implement the function that encrypts a fixed plaintext under the key
in argument (as we would do for an exhaustive search with a Grover attack).
In this case though, the target ciphertexts must be recovered classically. When
the key has the same size as the ciphertext, we can directly apply the multi-
target preimage search algorithm, that will be optimal for a value of 2t = 23k/7

users. The best time complexity we can achieve here is Õ(23k/7), compared to

the previous best classical O(24k/7) and the previous best quantum Õ(2k/2).

Bigger Key than the State. If the key is bigger than the ciphertext, i.e. k = mn,
we re-construct the problem solved by Algorithm 5 by considering that each user
encrypts not one, but m fixed plaintexts.

Less multi-users than optimal. If the number of multiusers is smaller than 23k/7,
we will obtain less gain in the complexities, but still considerable with respect to
previous attacks. We can consider, to illustrate this, the attack in [30] presented
at Asiacrypt 2014 on the Prince block cipher [18]: In this attack, the authors
proposed a technique that provided improved complexity regarding already the
best known previously classical multi-target preimage attacks, and they were
able to recover one key of size 128 bits out of 232 in time 265 (already improved
with respect to the naive 2128−32 = 296 given by the best generic algorithm). If
we apply in this case our algorithm we recover a time complexity of

2
k
2−

t
6 + 2t = 2

128
2 −

32
6 + 232 = 264−5.33 = 258.67,

which improves upon previous results. Our results only need a classical memory
of 218.3 and O(n) qubits (compared to a memory need of 232). Parallelization can
also reduce the time complexity in this scenario, but for the sake of simplicity,
we won’t go into the details and remit to Section 5.3.

6.3 On Operation Modes

As a quantum adversary, we can improve the classical collision attack on CBC
introduced in Section 3.4 with the help of our algorithm from Section 5.2. In this
scenario, the attacker has to be placed in the Q2 model from Section 2.2: she has
access to 2t classically encrypted blocks, to a quantum computing device and
also quantum encryption oracle using the same secret key K.4 After recovering
the 2t ciphertexts that form the list L′ = C1, . . . , C2t , we try to find a preimage

4 See Section 2.2 for a justification of the Q2 model.
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x of one of them, i.e., find x such that EK(x) = Ci for i ∈ {1, . . . , 2t}. This can
be done by directly applying Algorithm 5.

Once we find such an x, we can recover Pi, i.e. the plaintext that generates
Ci through encryption. Due to the CBC construction, we know that EK(Pi ⊕
Ci−1) = Ci. Therefore, and as Ci−1 is known for the attacker, if we recover
x = Pi ⊕ Ci−1, we also recover Pi. This can be done by a quantum adversary

with a cost in time of Õ(23n/7), compared to the classical O(2n/2).
In Section 7 we discuss the impact this attack should have on maximal data

length enforcement.

Frequent rekeying. If we consider a scenario where the user could be forced to
change his key after a few encryptions, this previous attack could be translated
in a key-recovery one, in the Q1 model, with a similar procedure as in the multi-
user case. We first recover classically 2t ciphertexts, generated by the encryption
of one plaintext with 2t different keys, and next search for a preimage of one of
these multitargets.

6.4 On Bricks for Cryptanalysis Techniques

The last scenario proposed in Section 3.4 is less concrete but of great impor-
tance. Being very general, the algorithms that we presented here may be used as
building blocks by cryptanalysts. With powerful black-box tools and available
trade-offs, quantized classical cryptanalysis might become indeed more efficient.

Let us consider as an example the analysis of quantum truncated differential
distinguishers from [38]. The aim of the attack is to find a pair of plaintexts with
a difference belonging to a certain set ∆in, that generate a pair of ciphertexts
belonging to another particular set of differences ∆out, which is equivalent to
colliding in a part of the output state. The attack succeeds if such a pair is found
quicker than for a random permutation. The probability of this happening for
the attack cipher is denoted by 2−hT .

We consider the case where a single structure5 is enough for finding the
good pair statistically, i.e. if 2hT ≤ 22|∆in|−1. The authors remark that finding
the good pair will cost O(2hT /3) queries for a quantum adversary. But this
would also cost the same amount in space. We could, instead, apply our new
algorithm, allowing the quantum space needed to remain polynomial in n with
a time complexity still improved over the classic one.

7 Conclusion

7.1 Efficient Algorithms for Collision and Multi-Target Preimage
Search

We have presented a quantum algorithm for collision and preimage search, based
on the amplitude amplification procedure, that is sub-optimal in terms of query

5 A structure is a set of plaintexts of size 2|∆in| belonging to the same truncated
difference ∆in, which means that they allow to build 22|∆in|−1 pairs.
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complexity but beats the current best algorithm in terms of time complexity
with small quantum memory.

To the best of our knowledge, this is the first generic procedure that solves
this problem effectively faster than classically, when only linear quantum space is
available. Our algorithm can also be parallelized, providing better performance
than classical algorithms for a wide range or parameters.

7.2 Impact on Symmetric Primitives

From the applications presented in Section 6, we can obtain the following con-
clusions:

Open Problem on Best Quantum Multi-target Preimages. In Eurocrypt 2015 [10],
section 3.2, the authors notice that the best known post-quantum cost for multi-
target preimage attacks is also of 2n/2, and they provide the following example:
for n = 256 and 2t = 256, they claim that the best quantum algorithm has a
cost of 2128, though it only needs 2100 queries. With our algorithms, this impli-
cation does not hold anymore: it is possible to attack their example with a time
complexity of

2100(256/3 + 256/3) + 256 ≈ 2119.6

by applying Algorithm 5, which is clearly better than the classical attack, and
using a polynomial amount of qubits.

On Maximal Data Length to Enforce. While attacking operation modes via
collisions, 2t data is recovered classically. This 2t can be significantly smaller
than 2n/2, and the attack would still have an advantage over the birthday para-
dox. In fact, when more data is available, the time complexity of the quantum
computations decreases up to the limit Õ

(
25n/12

)
(when t = n/2).

We can forget about the term 2t, as we are considering t < n/2, and the

quantum procedure has complexity Õ
(

2
n
2−

t
6

)
, which offers a factor 2−t/6 com-

pared to classical collision search, independent of the block size n. The security
requirements will determine the maximal amount of data that can be generated
with a given key.

Is doubling the key length enough? The multi-user scenario, as well as the
re-keying one make us wonder about the actual security offered by symmetric
ciphers in a post-quantum world. By accelerating collision search, we showed that
Grover’s exhaustive key search is not the only general threat posed to them: the
block size is also a relevant parameter in quantum attacks.

These results increase our impression that many scenarios and settings should
be carefully studied before being able to promise certain security levels in a post-
quantum world.
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7.3 Open Problems And Future Work.

Our result fills a gap that existed between the theoretical query complexity of
collision search and the actual requirements of an attack. It follows recent non-
intuitive results in quantum symmetric cryptanalysis (see e.g [37]), that have
shown the necessity of a better understanding of how symmetric primitives could
be affected by quantum adversaries. To our opinion, many such counter-intuitive
results are yet to appear.

This work reopens the direction of designing improved quantum algorithms
for collisions and preimage finding when the quantum computer does not have
access to an exponential amount of quantum memory. The algorithm we propose
will not be dismissed as implausible if we want to prove security against quantum
attackers: the quantum memory needed is reasonably small. We have been able
to propose several significant complexity improvements thanks to this result.
Although 2n/5 is the optimal exponent of our collision algorithm, it introduces
additional structure (a prefix of the image is chosen) that is not relevant in many
applications: is it possible to get rid of these specificities and bring the exponent
down to n/3?
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