
Homomorphic Encryption
for Arithmetic of Approximate Numbers

Jung Hee Cheon1, Andrey Kim1, Miran Kim2, and Yongsoo Song1

1 Seoul National University, Republic of Korea
{jhcheon, kimandrik, lucius05}@snu.ac.kr

2 University of California, San Diego
mrkim@ucsd.edu

Abstract. We suggest a method to construct a homomorphic encryp-
tion scheme for approximate arithmetic. It supports an approximate ad-
dition and multiplication of encrypted messages, together with a new
rescaling procedure for managing the magnitude of plaintext. This pro-
cedure truncates a ciphertext into a smaller modulus, which leads to
rounding of plaintext. The main idea is to add a noise following sig-
nificant figures which contain a main message. This noise is originally
added to the plaintext for security, but considered to be a part of error
occurring during approximate computations that is reduced along with
plaintext by rescaling. As a result, our decryption structure outputs an
approximate value of plaintext with a predetermined precision.
We also propose a new batching technique for a RLWE-based construc-
tion. A plaintext polynomial is an element of a cyclotomic ring of char-
acteristic zero and it is mapped to a message vector of complex numbers
via complex canonical embedding map, which is an isometric ring ho-
momorphism. This transformation does not blow up the size of errors,
therefore enables us to preserve the precision of plaintext after encoding.
In our construction, the bit size of ciphertext modulus grows linearly with
the depth of the circuit being evaluated due to rescaling procedure, while
all the previous works either require an exponentially large size of mod-
ulus or expensive computations such as bootstrapping or bit extraction.
One important feature of our method is that the precision loss during
evaluation is bounded by the depth of a circuit and it exceeds at most
one more bit compared to unencrypted approximate arithmetic such as
floating-point operations. In addition to the basic approximate circuits,
we show that our scheme can be applied to the efficient evaluation of tran-
scendental functions such as multiplicative inverse, exponential function,
logistic function and discrete Fourier transform.

Keywords. Homomorphic encryption, approximate arithmetic

1 Introduction

Homomorphic encryption (HE) is a cryptographic scheme that enables homo-
morphic operations on encrypted data without decryption. Many of HE schemes
(e.g. [18, 6, 7, 4, 5, 25, 33, 2, 26, 13, 12, 21, 19]) have been suggested following

m1e1

×

m2e2

[m1m2]te∗

m1m2

q

I1 e1m1

×

I2 e2m2

I∗ e∗[m1m2]t

m1m2

q

Fig. 1. Homomorphic multiplications of BGV-type HE schemes (left) and FV-type HE
schemes (right)

Gentry’s blueprint [23]. HE can be applied to the evaluation of various algorithms
on encrypted financial, medical, or genomic data [36, 31, 11, 41, 29].

Most of real-world data contain some errors from their true values. For in-
stance, a measured value of quantity has an observational error from its true
value and sampling error can be made as only a sample of the whole population
is being observed in statistics. In practice, data should be discretized (quantized)
to an approximate value such as floating-point number, in order to be represented
by a finite number of bits in computer systems. In this case, an approximate value
may substitute the original data and a small rounding error does not have too
much effect on computation result. For the efficiency of approximate arithmetic,
we store a few numbers of significant digits (e.g. most significant bits, MSBs)
and carry out arithmetic operations between them. The resulting value should
be rounded again by removing some inaccurate least significant bits (LSBs) to
maintain the bit size of significand (mantissa).

Unfortunately this rounding operation has been considered difficult to per-
form on HE since it is not simply represented as a small-degree polynomial. Pre-
vious approaches to approximate arithmetic require similar multiplicative depth
and complexity to the case of bootstrapping for extraction of MSBs [1, 27]. Other
methods based on exact integer operations [20, 16] require an exponentially large
bit size of ciphertext modulus with the depth of the circuit to ensure correctness.

We point out that the decryption structures of existing HE schemes are not
appropriate for arithmetic of indiscrete spaces. For a plaintext modulus t and a
ciphertext modulus q, BGV-type HE schemes [5, 25, 33, 19] have a decryption
structure of the form 〈ci, sk〉 = mi+tei (mod q). Therefore, the MSBs ofm1+m2

and m1m2 are destroyed by inserted errors ei during homomorphic operations.
On the other hand, the decryption structure of FV-type HE schemes [4, 22, 2] is
〈ci, sk〉 = qIi+(q/t)mi+ei for some Ii and ei. Multiplication of two ciphertexts
satisfies 〈c∗, sk〉 = qI∗ + (q/t)m1m2 + e∗ for I∗ = tI1I2 + I1m2 + I2m1 and
e∗ ≈ t(I1e2 + I2e1), so the MSBs of resulting message are also destroyed (see
Fig.1 for an illustration). HE schemes with matrix ciphertexts [26, 21] support

2

e1

m1

q

e2

m2

q×

e∗

m1m2

q

MSB LSB

RS

e′

p−1 ·m1m2

p−1 · q

Fig. 2. Homomorphic multiplication and rescaling for approximate arithmetic

homomorphic operations over the integers (or integral polynomials) but the error
growth depends on the size of plaintexts.As a result, previous HE schemes are
required to have an exponentially large ciphertext modulus with the depth of a
circuit for approximate arithmetic.

Homomorphic Encryption for Approximate Arithmetic. The purpose
of this paper is to present a method for efficient approximate computation on
HE. The main idea is to treat an encryption noise as part of error occurring
during approximate computations. That is, an encryption c of message m by
the secret key sk will have a decryption structure of the form 〈c, sk〉 = m + e
(mod q) where e is a small error inserted to guarantee the security of hardness
assumptions such as the learning with errors (LWE), the ring- LWE (RLWE) and
the NTRU problems. If e is small enough compared to the message, this noise is
not likely to destroy the significant figures of m and the whole value m′ = m+ e
can replace the original message in approximate arithmetic. One may multiply
a scale factor to the message before encryption to reduce the precision loss from
encryption noise.

For homomorphic operations, we always maintain our decryption structure
small enough compared to the ciphertext modulus so that computation result is
still smaller than q. However, we still have a problem that the bit size of mes-
sage increases exponentially with the depth of a circuit without rounding. To
address this problem, we suggest a new technique - called rescaling - that ma-
nipulates the message of ciphertext. Technically it seems similar to the modulus-
switching method suggested by Brakerski and Vaikuntanatan [6], but it plays a
completely different role in our construction. For an encryption c of m such that
〈c, sk〉 = m+ e (mod q), the rescaling procedure outputs a ciphertext

⌊
p−1 · c

⌉
(mod q/p), which is a valid encryption of m/p with noise about e/p. It reduces

3

the size of ciphertext modulus and consequently removes the error located in the
LSBs of messages, similar to the rounding step of fixed/floating-point arithmetic,
while almost preserving the precision of plaintexts.

The composition of homomorphic operation and rescaling mimics the ordi-
nary approximate arithmetic (see Fig.2). As a result, the bit size of a required
ciphertext modulus grows linearly with the depth of a circuit rather than ex-
ponentially. We also prove that this scheme is almost optimal in the sense of
precision: precision loss of a resulting message is at most one bit more compared
to unencrypted floating-point arithmetic.

Encoding Technique for Packing Messages. It is inevitable to encrypt a
vector of multiple plaintexts in a single ciphertext for efficient homomorphic
computation. The plaintext space of previous RLWE-based HE schemes is a cy-
clotomic polynomial ring Zt[X]/(ΦM (X)) of a finite characteristic. A plaintext
polynomial could be decoded as a vector of plaintext values into a product of
finite fields by a ring isomorphism [38, 39]. An inserted error is placed separately
from the plaintext space so it may be removed by using plaintext characteristic
after carrying out homomorphic operations.

On the other hand, a plaintext of our scheme is an element of a cyclotomic
ring of characteristic zero and it embraces a small error which is inserted from
encryption to ensure the security or occurs during approximate arithmetic. Hence
we adapt an isometric ring homomorphism - the complex canonical embedding
map. It preserves the size of polynomials so that a small error in a plaintext
polynomial is not blow up during encoding/decoding procedures.

Let H = {(zj)j∈Z∗M : z−j = zj ,∀j ∈ Z∗M} ⊆ CΦ(M) and let T be a sub-
group of the multiplicative group Z∗M satisfying Z∗M/T = {±1}. The native
plaintext space of our scheme is the set of polynomials in the cyclotomic ring
R = Z[X]/(ΦM (X)) with magnitude bounded by ciphertext modulus. The de-
coding procedure first transforms a plaintext polynomial m(X) ∈ R into a com-
plex vector (zj)j∈Z∗M ∈ H by the canonical embedding map σ and then sends

it to a vector (zj)j∈T using the natural projection π : H → Cφ(M)/2. The en-
coding method is almost the inverse of the decoding procedure, but a round-off
algorithm is required for discretization so that the output becomes an integral
polynomial. In short, our encoding function is given by

Cφ(M)/2 π−1

−−−−→ H
b·eσ(R)−−−−−→ σ(R)

σ−1

−−−−→ R
z = (zi)i∈T 7−→ π−1(z) 7−→

⌊
π−1(z)

⌉
σ(R)

7−→ σ−1
(⌊
π−1(z)

⌉
σ(R)

)
where b·eσ(R) denotes the rounding to a close element in σ(R).

Homomorphic Evaluation of Approximate Arithmetic. One important
feature of our method is that the precision loss during homomorphic evaluation
is bounded by depth of a circuit and it is at most one more bit compared to
unencrypted approximate arithmetic. Given encryptions of d messages with η
bits of precision, our HE scheme of depth dlog de computes their product with
(η−log d−1) bits of precision in dmultiplications while unencrypted approximate

4

arithmetic such as floating-point multiplication can compute a significand with
(η − log d) bits of precision. On the other hand, the previous methods require
Ω(η2d) homomorphic computations by using bitwise encryption or need a large
plaintext space of bit size Ω(ηd) unless relying on expensive computations such
as bootstrapping or bit extraction.

In our scheme, the required bit size of the largest ciphertext modulus can be
reduced down to O(η log d) by performing the rescaling procedure after multi-
plication of ciphertexts. The parameters are smaller than for the previous works
and this advantage enables us to efficiently perform the approximate evaluation
of transcendental functions such as the exponential, logarithm and trigonomet-
ric functions by the evaluation of their Taylor series expansion. In particular,
we suggest a specific algorithm for computing the multiplicative inverse with
reduced complexity, which enables the efficient evaluation of rational functions.

We verify our algorithms by implementation on a machine with an Intel Core
i5 running at 2.9 GHz processor using a parameter set with 80-bit security level.
It takes about 0.45 seconds for multiplicative inverse of ciphertext with 14 bits
of precision, yielding an amortized rate of 0.11 milliseconds per slot. We can also
evaluate the exponential function using its Taylor expansion and it results in an
amortized time per slots of 0.16 milliseconds.

In a cloud-computing environment, a large amount of data is being generated
and one needs to handle these huge data collections. Our scheme could be a prac-
tical solution for data analysis as it allows the encryption of much information in
a single ciphertext so we can parallelize both space and computation together.
For example, we improved the homomorphic evaluation of logistic function using
a batching technique, which can be used in a disease prediction analysis. Our
implementation homomorphically evaluated the degree seven Taylor polynomial
of logistic function in about 0.13 milliseconds per slot (and less than 0.54 seconds
total) compared to 30 seconds and 1.8 seconds of evaluation time of [3] and [9]
without parallelization, respectively.

Another example is evaluating discrete Fourier transform homomorphically
using a fast Fourier transform (FFT) algorithm. We follow the encoding method
of [15] for roots of unity in polynomial ring so that it does not consume ciphertext
level during evaluation. We also apply our rescaling procedure for operations to
Hadamard space and a batching technique, which results in a much smaller
parameter and amortized evaluation time, respectively. We could process the
standard processing (FFT-Hadamard product of two vectors-inverse FFT) of
dimension 213 in 22 minutues (0.34 seconds per slot) on a machine with four
cores compared to 17 minutes of previous work [16] with six processors with no
batching technique. Based on evaluation of discrete Fourier transform, we can
securely compute the exact multiplication of integral polynomials by removing
the fractional part of an approximate result. Likewise, our HE for approximate
arithmetic can be applied to exact computation when the result has a specific
format or property.

Follow-up. We provide an open-source implementation of our HE library (HEAAN)
and algorithms in the C++ language. The source code is available at github [10].

5

We introduced HEAAN at a workshop for the standardization of HE hosted by
Microsoft Research.3

There are some follow-up works on application of this paper to a secure con-
trol of cyber-physical system [28] and a gradient descent algorithm for privacy-
preserving logistic regression of biomedical data [30].

Related Works. A substantial number of studies have concerned about the
processing of real numbers over encryption. Jäschke and Armknecht [27] ob-
served that a rational number can be approximated to an integer by multiplying
with a power of two and rounding. An integer is encoded in a binary fashion, so
that each bit is encrypted separately. The one performing homomorphic multi-
plication can bring the product to the required precision by simply discarding
the ciphertexts which corresponds to the last LSBs. However, bitwise encryption
causes a huge number of computation of ciphertexts for a single rounding oper-
ation. The other method is to scale them to integers, but a plaintext modulus is
exponential in the length of message. For example, Arita and Nakasato [1] scale
the fixed point numbers by a power of two and then represent them as scalars in
a polynomial ring with an enlarged plaintext modulus. In order to realize homo-
morphic multiplication of encrypted fixed point numbers, it needs a right shift
by a number equal to the precision. However, it requires a considerable amount
of computations including a bit extraction operation.

On the other hand, Dowlin et al. [20] present an efficient method to represent
fixed-point numbers, which are encoded as integral polynomials with coefficients
in the range (− 1

2B,
1
2B) using its base-B representation for an odd integer B ≥ 3.

Costache et al. [16] analyze the representations of [20] and compute the lower
bound of plaintext modulus. However, exact arithmetic of fixed point numbers
causes required the size of plaintext modulus to grow exponentially with the
depth of a circuit.

Road-map. Section 2 briefly introduces notations and some preliminaries about
algebras and the RLWE problem. Section 3 presents a homomorphic encryption
scheme for approximate arithmetic and analyzes the noise growth during basic
homomorphic operations. In Section 4, we suggest some algorithms to homomor-
phically evaluate typical approximate circuits, multiplicative inverse, exponential
function, logistic function and discrete Fourier transform. We also compute the
theoretical precision of the outputs. In Section 5, we perform the implementation
of our scheme for the evaluations of circuits described in Section 4.

2 Preliminaries

2.1 Basic Notation

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. We denote by

3 https://www.microsoft.com/en-us/research/event/homomorphic-encryption-
standardization-workshop/

6

〈·, ·〉 the usual dot product of two vectors. For a real number r, bre denotes
the nearest integer to r, rounding upwards in case of a tie. For an integer q,
we identify Z ∩ (−q/2, q/2] as a representative of Zq and use [z]q to denote
the reduction of the integer z modulo q into that interval. We use x ← D to
denote the sampling x according to a distribution D. It denotes the sampling
from the uniform distribution over D when D is a finite set. We let λ denote the
security parameter throughout the paper: all known valid attacks against the
cryptographic scheme under scope should take Ω(2λ) bit operations.

2.2 The Cyclotomic Ring and Canonical Embedding

For a positive integer M , let ΦM (X) be the M -th cyclotomic polynomial of
degree N = φ(M). Let R = Z[X]/(ΦM (X)) be the ring of integers of a number
field Q[X]/(ΦM (X)). We write Rq = R/qR for the residue ring of R modulo
an integer q. An arbitrary element of the cyclotomic ring S = R[X]/(ΦM (X))

of real polynomials will be represented as a polynomial a(X) =
∑N−1
j=0 ajX

j of

degree less than N and identified with its coefficient vector (a0, . . . , aN−1) ∈ RN .
We define the relevant norms on the coefficient vector of a such as ‖a‖∞ and
‖a‖1

We write Z∗M = {x ∈ ZM : gcd(x,M) = 1} for the multiplicative group
of units in ZM . Recall that the canonical embedding of a ∈ Q[X]/(ΦM (X))
into CN is the vector of evaluation values of a at the roots of ΦM (X). We
naturally extend it to the set of real polynomials S so σ(a) will be defined as
(a(ζjM))j∈Z∗M ∈ CN for any a ∈ S where ζM = exp(−2πi/M) denotes a primitive
M -th roots of unity. The `∞-norm of σ(a) is called the canonical embedding norm
of a, denoted by ‖a‖can∞ = ‖σ(a)‖∞. This measurement will be used to analyze
the size of polynomials throughout this paper. The canonical embedding norm
‖·‖can∞ satisfies the following properties:

• For all a, b ∈ S, we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞
• For all a ∈ S, we have ‖a‖can∞ ≤ ‖a‖1.
• There is a ring constant cM depending only on M such that ‖a‖∞ ≤ cM ·
‖a‖can∞ for all a ∈ S.

The ring constant is obtained by cM = ‖CRT−1M ‖∞ where CRTM is the CRT
matrix for M , i.e., the Vandermonde matrix over the complex primitive M -
th roots of unity, and the norm for a matrix U = (uij)0≤i,j<N is defined by

‖U‖∞ = max0≤i<N

{∑N−1
j=0 |uij |

}
. Refer [17] for a discussion of cM .

2.3 Gaussian Distributions and RLWE Problem

We first define the space

H = {z = (zj)j∈Z∗M ∈ CN : zj = z−j ,∀j ∈ Z∗M},

7

which is isomorphic to RN as an inner product space via the unitary basis matrix

U =

(
1√
2
I i√

2
J

1√
2
J −i√

2
I

)

where I is the identity matrix of size N/2 and J is its reversal matrix.

For r > 0, we define the Gaussian function ρr : H → (0, 1] as ρr(z) =
exp(−π‖z‖22/r2). Denote by Γr the continuous Gaussian probability distribution
whose density is given by r−N · ρr(z). Now one can extend this to an elliptical
Gaussian distribution Γr on H as follows: let r = (r1, . . . , rN) ∈ (R+)N be a
vector of positive real numbers, then a sample from Γr is given by U ·z where each
entry of z = (zi) is chosen independently from the (one-dimensional) Gaussian
distribution Γri on R. This also gives a distribution Ψr on Q[X]/(ΦM (X))⊗ R.
That is, CRT−1M · U · z gives us the coordinates with respect to the polynomial
basis 1, X,X2, . . . , XN−1.

In practice, one can discritize the continuous Gaussian distribution Ψr by
taking a valid rounding bΨreR∨ . Refer [34, 35] for explaining the methods in
more details. We use this discrete distribution as the RLWE error distribution.

Here we define the RLWE distribution and decisional problem associated with
it. Let R∨ be the dual fractional ideal of R and write R∨q = R∨/qR∨. For a

positive integer modulus q ≥ 2, s ∈ R∨q , r ∈ (R+)N and an error distribution
χ := bΨreR∨ , we define AN,q,χ(s) as the RLWE distribution obtained by sampling
a← Rq uniformly at random, e← χ and returning (a, a · s+ e) ∈ Rq ×R∨q .

The (decision) ring learning with errors, denoted by RLWEN,q,χ(D), is a prob-
lem to distinguish arbitrarily many independent samples chosen according to
AN,q,χ(s) for a random choice of s sampled from the distribution D overR∨ from
the same number of uniformly random and independent samples from Rq×R∨q .

3 Homomorphic Encryption for Approximate Arithmetic

In this section, we describe a method to construct a HE scheme for approximate
arithmetic on encrypted data. Given encryptions of m1 and m2, this scheme
allows us to securely compute encryptions of approximate values of m1 + m2

and m1m2 with a predetermined precision. The main idea of our construction is
to treat an inserted noise of RLWE problem as part of am error occurring dur-
ing approximate computation. The most important feature of our scheme is the
rounding operation of plaintexts. Just like the ordinary approximate computa-
tions using floating-point numbers, the rounding operation removes some LSBs
of message and makes a trade-off between size of numbers and precision loss.

Our concrete construction is based on the BGV scheme [5] with a multipli-
cation method by raising the ciphertext modulus [25], but our methodology can
be applied to most of existing HE schemes. Appendix A shows a description of
LWE-based HE scheme for approximate arithmetic.

8

3.1 Decryption Structure of Homomorphic Encryption for
Approximate Arithmetic

Most of existing HE schemes perform operations on a modulo space such as Zt
and Zt[X]/(ΦM (X)). In other words, they aim to compute a ciphertext which
encrypts some LSBs of a resulting message after homomorphic computation. For
example, in the case of BGV-type schemes [5, 25, 33], plaintexts are placed in
the lowest bits of ciphertext modulus, that is, an encryption c of a message m
with respect to a secret sk has a decryption structure of the form 〈c, sk〉 =
m+ te (mod q). A multiplication of encryptions of m1,m2 preserves some LSBs
of m1m2 (i.e., [m1m2]t), while its MSBs (i.e., bm1m2/te) are destroyed by errors.
On the other hand, FV-type schemes [4, 22, 2] put messages in the left-most bits
of ciphertext modulus, so that their decryption structures satisfy 〈c, sk〉 = bq/te·
m+ e (mod q). However, the MSBs of the resulting message are also destroyed
during homomorphic multiplication between 〈ci, sk〉 = q · Ii + bq/te · mi + ei,
each of which contains an additional error Ii in the left position of message.

Our goal is to carry out approximate arithmetic over encrypted data, or
equivalently, compute the MSBs of a resulting message after homomorphic oper-
ations. The main idea is to add an encryption noise following significant figures
of an input message. More precisely, our scheme has a decryption structure of the
form 〈c, sk〉 = m+ e (mod q) for some small error e. We insert this encryption
error to guarantee the security of scheme, but it will be considered as an error
that arises during approximate computations. That is, the output of decryp-
tion algorithm will be treated as an approximate value of the original message
with a high precision. The size of a plaintext will be small enough compared
to the ciphertext modulus for homomorphic operations so that the result of an
arithmetic computation is still smaller than the ciphertext modulus.

There are some issues that we need to consider more carefully. In unencrypted
approximate computations, small errors may blow up when applying operations
in succession, so it is valuable to consider the proximity of a calculated result to
the exact value of an algorithm. Similarly, encrypted plaintexts in our scheme
will contain some errors and they might be increased during homomorphic eval-
uations. Thus we compute an upper bound of errors and predict the precision
of resulting values.

The management of the size of messages is another issue. If we compute
a circuit of multiplicative depth L without rounding of messages, then the bit
size of an output value will exponentially grow with L. This naive method is
inappropriate for practical usage because it causes a huge ciphertext modulus.
To resolve this problem, we suggest a new technique which divides intermediate
values by a base. It allows us to discard some inaccurate LSBs of a message while
an error is still kept relatively small compared to the message. This method leads
to maintain the size of messages almost same and make the required ciphertext
modulus linear in the depth L.

9

3.2 Plaintext Encoding for Packing

The batching technique in HE system allows us to encrypt multiple messages in a
single ciphertext and enables a parallel processing in SIMD manner. In practice,
we take its advantage to parallelize computations and reduce the memory and
complexity. A ring of finite characteristic has been used as a plaintext space
in the previous RLWE-based HE schemes. A small error, which is located in a
separated place in a ciphertext modulus, is inserted to ensure security and it
may be removed after carrying out homomorphic operations. Then an output
polynomial is decoded into a message vector with respect to the CRT-based
encoding technique [38, 39]. Meanwhile, a plaintext of our scheme is a polynomial
contained in a ring of characteristic zero and it embraces am error for security,
so an inserted error cannot be removed after decryption.

Intuition. A native plaintext space of our RLWE-based construction can be un-
derstood as the set of polynomials m(X) ∈ S such that ‖m‖can∞ � q. The roots
of a cyclotomic polynomial ΦM (X) are the complex primitive roots of unity in
the extension field C. We evaluate a plaintext polynomial at these roots in order
to transform it into a vector of complex numbers, so the (extended) canonical
embedding map σ : S → CN plays a role of decoding algorithm.

For technical details, we first point out that the image of canonical embedding
map is the subring H = {(zj)j∈Z∗M : zj = z−j} of CN . Let T be a multiplicative

subgroup of Z∗M satisfying Z∗M/T = {±1}. Then H can be identified with CN/2
via the natural projection π, defined by (zj)j∈Z∗M 7→ (zj)j∈T . Then our decoding
algorithm is to transform an arbitrary polynomial m(X) ∈ R into a complex
vector z such that z = π ◦ σ(m) ∈ CN/2.

The encoding algorithm is defined as the inverse of decoding procedure.
Specifically, it encodes an input vector z = (zi)i∈T in a polynomial m(X) =
σ−1 ◦π−1(z) where π−1(z)[j] is zj if j ∈ T , and z−j otherwise. Note that the en-
coding/decoding algorithms are isometric ring isomorphisms between (S, ‖·‖can∞)
and (CN/2, ‖·‖∞), so the size of plaintexts and errors are preserved via these
transformations.

Since π−1(z) might not be contained in the image of canonical embedding
map, we need to discritize π−1(z) to an element of σ(R). Recall that R has a
Z-basis {1, X, . . . ,XN−1} and it yields a rank-N ideal lattice σ(R) having basis
{σ(1), σ(X), . . . , σ(XN−1)}. The goal of rounding process is to find a vector,
denoted by

⌊
π−1(z)

⌉
σ(R)

, with a rounding error ‖π−1(z)−
⌊
π−1(z)

⌉
σ(R)
‖∞.

There are several round-off algorithms including the coordinate-wise randomized
rounding. See [35] for details.

A rounding error may destroy the significant figures of a message during
encoding procedure. Hence we recommend to multiply a scaling factor ∆ ≥ 1
to a plaintext before rounding in order to preserve its precision. Our encod-
ing/decoding algorithms are explicitly given as follows:

• Ecd(z;∆). For a (N/2)-dimensional vector z = (zi)i∈T of complex numbers,
the encoding procedure first expands it into the vector π−1(z) ∈ H and com-

10

putes its discretization to σ(R) after multiplying a scaling factor ∆. Return
the corresponding integral polynomial m(X) = σ−1(

⌊
∆ · π−1(z)

⌉
σ(R)

) ∈ R.

• Dcd(m;∆). For an input polynomial m ∈ R, output the vector z = π ◦
σ(∆−1 ·m), i.e., the entry of z of index j ∈ T is zj = ∆−1 ·m(ζjM).

As a toy example, let M = 8 (i.e., Φ8(X) = X4 + 1) and ∆ = 64. Let
T = {ζ8, ζ38} for the root of unity ζ8 = exp(−2πi/8). For a given vector z =
(3+4i, 2− i), the corresponding real polynomial 1

4 (10+4
√

2X+10X2 +2
√

2X3)
has evaluation values 3+4i and 2− i at ζ8 and ζ38 , respectively. Then the output
of encoding algorithm is m(X) = 160+91X+160X2+45X3 ← Ecd(z;∆), which
is the closest integral polynomial to 64 · 14 (10 + 4

√
2X + 10X2 + 2

√
2X3). Note

that 64−1 · (m(ζ8),m(ζ38)) ≈ (3.0082 + 4.0026i, 1.9918− 0.9974i) is approximate
to the input vector z with a high precision.

3.3 Leveled Homomorphic Encryption Scheme for Approximate
Arithmetic

The purpose of this subsection is to construct a leveled HE scheme for approxi-
mate arithmetic. For convenience, we fix a base p > 0 and a modulus q0, and let
q` = p` · q0 for 0 < ` ≤ L. The integer p will be used as a base for scaling in ap-
proximate computation. For a security parameter λ, we also choose a parameter
M = M(λ, qL) for cyclotomic polynomial. For a level 0 ≤ ` ≤ L, a ciphertext of
level ` is a vector in Rkq` for a fixed integer k. Our scheme consists of five algo-
rithm (KeyGen,Enc,Dec,Add,Mult) with constants Bclean and Bmult(`) for noise
estimation. For convenience, we will describe a HE scheme over the polynomial
ring R = Z[X]/(ΦM (X)).

• KeyGen(1λ). Generate a secret value sk, a public information pk for encryp-
tion, and a evaluation key evk.

• Encpk(m). For a given polynomial m ∈ R, output a ciphertext c ∈ RkqL . An
encryption c of m will satisfy 〈c, sk〉 = m + e (mod qL) for some small e.
The constant Bclean denotes an encryption bound, i.e., error polynomial of a
fresh ciphertext satisfies ‖e‖can∞ ≤ Bclean with an overwhelming probability.

• Decsk(c). For a ciphertext c at level `, output a polynomial m′ ← 〈c, sk〉
(mod q`) for the secret key sk.

Unlike the most of existing schemes, our scheme does not have a separate
plaintext space from an inserted error. An output m′ = m + e of decryption
algorithm is slightly different from the original message m, but it can be consid-
ered to be an approximate value for approximate computations when ‖e‖can∞ is
small enough compared to ‖m‖can∞ . The intuition of approximate encryption has
been partially used previously, for example, a switching key for homomorphic
multiplication in [6, 4, 5, 12] or an evaluation key for the squashed decryption
circuit in [18, 13] are encrypted in a similar way.

The algorithms for homomorphic operations are required to satisfy the fol-
lowing properties.

11

• Add(c1, c2). For given encrypts of m1 and m2, output an encryption of m1 +
m2. An error of output ciphertext is bounded by sum of two errors in input
ciphertexts.

• Multevk(c1, c2). For a pair of ciphertexts (c1, c2), output a ciphertext cmult ∈
Rkq` which satisfies 〈cmult, sk〉 = 〈c1, sk〉 · 〈c2, sk〉 + emult (mod q`) for some
polynomial emult ∈ R with ‖emult‖can∞ ≤ Bmult(`).

We may adapt the techniques of existing HE schemes over the ring R to
construct a HE scheme for approximate arithmetic. For example, the ring-based
BGV scheme [5], its variant with multiplication by raising ciphertext modulus [25]
(k = 2), or the NTRU scheme [33] (k = 1) can be used as a base scheme.
Our scheme has its own distinct and unique characteristic represented by the
following rescaling procedure.

• RS`→`′(c). For a ciphertext c ∈ Rkq` at level ` and a lower level `′ < `, output

the ciphertext c′ ←
⌊
q`′
q`
c
⌉

in Rkq`′ , i.e., c′ is obtained by scaling q`′
q`

to the

entries of c and rounding the coefficients to the closest integers. We will omit
the subscript `→ `′ when `′ = `− 1.

For an input ciphertext c of a message m such that 〈c, sk〉 = m+e (mod q`),
the output ciphertext c′ of rescaling procedure satisfies 〈c′, sk〉 = q`′

q`
m+ (q`′q` e+

escale) (mod q`′). Let τ = q`′
q`
c− c′ and assume that an error polynomial escale =

〈τ , sk〉 is bounded by some constant Bscale. Then the output ciphertext becomes
an encryption of q`′

q`
m with a noise bounded by q`′

q`
‖e‖can∞ +Bscale.

Technically this procedure is similar to the modulus-switching algorithm [5],
but it has a completely different role in our construction. The rescaling algo-
rithm divides a plaintext by an integer to remove some inaccurate LSBs as a
rounding step in usual approximate computations using floating-point numbers
or scientific notation. The magnitude of messages can be maintained almost the
same during homomorphic evaluation, and thus the required size of the largest
ciphertext modulus grows linearly with the depth of the circuit being evaluated.

Tagged Informations. A homomorphic operation has an effect on the size of
plaintext and the growth of message and noise. Each ciphertext will be tagged
with bounds of a message and an error in order to dynamically manage their
magnitudes. Hence, a full ciphertext will be of the form (c, `, ν, B) for a ciphertext
vector c ∈ Rkq` , a level 0 ≤ ` ≤ L, an upper bound ν ∈ R of message and an
upper bound B ∈ R of noise. Table 1 shows the full description of our scheme
and homomorphic operations for ciphertexts with tagged information.

Homomorphic Operations of Ciphertexts at Different Levels. When
given encryptions c, c′ of m,m′ belong to the different levels ` and `′ < `, we
should bring a ciphertext c at a larger level ` to the smaller level `′ before ho-
momorphic operation. There are two candidates: simple modular reduction and
the RS procedure. It should be chosen very carefully by considering the scale of
messages because the simple modular reduction c 7→ c (mod q`′) preserves the
plaintext while RS procedure changes the plaintext from m to q`′

q`
m as in Fig.3.

12

Encpk : m 7→ (c, L, ν,Bclean) for some ν ≥ ‖m‖can∞
Decsk : (c, `, ν, B) 7→ (〈c, sk〉 (mod q`), B)

RS`→`′ : (c′, `, ν, B) 7→ (c, `′, p`
′−` · ν, p`′−` ·B +Bscale)

Add : ((c1, `, ν1, B1), (c2, `, ν2, B2)) 7→ (cadd, `, ν1 + ν2, B1 +B2)

Multevk : ((c1, `, ν1, B1), (c2, `, ν2, B2))

7→ (cmult, `, ν1ν2, ν1B2 + ν2B1 +B1B2 +Bmult)

Table 1. Description of our scheme

Throughout this paper, we perform simple modulus reduction to the smaller
modulus before computation on ciphertexts at different levels unless stated oth-
erwise.

e

m

q`

p`
′−` ·m

q`′

e

m

q`

RS Modular reduction m

q`′

Fig. 3. Rescaling and simple modular reduction

3.4 Concrete Construction of RLWE-based HE scheme

The performance of our construction and the noise growth depend on the base
HE scheme. Moreover, a more accurate noise estimation can be done if we choose
a specific one. We take the BGV scheme [5] with multiplication method by raising
ciphertext modulus [25] as the underlying scheme of our concrete construction
and implementation. From Costache and Smart’s comparison [14], it seems to
be the most efficient among the existing RLWE-based schemes.

For security and simplicity, we will use power-of-two degree cyclotomic rings.
In this case, the dual ideal R∨ = N−1 · R of R = Z[X]/(XN + 1) is simply a
scaling of the ring. The RLWE problem is informally described by transforming
samples (a, b = a · s′ + e′) ∈ Rq × R∨q into (a, b = a · s + e) ∈ Rq × Rq where
s = s′ ·N ∈ R and e = e′ ·N ∈ R, so that the coefficients of e can be sampled
independently from the discrete Gaussian distribution.

We will also choose the ring of Gaussian integers Z[i] as a discrete subspace
of C for implementation. Another advantage of power-of-two degree cyclotomic

13

rings is the efficient rounding operation b·eR∨ in dual fractional ideal R∨. Since
the columns of matrix CRTM defined in Section 2.2 are mutually orthogonal,
the encoding of plaintext can be efficiently done by rounding coefficients to the
nearest integers after multiplication with the matrix CRT−1M .

We adopt the notation of some distributions on from [25]. For a real σ > 0,
DG(σ2) samples a vector in ZN by drawing its coefficient independently from the
discrete Gaussian distribution of variance σ2. For an positive integer h, HWT (h)
is the set of signed binary vectors in {0,±1}N whose Hamming weight is exactly
h. For a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ) draws each entry in the vector
from {0,±1}N , with probability ρ/2 for each of −1 and +1, and probability
being zero 1− ρ.

• KeyGen(1λ).
- Given the security parameter λ, choose a power-of-two M = M(λ, qL),

an integer h = h(λ, qL), an integer P = P (λ, qL) and a real value σ =
σ(λ, qL).

- Sample s← HWT (h), a← RqL and e← DG(σ2). Set the secret key as
sk ← (1, s) and the public key as pk ← (b, a) ∈ R2

qL where b← −as+ e
(mod qL).

- Sample a′ ← RP ·qL and e′ ← DG(σ2). Set the evaluation key as evk ←
(b′, a′) ∈ R2

P ·qL where b′ ← −a′s+ e′ + Ps2 (mod P · qL).

• Ecd(z;∆). For a (N/2)-dimensional vector z = (zj)j∈T ∈ Z[i]N/2 of Gaus-
sian integers, compute the vector

⌊
∆ · π−1(z)

⌉
σ(R)

. Return its inverse with

respect to canonical embedding map.
• Dcd(m;∆). For an input polynomial m(X) ∈ R, compute the corresponding

vector π◦σ(m). Return the closest vector of Gaussian integers z = (zj)j∈T ∈
Z[i]N/2 after scaling, i.e., zj =

⌊
∆−1 ·m(ζjM)

⌉
for j ∈ T .

• Encpk(m). Sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output v · pk+ (m+
e0, e1) (mod qL).

• Decsk(c). For c = (b, a), output b+ a · s (mod q`).
• Add(c1, c2). For c1, c2 ∈ R2

q`
, output cadd ← c1 + c2 (mod q`).

• Multevk(c1, c2). For c1 = (b1, a1), c2 = (b2, a2) ∈ R2
q`

, let (d0, d1, d2) =

(b1b2, a1b2 +a2b1, a1a2) (mod q`). Output cmult ← (d0, d1)+
⌊
P−1 · d2 · evk

⌉
(mod q`).

• RS`→`′(c). For c ∈ R2
q`

, output c′ ←
⌊
q`′
q`
c
⌉
∈ (mod q′`).

Throughout this paper, we use non-integral polynomial as plaintext for con-
venience of analysis, so that a ciphertext (c ∈ R2

q`
, `, ν, B) will be called a valid

encryption of m ∈ S if ‖m‖can∞ ≤ ν and 〈c, sk〉 = m + e (mod q`) for some
polynomial e ∈ S with ‖e‖can∞ ≤ B. The following lemmas give upper bounds
on noise growth after encryption, rescaling and homomorphic operations. See
Appendix B for proofs.

Lemma 1 (Encoding and Encryption). Encryption noise is bounded by
Bclean = 8

√
2σN + 6σ

√
N + 16σ

√
hN . If c ← Encpk(m) and m ← Ecd(z;∆)

for some z ∈ Z[i]N/2 and ∆ > N + 2Bclean, then Dcd(Decsk(c)) = z.

14

Lemma 2 (Rescaling). Let (c, `, ν, B) be an encryption of m ∈ S. Then
(c′, `′, p`

′−`·ν, p`′−`·B+Bscale) is a valid encryption of p`
′−`·m for c′ ← RS`→`′(c)

and Bscale =
√
N/3 · (3 + 8

√
h).

Lemma 3 (Addition/Multiplication). Let (ci, `, νi, Bi) be encryptions of
mi ∈ S for i = 1, 2, and let cadd ← Add(c1, c2) and cmult ← Multevk(c1, c2).
Then (cadd, `, ν1+ν2, B1+B2) and (cmult, `, ν1ν2, ν1B2+ν2B1+B1B2+Bmult(`))
are valid encryptions of m1 +m2 and m1m2, respectively, where Bks = 8σN/

√
3

and Bmult(`) = P−1 · q` ·Bks +Bscale.

Permutations over the Plaintext Slots. It is known that the Galois group
Gal = Gal(Q(ζM)/Q) consists of the mappings κk : m(X) 7→ m(Xk) (mod ΦM (X))
for a polynomial m(X) ∈ R and all k co-prime with M , and that it is isomorphic
to Z∗M . As describe in [24], applying the transformation κk to the polynomials
is very useful for the permutation on a vector of plaintext values.

For example, a plaintext polynomial m(X) is decoded into a vector of evalu-
ations at the specific points, i.e., (m(ζjM))j∈T for a subgroup T of Z∗M satisfying
Z∗M/T = {±1}. For any i, j ∈ T , there is an element κk ∈ Gal which sends an
element in the slot of index i to an element in the slot of index j. That is, for
a vector of plaintext values z = (zj)j∈T ∈ CN/2 with the corresponding polyno-
mial m(X) = σ−1 ◦ π−1(z), if k = j−1 · i (mod M) and m′ = κk(m), then we

have z′j = m′(ζjM) = m(ζjkM) = m(ζiM) = zi. Hence the element in the slot of
index j of m′ is the same as that in the slot of index i of m.

Given an encryption c of a message m ∈ R with a secret key sk = (1, s),
we denote κk(c) the vector obtained by applying κk to the entries of ciphertext
c. It follows from [24] that κk(c) is a valid encryption of κk(m) with respect to
the secret κk(s). In addition, the key-switching technique can be applied to the
ciphertext κk(c) in order to get an encryption of the same message with respect
to the original secret s.

Relative Error. The decryption result of a ciphertext is an approximate value
of plaintext, so the noise growth from homomorphic operations may cause some
negative effect such as loss of significance. Hence it needs to dynamically manage
the bound of noise of ciphertexts for a correct understanding of the outputs.
A full ciphertext (c, `, ν, B) contains upper bounds of plaintext and noise, but
sometimes it is convenient to consider the relative error defined by β = B/ν.

For example, it is easy to see that the addition of ciphertexts with relative er-
rors βi = Bi/νi produces a ciphertext with a relative error bounded by maxi{βi}.
In other case, if we multiply two ciphertexts (c1, `, ν1, B1), (c2, `, ν2, B2) and scale
down to a lower level `′ (as floating-point multiplication does), it produces a ci-
phertext at level `′ with a relative error

β′ = β1 + β2 + β1β2 +
Bmult(`) + p`−`

′ ·Bscale

ν1ν2

from Lemmas 2 and 3. This relative error is very close to β1 + β2 similar to the
case of unencrypted floating-point multiplication under an appropriate choice of
parameter and level.

15

4 Homomorphic Evaluation of Approximate Arithmetic

In this section, we describe some algorithms for evaluating some circuits com-
monly used in practical applications and analyze error growth of an output
ciphertext based on our concrete construction. We start with the homomorphic
evaluations of typical circuits such as addition and multiplication by constants,
monomial, and polynomial. These can be extended to approximate series for
analytic functions such as multiplicative inverse and exponential function. The
required parameters and precision of results will be also analyzed together.

For the convenience of analysis, we will assume that the term β1β2+(Bmult(`)+
p`−`

′ ·Bscale)/(ν1ν2) is always bounded by a fixed constant β∗, so the relative error
of ciphertext c′ ← RS`→`′(Mult(c1, c2)) satisfies the inequality β′ ≤ β1+β2+β∗.
We will discuss about the choice of β∗ and check the validity of this assumption
at the end of Section 4.1.

4.1 Polynomial Functions

The goal of this subsection is to suggest an algorithm for evaluating an arbitrary
polynomial, and analyze its complexity and precision of output ciphertext. We
start with the constant addition and multiplication functions f(x) = x+ a and
f(x) = ax for a constant a ∈ R.

Lemma 4 (Addition/Multiplication by Constant). Let (c, `, ν, B) be an
encryption of m ∈ S. For a constant a ∈ R, let ca ← c + (a, 0) (mod q`) and
cm ← a · c (mod q`). Then (ca, `, ν + ‖a‖can∞ , B) and (cm, `, ‖a‖can∞ · ν, ‖a‖can∞ ·B)
are valid encryptions of m+ a and am, respectively.

Proof. There is a polynomial e ∈ R such that 〈c, sk〉 = m + e (mod q`) and
‖e‖can∞ ≤ B. It is obvious that 〈ca, sk〉 = a+ 〈c, sk〉 = (a+m) + e (mod q`). We
also have 〈cm, sk〉 = a · (m+ e) = am+ ae (mod q`) and ‖a · e‖can∞ ≤ ‖a‖can∞ ·B.

ut

Now we describe an algorithm to evaluate the power polynomial xd for a
power of two integer d. For simplicity, we assume that the bound ν of message
m is equal to the base p.

Algorithm 1 Power polynomial f(x) = xd of power-of-two degree

1: procedure Power(c ∈ R2
q`
, d = 2r)

2: c0 ← c
3: for j = 1 to r do
4: cj ← RS(Mult(cj−1, cj−1))
5: end for
6: return cr
7: end procedure

16

For an input polynomial m ∈ R of size ‖m‖can∞ ≤ p, Algorithm 1 repeatedly
performs the rescaling procedure after each of squaring step to maintain the
size of message, thus the output of Algorithm 1 is an encryption of the scaled
value p · f(m/p) = md/pd−1. The following lemma explains the correctness of
Algorithm 1 and gives the relative error of the output ciphertext.

Lemma 5. Let (c, `, p, β0 · p) be an encryption of m ∈ S and d be a power-of-
two integer. Then Algorithm 1 outputs a valid encryption (cr, ` − r, p, βd · p) of
md/pd−1 for some real number βd ≤ d · β0 + (d− 1) · β∗.

Proof. We argue by induction on j. It is easy to see that (cj , ` − j, p, β2j · p) is

an encryption of m2j/p2
j−1 for some real number β2j ≤ 2 · β2j−1 + β∗. After r

iterations, it produces an encryption (cr, `− r, p, β2r · p) of m2r/p2
r−1 for some

β2r such that β2r ≤ 2r · β0 + (2r − 1) · β∗. ut

Algorithm 1 can be extended to an algorithm which evaluates an arbitrary
polynomial. Similar to the previous case, this extended algorithm outputs an
encryption of the scaled value p · f(m/p) = md/pd−1.

Lemma 6. Let (c, `, p, B) be an encryption of m ∈ S and let d be a positive
integer. Then one can compute a valid encryption (c′, ` − dlog de, p, βd · p) of
md/pd−1 for some real number βd ≤ d · β0 + (d− 1) · β∗.

Lemma 7 (Polynomial). Let f(x) =
∑d
j=0 ajx

j be a nonzero polynomial of
coefficients aj in R and of degree d. Let (c, `, p, β0 · p) be an encryption of mS.
Then one can compute a valid encryption (c′, `−dlog de,Mf , βd·Mf) of p·f(m/p)

for Mf = p ·
∑d
j=0 ‖aj‖can∞ and for some real number βd ≤ d · β0 + (d− 1) · β∗.

If the relative error of input ciphertext satisfies β0 ≤ β∗, the relative error
of the resulting ciphertext is bounded by βd ≤ d · β0 + (d − 1) · β∗ ≤ 2d · β0.
Hence, the precision loss is bounded by (log d + 1) bits, which is comparable
to loss of significance occurring in unencrypted numerical computations. The
evaluation of polynomial of degree d can be done in d homomorphic multiplica-
tions between ciphertext of depth r = dlog de by computing the encryptions of
m,m2/p, . . . ,md/pd−1 simultaneously. We may apply the Paterson-Stockmeyer
algorithm [37] to the evaluation procedure. Then a degree d polynomial can be
evaluated using O(

√
d) multiplications, which gives a similar upper bound on

relative error as the naive approach.
Let us return to the assumption β1β2 +(Bmult(`)+p`−`

′ ·Bscale)/(ν1ν2) ≤ β∗.
We will choose β∗ as an upper bound of relative errors of fresh ciphertexts in
our scheme. After evaluation of circuits of depth less than (L− 1), the resulting
ciphertext will have a relative error less than 2L ·β∗. It means that the first term
β1β2 will be bounded by 2L+1 ·β2

∗ after evaluation. The condition 2L+1 ·β2
∗ ≤ 1

2β∗,
or equivalently β∗ ≤ 2−L−2, seems to be natural; otherwise the relative error
becomes 2L+1 · β∗ ≥ 2−1 after evaluation, so the decryption result will have
almost no information. Thus we have β1 + β2 ≤ 1

2β∗. The second term is equal

to (p`
′−` · Bmult(`) + Bscale)/ν

′ where ν′ = p`
′−` · ν1ν2 is the message bound

17

of new ciphertext obtained by rescaling after multiplication. The numerator is
asymptotically bounded by p`

′−` ·Bmult(`)+Bscale = O(N). If the message bound
always satisfies ν′ ≥ p as in our algorithms, the second term is (Bmult(`) + p`−`

′ ·
Bscale)/(ν1ν2) = O(p−1 ·N) which is smaller than a half of relative error of fresh
ciphertext because β∗ ≥ p−1 ·Bclean = Ω(p−1 · σN).

4.2 Approximate Polynomials and Multiplicative Inverse

We now homomorphically evaluate complex analytic functions f(x) using their

Taylor decomposition f(x) = Td(x) + Rd(x) for Td(x) =
∑d
j=0

f(j)(0)
j! xj and

Rd(x) = f(x) − Td(x). Lemma 7 can be utilized to evaluate the rounded poly-
nomial of scaled Taylor expansion bpu · Tde (x) of f(x) for some non-negative
integers u and d, which outputs an approximate value of pu+1 · f(m/p). The
bound of error is obtained by aggregating the error occurring during evalua-
tion, the rounding error and the error of the remainder term pu+1 · Rd(m/p).
In the case of RLWE-based constructions, we should consider the corresponding
plaintext vector π ◦ σ(m) = (zj)j∈T and convergence of series in each slot.

As an example, the exponential function f(x) = exp(x) has the Taylor poly-

nomial Td(x) =
∑d
j=0

1
j!x

j and the remaining term is bounded by |Rd(x)| ≤
e

(d+1)! when |x| ≤ 1. Assume that we are given an encryption (c, `, p, β0 ·p) of m.

With the input ciphertext c and the polynomial bpu · Tde (x), one can compute
an encryption of pu+1 ·Td(m/p). We see that an error of the resulting ciphertext
is bounded by

dp+ pu+1 ·
d∑
j=1

1

j!
(j · β0 + (j − 1)β∗) ≤ dp+ pu+1 · (eβ0 + β∗).

If we write exp(m/p) := σ−1◦π−1((exp(zj/p))j∈T), the output ciphertext can be
also viewed as an encryption of pu+1 ·exp(m/p) of the form (c′, `−dlog de, ν′, B′)
for ν′ = pu+1 · e and B′ = dp+ pu+1 · (eβ0 + β∗ + e

(d+1)!), and its relative error

is bounded by β′ ≤ (β0 + β∗ · e−1) + (p−u · d · e−1 + 1
(d+1)!). If β0 ≥ β∗, then we

may take integers d and u satisfying (d+ 1)! ≥ 4β−10 and pu ≥ 2β−10 · d to make
the relative error less than 2β0. In this case, the precision loss during evaluation
of exponential function is less than one bit.

In the case of multiplicative inverse, we adopt an algorithm described in [8] to
get a better complexity. Assuming that a complex number x satisfies |x̂| ≤ 1/2
for x̂ = 1− x, we get

x(1 + x̂)(1 + x̂2)(1 + x̂2
2

) · · · (1 + x̂2
r−1

) = 1− x̂2
r

. (1)

Note that |x̂2r | ≤ 2−2
r

, and it converges to one as r goes to infinity. Hence,∏r−1
j=0(1+x̂2

j

) = x−1(1−x̂2r) can be considered as an approximate multiplicative
inverse of x with 2r bits of precision.

For homomorphic evaluation, we change a scale and assume that a complex
number zj satisfies |ẑj | ≤ p/2 for ẑj = p− zj . The standard approach starts by

18

normalizing those numbers to be in the unit interval by setting x = zj/p. Since
we cannot multiply fractions over encrypted data, the precision point should
move to the left for each term of (1). That is, we multiply both sides of the
equation (1) by p2

r

and then it yields

zj(p+ ẑj)(p
21 + ẑj

21)(p2
2

+ ẑj
22) · · · (p2

r−1

+ ẑj
2r−1

) = p2
r

− ẑj2
r

.

Therefore, the product p−2
r ·
∏r−1
i=0 (p2

i

+ ẑj
2i) can be seen as the approximate

inverse of zj with 2r bits of precision. Let ẑ = (ẑj)j∈T and z−1 = (z−1j)j∈T .

Algorithm 2 takes an encryption of m̂ = σ−1◦π−1(ẑ) as an input and outputs an
encryption of its scaled multiplicative inverse p2 · (σ−1 ◦π−1(z−1)) by evaluating

the polynomial
∏r−1
j=0(p2

j

+ m̂2j). The precision of the resulting ciphertext and
the optimal iterations number r will be analyzed in the following lemma.

Algorithm 2 Inverse function f(x) = x−1

1: procedure Inverse(c ∈ R2
q`
, r)

2: p← (p, 0)
3: c0 ← c
4: v1 ← p+ c0 (mod q`−1)
5: for j = 1 to r − 1 do
6: cj ← RS(Mult(cj−1, cj−1))
7: vj+1 ← RS(Mult(vj ,p+ cj))
8: end for
9: return vr

10: end procedure

Lemma 8 (Multiplicative Inverse). Let (c, `, p/2, B0 = β0 · p/2) be an en-
cryption of m̂ ∈ S and let m = p− m̂. Then Algorithm 2 outputs a valid encryp-
tion (vr, `− r, 2p, β · 2p) of m′ = p ·

∏r−1
i=0 (1 + (m̂/p)2

i

) for some β ≤ β0 + rβ∗.

Proof. From Lemma 4, (v1, `−1, 3p/2, B0) is a valid encryption of p+m̂ and its

relative error is β′1 = β0/3. It also follows from Lemma 5 that (cj , `−j, 2−2
j ·p, βj ·

2−2
j ·p) is a valid encryption of m̂2j/p2

j−1 for some real number βj ≤ 2j ·(β0+β∗),

and so (p+cj , `−j, (1+2−2
j

)p, βj ·2−2
j ·p) is a valid encryption of p+m̂2j/p2

j−1 =

(p2
j

+m̂2j)/p2
j−1 with a relative error β′j ≤ βj/(22

j

+1) ≤ 2j ·(β0+β∗)/(2
2j +1),

respectively.
Using the induction on j, we can show that(

vj , `− j, p ·
j−1∏
i=0

(1 + 2−2
i

), β′′j · p ·
j−1∏
i=0

(1 + 2−2
i

)

)

is a valid encryption of
∏j−1
i=0 (p2

i

+ m̂2i)/p2
j−2 = p ·

∏j−1
i=0 (1 + (m̂/p)2

i

) with a

relative error β′′j ≤
∑j−1
i=0 β

′
i + (j − 1) · β∗. Note that the message is bounded by

19

p ·
∏j−1
i=0 (1 + 2−2

i

) = (2p) · (1− 2−2
j

) < 2p and the relative error satisfies

β′′j ≤

(
j−1∑
i=0

2i

22i + 1

)
· (β0 + β∗) + (j − 1) · β∗ ≤ β0 + j · β∗

from the fact that
∑∞
i=0

2i

22i+1
= 1. Therefore, the output vr of Algorithm 2

represents a valid encryption (vr, `− r, 2p, β · 2p) of m′ = p ·
∏r−1
i=0 (1 + (m̂/p)2

i

)
for some β ≤ β0 + r · β∗. ut

Let m−1(X) := σ−1 ◦ π−1(z−1) be the polynomial in S corresponding to
z−1. The output ciphertext (vr, ` − r, 2p, β · 2p) of the previous lemma can
be also viewed as an encryption of p2 · m−1. The error bound is increased by
the convergence error ‖p2 ·m−1 −m′‖can∞ = ‖p2 ·m−1 · (m̂/p)2r‖can∞ ≤ 2−2

r · 2p.
Therefore, the ciphertext (vr, ` − r, 2p, (β + 2−2

r

) · 2p) is a valid encryption of
m′ and its relative error is β+ 2−2

r ≤ β0 + rβ∗+ 2−2
r

, which is minimized when
rβ∗ ≈ 2−2

r

. Namely, r = dlog log β−1∗ e yields the inequality β0 + rβ∗ + 2−2
r ≤

β0 + 2rβ∗ = β0 + 2dlog log β−1∗ e ·β∗. Thus the precision loss during evaluation of
multiplicative inverse is less than one bit if 2dlog log β−1∗ e · β∗ ≤ β0.

The optimal iterations number r can be changed upon more/less information
about the magnitude of m̂. Assume that we have an encryption of message
m̂ whose size is bounded by ‖m̂‖can∞ ≤ εp for some 0 < ε < 1. By applying

Lemma 8, we can compute an encryption of p ·
∏r−1
i=0 (1 + (m̂/p)2

i

) = (p2 ·m−1) ·
(1 − (m̂/p)2

r

) with a relative error β ≤ β0 + rβ∗, which is an approximate
value of p2 ·m−1 with an error bounded by ε2

r · 2p. Then the optimal iterations
number is r ≈ log log β−1∗ − log log ε−1 and the relative error becomes β ≤
β0 + 2d(log log β−1∗ − log log ε−1)e · β∗ when r = d(log log β−1∗ − log log ε−1)e.

4.3 Fast Fourier Transform

Let d be a power of two integer and consider the complex primitive d-th root
of unity ζd = exp(2πi/d). For a complex vector u = (u0, . . . , ud−1), its discrete
Fourier transform (DFT) is defined by the vector v = (v0, . . . , vd−1)← DFT(u)

where vk =
∑d−1
j=0 ζ

jk
d · uj for k = 0, . . . , d − 1. The DFT has a numerous ap-

plications in mathematics and engineering such as signal processing technology.
The basic idea is to send the data to Fourier space, carry out Hadamard opera-
tions and bring back the computation result to a original domain via the inverse
DFT. We denote by Wd(z) = (zj·k)0≤j,k<d the Vandermonde matrix generated
by {zk : 0 ≤ k < d}. The DFT of u can be evaluated by the matrix multipli-
cation DFT(u) = Wd(ζd) · u, but the complexity of DFT can be reduced down
to O(d log d) using FFT algorithm by representing the DFT matrix Wd(ζd) as a
product of sparse matrices.

Recently, Costache et al. [15] suggested an encoding method which sends the
complex d-th root of unity to the monomial Y = XM/d over cyclotomic ring
R = Z[X]/(ΦM (X)) for cryptosystem. Then homomorphic evaluation of DFT

20

is simply represented as a multiplication of the matrix Wd(Y) to a vector of
ciphertexts over polynomial ring.

On the other hand, our RLWE-based HE scheme can take advantage of batch
technique as described in Section 3.2. In the slot of index k ∈ T , the mono-
mial Y = XM/d and matrix Wd(Y) are converted into ζkd and the DFT ma-
trix Wd(ζ

k
d), respectively, depending on primitive root of unity ζkd . However,

our batching scheme is still meaningful because the evaluation result of whole
pipeline consisting of DFT, Hadamard operations, and inverse DFT is indepen-
dent of index k, even though Wd(Y) corresponds to the DFT matrices generated
by different primitive d-th roots of unity.

It follows from the property of ordinary FFT algorithm that if (ci, `, ν, B)
is an encryption of ui for i = 0, . . . , d − 1 and v = (v0, . . . , vd−1) ← Wd(Y) ·
u, then the output of FFT algorithm using XM/d instead of ζd forms valid
encryptions (c′i, `,

√
d · ν,

√
d ·B). Note that the precision of input ciphertexts is

preserved as B/ν. Our FFT algorithm takes a similar time with [15] in the same
parameter setting, but the amortized time is much smaller thanks to our own
plaintext packing technique. In the evaluation of whole pipeline DFT-Hadamard
multiplication-inverse DFT, one may scale down the transformed ciphertexts
by
√
d before Hadamard operations to maintain the magnitude of messages and

reduce the required levels for whole pipeline.
The fast polynomial multiplication using the FFT algorithm is a typical ex-

ample that computes the exact value using approximate arithmetic. In particular
for the case of integral polynomials, the exact multiplication can be recovered
from its approximate value since we know that their multiplication is also an
integral polynomial. Likewise, when the output of a circuit has a specific format
or property, it is possible to get the exact computation result from its sufficiently
close approximation.

5 Implementation Results

In this section we describe how to select parameters for evaluating arithmetic
circuits described in Section 4. We also provide implementation results with
concrete parameters. Our implementation is based on the NTL C++ library
running over GMP. Every experimentation was performed on a machine with
an Intel Core i5 running at 2.9 GHz processor using a parameter set with 80-bit
security level.

We need to set the ring dimension N that satisfies the security condition
N ≥ λ+110

7.2 log(P · qL) to get λ-bit security level. [32, 25] We note that P · qL
is the largest modulus to generate evaluation key and it suffices to assume that
P is approximately equal to qL. In our implementation, we used the Gaussian
distribution of standard deviation σ = 3.2 to sample error polynomials, and set
h = 64 as the number of nonzero coefficients in a secret key s(X).

Evaluation of Typical Circuits. In Table 2, we present the parameter setting
and performance results for computing a power of a ciphertext, the multiplicative

21

inverse of a ciphertext and exponential function. The average running times are
only for ciphertext operations, excluding encryption and decryption procedures.
As described in Section 3.4, each ciphertext can hold N/2 plaintext slots and
one can perform the computation in parallel in each slot. Here the amortized
running time means a relative time per slot.

The homomorphic evaluation of the circuit x1024 with an input of 36-bit
precision is hard to be implemented in practice over previous methods. Mean-
while, our scheme can compute this circuit simultaneously over 214 slots in about
7.46 seconds, yielding an amortized rate of 0.43 milliseconds per slot. Compu-
tation of the multiplicative inverse is done by evaluating the polynomial up to
degree 8 as described in Algorithm 2. It gives an amortized time per slots of
about 0.11 milliseconds. In the case of exponential function, we used terms in
its Taylor expansion up to degree 8 and it results in an amortized time per slots
of 0.16 milliseconds.

Table 2. Implementation results for homomorphic evaluation of typical circuits

Function N log q log p
Consumed Input Total Amortized

levels precision time time

x16

213 155 30 4 14 bits

0.31s 0.07ms

x−1 0.45s 0.11ms

exp(x) 0.65s 0.16ms

x1024 215 620 56 10 36 bits 7.46s 0.43ms

Significance Loss. In Section 4, we analyzed the theoretical upper bounds on
the growth of relative errors during evaluations. We can see from experimen-
tal result that initial precision is about 4 bits greater than theoretic bound of
precision since we multiply 16 to the variance of encryption error to get a high
probability bound. In Fig.4, we depict bit precisions of output ciphertexts during
the evaluation of homomorphic multiplications (e.g. x16 for the left figure and
x1024 for the right figure). We can actually check that both theoretic bound and
experimental result of precision loss during homomorphic multiplications is less
than 4.1 (or resp. 10.1) when the depth of the circuit is 4 (or resp. 10).

Logistic Function. Let us consider the logistic function f(x) = (1+exp(−x))−1,
which is widely used in statistics, neural networks and machine learning as a
probability function. For example, logistic regression is used for a prediction of
the likelihood to have a heart attack in an unspecified period for men, as indi-
cated in [3]. It was also used as a predictive equation to screen for diabetes, as
described in [40]. This function can be approximated by its Taylor series

f(x) =
1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − 17

80640
x7 +

31

1451520
x9 +O(x11).

22

43210
6

8

10

12

14

16

Consumed level

B
it

p
re

ci
si

on
of

ou
tp

u
t

(l
og
β
−
1
) Theoretical lower bound

Experimental result

0 1 2 3 4 5 6 7 8 9 10
24

26

28

30

32

34

36

38

Consumed level

B
it

pr
ec

is
io

n
of

ou
tp

ut
(l

og
β
−
1
) Theoretical lower bound

Experimental result

Fig. 4. The variation of bit precision of ciphertexts when (f(x), N, log p, log q) =
(x16, 213, 30, 155) and (x1024, 215, 56, 620)

In [3, 9], every real number is scaled by a predetermined factor to transform it as
a binary polynomial before computation. The plaintext modulus t should be set
large enough so that no reduction modulo t occurs in the plaintext space. The
required bit size of plaintext modulus exponentially increases on the depth of the
circuit, which strictly limits the performance of evaluation. On the other hand,
the rescaling procedure in our scheme has the advantage that it significantly
reduces the size of parameters (e.g. (log p, log q) = (30, 155)).

The parallelized computation for logistic function is especially important in
real world applications such as statistic analysis using multiple data. In previous
approaches, each slot of plaintext space should represent a larger degree than
encoded polynomials so they could support only a few numbers of slots. On the
other hand, we provide a parallelization method with an amortization amount
independent from target circuit and get a better amortized time of evaluation.

Table 3. Comparison of implementation results for homomorphic evaluation of logistic
function

Method N log q
Polynomial Amortization Total Amortized

degree amount time time

[3] 214 512 7 - > 30s -

[9] 17430 370 7 - 1.8s -

Ours
213 155 7 212 0.54s 0.13ms

214 185 9 213 0.78s 0.09ms

Discrete Fourier Transform. With the parameters (N, log p) = (213, 50), we
encrypt coefficients of polynomials and homomorphically evaluate the standard
processing (FFT-Hadamard product of two vectors-inverse FFT) in 73 minutes

23

(amortized 1.06 seconds per slot) when d = 213. We could reduce down the
evaluation time to 22 minutes (amortized 0.34 seconds per slot) by adapting the
multi-threading method on a machine with four cores, compared to 17 minutes of
the previous work [15] on six cores. Since the rescaling procedure of transformed
ciphertexts enables us to efficiently carry out higher degree Hadamard operations
in Fourier space, the gap of parameter and running time between our scheme and
previous methods grows very quickly as degree N and the depth of Hadamard
operation increase. For instance, we also homomorphically evaluate the product
of 8 polynomials, using pipeline consisting of FFT-Hadamard product of eight
vectors-inverse FFT with parameters (N, log q) = (214, 250) in amortized time
of 1.76 seconds.

Table 4. Comparison of implementation results for homomorphic evaluation of a full
image processing pipeline

Method d N log q
Degree of Amortization Total Amortized

Hadamard operation amount time time

[15]4
24 213 150 2 - 0.46s -

213 214 192 2 - 17min -

Ours5
24 213 120 2 212 0.88s 0.21ms

213 213 130 2 212 22min 0.34s

213 214 250 8 213 4h 1.76s

6 Conclusion

In this work, we presented a homomorphic encryption scheme which supports
an approximate arithmetic over encryption. We also introduced a new batch-
ing technique for packing much information in a single ciphertext, so we could
achieve practical performance advantage by parallelism. Another benefit of our
scheme is the rescaling procedure, which enables us to preserve the precision of
the message after approximate computation. Furthermore, it leads to reduce the
size of ciphertext significantly so the scheme can be a reasonable solution for
computation over large integers.

The primary open problem is finding way to convert our scheme to a fully
homomorphic scheme using bootstrapping. The modulus of ciphertext decreases
with homomorphic operations and our scheme can no longer support homo-
morphic computation at the lowest level. To overcome this problem, we aim to
transform an input ciphertext into an encryption of almost the same plaintext
with a much larger modulus.

24

Further improvement of our implementations are possible by other optimiza-
tions. We would like to enhance them to take advantage of Number Theoretical
Transform (NTT) for fast polynomial multiplication.

Acknowledgments. This work was partially supported by IT R&D program
of MSIP/KEIT (No. B0717-16-0098) and Samsung Electronics Co., Ltd. (No.
0421-20150074). The fourth author was supported by National Research Foun-
dation of Korea (NRF) Grant funded by the Korean Government (No. NRF-
2012H1A2A1049334). We would like to thank Kristin Lauter, Damien Stehlé
and an anonymous ASIACRYPT referee for useful comments.

References

1. S. Arita and S. Nakasato. Fully homomorphic encryption for point numbers. In
International Conference on Information Security and Cryptology, pages 253–270.
Springer, 2016.

2. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-
based fully homomorphic encryption scheme. In Cryptography and Coding, pages
45–64. Springer, 2013.

3. J. W. Bos, K. Lauter, and M. Naehrig. Private predictive analysis on encrypted
medical data. Journal of biomedical informatics, 50:234–243, 2014.

4. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Advances in Cryptology–CRYPTO 2012, pages 868–886.
Springer, 2012.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Proc. of ITCS, pages 309–325. ACM, 2012.

6. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS’11, pages 97–106. IEEE Computer Soci-
ety, 2011.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-
LWE and security for key dependent messages. In Advances in Cryptology–
CRYPTO 2011, pages 505–524. Springer, 2011.

8. G. S. Çetin, Y. Doröz, B. Sunar, and W. J. Martin. An investigation of complex
operations with word-size homomorphic encryption. Cryptology ePrint Archive,
Report 2015/1195, 2015. http://eprint.iacr.org/2015/1195.

9. J. H. Cheon, J. Jung, J. Lee, and K. Lee. Privacy-preserving computations of
predictive medical models with minimax approximation and non-adjacent form.
To appear in WAHC 2017.

10. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Implementation of HEA-AN, 2016.
https://github.com/kimandrik/HEAAN.

11. J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit distance.
In International Conference on Financial Cryptography and Data Security, pages
194–212. Springer, 2015.

12. J. H. Cheon and D. Stehlé. Fully homomophic encryption over the integers re-
visited. In Advances in Cryptology–EUROCRYPT 2015, pages 513–536. Springer,
2015.

25

13. J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic
encryption over the integers. In Public-Key Cryptography–PKC 2014, pages 311–
328. Springer, 2014.

14. A. Costache and N. P. Smart. Which ring based somewhat homomorphic en-
cryption scheme is best? In Cryptographers Track at the RSA Conference, pages
325–340. Springer, 2016.

15. A. Costache, N. P. Smart, and S. Vivek. Faster homomorphic evaluation of discrete
fourier transforms. Cryptology ePrint Archive, Report 2016/1019, 2016. http:

//eprint.iacr.org/2016/1019.
16. A. Costache, N. P. Smart, S. Vivek, and A. Waller. Fixed point arithmetic in SHE

schemes. Cryptology ePrint Archive, Report 2016/250, 2016. http://eprint.

iacr.org/2016/250.
17. I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from

somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012,
pages 643–662. Springer, 2012.

18. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology–EUROCRYPT 2010, pages
24–43. Springer, 2010.

19. Y. Doröz, Y. Hu, and B. Sunar. Homomorphic AES evaluation using the modified
LTV scheme. Designs, Codes and Cryptography, 80(2):333–358, 2016.

20. N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Manual for using homomorphic encryption for bioinformatics. Proceedings of the
IEEE, 105(3):552–567, 2017.

21. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–640.
Springer, 2015.

22. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

23. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

24. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog
overhead. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 465–482. Springer, 2012.

25. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit.
In Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

26. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

27. A. Jäschke and F. Armknecht. Accelerating homomorphic computations on ratio-
nal numbers. In International Conference on Applied Cryptography and Network
Security, pages 405–423. Springer, 2016.

28. J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim, and Y. Song. Encrypt-
ing controller using fully homomorphic encryption for security of cyber-physical
systems. IFAC-PapersOnLine, 49(22):175–180, 2016.

29. M. Kim, Y. Song, and J. H. Cheon. Secure searching of biomarkers through hybrid
homomorphic encryption scheme. BMC medical genomics, 10(2):42, 2017.

30. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Privacy-preserving logistic
regression based on homomorphic encryption. preprint.

31. K. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted
genomic data. In International Conference on Cryptology and Information Security
in Latin America, pages 3–27. Springer, 2014.

26

32. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryp-
tion. In Topics in Cryptology–CT-RSA 2011, pages 319–339. Springer, 2011.

33. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages
1219–1234. ACM, 2012.

34. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology–EUROCRYPT 2010, pages 1–23,
2010.

35. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptography. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 35–54. Springer, 2013.

36. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, pages 113–124. ACM, 2011.

37. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

38. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public-Key Cryptography–PKC 2010, pages 420–
443. Springer, 2010.

39. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs,
codes and cryptography, 71(1):57–81, 2014.

40. B. P. Tabaei and W. H. Herman. A multivariate logistic regression equation to
screen for diabetes development and validation. Diabetes Care, 25(11):1999–2003,
2002.

41. S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang.
Healer: Homomorphic computation of exact logistic regression for secure rare dis-
ease variants analysis in GWAS. Bioinformatics, 32(2):211–218, 2016.

A LWE-based Construction

We start by adapting some notations from [5] to our context. Let n and q be posi-
tive integers. For a vector x ∈ ZNq , its bit decomposition and power of two are de-

fined by BD(x) = (u0, . . . ,udlog qe−1) ∈ {0, 1}Ndlog qe with x =
∑dlog qe−1
i=0 2iui,

and P2(x) = (x, . . . , 2dlog qe−1x). Then we can see that 〈BD(x),P2(y)〉 = 〈x,y〉.
We also recall the definition of tensor product u⊗v = (u1v1, u1v2, . . . , u1vm, . . . ,
unv1, . . . , unvm) on the vector space Rn × Rm, and its relation with the inner
product 〈u⊗ v,u′ ⊗ v′〉 = 〈u,u′〉 · 〈v,v′〉.

• KeyGen(1λ)
- Take an integer p and q0. Let q` = p` · q0 for ` = 1, . . . , L. Choose

the parameters N = N(λ, qL) and an error distribution χ = χ(λ, qL)
appropriately for LWE problem of parameter (N, qL, χ). Let τ = 2(N +
1)dlog qLe. Output the parameters params = (n, qL, χ, τ).

- Sample s← HWT (h) and set the secret key as sk ← (1, s) ∈ ZN+1
qL . For

1 ≤ i ≤ τ , sample A← Zτ×NqL , e← χτ and let b← −As+ e (mod qL).

Set the public key as pk ← (b, A) ∈ Zτ×(N+1)
qL .

27

- Let s′ ← P2(s ⊗ s). Sample A′ ← ZN
2dlog qLe×N

qL and e′ ← χN
2dlog qLe,

and let b′ ← −A′s′ + e′. Set the evaluation key as evk ← (b′, A′) ∈
ZN

2dlog qLe×(N+1)
qL .

• Enc(m). For an integer m ∈ Z, sample a vector r ← {0, 1}τ . Output c ←
(m,0) + pkT · r ∈ ZN+1

qL .

• Add(c1, c2). For c1, c2 ∈ ZN+1
q`

, output cadd ← c1 + c2 (mod q`).

• Mult(c1, c2). For c1, c2 ∈ ZN+1
q`

, let c′ ← BD(c1 ⊗ c2). Output cmult ←
evkT · c′ (mod q`).

• RS`→`′(c). For a ciphertext c ∈ ZN+1
q`

at level `, output the ciphertext c′ ←⌊
q`′
q`
c
⌉
∈ ZN+1

q`′
.

B Noise Estimations

We follow the heuristic approach in [25, 14]. Assume that a polynomial a(X) ∈
R = Z[X]/(ΦM (X)) is sampled from one of above distributions, so its nonzero
entries are independently and identically distributed. Since a(ζM) is the inner
product of coefficient vector of a and the fixed vector (1, ζM , . . . , ζ

N−1
M) of Eu-

clidean norm
√
N , the random variable a(ζM) has variance V = σ2N , where σ2 is

the variance of each coefficient of a. Hence a(ζM) has the variances VU = q2N/12,
VG = σ2N and VZ = ρN , when a is sampled from U(Rq), DG(σ2) and ZO(ρ),
respectively. In particular, a(ζM) has the variance VH = h when a(X) is chosen
from HWT (h). Moreover, we can assume that a(ζM) is distributed similarly to
a Gaussian random variable over complex plane since it is a sum of many inde-
pendent and identically distributed random variables. Every evaluations at root
of unity ζjM share the same variance. Hence, we will use 6σ as a high-probability
bound on the canonical embedding norm of a when each coefficient has a variance
σ2. For a multiplication of two independent random variables close to Gaussian
distributions with variances σ2

1 and σ2
2 , we will use a high-probability bound

16σ1σ2.

Proof of Lemma 1.

Proof. We choose v ← ZO(0.5)2 and e0, e1 ← DG(σ2), then set c ← v · pk +
(m+ e0, e1). The bound Bclean of encryption noise is computed by the following
inequality:

‖〈c, sk〉 −m (mod qL)‖can∞ = ‖v · e+ e0 + e1 · s‖can∞
≤ ‖v · e‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞
≤ 8
√

2 · σN + 6σ
√
N + 16σ

√
hN.

For a vector z ∈ Z[i]N/2, an encryption of m = Ecd(z;∆) is also a valid encryp-
tion of ∆ · σ−1 ◦ π−1(z) with an increased error bound B′ = Bclean + N/2. If
∆−1 ·B′ < 1/2, then this error polynomial is removed by the rounding operation
in decoding algorithm. ut

28

Proof of Lemma 2.

Proof. It is satisfied that 〈c, sk〉 = m + e (mod q`) for some polynomial e ∈ S
such that ‖e‖can∞ ≤ B. The output ciphertext c′ ←

⌊
q`′
q`
c
⌉

satisfies 〈c′, sk〉 =
q`′
q`

(m+e)+escale (mod q`′) for the rounding error vector τ = (τ0, τ1) = c′− q`′
q`
c

and the error polynomial escale = 〈τ , sk〉 = τ0 + τ1 · s.
We may assume that each coefficient of τ0 and τ1 in the rounding error vector

is computationally indistinguishable from the random variable in the interval
q`′
q`
Zq`/q`′ with variance ≈ 1/12. Hence, the magnitude of scale error polynomial

is bounded by ‖escale‖can∞ ≤ ‖τ0‖can∞ + ‖τ1 · s‖can∞ ≤ 6
√
N/12 + 16

√
hN/12, as

desired. ut

Proof of Lemma 3.

Proof. Let ci = (bi, ai) for i = 1, 2. Then 〈ci, sk〉 = mi + ei (mod q`) for some
polynomials ei ∈ S such that ‖ei‖can∞ ≤ Bi. Let (d0, d1, d2) = (b1b2, a1b2 +
a2b1, a1a2). This vector can be viewed as a level-` encryption of m1m2 with an
error m1e2+m2e1+e1e2 with respect to the secret vector (1, s, s2). It follows from
Lemma 2 that the ciphertext cmult ← (d0, d1) +

⌊
P−1 · (d2 · evk (mod Pq`))

⌉
contains an additional error e′′ = P−1 · d2e′ and a rounding error bounded by
Bscale. We may assume that d2 behaves as a uniform random variable on Rq` , so

P‖e′′‖can∞ is bounded by 16
√
Nq2`/12

√
Nσ2 = 8Nσq`/

√
3 = Bks · q`. Therefore,

cmult is an encryption of m1m2 with an error bounded by

‖m1e2 +m2e1 + e1e2 + e′′‖can∞ +Bscale ≤ ν1B2+ν2B1+B1B2+P−1·q`·Bks+Bscale,

as desired. ut

29

