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Abstract

Consensus, or state machine replication is a foundational building block of distributed sys-
tems and modern cryptography. Consensus in the classical, permissioned setting has been exten-
sively studied in the 30 years of distributed systems literature. Recent developments in Bitcoin
and other decentralized cryptocurrencies popularized a new form of consensus in a “permission-
less” setting, where anyone can join and leave dynamically, and there is no a-priori knowledge
of the consensus nodes. Despite this exciting breakthrough, today’s permissionless consensus
protocols, often referred to as “blockchains”, are known to have terrible performance, which has
resulted in heated, and at times acrimonious debates in the community.

First, we show that unfortunately a performance loss is inherent for any protocol that secures
against at least 1/3 corruptions in hashpower. Specifically, we formally define a new performance
measure called responsiveness, and show that any responsive permissionless consensus protocol
cannot tolerate 1/3 or more corruptions in hashpower.

Next, we show a tightly matching uppper bound. Specifically, we propose a new permission-
less consensus protocol called hybrid consensus, that is responsive and secures against up to 1/3
corruptions in hashpower. Hybrid consensus’s idea is to bootstrap fast permissionless consensus
by combining an inefficient blockchain protocol with a fast permissioned consensus protocol.
Hybrid consensus uses the blockchain not to agree on transactions, but to agree on rotating
committees which in turn execute permissioned consensus protocols to agree on transactions.
While the high-level idea is intuitive, formally instantiating and reasoning about the protocol
exposed a multitude of non-trivial technical subtleties and challenges.

1 Introduction

The distributed systems and cryptography literature traditionally has focused on protocols whose
participants are known a priori. Bitcoin’s rapid rise to fame represents an exciting breakthrough:
Bitcoin empirically demonstrated that by leveraging assumptions such as proofs-of-work, non-trivial
secure applications can be built on top of a fully decentralized network where nodes join and
leave freely and dynamically, and there is no pre-established trust between participants. In the
remainder of the paper, we will refer to the two network settings as the permissioned setting and
the permissionless setting respectively.

Informally speaking, Bitcoin’s core consensus protocol, often referred to as Nakamoto consen-
sus [46], realizes a “replicated state machine” abstraction, where nodes in a permissionless network
reach agreement about a set of transactions committed as well as their ordering. Since the protocol
relies on chaining of blocks of transactions, it is often referred to as the “blockchain”.

∗http://www.initc3.org
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Achieving consensus in the traditional permissioned model turns out to be a classical distributed
systems problem, and there is a long line of research that seeks to design and optimize Byzantine
consensus protocols [18, 23, 42]. The fact that we can obtain consensus in a permissionless model
(relying on proofs-of-work) was the novel contribution of Bitcoin. In a sense, Bitcoin popularized
a new model of distributed systems that was rarely considered in 30 years of classical distributed
systems literature.

Known permissionless consensus protocols such as Bitcoin’s Nakamoto consensus [46], however,
come at a cost. Since identities of nodes are not known a priori, it is imperative to defend against
a Sybil attack where an attacker makes up arbitrarily many identities to outvote honest nodes.
The Bitcoin protocol critically relies on proofs-of-work to roughly enforce the idea of “one vote per
hashpower”. Unfortunately, Bitcoin is known to have terrible performance. As Croman et al. [19]
point out, the Bitcoin network can sustain at most 7 tx/sec, at a transaction confirmation time
of 10+ min (c.f. a main-stream payment processor such as Visa handles an average rate of 2, 000
tx/sec, and a peak rate of 59, 000 tx/sec). Further, each confirmed transaction costs roughly $1
to $6 if we were to amortize the network’s total electricity consumption over all transactions being
confirmed — today, this cost is in some sense being subsidized by the speculators of Bitcoin.

This naturally raises an important question.

Is it possible to design an efficient consensus protocol in the permissionless model?

We formally explore this important question in this paper.

1.1 Our Results and Contributions

Understanding the limits: performance vs. security. To understand this formally, let us
first try to understand why the Nakamoto consensus protocol [46] (adopted by Bitcoin) is inefficient.
As Pass et al. [47] point out, the Nakamoto consensus protocol crucially relies on a-priori knowledge
of an upper bound of the network’s delay (henceforth denoted ∆) to parametrize its puzzle difficulty,
and the protocol’s transaction confirmation time is roughly O(λ∆) to achieve exp(−O(λ)) security
failure — one way to think about this is that the block interval needs to be O(∆) to achieve security
against any constant fraction of corruption (in hashpower), and one must wait for O(λ) blocks to
obtain exp(−O(λ)) security failure. Nakamoto is clearly inefficient since the a-priori parameter ∆
needs to be set conservatively upfront to ensure the security of the protocol; and the transaction
confirmation time suffers from looseness in the estimate ∆. While there are other possible metrics
of efficiency, for now, we will focus on this one.

Therefore, one natural question to ask is whether we can have a protocol whose transaction
confirmation time depends on only the network’s actual performance, but not any a-priori known
upper bound. We formally define a performance metric called responsiveness1 that captures this
intuition: a protocol is said to be responsive, if its transaction confirmation time depends only on
the network’s actual delay δ, but not on any a-prior known upper-bound ∆ (or simply no a-priori
upper bound is known). In particular, in practice the actual δ is often (much) smaller than the
upper bound ∆. In this case, responsiveness will be a useful measure of performance.

1Note that responsiveness is not to be mistaken with liveness which was defined by Garay et al. [28] and Pass
et al. [47] in the permissionless setting. Liveness requires that transactions be confirmed within a bounded amount
of time indicated by a liveness parameter T ; whereas responsiveness in turn requires that T depend only on the
network’s actual delay δ but not the (possibly loose) a-priori upper bound ∆.
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Theorem 1. (informal.) No secure and responsive consensus protocol can tolerate 1/3 or more
corruptions, even when the adversary is constrained to static corruptions — and this holds in both
the classical permissioned setting (even when PKI is assumed), as well as in the permissionless
setting with proofs-of-work (where corruptions are stated in terms of hashpower).

The bad news is that we show that no responsive consensus protocol can tolerate 1/3 or more
corruptions, even when the adversary is constrained and can only statically corrupt parties. This
lower bound result holds both in the classical permissioned setting (even when PKI is assumed), as
well as in the permissionless setting with proofs-of-work — in this setting corruptions are counted
in terms of hashpower and not the number of nodes. To put this in perspective, observe that
Nakamoto is not responsive, but can tolerate up to 1/2 corruptions in hashpower [47].

To intuitively understand this lower bound, recall that Dwork et al. [23] prove that in the
partially synchronous model with an unknown network delay, no classical permissioned consensus
protocol (even with PKI) can tolerate 1/3 or more Byzantine corruptions. It is not hard to see that
their proof still works for partial synchrony with a known upper bound ∆ of the network’s delay,
but requiring the protocol to be responsive (in the classical permissioned setting even with PKI).
It turns out that with appropriate modifications, Dwork et al.’s 1/3 lower bound [23] extends to
the permissionless setting with proofs-of-work as Sompolinsky points out [1]. We further generalize
Sompolinsky’s observation to the permissionless setting with proofs-of-work where the delay upper
bound ∆ is known to the protocol, but the protocol is required to be responsive. In other words,
our lower bound can be viewed as a further generalization of Dwork et al.’s lower bound and
Sompolinsky’s observation. The formal proof of this lower bound is presented in Section 9.

A responsive protocol with (almost) optimal resilience. The next obvious question is
the following: suppose we are willing to relax the model and assume only < 1/3 corruptions in
hashpower, can we have a responsive consensus protocol in the permissionless setting? We answer
this question in the positive.

Theorem 2. (informal.) There exists a responsive permissionless consensus protocol that is secure
against 1/3− ε corruptions in hashpower against a mildly adaptive adversary.

To this end, we propose hybrid consensus. Hybrid consensus provides “efficiency bootstrapping”
for permissionless consensus, much as the well-known hybrid encryption and OT-extension are
“efficiency bootstrapping” constructions. Since classical permissioned consensus [12, 16, 18, 23, 37,
38,42,45] has been studied and optimized for decades and have been shown to achieve responsiveness
against 1/3 corruptions, our idea is to use a slow blockchain protocol (called snailchain) such as
Nakamoto consensus [28, 46] to bootstrap fast permissioned byzantine consensus, the end result
being a scalable consensus protocol in the permissionless model. For this reason, we call our
protocol “hybrid consensus”.

Hybrid consensus is the first known responsive permissionless consensus protocol, even heuris-
tically. We formally prove that hybrid consensus achieves security against a malicious (i.e., Byzan-
tine) adversary with the following capabilities: 1) wields roughly or 1

3 fraction of the total compu-
tation power; 2) can corrupt nodes adaptively but corruptions take a while to be effective; and 3)
and can reorder messages during transmission, and delay messages up to a bound of δ time steps.

Advantages of hybrid consensus. Besides the aforementioned theoretical significance of hybrid
consensus, we also note some of its practical benefits.
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Scheme TX conf. time Processing/tx % honest

Nakamoto [46], BitcoinNG [25] Θ(λ∆) O(n) ∼ 1
2

Fruitchain [48] (concurrent) Θ(λ∆) O(n) ∼ 1
2

Hybrid consensus Opt: O(δ)
O(λ) ∼ 3

4over Nakamoto [46] Worst: O(λδ)

Hybrid consensus Opt: O(δ)
O(λ) ∼ 2

3over Fruitchain [48] Worst: O(λδ)

Table 1: Summary of our results. n denotes the total number of nodes (assuming all nodes
have equal hashpower); ∆ denotes a pre-determined upper-bound on the network’s transmission
delay; δ denotes the actual delay of the network; λ is the security parameter for attaining 2−λ

security failure.

• Latency. Recall that Nakamoto has a block interval of 10 minutes. To attain 1− 2−λ security
(e.g., important for high-valued transactions), one must wait for O(λ) blocks thus incurring an
even longer transaction confirmation time. As Pass et al. [47] show, for a realistic network delay
bound ∆ = 10 seconds as suggested by measurement studies [21], a 10-minute block interval is
necessary to resist a 49.57% attack, and roughly a block interval of 30 seconds is necessary to
resist a 1/3 attack.

By contrast, hybrid consensus achieves a transaction confirmation time of O(δ) in the optimistic
case, and O(λδ) in the worst-case (i.e., under adversarial attacks) where δ is the network’s
actual delay. Note that unlike Nakamoto, our optimistic-case performance is independent of the
security parameter λ.

Pragmatically speaking, the following factor also potentially makes ∆ much bigger than δ which
speaks in favor of hybrid consensus. In practice, block propagation in an open-enrollment,
permissionless setting is achieved through an overlay network; and thus ∆ must be parametrized
to be an upper bound of the overlay network’s delay. Therefore, ∆ must not only account for
multiple hops of direct IP links, but also account for potentially adversarial attacks targeted
at the overlay routing protocol. By contrast, if hybrid consensus is deployed, once committee
members are discovered, they can possibly communicate with each other as well as other nodes
over direct IP links — in this case, the optimistic transaction confirmation time can depend on
the δ which is the latency of these direct IP links.

• Transaction processing. Consider smart contract applications whose most popular embod-
iment is Ethereum [54]. Today’s blockchain protocols require all miners to execute the smart
contract program for each transaction, thus incurring a linear in n processing cost — this makes
existing blockchain protocols unscalable to large deployments. Hybrid consensus reduces the
transaction processing cost to O(λ), since regardless of how large n is, only a small committee
of size O(λ) need to execute the smart contracts and process the transactions.

• Throughput and lower cost per confirmed transaction. Besides being responsive, known
permissioned consensus protocols, which have been studied and optimized for decades, have also
been empirically demonstrated to achieve relatively high throughout. For example, Croman et
al. recently show that with about 100 PBFT [18] nodes deployed across multiple data centers
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on Amazon AWS, one can possibly achieve a transaction throughput of 10, 000+ tx/sec, and
transaction confirmation time on the order of seconds.

We therefore expect that hybrid consensus should improve the throughput of permissionless
consensus in comparison with known protocols such as Nakamoto. Although hybrid consensus
does not eliminate the proof-of-work — in fact, we prove that absent extra setup assumptions,
any secure permissionless consensus protocol must perform proofs-of-work infinitely often (see
Section 9) — the electricity consumed can now be amortized over a larger set of transactions
effectively reducing the cost per confirmed transaction.

Security tradeoff. Hybrid consensus tolerates only 1/3 corruptions (in hashpower) as opposed to
Nakamoto’s 1/2 in exchange for responsiveness. We have argued that such a tradeoff is inevitable.

Besides the tradeoff in the protocol’s resilience, hybrid consensus also makes a reasonable relax-
ation in the corruption model. While Nakamoto resists a fully adaptive adversary, obviously any
protocol that down-selects to a size-O(λ) committee cannot tolerate fully adaptive attacks since
the adversary can simply observe who get elected in the committee and then target the committee
members.

Instead, hybrid consensus defends against mildly adaptive corruptions: the adversary is allowed
to observe the protocol’s interactions and then decide who to corrupt, but corruptions take a while
to be effective. This appears a reasonable assumption in practice since it takes a while to infect a
machine with a malware, e.g., through zero-day exploits or social engineering attacks. We stress
that since our 1/3 lower bound holds even for static adversaries, hybrid consensus is a tightly
matching upper bound in this sense. We leave it as an open research question whether there exists
a responsive protocol in the permissionless setting that secures against fully adaptive adversaries.

Comparison with closely related works. Although the idea of combining permissionless con-
sensus and permissioned consensus has been discussed in the community (e.g., the recent work by
Decker et al. [20] and the concurrent and independent work ByzCoin [35]), to the best of our knowl-
edge, no prior work has provided a formal treatment. As our work shows, combining permissioned
and permissionless protocols is non-trivial both in terms of construction and in terms of proving
security. Without a formal analysis, it is not clear what earlier/concurrent approaches achieve. For
example, in the concurrent work Byzcoin [35], participants may not agree on the PBFT committee
with constant probability, thus breaking consensus. In both Decker et al. [20] and Byzcoin [35],
consensus can be broken with probability 1 in the worst case if the adversary controls more than
1
4 of the computation power, since Nakamoto’s chain quality suffers from a loss resulting from a
selfish mining attack (although Byzcoin actually claims resilience to a 1

3 attack!). Further, Decker
et al. [20] does not achieve responsiveness. We defer a more detailed comparison to Section 1.4.

Therefore, our work is distinct in the following senses: 1) we provide the first provably secure
protocol that achieves responsiveness (i.e., transaction confirmation time depends on actual network
performance, not an a-priori upper bound on the network’s delay) in the permissionless model with
proofs-of-work; 2) we are the first to formalize the precise model and security guarantees.

1.2 Intuition and Overview

To aid understanding, we give an intuitive, informal summary of our technical roadmap. We build
on the formal snailchain abstractions proposed by Garay et al. [28] and Pass et al. [47]. There

5



are two possible realizations of such a snailchain abstraction, the original Nakamoto consenus [28,
46, 47], and the more recent Fruitchain [48] protocol. We can use either snailchain instantiation
for hybrid consensus, however there is an important difference (which is overlooked by earlier
works such as Byzcoin [35] leading to incorrect claims about their protocol’s resilience), namely,
we can only achieve security against 1/4 − ε corruptions (in hashpower) if we adopted Nakamoto
as the underlying snailchain; however, with Fruitchain as the underlying snailchain, we can achieve
security against 1/3 − ε corruptions. For the remainder of the paper, we will first use Nakamoto
as the underlying snailchain since most readers are more familiar with Nakamoto — and later we
will show how to use Fruitchain as a drop-in replacement of Nakamoto in hybrid consensus which
immediately allows us to resist a 1/3−ε attack. This approach, in fact, demonstrates the compelling
advantage of modular protocol design and composition.

Imprecisely speaking, a snailchain satisfies the following properties. Note that a formal descrip-
tion of these properties are presented in Section 4.1.

• Consistency. All honest nodes’ chains agree with each other except for the trailing λ blocks
where λ is the security parameter. Further, a node’s chain agrees with its future self.

• Chain quality. Among any consecutive λ blocks in an honest node’s chain, a sufficient fraction
of the blocks are mined by honest miners.

• Chain growth. Honest nodes’ chains grow at a steady rate, neither too fast nor too slow.

Warmup: electing a static committee. Fundamentally, a blockchain such as Nakamoto con-
sensus (henceforth denoted snailchain) relies on proofs-of-work puzzles such that nodes can establish
Sybil-resilient identities. Our first idea is to leverage snailchain to elect a static committee. To do
this, honest nodes run the blockchain for csize + λ blocks where csize = Θ(λ) denotes the targeted
committee size, and λ denotes a security parameter. At this moment, an honest node would remove
the trailing, unstablized λ blocks from its local chain, and call the miners of the first csize blocks
the BFT committee2.

Roughly speaking, such a protocol can be proven secure under a static corruption model due
to the following.

• Due to the consistency property of snailchain, all honest nodes agree on the same BFT committee.
We stress that it is important to remove the trailing λ unstable blocks since otherwise honest
nodes will have differing opinions on who should be the BFT committee (e.g., due to possible
forks in the snailchain) — in this case we cannot guarantee the protocol secure3.

• Due to the chain quality property of snailchain, with appropriate overall parameters, we can
ensure that more than 2/3 of the committee members are honest which is sufficient to ensure
the security of the permissioned BFT protocol.

• Due to the chain growth property of snailchain, it will not take too long for the BFT committee
to be formed.

2If multiple blocks are mined by the same miner, that miner can simply act as multiple virtual nodes in the BFT
protocol — for this reason, the protocol works for n < λ as well (and so does our final scheme hybrid consensus).

3Note that in comparison, the concurrent and independent work Byzcoin [35] does not explicitly make this obser-
vation, and therefore their protocol and security guarantees appear under-specified.
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Finally, committee members sign any transaction committed as well as its sequence number.
For any node that was not elected as a committee member, it can simply count d1

3 |csize|e number
of signatures from committee members for deciding its own output log. Since more than 2/3 of the
committee members are honest, there is at least one honest committee member if at least d1

3 |csize|e
vouch for the same transaction and its sequence number (i.e., its relative position within the output
log). It is not hard to see that responsiveness holds for this simple protocol assuming that the BFT
protocol employed is responsive.

An interesting paradox. Despite the apparent simplicity of this proposal, this scheme is
nonetheless thought provoking. One intriguing apparent paradox is the following: since we do
not rely on the snailchain to agree on transactions any more, why not stop running the snailchain
after the committee is elected? Although this proposal may seem tempting initially, one quickly
realizes that it is not secure. In particular, for any protocol that stops performing proofs-of-work
after bounded polynomial amount of time, an adversary can always create a simulated execution
that is identically distributed as the real execution, such that a node that spawns late is unable to
distinguish the real execution from the simulated one. We formalize this lower bound in Section 9,
and show that any secure permissionless consensus protocol must call proofs-of-work infinitely often
(even for static security and the synchronous model).

Mildly agile adversaries and rotating committees. The aforementioned scheme with a static
committee fails to be secure against an adaptive adversary, since the adversary can simply corrupt
the committee once it is elected. Unfortunately, any scheme that down-selects from n nodes to a
λ-sized committee must be vulnerable to such adaptive attacks.

In reality, however, corruption of a node is typically not instant, since it takes a while to infect
an otherwise clean host. We therefore define a slightly relaxed and nonetheless realistic corruption
model henceforth referred to as τ -agile corruptions. In this model, roughly speaking, an adversary
can issue “target corrupt” instructions to nodes; however, a node that receives “target corrupt”
does not become corrupt until τ time steps later.

We show a positive result under this τ -agile corruption model. Our key idea is to rely on rotating
committees. When an honest node’s chain reaches R · csize + λ in length, the R-th committee is
elected by first removing the trailing λ number of blocks, and then from this pruned chain, we elect
the last csize blocks’ miners as the committee. The idea is that if an adversary targets a committee
member once he mines a block (that will allow him to be included in a committee), it will be too
late. With an appropriate τ , by the time the node actually becomes corrupt, the committee’s term
will have been ended, and the next committee will have already taken over!

Henceforth for convenience, we will say that each committee serves for a day, and outputs a
daily log. Our hybrid consensus protocol essentially outputs the concatenation of these daily logs.

Defending against retroactive attacks. Given long enough time, an adversary can eventually
corrupt sufficiently many BFT committee members, and at this point, the adversary can forge
BFT committee members’ signatures over any message of its choice. Therefore, signatures from
BFT committee members are of no worth after a long enough time. Under the possibility of such
retroactive attacks, nodes that spawn late cannot rely on counting committee members’ signatures
for deciding logs that are too ancient.
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To address this challenge, we rely on an on-chain stamping technique. When honest BFT
committee members terminate their BFT instances, they would sign a hash of the daily log and
propose the tuple as a transaction to the underlying snailchain. We prove that under appropriate
parameter choices, sufficiently many honest BFT committee members’ daily log hashes get stamped
on snailchain in a timely manner (in particular before the nodes actually become corrupt). In this
way, nodes who spawn late can recover the correct hash of past daily logs from the underlying
snailchain (instead of counting signatures from ancient committee members who may by then be
corrupt). We stress that the on-chain stamping is only for late-joining nodes to recover historical
daily logs. Transaction confirmation online requires only counting signatures from the present
committee, and need not wait for the on-chain stamping to take place.

Chain quality and tolerated corruption. It would be ideal if mining were a random lottery,
where for each block, nature draws a winner at random. If this were indeed the case, we could
achieve perfect chain quality, i.e., roughly 1 − α chain quality if α fraction of nodes are corrupt.
Unfortunately, several previous works [26, 28, 47] have shown that Nakamoto consensus cannot be
thought of as a perfect lottery due to a selfish mining attack. When honest nodes mine a block, they
announce the block immediately, but corrupt nodes need not follow this rule. In a selfish-mining
attack, roughly speaking, when corrupt nodes mine a block B∗ off the currently longest chain, they
withhold the block B∗ from the public and continue to mine on its own private fork. If at some point
honest nodes happen to mine a new block B off chain, at this moment the adversary immediately
releases the block B∗, and combined with a network rushing attack, the block B∗ will get to other
nodes more quickly than B. In this manner, the adversary has successfully erased the work of
honest nodes — and in fact every time corrupt nodes mine a block, they have an opportunity to
perform such a block withholding attack and erase honest nodes’ work. Consequently, Nakamoto
consensus would require roughly 3/4 overall honest to achieve 2/3-chain quality (and 2/3-chain
quality is needed to ensure that 2/3 of the BFT committee are honest).

The loss of resilience arising from chain quality loss can be mostly avoided, if instead of
Nakamoto consensus, we adopt Fruitchain [48] as the underlying blockchain protocol. As shown by
Pass and Shi [48], Fruitchain provably defends against such a selfish-mining attack, and therefore
attains almost perfect chain quality, i.e., it achieves roughly (1−α)-chain quality with any α < 1/2
corruption under typical parametrizations. Therefore, hybrid consensus over Fruitchain requires
only 2/3 overall honest hashpower (approximately) to achieve security.

A note on responsiveness. It may seem counter-intuitive that since our scheme is responsive,
why do we still need a-priori knowledge of ∆, an upper bound of the network’s delay? In particular,
can we simply choose the parameter ∆ to be infinity? Upon closer examination, our agility param-
eter τ and the protocol’s warmup time Twarmup will both depend on ∆. If we choose a bigger ∆,
the underlying snailchain would adopt a more difficult puzzle and hence tolerate a higher fraction
of corrupt nodes; but on the other hand, we are trading off agility and the protocol’s warmup time.

The standard notion of partial synchrony was defined by Dwork et al. [23] where the protocol
does not know the network’s delay. Dwork et al. [23] pointed out that if the protocol knew the
network’s delay, it could simply wait for the delay parameter and treat the delay parameter as a
synchronous round. We stress that our protocol does not wait for the network delay parameter as a
synchronous round (which inherently would not meet our responsive goal). We stress that Dwork et
al. [23]’s definition of partial synchrony does not rule out the meaningfulness of our model where the
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protocol knows an a-priori upper bound on the network’s delay but aims to achieve responsiveness.

1.3 Numerous Technical Challenges

While the aforementioned idea seems intuitive at first sight, realizing it formally reveals numerous
technical subtleties/challenges which we describe below.

Committee switchover: technical subtleties and contributions. Roughly speaking, when
honest nodes’ chain lengths reach R · csize + λ, the (R − 1)-th BFT committee should end and
the R-th BFT committee should take over. How to perform committee switchover turns out to
be non-trivial. The most naive approach would be to have non-overlapping committees, where the
new committee waits for the previous daily log hash to be stamped on snailchain before starting its
BFT instance. In this naive approach, there is a liveness gap at the end of each day, during which
the old committee is no longer committing transactions but the new committee is blocked waiting
for the stamping to complete. Note that this is already better than just a snailchain, since we only
need to wait once per day, and besides this short window, we achieve responsiveness. However, we
would like a solution that always guarantees responsiveness. To this end we allow transient overlap
of two (or more) committees.

In hybrid consensus, when honest nodes chain length reaches R·csize+λ, the old committee (i.e.,
(R−1)-th committee) initiate a termination procedure; and a new committee (i.e., R-th committee)
initiate a new BFT instance and immediately start committing transactions. As termination is not
an instant operation, the previous committee members may continue to output transactions until
its termination procedure completes. For this reason, there may be a short overlapping window
when two (or more) BFT instances run concurrently. During this short window, although the latter
BFT instance may be committing transactions, the committed transactions are withheld and not
written into the output LOG, until the previous day’s final log is ready and written to LOG. This
ensures that the latter daily log always follows the previous daily log in the output LOG.

Due to such concurrently executing BFT instances, we need that the underlying BFT protocol
be concurrently composable. Unfortunately, Lindell et al. [40] demonstrate the impossibility of
concurrently composable Byzantine agreement! We circumvent this impossibility by observing that
due to the way hybrid consensus bootstraps from the snailchain, nodes have common knowledge
of committee members’ freshly chosen public keys — and in such a setting, concurrent security is
indeed possible.

Adversarial selective opening of committees. One technical challenge we encountered is
that in the protocol, honest nodes generate public keys and associate them with blocks to be
mined. Recall that the committee is formed by taking the miners of consecutive csize blocks. It is
important to note that the choice of the committee is subject to influence by the adversary, since
the adversary can launch block withholding or selfish-mining attacks to erase an honest node’s
block if it does not like the specific public key. We refer to such an attack as “selective opening of
committees”.

Unfortunately as we explain later, the most natural property-based security definition is insuffi-
cient for proving security under such selective opening attacks. Therefore, we define a strengthened
notion of security which requires a blackbox reduction that converts any adversary attacking the
BFT’s consistency or liveness properties to an adversary that breaks the security of the underlying
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signature scheme. Informally, the security notion says that there is a p.p.t. reduction B such that
for any p.p.t. adversary A, for any set of public keys, if A can break the BFT’s consistency or
liveness properties for these public keys, then B which makes blackbox calls to A can forge a signa-
ture on behalf of an honest node which has one of these public keys (later in the formal definition,
this adversary A is actually the environment Z). We formally show that this strengthened security
notion is sufficient for handling the selective opening attack.

Although we need a strengthened security notion for the underlying BFT protocol, we note that
well-known existing constructions such as PBFT [18] would naturally satisfy this stronger notion
of security.

Formal framework for composing consensus protocols. Finally, our work demonstrates a
framework for composing consensus protocols. Due to growing interests in cryptocurrencies and
their applications, there is a clear and increasing appetite from the community for mixing and
composing multiple consensus protocols to enable new applications — therefore our approach can
be of independent interest.

To achieve this, we rely on a Universal Composition-like formal framework that enables compo-
sition of cryptographic protocols. We use the UC framework [13,14,17] in a way such that we define
formal properties of protocols rather than relying on ideal behavioral specifications. A protocol’s
security requirements are defined specifically in terms of properties over honest nodes’ outputs to
the environment Z. All of these security properties will be preserved when hybrid consensus is
sequentially or concurrently composed with any other protocol. Additionally, we adopt a modular
composition approach when presenting our hybrid consensus protocol. Precisely formalizing the
security properties of subprotocols and building blocks turns out to be challenging, and exposes
numerous subtleties which we shall discuss in the technical parts of the paper.

1.4 Related Work

Scaling decentralized consensus. The scalability of Bitcoin and decentralized, permissionless
cryptocurrencies is a highly visible issue, and has resulted in heated, and at times acrimonious de-
bates in the community [19,53]. The cryptocurrency community have proposed various incremental
patches to alleviate the scalability pressure in the near term, including adjusting the block size and
others [5, 24,29,30,55].

Eyal et al. propose BitcoinNG [25], where a slow snailchain protocol is used to elect a single
leader every epoch, and the leader is in charge of incorporating and linearizing transactions during
its appointment. In essence, BitcoinNG can be viewed as pipelining block transmission by breaking
it up and spreading block transmission over time — effectively reducing upper-bound on the worst-
case delay ∆ in Nakamoto consensus. BitcoinNG still requires nodes to wait for Θ(λ) blocks in
the underlying snailchain (referred to as key blocks in BitcoinNG) to stabilize for transactions to
be confirmed where λ is the security parameter. In comparison, hybrid consensus is responsive,
and the transaction confirmation time in the optimistic case is only O(δ) where δ is the network’s
actual delay, not the a priori known upper bound ∆. BitcoinNG did not give a formal treatment
of their protocol, but it is conceivable that their protocol can be proven to realize a permissionless
consensus abstraction.

Side-chain [6] is another notable effort at addressing Bitcoin’s scalability painpoint. Side-chain’s
idea is to support consensus protocols off the main Bitcoin blockchain, and the currency in the side
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chain is pegged to Bitcoin. The side-chain protocol lacks formal guarantees, and the protocol
description and implementation remain somewhat incomplete.

Various other approaches [8, 36, 49–52] have been proposed recently to attain consensus in
different variants of “decentralized” settings with varying trust assumptions.

Closely related works. Although recent or concurrent works have attempted at a superficially
similar idea of combining permissionless and permissioned consensus [20,35,41], none of these works
have fully formulated and precisely enunciated their security guarantees. Furthermore, existing pro-
tocols either do not achieve responsiveness [20,35], or assume very different setup assumptions [41].

In recent work, Decker et al. propose PeerCensus [20], where they combine a blockchain and
classical BFT to strengthen the probabilistic consistency guarantee of snailchain. Although their
protocol bears a superficial resemblance to hybrid consensus, they do not achieve responsiveness
because their protocol requires solving proof-of-work puzzles to create the next block, and the
puzzle’s difficulty needs to be parametrized knowing an upper bound of the network’s delay to
attain a reasonable chain quality which appears necessary for their permissioned BFT protocol
to be secure. Decker et al. also did not provide formal security analysis — since their protocol
bootstraps from snailchain, it would tolerate at most 1/4 corruption under a rushing attack.

The concurrent and independent works ByzCoin [35] and SCP [41] also bear superficial resem-
blance to hybrid consensus, but again our approach is fundamentally different. SCP assumes a
fundamentally different trust model — SCP does not rely on proof-of-work puzzles, and in light of
our lower bound in Section 9, they must assume a fundamentally different trust model. Upon more
careful examination, the SCP paper implicitly assumes that the network can somehow agree on an
initial directory committee. The SCP paper suggests that they can achieve this by having early
nodes announce their identities, but since this would require consensus to start with, it appears
that this directory committee should be regarded as an extra trusted setup assumption. Therefore,
SCP is not in the permissionless model. The SCP paper also did not fully formalize their approach
and precisely what formal guarantees they attain is not clear.

The independent work of Byzcoin [35] does not achieve responsiveness. ByzCoin’s idea is to
improve BitcoinNG by implementing BitcoinNG’s leader with a PBFT committee. Their protocol
appears underspecified, but it appears that they elect the committee using the miners of the last k
blocks. Note that such a committee is not necessarily globally consistent, and the ByzCoin protocol
does not fully specify how they handle possibly inconsistent views of the committee. Similarly,
ByzCoin also did not formalize their approach. Even if their approach (or some modification
thereof) could somehow be proven secure through likely highly non-trivial ways, the ByzCoin
protocol does not achieve responsiveness just like BitcoinNG, since nodes still need to wait for Θ(λ)
number of key blocks to stabilize for the transaction to be confirmed with all but 2−λ probability,
and the block interval needs to be parametrized as c∆.

In conclusion, hybrid consensus is the first to show how to combine permissioned and permis-
sionless consensus in a formally correct manner, as well as the first to achieve responsiveness in the
permissionless model.

Permissioned consensus. Consensus protocols in the permissioned model have been extensively
investigated by the community in the past 30 years [11,12,18,23,27,33,37–39]. These works typically
consider three different models: 1) the synchronous model [22] where protocols proceed in rounds,
and messages delivered in one round are guaranteed to arrive at the recipient at the beginning
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of the next round; 2) the partial synchrony model [23] where the network has a bounded delay
parameter but the protocol does not know this delay; and 3) the asynchronous model [11,12] where
the network’s delay may grow unbounded.

Our network model is akin to the standard notion of partial synchrony [23] but not the same.
Although we allow the protocol to know an a-priori upper bound on the network’s delay, we aim
to achieve responsiveness. We stress that any protocol that waits for the network delay and treats
the delay as a synchronous round inherently cannot be responsive. If the protocol did wait for
the network delay as a synchronous round, this would indeed translate to the synchronous model,
however, our responsiveness requirement makes the design of protocols non-trivial in our network
model.

Earlier works on permissioned consensus have also considered group reconfiguration. For exam-
ple, Vertical Paxos [38] and BFT-SMART [9] allow nodes to be reconfigured in a dynamic fashion.
These works consider group reconfiguration for a related but somewhat different purpose. It would
be interesting to investigate whether these techniques can be adapted to our setting to perform
the switchover of committee members. We point out, however, that earlier group reconfiguration
techniques do not prove security under the selective opening attack (in fact, most of these works do
not adopt a cryptographically sound framework of reasoning). If we are to adapt these techniques,
a new, cryptographically sound treatment is necessary.

Distributed systems and cryptography. Consensus and distributed systems interact closely
with cryptography such as multi-party computation (MPC). On one hand, multi-party computation
(MPC) essentially relies on broadcast or distributed consensus primitives to achieve consistency and
potentially livenss, often referred to as guaranteed output in the MPC context. On the other hand,
distributed consensus protocols often make use of cryptography to ensure security. For example,
the authenticated Byzantine model [22] makes use of digital signatures, and cryptographers refer to
this setup assumption as the public-key infrastructure [13, 14,17].

On the other hand, the non-authenticated Byzantine model [39] in distributed systems is actu-
ally referred to as the authenticated channels model by cryptographers [13,14,17]. When protocols
employ computationally secure cryptographic primitives, implicitly we assume that the network’s
delay must be polynomially bounded in the security parameter (but can be an unbounded polyno-
mial in the asynchrony case), since we cannot guarantee security for protocols that run exponentially
long. When distributed consensus protocols make use of computationally secure primitives, a best
practice is to rely on computational reductions to prove the security of the protocols — it has
become well-understood that modeling cryptography as the most natural blackbox without careful
scrutiny can be error-prone and flawed [2–4,7, 10,15,31,32,43,44].

Our paper demonstrates such an approach where we adopt the protocol composition frame-
works [13, 14, 17] developed by the cryptographers to reason about distributed systems protocols
— we show that doing so is necessary in particular through the handling of the selective opening
attack. Such issues can easily be overlooked if we did not adopt a formal, cryptographically sound
framework of reasoning.

2 Technical Roadmap

Before presenting our formalism, we first give an informal technical roadmap to aid understanding.
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2.1 Execution Model

We consider a model where nodes are Interactive Turing Machines (ITM). The execution of the
ITM system proceeds in atomic units called time steps. In each time step, each node receives
messages, performs a polynomial amount of computation, and then sends messages to other nodes.

Proofs-of-work. We assume that our ITM system is augmented with a proof-of-work. There is
a random oracle denoted by a pair (H,H.ver). Without loss of generality, we assume that each node
can query H only once in each time step, but can query H.ver an unbounded polynomial number of
times. In practice, if a node has more than unit computation power, it can simply be considered
as a set of multiple nodes.

Network assumptions. We assume a partially synchronous model, where any message sent by
an honest node is guaranteed to arrive at all honest nodes within δ time steps. The adversary is
allowed to reorder messages subject to the above constraints.

Our protocol needs to know a possibly loose upper bound of δ to parametrize the scheme (in
particular, to parametrize the puzzle difficulty of the underlying snailchain). We henceforth use
the notation ∆ to denote this pre-determined upper bound. Our protocol achieves responsiveness:
even though we use the a-priori upper bound ∆ as an input parameter, our protocol achieves
transaction confirmation time that depends on the network’s actual delay δ, not the possibly loose
upper bound ∆. This requirement makes our setting fundamentally different than the synchronous
model — since if the protocol simply takes ∆ time steps to be a synchronous round, the protocol
would not be responsive.

Open enrollment and mildly agile corruption. Although we allow the adversary to adap-
tively decide which nodes to corrupt, corruption does not take place instantly. In our model, when
the adversary issues a “target corrupt” instruction to a node, it takes τ time for the node to actually
become corrupt. Once a node actually becomes corrupt, the adversary can kill the node. Finally,
new nodes can spawn at any time.

2.2 Definition: Permissionless Consensus

We would like to realize a state machine replication abstraction in the permissionless model —
henceforth we refer to this abstraction as permissionless consensus. In a permissionless consensus
protocol, each node outputs a LOG in every time step — this LOG represents the set of committed
transactions. Two important security requirements, namely, consistency and liveness must be
guaranteed with overwhelming probability.

• Consistency: Consistency includes the following:

– Common prefix. Suppose that an honest node i outputs LOG to Z at time t, and an honest
node j (same or different) outputs LOG′ to Z at time t′, it holds that either LOG ≺ LOG′ or
LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention we assume that ∅ ≺ x
and x ≺ x for any x.

– Self-consistency. Suppose that a node i is honest at time t and t′ ≥ t, and outputs LOG and
LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.
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• Liveness: Suppose that transactions TXs is input to an honest node at time t ≥ Twarmup. Then, if
any node that is honest at time t′ ≥ t+Tconfirm outputs LOG at time t′, it holds that TXs ⊆ LOG.

Intuitively, liveness says that transactions get included in honest nodes’ LOGs within Tconfirm

time. There are two liveness parameters Tconfirm and Twarmup. Twarmup is the protocol’s warmup
time; and Tconfirm is the maximum wait time for a transaction (proposed after Twarmup) to be
confirmed.

2.3 Building Blocks

We make use of two main building blocks, a permissioned BFT protocol with a strengthened notion
of security, and a slow blockchain denoted snailchain. We now informally define these abstractions.

Underlying snailchain. We assume an underlying snailchain that satisfy consistency, chain quality,
and chain growth. An intuitive description of these properties have been presented in Section 1.2.
These properties will be formalized in Section 4.1.

Permissioned BFT. Permissioned BFT protocols have been extensively studied in the dis-
tributed systems literature. Typically, known permissioned BFT [18, 23, 42] satisfy exactly the
same consistency and liveness guarantees as defined earlier — but here for the permissioned set-
ting.

There is, however, an even more interesting technical subtlety in formalizing the permissioned
BFT abstraction. A property-based security definition turns out to be insufficient due to a selective
opening attack. In particular, the adversary is allowed to first look at nodes’ public keys, and then
adaptively influence the way the committee is chosen. In Section 4.2, we argue that there exists
a (somewhat contrived) permissioned BFT protocol that is provably secure under property-based
definitions, but would be completely broken if subject to adversarial selective opening.

As a result, we define a strengthened security notion for our underlying permissioned BFT
building block. Not only do we require that the aforementioned consistency and liveness properties
be satisfied with overwhelming probability, we need the following stronger statement:

There exists a p.p.t. reduction B such that given any p.p.t. adversary that can break the BFT’s
security properties over any set of public keys, the reduction B which makes blackbox calls to
this adversary can forge a signature on behalf of an honest party.

We defer the discussion of the formal definitions and technical details to Section 4.2. It is not
hard to see that the augmented PBFT protocol also naturally satisfies this strengthened security
notion.

2.4 Hybrid Consensus Overview

In this section, we describe our construction informally and in an intuitive manner. Formalizing
the construction takes a fair amount of effort and will be described later in Section 5. We present
notations in Table 2. For convenience, in this paper, we first describe our hybrid consensus protocol
assuming Nakamoto as the underlying snailchain. Later in Section 6, we will argue that we can use
Fruitchains [48] (almost) as a drop-in replacement for Nakamoto, and obtain better parameters.
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Variable Meaning

tx a transaction
` sequence number of a transaction within each BFT instance

LOG the totally ordered log each node outputs, LOG is always populated
in order

log log of one BFT instance, referred to as daily log
log[` : `′] transactions numbered ` to `′ in log

log[: `] log[1 : `]
λ security parameter
α adversary’s fraction of hashpower
δ network’s maximum actual delay

∆ a-priori upper bound of the network’s delay (typically loose)
csize committee size, our protocol sets csize := λ

th th := dcsize/3e, a threshold
lower(R), upper(R) lower(R) := (R− 1)csize + 1, upper(R) := R · csize

chain a node’s local chain in the underlying snailchain protocol
chain[: −λ] all but the last λ blocks of a node’s local chain

MinersOf(chain[s : t]) the public keys that mined each block in chain[s : t]. It is possible
that several public keys belong to the same node.

{msg}pk−1 a signed message msg, whose verification key is pk

Tbft liveness parameter of the underlying BFT scheme

Table 2: Notations

Recall that earlier, as a warmup exercise, we described a protocol which elects a static BFT
committee by running snailchain for csize +λ blocks and electing the miners of the first csize blocks
as the BFT committee. The drawback of this protocol is the following: if the adversary can now
adaptively target the set of committee members to corrupt, it can break the security of the protocol
by corrupting only a small number of nodes.

This problem can be mitigated through rotating committees, and our resulting protocol can
be proven secure against a mildly agile adversary that takes a while to corrupt nodes. In other
words, if the adversary targets the committee members to corrupt, by the time the committee
members actually become corrupt, it is already too late since the next committee will have taken
over. On the other hand, if the adversary corrupts aimlessly without knowing a priori which random
committee members will be selected, it can only successfully corrupt < 1

3 committee members when
the random choices are announced. Our formal protocol description is given in Section 5.3 but here
we explain the intuition first.

Rotating committees. As soon as a node collects R·csize+λ blocks in the underlying snailchain,
it enters the R-th “day”. Note that all nodes may perceive the day start slightly out of sync, but
due to the consistent length property of snailchain (which is part of chain growth), all nodes perceive
the day start very close from each other except with negl(λ) probability.

On each day, a new committee is in charge. For an honest node with a local chain (of the
underlying snailchain), he defines set of committee members for day R as

commR := MinersOf(chain[(R− 1)csize + 1 : R · csize])

15



It follows directly that all honest nodes agree on the same commR due to the common prefix and
common self-prefix properties of snailchain. As mentioned earlier, it is possible that several public
keys in MinersOf(chain[(R− 1)csize + 1 : R · csize]) belong to the same node. In this case, the same
node will act as multiple nodes, each with a different public key, in the BFT consensus.

Daily operations. We now describe the daily operations of both committee members and non-
members.

• Committee members. On each day R, the R-th committee will run a BFT instance. A committee
member will continue running the BFT protocol to commit transactions until it receives a
“stop” instruction at which point a special stopping procedure is invoked. Therefore, committee
members will output committed transactions gradually over time. Committed transactions will
populate a node’s daily log denoted logR.

Whenever an honest committee member adds a new transaction tx to its logR, it will sign the
tuple (R, `, tx) where R denotes the current day and ` denotes the sequence number of tx within
the day. The honest committee member then gossips the signed tuple to the network.

• Committee non-members. Non-members hear signed transactions from the network. Whenever
a non-member hears that a tuple (R, `, tx) has been signed by more than 1

3 fraction of commR

members, he adds the tx to its logR:

if logR[`] is not populated : logR[`] := tx

Observe that a committee non-member can write to its logR[`] out of order since messages
may be received out of order. However, a transaction cannot be processed until all preceding
transactions have been committed. Later, when we define each node’s output LOG, we enforce
that transactions are always written to LOG in sequential order — and this can be achieved if
committee non-members output the longest contiguous prefix of logR to its LOG.

Committee switchover. Whenever a node enters a new day denoted R + 1, it performs a
committee switchover procedure as follows. Below R denotes the previous day.

• Member of the previous committee. If a node is a member of the R-th committee denoted commR,
it inputs a special, signed stop transaction to the previous BFT— a node may run multiple BFT
virtual nodes, in which case one signed stop transaction is input to each BFT virtual node. When
the BFT’s log collects sufficiently many of these stop transactions signed by distinct committee
member public keys, the log is finalized and all later transactions are ignored. At this moment,
we say that the previous BFT has terminated. When the previous BFT has terminated, a member
of commR will sign the tuple (R, |logR|) and gossip the signed tuple to the network. This allows
non-members of commR to determine when logR ends.

Further, an honest committee member signs (R, hash(logR)) where hash is collision-resistant, and
proposes the signed tuple to the underlying snailchain— we henceforth refer to this action as
stamping. As we explain later, timely stamping secures against an adversary that can retroac-
tively corrupt old committee members in the future.

At this point, the honest commR member outputs “done”.
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• Non-member of the previous committee. If the node is not a committee member of the BFT
instance for day R, it waits for more than 1

3 fraction of commR members to vouch for a tuple
(R, `). When this happens, it knows that ` is the final sequence number of logR. Therefore, it
simply waits for all of logR[: `] to be populated before outputting “done”.

Whenever a node (either member of non-member of commR) outputs “done”, its logR is said
to be final. We note that honest commR+1 members start the new BFT instance for day R + 1 as
soon as they perceive the start of day R + 1, and without waiting for their logR to be final. This
ensures that all commR+1 members start the new BFT instance within a short duration from each
other (whereas waiting for logR to be final will incur extra drift in the start time of the next BFT
instance).

Output log. Nodes need to collect their daily logs into a final log denoted LOG — and this
final log must satisfy the properties defined in Section 3.2. In particular, this final log LOG outputs
transaction in increasing order, since one may not be able to process a transaction until all preceding
transactions have been accumulated. As we pointed out, committee non-members may write to
its daily log logR out of order. Further, when the BFT instance on the R-th day is started, the
previous BFT instance may not have fully completed, and therefore logR would have to wait for
logR−1 to be final.

Therefore, to output the final log LOG in order, we simply define LOG to contain:

• A maximal, consecutive sequence of daily logs log1, log2, . . ., logr−1 all of which must be final.

• The longest contiguous prefix of the daily log log′r.

Bootstrapping. Nodes that join late must perform a bootstrapping procedure to catch up. First,
a bootstrapping node will need to identify a maximal underlying chain for the snailchain protocol.
This allows the node to securely determine what each committee has been so far.

A bootstrapping node also needs to catch up on its local LOG. This has to be dealt with
care, since a bootstrapping node cannot simply rely on collecting enough signatures from each old
committee any more — in particular, keep in mind that the adversary can retroactively corrupt
old committees. Old committee members that later become corrupt can sign arbitrary messages.
Therefore, informally, signatures from committee members are only trustworthy if they are timely.
Signatures from very old committee members are no longer trustworthy.

To allow late joining nodes to catch up securely, recall that honest committee members stamp
(R, h) tuples to the blockchain as soon as their reign is over where h = hash(logR) is a hash of the
final daily log. In this way, bootstrapping nodes can recover the correct hashes of old daily logs
from snailchain. Afterwards, the bootstrapping node can simply query for daily logs that match
these hashes to populate its local LOG.

Note that an adversary can still corrupt old committee members and make them stamp arbi-
trary things to snailchain. However, an adversary cannot revert what the correct values an honest
committee member has already stamped, if retroactive corruptions can only take place sufficiently
late. Therefore, if a committee member stamped conflicting tuples on snailchain, a bootstrapping
node simply suppresses all later occurrences. Our security theorem parametrizes τ as in τ -agility
appropriately, such that more than 2

3 fraction of any committee must remain honest till all tuples
are stably stamped on snailchain (see Lemmas 3 and 4).
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2.5 Modular Protocol Composition and Formal Reasoning

To aid formal reasoning and presentation, our protocols are described through a modular compo-
sition approach.

Daily offchain consensus. We first construct an intermediate abstraction called DailyBFT which
describes what committee members and non-members do respectively to agree on each day’s daily
log. Our hybrid consensus protocol will fork one instance of DailyBFT[R] for each day where R is
the day number as well as the unique session identifier for the DailyBFT instance. Hybrid consensus
then concatenates the daily logs output by these DailyBFT instances.

In a DailyBFT instance, each elected committee member spawns one or more BFT virtual nodes,
depending on how many of its public keys were included in the committee. If a node has not been
elected as the committee, it would count signatures from committee members to decide its daily
log.

We formalize and prove the security properties of DailyBFT: Below are a few things to keep in
mind when reading the detailed formalism presented in Section 5.2.

• While the lower-level BFT building block states its security properties (i.e., consistency and
liveness) for committee members only, in DailyBFT, these security properties are extended to
non-committee members as well.

• The lower-level BFT building block assumes that all committee members are spawned before
the BFT instance starts. In DailyBFT, however, these security properties need to extend to
committee non-members who potentially spawned later (but not too late).

• On the other hand, DailyBFT does not guarantee security (i.e., consistency and liveness) for
nodes that join too late, since committee members may become corrupt far out in the future, at
which point committee members can sign arbitrary tuples, and thus late joining nodes cannot
rely on counting signatures to decide their daily logs any more. We defer it to hybrid consensus
to deal with this attack, by having late joining nodes recover ancient daily logs by examining
daily log hashes stamped on the snailchain.

• DailyBFT offers a keygen abstraction: upon every keygen query, DailyBFT generates and outputs
a new miner public key pk — the hybrid consensus protocol will incorporate pk into the block
being mined. Later, DailyBFT will receive input from the environment which set of pks have been
selected as committee members. This is where the adversarial selective opening of committee
keys is handled. The security proof of DailyBFT therefore makes use of the strong security of
the BFT protocol, to argue that the BFT protocol, when run inside DailyBFT as a subprotocol,
will respect the stated security properties including consistency and liveness — otherwise one
could construct a reduction that breaks signature security.

• Finally, in comparison with BFT, DailyBFT additionally implements a termination procedure
that satisfies two properties, timely termination, and termination agreement. Timely termination
says that the BFT protocol terminates quickly upon honest nodes receiving stop instructions.
Termination agreement says that all honest nodes output identical final logs upon termination.

Termination is realized by having honest BFT virtual nodes input a special, signed stop transac-
tion to the underlying BFT. When d|comm|/3e stop transactions signed by distinct committee
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member keys have accumulated in the log, all later transactions are ignored and the log is
finalized.

Hybrid consensus. We now describe our final product, the hybrid consensus protocol. Hybrid
consensus consumes multiple instances of DailyBFT where rotating committees agree on daily logs.
Hybrid consensus primarily does the following:

• It manages the spawning and termination of DailyBFT instances effectively using snailchain as a
global clock that offers weak synchronization among honest nodes;

• Recall that each DailyBFT instance does not ensure security for nodes that spawn too late,
since committee members can become corrupt far out in the future at which point they can
sign arbitrary tuples. Therefore, hybrid consensus introduces an on-chain stamping mechanism
to extend security guarantees to even nodes that spawn late. Specifically, committee members
stamp their signed daily log hash onto snailchain when their BFT instance terminates. Nodes
that spawn late will rely on this on-chain stamp to identify and recover ancient daily logs in the
past (rather than counting off-chain signatures from committee members).

2.6 Main Theorems

We now state our main theorems whose detailed proofs are presented in Section 8. Our hybrid
consensus can be instantiated using either Nakamoto or Fruitchain as the underlying snailchain,
resulting in the following theorems.

Theorem 3 (Hybrid consensus over Nakamoto). For any (arbitrarily small) constant ε > 0, let
α = 1

4−ε, then for every n, δ, there exists sufficiently small ρ0 := Θ( 1
δn) such that HybridConsensusλ

with Nakamoto as the underlying snailchain and with mining difficulty parameter ρ < ρ0 is secure
w.r.t. any p.p.t. Γhc

ρ (n, α, δ, τ)-admissible (A,Z), where

Twarmup := 8λ/3nρ, Tconfirm := O(λδ)

Theorem 4 (Hybrid consensus over Fruitchain). For any (arbitrarily small) constant ε > 0, let
α = 1

3 − ε, there exists a constant η > 0 (related to ε), a suitable κ = Θ(λ), and for every n, δ, there

exists a sufficiently small ρ := Θ( 1
δn), such that HybridConsensusλ,η over Fruitchain with parameters

(ρ, κ), is secure w.r.t. any p.p.t. Γhcfruit
ρ,η (n, α, δ, τ)-admissible (A,Z), where

1.5λ(1 +
1

η
)/(1− 5η)nρ, Tconfirm := O(λδ)

Note that in both the above theorems, the Tconfirm parameter is stated for the worst-case
transaction confirmation time even when under attack. In the optimistic case, hybrid consensus
achieves a transaction confirmation time of O(δ). Further, although the theorem is stated in terms
of the network’s actual delay δ, in practice we must predetermine an upper bound estimate (denoted
∆) of δ to parametrize the puzzle difficulty level ρ. As long as ∆ is indeed an upper bound on
δ, security is guaranteed by the above theorem, and the scheme achieves responsiveness, i.e., the

19



transaction confirmation time does not depend on the upper bound ∆, but the actual network delay
δ. As mentioned earlier, if we choose a looser estimate ∆ (i.e., a greater value of ∆), the scheme
will then be parametrized with a more difficult puzzle — on one hand this allows us to tolerate
potentially a higher fraction of corrupt nodes; on the other hand, the agility parameter τ as well
as the protocol’s warmup time will increase accordingly.

3 Problem Definitions

Strongly negligible functions. All security failures in this paper will be expressed as (expo-
nentially) strongly negligible functions in terms of some security parameter λ ∈ N. We say that
a function negl(·) is strongly negligible, if there exist some constants c0 > 0, c1, such that for all
λ ∈ N, negl(λ) ≤ exp(−(c0λ+c1)). In the remainder of the paper, we simply use the term negligible
for simplicity, but all uses of it can be automatically replaced by strongly negligible.

3.1 Formal Model

Execution model. We assume the following execution model:

• Interactive Turing Machines. We assume a standard Interactive Turing Machine (ITM) model [13,
14, 17] often adopted in the cryptography literature (but augmented with proof-of-work as ex-
plained later). There is an underlying, global clock that increments over time; each clock tick is
referred to as an atomic time step.

Nodes can perform unbounded polynomial amount of computation in each atomic time step,
as well as send and receive polynomially many messages. Although not explicitly noted in the
paper, nodes receive inputs from an environment Z and send their outputs to an environment.

• Proof-of-work. We assume that there is a random oracle denoted by a pair (H,H.ver). In
each atomic time step, each node can make at most one H oracle query, but an unbounded
(polynomial) number of H.ver queries. If there are multiple instances of the blockchain protocol,
we assume that each protocol instance has its own independent random oracle. The environment
cannot directly query the random oracle, but can query the random oracle through the help of
the adversary.

• Corruption. At any point of time, the environment Z can communicate with corrupt nodes in
arbitrary manners. This also implies that the environment can see the internal state of corrupt
nodes. Corrupt nodes can deviate from the prescribed protocol arbitrarily, i.e., exhibit byzantine
faults. All corrupt nodes are controlled by a probabilistic polynomial-time adversary denoted
A, and the adversary can see the internal states of corrupt nodes.

For honest nodes, the environment cannot observe their internal state, but can observe any
information honest nodes output to the environment by the protocol definition. Details on
corruption models will be described later.

• Network delivery. The adversary is responsible for delivering messages between nodes. We
assume that the adversary is capable of delaying or reordering messages, possibly subject to
certain restrictions as described below.
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τ-agile corruption. In standard adaptive corruption models, whenever the environment wishes
to corrupt a node, the corruption takes place instantly. Our protocol is proven secure under
a slightly relaxed adaptive corruption model which we refer to as τ -agile corruption. Roughly
speaking, τ -agile corruption says that it takes a short while for the environment to actually corrupt
a node. More formally, the environment is allowed to corrupt and spawn new nodes according to
the following procedures:

• Delayed corruption. We assume that the environment can adaptively corrupt a node but with
the following restrictions. To corrupt a node i, the environment must issue a “target corrupt”
instruction to node i at some point of time denoted t. Node i does not become corrupt immedi-
ately, but rather remains honest till t+τ , and becomes corrupt at time t+τ — at this point, the
the corrupt node i communicates arbitrarily with the environment and can deviate arbitrarily
from the protocol.

• Killing a corrupt node. Once a node actually becomes corrupt, the environment can issue a
“kill” instruction to kill the node. A killed node is no longer live. The environment cannot kill
honest nodes directly without corrupting them first.

• Spawning new nodes. The environment is also allowed to spawn fresh nodes, either honest
or corrupt ones. A node spawned at time tspawn is considered live at time tspawn. Spawning
a corrupt node is equivalent to increasing the hashpower of the adversary which takes place
instantly. If an honest node is spawned, the environment must follow the delayed corruption
procedure if it wishes to corrupt this node later. An honest, newly spawned node starts running
the main protocol.

We say that a node (that has been spawned and has not been killed) can be in three mutually
exclusive states:

1. Intact: An honest node that has not received a “target corrupt” instruction.

2. Pre-corrupt: An honest node that has received a “target corrupt” instruction, but has not
become corrupt yet.

3. Corrupt: A node that is either spawned to be corrupt, or spawned to be honest, but then received
a “target corrupt” instruction and actually became corrupt.

Both intact nodes and pre-corrupt nodes are considered honest.

Henceforth, whenever we say that “an honest node i performs certain actions at time t”, we
mean that the node i is honest at time t. For example, if we say that an honest node outputs a
message to the environment Z at time t, we implicitly mean that the node is honest at time t (but
may become corrupt later). Alternatively, if we say that an honest node performs an action, it
means that the node is honest at the time it performs the action, although it may become corrupt
sometime in the future.

Fully adaptive corruption and static corruption. We note that 0-agile corruption is equiv-
alent to the fully adaptive corrupt model where the environment Z can corrupt nodes instantly.
Under a fully adaptive corruption model, a node is intact iff it is honest.
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We also define static corruption in the permissionless model — static corruption is a weaker
corruption model and is only used for the purpose of proving our lower bounds — note that assuming
a weaker corruption model yields stronger lower bounds. We assume that in the static corruption
model, environment can spawn honest or corrupt nodes at any time. However, once an honest node
is spawned, the environment is unable to corrupt it later on.

Gossip network model. We assume that all messages sent by honest nodes are spread over a
gossip network and can eventually be heard by all other honest nodes. For nodes that join at time
T , it will receive all messages sent by honest nodes after time T . An honest node need not know
the identities of other nodes in the network to gossip a message to all other nodes.

The adversary cannot drop or modify messages by honest nodes, but is allowed to reorder or
delay messages subject to certain restrictions. The adversary may selectively deliver a message to
a subset but not all of the honest nodes.

We assume that the identity of a message’s sender is unknown. Messages can be signed, but
an honest node does not know the correspondence between public keys and physical identities of
nodes.

We define the following types of gossip networks which impose different restrictions on the
adversary’s ability to delay and reorder messages:

• Synchronous model. In the synchronous model, messages gossiped by an honest node at time t
are guaranteed to arrive at all honest nodes, possibly out of order, in time step t+ 1. Moreover,
historical messages are delivered to newly spawned nodes instantly.

• δ-partially synchronous model. In a δ-partially synchronous model, messages gossiped by an
honest node at time t are guaranteed to arrive at all honest nodes, possibly out of order, by time
t+ δ. Moreover, historical messages are delivered to newly spawned nodes instantly.

More formally, suppose an honest node gossips a message in time step t ≤ t∗, then if a node i is
honest in time step t∗ + δ, then it must have received the message.

Note that in practice, honest nodes can implement a historical transcript retrieval service —
this way, a node can obtain a copy of the entire historical transcript when spawning a consensus
instance. It is not hard to see that if any honest node remains honest and live for at least 3δ time,
no historical transcript will be lost.

As mentioned later in Section 3.2, we allow our protocol to know a possibly loose upper bound
∆ on the network’s delay, since the underlying snailchain must know such an upper bound for
parametrizing the mining difficulty. However, we require that the protocol be responsive, i.e., its
actual performance must depend only on the network’s actual δ value, not the loose upper bound
∆.

Randomized protocol execution and probability space. Let Π be some protocol, letA,Z be
probabilistic polynomial-time (or p.p.t. for short) algorithms, and let λ ∈ N. Let exec[Π](A,Z, λ)
be a random variable denoting the joint view of all nodes (i.e., all their inputs, random coins, and
messages received, including those from random oracles) in the above execution.

Let property be a function that takes as input a fixed view and outputs either 0 or 1. Throughout
the paper, whenever we say that some property holds for exec[Π](A,Z, λ) with probability p, we
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formally mean that

Pr
[
view

$←exec[Π](A,Z, λ) : property(view) = 1
]

= p

where probability is taken over all random coins of A, Z, all honest nodes, and all random oracles.

Compliant execution. We often impose constraints on the adversary A and Z to prove security
properties of protocols. We therefore define what we consider as compliant executions, in terms of
constraints on the pair (A,Z).

Definition 1 ((n, δ, τ)-valid (A,Z)). We say that the pair (A,Z) is (n, δ, τ)-valid w.r.t. protocol
Π if A and Z are probabilistic polynomial-time algorithms such that for every λ ∈ N, the following
properties hold with probability 1 for exec[Π](A,Z, λ):

1. At any point of time, the number of live nodes4 is n;

2. A delays messages from honest nodes in at most δ time steps;

3. Once an honest node receives input “target corrupt” from the environment, it takes at least τ
time before the node becomes corrupt.

Definition 2 ((n, α, δ, τ)-valid (A,Z)). We say that the pair (A,Z) is (n, α, δ, τ)-valid w.r.t. pro-
tocol Π, such that (A,Z) is (n, δ, τ)-valid as per Definition 1, and moreover, for any λ ∈ N, in any
view in support of exec[Π](A,Z, λ), it holds that at any time, no more than α fraction of the live
nodes are either in corrupt or pre-corrupt states.

Throughout the paper, although not noted explicitly, all parameters including n, α, δ, and τ
are functions in the security parameter λ. Further, for notational simplicity, in this paper we do
not explicitly define validity rules for transaction inputs. However, it is not difficult to extend our
definitions to incorporate transaction validity rules like Garay et al. [28] and Pass et al. [47].

Our protocols may be secure under choices of parameters including n, α, δ, and τ that satisfy
specific constraints. We therefore define the notion of Γ-admissibility where Γ is a function that
imposes constraints on parameter choices.

Definition 3 (Γ-admissible). Let Γ be a binary function in parameters n, α, δ, τ . We say that a
p.p.t. pair (A,Z) is Γ-admissible w.r.t. some protocol Π iff there exists n, δ > 0 and α, τ ≥ 0 such
that

• Γ(n, α, δ, τ) = 1;

• (A,Z) is (n, α, δ, τ)-valid w.r.t. Π by Definition 2;

3.2 Problem Definition: Permissionless Consensus

Our HybridConsensus protocol realizes a state machine replication abstraction in the permissionless
model — henceforth we refer to this abstraction as permissionless consensus. In a permissionless
consensus protocol, nodes maintain a LOG over time that is a list of transactions; and further,

4In principle, it is not difficult to relax this requirement and allow the number of nodes to vary up to a constant
factor, but the chain growth parameter of the underlying snailchain needs to be adjusted accordingly.
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consistency and liveness are guaranteed. Our permissionless consensus abstraction is a variant of the
“public ledger” abstraction adopted by Garay et al. [28] and Pass et al. [47]. The differences are non-
essential. In particular, we essentially incorporate the transaction mempool into our abstraction,
such that maintaining the transaction mempool is not left to the caller. By contrast, the public
ledger abstraction by Garay et al. [28] and Pass et al. [47] leaves it to the caller to maintain a
transaction mempool.

More formally, a permissionless consensus satisfies the following abstractions.

Inputs and outputs. The environment Z may input a set of transactions TXs to each honest
node in every time step. In each time step, an honest node outputs to the environment Z a totally
ordered LOG of transactions (possibly empty).

Security definitions. Let p.p.t. algorithms (A,Z) be (n, α, δ, τ)-valid w.r.t. a permissionless
consensus protocol Π. Let Twarmup, Tconfirm, Tbootstrap be polynomial functions in λ, n, α, δ, and
∆. We say that a permissionless consensus protocol Π is secure w.r.t. (A,Z) with parameters
(Twarmup, Tconfirm, Tbootstrap), if there exists a negligible function negl such that for every λ ∈ N,
with 1− negl(λ) probability, the following properties hold for exec[Π](A,Z, λ):

• Consistency: Consistency includes the following properties:

– Common prefix. Suppose that an honest node i outputs LOG to Z at time t, and an honest
node j (same or different) outputs LOG′ to Z at time t′, it holds that either LOG ≺ LOG′

or LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention we assume that
∅ ≺ x and x ≺ x for any x.

– Self-consistency. Suppose that a node i is honest at time t and t′ ≥ t, and outputs LOG and
LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.

• Liveness: Suppose that the environment Z inputs TXs to an honest node at time t ≥ Twarmup.
Suppose that some node i spawned at time tspawn and remains honest till t′ ≥ max(tspawn +
Tbootstrap, t + Tconfirm). Let LOG be the output of node i at time t′, it holds that any tx ∈ TXs
is included in LOG.

Intuitively, liveness says that transactions input to an honest node gets included in their LOGs
within Tconfirm time. Further, Twarmup is referred to as the protocol’s warmup time.

Note that the above definitions are with respect to a specific (A,Z) pair. However, our main
theorem later will state the security of the HybridConsensus protocol for any p.p.t. (A,Z) as long
as they respect certain constraints.

Remark 1. For our hybrid consensus protocol, Tbootstrap = 0, i.e., newly spawned nodes are boot-
strapped instantly. Therefore we often omit writing the term Tbootstrap = 0 without risk of ambiguity.
However, our problem definition admits a polynomial Tbootstrap since this will allow us to prove a
stronger lower bound.

Responsiveness. We say that a permissionless consensus protocol is responsive if the liveness
parameter Tconfirm depends only on the network’s actual δ, not on the loose upper bound ∆ that is
used to parametrize the protocol.
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4 Building Blocks

4.1 Underlying Blockchain Protocol snailchain

Our main scheme is of an efficiency bootstrapping nature, where we bootstrap from an under-
lying, slow blockchain denoted snailchain to obtain a permissionless consensus protocol with fast
transaction confirmation and high throughput.

We assume the underlying slow consensus protocol denoted snailchain (e.g., Bitcoin’s Nakamoto
consensus [46]) realizes a “blockchain” abstraction, which can be considered as a special-case per-
missionless consensus protocol as defined in Section 3.2.

Abstraction. We assume that the snailchain protocol provides the following input/output ab-
straction.

Inputs. In each time step, the environment Z inputs to each honest node (recs, pk) where recs
denotes a set of records and pk denotes a public key.

Outputs. In each time step, honest nodes output to the environment the following:

chain := {(recsi, pki)}i

Useful notions. We define the following notions that will be useful later.

Local chain. In each time step, an honest node outputs to the environment some chain, for simplicity
we refer to this chain as the honest node’s local chain in this time step.

Intact and honest blocks. Given chain which denotes an honest node’s local chain at some time t,
we can define whether each block in chain is intact (or honest resp.) with respect to a prefix of
chain. A block chain[j] := (recs, pk) is said to be intact (or honest resp.) w.r.t. a prefix chain[: j′]
where j′ < j if there exists some node i intact (or honest resp.) at some time t′ ≤ t, such that
1) node i output chain′ to Z at time t′ such that chain[: j′] ≺ chain′, and 2) Z input (recs, pk) to
node i at time t′+ 1. Informally, for an honest party’s chain denoted chain, a block B := chain[j] is
intact (or honest resp.) w.r.t. a prefix chain[: j′] where j′ < j, if earlier there is some honest node
who received the block B as input when its local chain contains the prefix chain[: j′].

Security definitions. Similar to earlier works [25, 28, 34, 47], we define the following properties
for a snailchain protocol. In all of the following, the probability is defined over randomness consumed
by all honest nodes, the environment Z, as well as the adversary A in the execution.

Suppose that (A,Z) is (n, α, δ, τ)-valid w.r.t. snailchain. Let WC ,WQ,WG be polynomial func-
tions in λ. Let Q,G,G′ be polynomial functions in λ, n, α, δ, and ∆. We say that a snailchain
protocol satisfies WC-consistency, (WQ, Q)-chain quality, and (WG, G,G

′)-chain growth w.r.t. to
(A,Z), if there exists a negligible function negl such that for any λ ∈ N , except with negl(λ) failure
probability, the following properties hold for exec[snailchain](A,Z, λ):

• Consistency. For any node i that is honest at time t, and any j (same or different) that is honest
at time t′ ≥ t, let chain denote what node i outputs to Z at time t, and let chain′ denote what
node j outputs to Z at time t′, it holds that

chain[: −WC ] ≺ chain′
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• Chain quality. Let chain denote what an honest node outputs to Z at any time t. Then for any
λ1 ≥ WQ(λ), if |chain| ≥ λ1, it holds that for any i ≤ |chain| − λ1, at least dQλ1e number of
blocks in chain[i : i+ λ1] are intact w.r.t. chain[: i− 1]. In other words, at any time, among any
λ1 ≥WQ(λ) consecutive window of blocks in an honest node’s output chain, at least Q fraction
of the blocks are intact w.r.t. the prefix of the window.

• Chain growth. In every time step, the following properties hold:

1. Consistent length. Suppose that an honest node outputs chain at time t. It holds that any
honest node must output a chain of length at least |chain| at any t′ ≥ t+ δ.

2. Chain growth. Suppose that an honest node i outputs chain at time t, an honest node j (same
or different) outputs chain′ at time t′ ≥ t, suppose that G · (t′ − t) ≥ WG(λ), it holds that
G · (t′ − t) ≤ |chain′| − |chain| ≤ G′ · (t′ − t).

Therefore, intuitively, chain growth says that 1) honest nodes have roughly the same chain
length, and 2) honest nodes’ chains cannot grow too slowly.

For convenience, we now define a derived property called liveness. If i is an honest node at t,
let (recsti, ) denote what the environment Z inputs to honest node i at time t. Let rec be some
record. We say that Z proposes rec to node i at time t if rec ∈ recsti.

We say that a snailchain protocol satisfies liveness w.r.t. (A,Z) with liveness parameter Tsnail,
if there exists a negligible function negl such that for any λ ∈ N, with 1 − negl(λ) probability, the
following holds for exec[snailchain](A,Z, λ):

• Liveness. Let rec be some record. If for every honest node i, for each t′ = t, t + 1, . . . the
environment Z proposes rec unless rec is already contained in node i’s output5 chain[: −λ], then
we have that at time any t1 ≥ t + Tsnail, if an honest node outputs chain′, then rec must be
included in chain′[: −λ].

Intuitively, liveness simply says that if the environment Z continues to input the same record
rec to all honest nodes for Tsnail amount of time, then rec will get included in all honest nodes’
local chain in at most Tsnail time.

Lemma 1 (Liveness as a derived property). For any p.p.t. algorithms A,Z, any Q > 0, G′ ≥
G > 0, any WC ,WQ,WG such that WC(λ) + WQ(λ) + λ ≥ WG(λ) for all λ, if snailchain satisfies
WC-consistency, (WQ, Q)-chain quality and (WG, G,G

′)-chain growth w.r.t. (A,Z), then snailchain
satisfies liveness w.r.t. (A,Z) with liveness parameter Tsnail = (WC +WQ + λ)/G.

Note that for convenience of application later, we define a slightly modified version of liveness
in comparison with Garay et al. [28], Pass et al. [47], and Fruitchain [48]. It is straightforward to
see that our liveness notion is implied by those adopted in Pass et al. [47] and Fruitchain [48].

Underlying snailchain is an non-responsive permissionless consensus. It is not hard to see
that that our underlying snailchain abstraction defined in Section 4.1 can be regarded as a special-
case instantiation of a “permissionless consensus” protocol. In particular, each node’s LOG can be
the ordered list of records in chain[: −λ]. Such a permissionless consensus protocol is non-responsive
since we need to set the expected block interval to be Θ(∆) under typical parameters, where ∆ is
an a priori upper bound on the network’s delay. Therefore Tconfirm := Θ(λ∆).

5In practice, we can perform the following optimization within the Nakamoto protocol: the honest algorithm can
suppress a record rec if it is already contained in the longest chain that it tries to extend.
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4.1.1 Nakamoto as the underlying snailchain

Garay et al. [28] prove that Nakamoto consensus [46] satisfies variants of the above properties
assuming a fully synchronous model, i.e., messages are delivered instantly and cannot be delayed
by the adversary. Pass et al. [47] strengthen these properties and prove that Nakamoto consensus
satisfies them in a δ-partially synchronous network under appropriate conditions on δ.

Below we restate the main theorem of Pass et al. [47] for the underlying snailchain. Let α and
β denote the fraction of corrupt and honest nodes respectively where α + β = 1, and let ρ denote
the probability that a single node mines a valid block in one time step. ρ is closely related to the
mining difficulty parameter.

• Let p := 1− (1− ρ)βn denote the probability that some honest node succeeds in mining a block
in a single time step.

• Let q := αnρ denote an upper bound on the expected number of blocks that the adversary can
mine in a single time step.

• Let γ := p
1+δp which can be thought of as a version of p discounted by the network’s delay δ.

Definition 4 (Admissible parameters for snailchain Γsnail
ρ ). We define Γsnail

ρ (n, α, δ, τ) = 1 iff the
following holds:

• n > 0, δ > 0, τ ≥ 0 are all polynomial functions in λ; α > 0 is a constant;

• There exists a constant η > 0 such that p(1− (2δ + 2)p) ≥ (1 + η)q.

Theorem 5 (Nakamoto as the underlying snailchain [47]). For any constants η0, η1, η2, η, ρ > 0, let
Q = 1− (1+η0) qγ , let G = γ/(1+η1), let G′ = (1+η2)nρ, the Nakamoto consensus protocol [46,47]
(henceforth referred to as snailchain) parametrized with mining difficulty parameter ρ satisfies ηλ-
consistency, (ηλ,Q)-chain quality, and (ηλ,G,G′)-chain growth w.r.t. to any p.p.t. (A,Z) that is
Γsnail
ρ -admissible w.r.t. snailchain.

Typical parametrizations. Typically in practice, we would set the puzzle’s difficulty parameter
ρ := Θ( 1

∆n) where ∆ be an a-priori known upper bound of the network’s delay δ. Under such typical
parametrizations, we would need roughly 3/4 overall honest to ensure roughly 2/3-chain quality.

Corollary 1 (Nakamoto as the underlying snailchain [47]). For any (arbitrarily small) constant
ε > 0, let α = 1

4 − ε, then for every n, δ, there exists sufficiently small ρ0 := Θ( 1
δn) such that for

any constant η > 0, η′ > 0, Nakamoto’s protocol with mining difficulty parameter ρ < ρ0 satisfies
η′λ-consistency, (η′λ,Q)-chain quality and (η′λ,G,G′)-chain growth w.r.t. any Γsnail

ρ -admissible
(A,Z) where

Q >
2

3
, G =

3

4
nρ, G′ = (1 + η)nρ

Or more simply (and informally) put, for every α = 1
4−ε for an arbitrarily small constant ε > 0,

there exists an appropriately parametrized Nakamoto consensus protocol that achieves Q > 2
3 chain

quality.
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4.1.2 Fruitchain as the underlying snailchain

The problem with using Nakamoto as the underlying snailchain is chain quality loss. Due to a
selfish mining attack, Nakamoto requires 3/4 + ε overall honest to attain 2/3-chain quality which
is needed for the elected committees to be 2/3 honest. Since hybrid consensus takes a modular
approach, we can instead use a drop-in replacement, the Fruitchain [48] protocol, which realizes
(almost) the same formal abstraction as Nakamoto.

At a high level, the Fruitchain protocol runs a Nakamoto consensus underneath; however, miners
mine fruits simultaneously as they search for blocks. Fruits contain the transactions, and blocks in
the underlying Nakamoto blockchain contain the fruits (but not the transactions). In the Fruitchain
protocol, a fruit is regarded as the new block and viewed as part of the blockchain abstraction, but
the underlying Nakamoto can be regarded as simply an internal detail of the protocol and need
not be exposed to the outside. We will assume that the Fruitchain protocol takes in the following
parameters as inputs (see the Fruitchain paper for details [48]):

• Mining difficulty parameters ρ and ρf , for mining the block and fruit respectively. Henceforth
we shall assume that ρf := ρ is hardcoded (although ρf := cρ for any constant c ≥ 1 should also
work), and therefore we do not mention ρf explicitly any more.

• The look-back parameter κ, i.e., how far back in the blockchain to hang a fruit from;

• The recency parameter R, that is, a fruit is considered fresh if it is hanging from a (R ·κ)-recent
block in the underlying blockchain. Henceforth we will simply assume that R := 17 is hardcoded
(although any other constant great than 1 should also work), and therefore we do not explicitly
mention the recency parameter any more henceforth6.

Theorem 6 (Fruitchain as the underlying snailchain [48]). For any 0 < η < 1, ρ > 0, let G =
(1−5η)(1−α)nρ, G′ = (1+5η)nρ, and Q = (1−5η)(1−α), the Fruitchain protocol [48] parametrized
with (ρ, κ = λ

34) satisfies λ-consistency, (λ/η,Q)-fruit quality, (λ/η,G,G′)-fruit growth w.r.t. any
p.p.t. (A,Z) that is Γsnail

ρ -admissible w.r.t. snailchain.

Corollary 2 (Fruitchain as the underlying snailchain [48]). For any (arbitrarily small) constant
ε > 0, let α = 1

3 − ε, there exists a suitable κ = Θ(λ) and a constant 0 < η < 1 (related to ε);
moreover for every n, δ > 0, there exists a sufficiently small ρ := Θ( 1

δn), such that Fruitchain with

parameters (ρ, κ) satisfies λ-consistency, (λη , Q)-chain quality and (λη , G,G
′)-chain growth w.r.t.

any Γsnail
ρ -admissible (A,Z) where

Q >
2

3
, G =

2

3
nρ, G′ = (1 + 5η)nρ

Or more simply (and informally) put, for every α = 1
3 − ε where ε > 0 is an arbitrarily small

constant, there is an appropriately parametrized Fruitchain protocol that achieves Q > 2
3 chain

quality.

6We pick R = 17 based on Theorem 3.1 in the Fruitchain paper [48]. However, note that a tighter bound can
be proven for any constant R > 1. This could be done by using a tighter version of the fruit freshness lemma in
Fruitchain [48].
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4.2 Strongly Secure Permissioned Byzantine Fault Tolerance

We will rely on a permissioned consensus protocol. It is well-known how to construct Byzantine
Fault Tolerance (BFT) protocols in partially synchronous networks [18, 23, 42]; and furthermore,
these protocols achieve responsiveness.

Due to technical subtleties related to a selective opening attack, we need to define a stronger se-
curity notion for our BFT building block than the most natural property-based notion. We consider
BFT protocols that make blackbox usage of a signing algorithm. Let Σ := (Gen, Sign,Verify) denote
a signature scheme. We use the notation BFTΣ to mean that the protocol BFT is parametrized by
the signature scheme Σ. Moreover, we require that BFT only makes blackbox usage of Σ.Gen and
Σ.Sign functionalities — and in our formulation below, BFT nodes query the environment Z that
will provide Σ.Gen and Σ.Sign oracles. Formally, we assume that a BFTΣ protocol, parametrized
by a signature scheme Σ := (Gen,Sign,Verify), realizes the following abstractions.

Inputs. The environment is allowed to send the following inputs to honest nodes. All other inputs
are ignored.

• The environment Z can send start(pki, comm) once to an honest node i.

• If a start command has been input, the environment Z can in each time step input a set of
transactions TXs to an honest node.

• Answers to sign(msg) queries.

Outputs. Honest nodes output the following terms to Z over time.

• If a start command has been input, an honest node will in each time step, output to Z a totally
ordered log of transactions log.

• If a start command has been input, an honest node can output to Z queries of the form
sign(msg) where msg ∈ {0, 1}∗ denotes a message.

Compliant executions. We consider execution of a BFT protocol in a partially synchronous net-
work with somewhat static corruptions as elaborated below. The environment Z and the adversary
A must also satisfy certain constraints. Let Tstamp be a polynomially-bounded function in λ, n,Q,
and δ. A pair of probabilistic polynomial-time algorithms (A,Z) is said to be (n,Q, δ, τ, Tstamp)-
valid w.r.t. BFT iff the following hold:

• (A,Z) is (n, δ, τ)-valid w.r.t. BFT as per Definition 1.

• Somewhat static corruption. All “spawn” and “target corrupt” instructions must be declared
before Tstart, where Tstart denotes the time when a start command is first input to an honest
node by Z.

• Committee agreement. If honest node i receives input start(pki, comm) from Z at time t, and
honest node j receives input start(pkj , comm′) at time t′, it holds that comm = comm′. Further,
if i 6= j, then pki 6= pkj .
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• Close start. Let Tstart be the earliest time an honest node receives input start( , ). Then, for
any node i honest at time Tstart + δ, i must receive input start( , ) by time Tstart + δ. Each
node receives start at most once when it is honest.

• Resilience. At least dQ · |comm|e number of pki ∈ comm must be specified in start commands
that are input to nodes that remain honest till Tstamp.

• Signature oracle correctness. For any start(pki, ) command input to an honest node, pki must
be in the range of the valid public keys for the signature scheme Σ.

Upon any sign(msg) query from an honest node i, Z returns an answer σ immediately such
that Σ.Verify(pki,msg, σ) = 1.

Security definitions. Let Tstamp, Tbft be polynomially-bounded functions in λ, n,Q, and δ. Sup-
pose that (A,Z) is (n,Q, δ, τ, Tstamp)-valid w.r.t. BFT. Then, for any view in the support of
exec[BFT](A,Z, λ), we say that secureTbft(view) = 1 iff the following properties hold.

• Consistency. Consistency incorporates the following properties:

– Common prefix. If an honest node i outputs log at any time t < Tstamp, and honest node
j (same or different) outputs log′ at any time t′ < Tstamp, it holds that either log ≺ log′ or
log′ ≺ log.

– Self-consistency. Suppose an honest node i outputs log and log′ at times t and t′ respectively
such that t < t′ < Tstamp, it must hold that log ≺ log′.

• Liveness. If Z inputs TXs to an honest node at time Tstart ≤ t < Tstamp − Tbft, then any node
that is honest at time t′ = t + Tbft will output a log at time t′ such that TXs ⊆ log. Tbft is
referred to as the liveness parameter.

Definition 5 (Strongly secure BFT protocols). Let Tbft be a positive polynomial in λ, n, Q, and δ.
We say that a protocol BFT is strongly secure against (1 − Q)-corruption with liveness parameter
Tbft iff for any n, δ > 0, τ ≥ 0, any positive polynomial Tstamp, for any p.p.t. A and any polynomial
g, there exists a p.p.t. adversary B and polynomial g′, such that for any p.p.t. Z such that for any
(A,Z) is (n,Q, δ, τ, Tstamp)-valid w.r.t. BFT, for any λ ∈ N,

Pr
[
view← exec[BFT](A,Z, λ) : secureTbft(view) 6= 1

]
≥ g(λ)

=⇒ Pr [view← exec[BFT](B,Z, λ) : forgery(view) = 1] ≥ g′(λ)

where forgery(view) = 1, iff in view,

• at some time t the adversary outputs to the environment Z a forgery pair (i,msg, σ) such that
node i is honest at time t;

• by time t the environment Z has input start(pki, ) to node i;

• Σ.Verify(pki,msg, σ) = 1; and

• by time t, node i has not submitted a query sign(msg) to Z where the answer was σ.
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Definitional subtleties: corruption model for BFT. Our BFT building block must be secure
under the “somewhat static” corruption model. We now elaborate the related definitional subtleties.
First, any “spawn” or “target corrupt” instructions must be issued before Tstart, i.e., when the first
start is input to an honest node — in this sense, the security notion seems “somewhat static”.
On the other hand, our security notion is stronger than a standard “static” notion of security due
to the following: for nodes that are in precorrupt state before Tstart, there is an opportunity that
they will become corrupt during the course of the BFT protocol and before Tstamp. Importantly,
all of our security properties, including consistency and liveness properties, must hold before Tstamp

for any node that has not become corrupt yet. In comparison, the static notion does not need to
extend security guarantees to precorrupt nodes. In fact, it is not hard to show that our “somewhat
static” security notion is strictly stronger than a standard “static” notion of security, and it is not
difficult to construct a (possibly contrived) BFT protocol that demonstrates this separation.

Definitional subtleties: strong security of BFT. We remark that due to technical subtleties
related to an adversarial selective opening attack, we need to define the above stronger notion of
security for the BFT subprotocol. Below we compare this notion with the most natural property-
based security notion.

First, while most other security definitions for protocols follow a most natural property-based
definitional style, the above security notion for the BFT building block is stronger. In particular,
if BFT satisfies the above strong security notion, then a natural instantiation, where honest nodes
now generate their own signing key pairs and implement their own signing oracles, would satisfy
the most natural property-based notion. Of course, to make the description complete, a valid
environment Z in this case would wait to hear each honest BFT node i output a public key pki, and
then input start(comm) to all honest nodes where comm contain sufficiently many honest nodes’
public keys.

When honest nodes implement their own key generation and signing oracles, we can group the
honest nodes’ key generation and signing oracle implementations into the environment Z∗. Then,
this specific Z∗ would never disclose honest nodes’ respective secret signing keys. Therefore, if there
exists some adversary p.p.t. A, such that exec[BFT](A,Z∗, λ) fails any of these properties with
non-negligible probability, then we can construct an adversary B such that during the interaction
exec[BFT](A,Z∗, λ), B effectively breaks the security of the signature scheme.

Second, we point out that the natural property-based definitions are weaker and not sufficient
for our purposes. In particular, later in the HybridConsensus protocol, the environment Z for BFT
can selectively open a set of public keys to include in the start command for the BFT protocol. For
example, one can easily imagine a somewhat contrived BFT protocol that would be secure under
the most natural property-based definition (like all other definitions in this paper), but would be
vulnerable to selective opening attacks: imagine that honest nodes disclose their secret signing keys
if some predicate over the chosen public keys is satisfied — this predicate can easily be chosen such
that it is satisfied with only negl(λ) probability for an honestly generated set of public keys not
subject to adversarial selective opening, but satisfied with overwhelming property under adversarial
selective opening (e.g., if all public keys end with 1).

Fortunately, it is not hard to see that many known instantiations of permissioned BFT protocols
satisfy this strong notion of security, e.g., PBFT [18] with digital signatures.
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Remarks about the signing oracle. We note that alternatively, it is possible to partition
away the signing oracle into a global signing functionality adopting the GUC approach [14]. In
particular, GUC is necessary since the same signature scheme is shared by multiple protocols,
the inner BFT protocol, and our outer DailyBFT protocol. If we adopted the GUC approach, our
blackbox reduction notion of security might also be simpler since we need not deal with environment
having the signing key. On the other hand, using GUC will likely introduce other complexities in
terms of notation. The two approaches are essentially equivalent by repartitioning of algorithm
boundaries.

Theorem 7 (Castro and Liskov [18], briefly described in Appendix A). There exists a BFT protocol
that is strongly secure against (1−Q) < 1

3 corruption with liveness parameter Tbft := O(nδ).

To achieve the above, we can modify PBFT’s exponential timeout strategy such that nodes
double the time-out every n view changes. For completeness, in Appendix A, we briefly describe
the PBFT protocol, and we refer the reader to Castro and Liskov [18] for further details and
optimizations. Note that later when we use BFT as a subprotocol in hybrid consensus, the number
of BFT nodes n will be substituted with csize := λ.

5 Formal Scheme: Hybrid Consensus over Nakamoto

5.1 Notational Conventions

Choice of formal framework. We use the well-accepted Universal Composition [13, 14, 17]
framework for formalizing and modularly composing protocols. For the presentation of our con-
struction, we will take a modular approach. For each (sub)protocol, we formally describe its ab-
straction — not by defining an ideal functionality, but using a property-based approach. We then
show how to compose these subprotocols to eventually construct our HybridConsensus protocol.

Session identifier conventions. For any protocol prot, if we write prot[sid], then sid (or whatever
variable is in square brackets) denotes the session identifier of the protocol instance. If we write
prot only without the square brackets, then it means we only care about one specific session of the
protocol (although a higher-level protocol can invoke multiple sessions), and therefore we do not
denote the session identifier explicitly.

5.2 Daily Offchain Consensus Protocol

For modular protocol composition, we define an intermediate abstraction called a daily offchain
consensus protocol, denoted DailyBFT. In DailyBFT, committee members run an offchain BFT
instance to decide a daily log, whereas non-members count signatures from committee members.

Overview of DailyBFT. The definition of the DailyBFT intermediate abstraction extends BFT in
the following ways:

• Extends security to committee non-members and late-spawning nodes. At a definitional level,
the DailyBFT definition extends that of BFT to incorporate committee non-members as well. In
particular, in the formal definition of DailyBFT below, all security properties must be satisfied
not only by committee members, but also by committee non-members as well. Further, while
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the BFT definition assumes that all nodes are spawned prior to Tstart, the definition of DailyBFT
allows nodes to be spawned later. Therefore, here our security definitions including consistency
and liveness apply to any node (committee member or non-member alike) that spawns early
enough, i.e., before the deadline Tstamp. These security guarantees do not extend to nodes that
spawn too late, since committee members can become corrupt far out in the future, at which
point they can sign arbitrary tuples. For exactly this reason, our hybrid consensus protocol,
which consumes DailyBFT as a building block, will need to explicitly handle late spawning to
extend the security guarantees to nodes that spawn late.

• Termination. DailyBFT makes explicit a termination procedure which must satisfy two require-
ments, namely, termination agreement and timely termination. Specifically, the environment Z
is allowed send a stop instruction to nodes. Timely termination requires that the BFT instance
terminate quickly after honest nodes receive input stop. Termination agreement requires that
all honest nodes agree on the same final log upon termination.

• Signed daily log hashes. In DailyBFT, committee members output signed daily log hashes which
will later be consumed by the hybrid consensus protocol. These signed daily log hashes satisfy
completeness and unforgeability. Completeness says that honest committee members output the
correctly signed hash of their daily logs. Unforgeability says that the environment/adversary
cannot forge signatures on any other values besides the correct hash.

Formally, suppose that an DailyBFT[R]D protocol, with R being the session identifier (also
referred to as the day), and parametrized by the distribution D, provides the following abstraction.

Inputs. In each time step, the environment Z can provide the following types of inputs multiple
times: 1) keygen; 2) start(comm) where comm = {pki}i∈[m]; 3) TXs; and 4) stop.

Outputs. Honest nodes output the following type of messages to Z:

• On input keygen, honest nodes output pk← D.

• In each time step t, honest nodes output to the environment Z notdone(logt), until in one final
step t∗, it outputs done(logt

∗
, recs), where recs is either ∅ or a set of signed tuples vouching for

the hash of the final daily log. After outputting done(logt
∗
, recs), honest nodes stop outputting

in future time steps.

Terminology. Suppose that in a specific view in the support of exec[DailyBFT](A,Z, λ), the
environment Z inputs a unique start(comm) command to all honest nodes — later our compliance
rule will require that this be the case, then comm := {pki}i is referred to as the elected committee.

We say that a node i is an honest committee member at time t, if the following holds:

• Before the first start(comm) command was input to any honest node, node i output to Z a pk
that was included in comm.

• Node i remains honest till time t (but could become corrupt later).

Henceforth, if we say “an honest committee member i performs some action or is the receiver of
some action at time t in some view”, we implicitly mean that node i is an honest committee member
at time t, i.e., it remains honest till time t but could be corrupt later.
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The earliest time at which an honest committee member receives input start is denoted Tstart.
The earliest time at which an honest committee member receives input stop is denoted Tstop.

We say that an honest node outputs log as a shorthand to mean that it outputs either done(log, )
or notdone(log).

When an honest node i outputs done(log, ) at some time, we say that log is node i’s final daily
log.

Compliant executions. We say that a pair (A,Z) is (n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT,
if (A,Z) is not only (n, δ, τ)-valid w.r.t. DailyBFT by Definition 1, but the following also holds:

• Committee agreement. If honest node i receives input start(comm) from Z at time t, and
honest node j receives input start(comm′) from Z at time t′, it holds that comm = comm′.

• Close start and stop. Let Tstart be the earliest time an honest node receives input start( ).
Then, for any node i honest at time Tstart + δ, i must receive input start( ) by time Tstart + δ.

Similarly, let Tstop be the earliest time an honest node receives input stop. Then, for any node
i honest at time Tstop + δ, i must receive input stop by time Tstop + δ. For any honest node i
that receives stop at time t, it must have received start at some time t′ < t.

• Resilience. At least dQ · |comm|e number of pki ∈ comm must be output, earlier than the first
start command input to any honest node, by nodes that remain honest till Tstamp.

• Early enough stop. Tstop +Tbft + δ ≤ Tstamp, where Tstop is the time at which the earliest honest
committee member receives input stop.

• Temporary static corruption. For any pk ∈ comm, if pk was output by a node that became
corrupt before Tstamp, then the “target corrupt” instruction must have been issued before Tstart.

Security definitions. A DailyBFT protocol is said to be secure against (1 − Q)-corruption
with liveness parameter Tbft, if for any n > 0, δ > 0, any τ ≥ 0, any Tstamp > 0, for any
(A,Z) that is (n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT, there exists a negligible function negl
such that for every λ ∈ N, except with negl(λ) probability, the following properties hold for
exec[DailyBFT](A,Z, λ):

• Timely termination. Time termination encompasses the following:

– Any committee member i that is honest at time Tstop + Tbft must have output done(log, )
by time Tstop + Tbft.

– For any node i that is honest at time t ≥ Tstop +Tbft + δ, it must have output done(log, ) by
time t.

In both cases, when an honest node outputs done(log, ), we refer to log as the node’s final daily
log.

Note that since (A,Z) is (n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT, timely termination implies
the following: any node that spawned before Tstamp and remains honest till Tstamp must have
output done( , ) by Tstamp. In other words, if any node spawned before Tstamp and outputs
done( , ) when it is honest, done( , ) must be output no later than Tstamp.

• Consistency. Consistency encompasses the following:
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– Self-consistency. For any node i that spawned before Tstamp, and is honest at time t′, suppose
node i outputs log at time t ≤ t′ and outputs log′ at time t′, it holds that log ≺ log′.

– Termination agreement. For any node i that spawned before Tstamp, and any node j that also
spawned before Tstamp, suppose node i outputs done(log′, ) and node j outputs done(log′, )
before they become corrupt, it holds that log = log′.

– Common prefix. For any nodes i, j that spawned before Tstamp, suppose that i is honest at
time t and outputs log at time t, and j is honest at time t′ and outputs log at time t′, it holds
that either log ≺ log′ or log′ ≺ log.

Note that it may seem like common prefix is implied by termination agreement and self-
consistency, but keep in mind that common prefix must additionally hold for nodes that never
have an opportunity to output done( , ) before becoming corrupt.

• Liveness. Suppose that Z inputs TXs to an honest committee member at time Tstart ≤ t <
Tstop − Tbft. Then, for any honest node i that spawns at time tspawn ≤ Tstamp, if i is honest at
time t′ ≥ t+Tbft +δ, then node i must have output log at some time t∗ ≤ t′ such that TXs ⊆ log.

• Completeness. Let comm be the unique set included in start commands input to honest nodes.
For every pk ∈ comm that is output by a node i honest at sometime t and if node i outputs
done(log, recs) at time t, then it holds that a valid record {R, hash(log)}pk−1 ∈ recs where validity
is defined by correct signature verification with pk.

• Unforgeability. Let t ≤ Tstamp, and let pk ∈ comm be output by a node i that is honest at time
t. Then, if by time t the adversary A outputs to the environment Z a valid tuple {R, h}pk−1

where R is the current DailyBFT instance’s session identifier, then it must hold that node i has
output done(log, ) by t and h = hash(log).

Construction. We present a construction of the DailyBFT protocol from BFT in Figure 1. Below
is an informal description of the operations of DailyBFT:

• BFT virtual nodes and selective opening of committee. A DailyBFT node outputs fresh public
keys to its environment upon a keygen query. Then when it receives a start(comm) command,
if comm contains one or more of its own public keys, then the node is elected as a committee
member. In this case, the node will fork a BFT virtual node for each public key in comm that
belongs to itself. Here the committee is selectively opened by the environment through the
start(comm) command, later our proof will need to leverage the strong security of BFT.

• Member and non-member basic operations. Committee members populate their daily logs re-
lying on the BFT protocol, whereas committee non-members count signatures from committee
members to populate their logs.

• Termination. Nodes implement a termination procedure as follows: whenever an honest com-
mittee member receives a stop instruction, it inputs a special, signed stop transaction to each
of its BFT virtual node. As soon as the inner BFT instance outputs a log containing stop trans-
actions signed by at least d|comm|/3e distinct committee public keys, the log is finalized and
output. All transactions after the first d|comm|/3e stop transactions (with distinct committee
public keys) are ignored.
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Subprotocol DailyBFT[R]

On input init: ` := 0, log := ∅, mykeys := ∅
On input keygen: (pk, sk)

$←Σ.Gen(1λ), add pk to mykeys, output pk

On input stop : for each BFTpk virtual node forked: input TXs := {{stop}pk−1} to BFTpk

On input start(comm): if mykeys ∩ comm 6= ∅: isMember = true, else isMember = false

Case isMember = true

For each pk ∈ mykeys ∩ comm: fork a BFT virtual node, and BFT.start(pk, comm).

// henceforth this BFT virtual node is denoted BFTpk

Every time some BFTpk virtual node outputs sign(msg): return {msg}pk−1

// implements a signing oracle for BFT virtual nodes

On input TXs: input TXs to each BFT virtual node forked

Let BFT0 denote the first such BFT virtual node forked

Let complete(log) = true iff log contains stop correctly signed by th := d|comm|/3e
distinct pks in comm

Every time step t if start has been received and done has not been output:
Receive output log∗ from BFT0

If complete(log∗) then log∗ := shortest prefix of log∗ such that complete(log∗)
For each tx ∈ log∗ − log that is not a stop transaction:

Let ` := `+ 1, for each pk ∈ mykeys ∩ comm: gossip {R, `, tx}pk−1

log := log∗

If complete(log): call Finalize; else output notdone(log)

Finalize:
recs := ∅, remove all stop transactions from log
For each pk ∈ mykeys ∩ comm: let x := {R, |log|}pk−1 , recs := recs ∪ {x}, gossip x

Output done(log, recs), and stop outputting in future time steps.

Case isMember = false

On receive {R, `}pk−1 or {R, `, tx}pk−1 : add message to history and check the following:

On collect (r, `, tx) and signatures s.t. r = R and th := d|comm|/3e distinct pks
in comm signed the tuple correctly:

If log[`] has not been set, let log[`] := tx

On collect (r, `) and signatures s.t. r = R and th := d|comm|/3e distinct pks
in comm signed the tuple correctly:

Wait till log[: `] all populated
Output done(log, ∅), and stop outputting in future time steps.

Each time step until done is output:
let log′ := longest contiguous prefix of log, output notdone(log′)

Figure 1: Daily offchain consensus protocol. Since each signing key is reused for both the inner
BFT protocol and the outer DailyBFT protocol, we assume that the signing algorithm tags each
message for the inner BFT instance with the prefix “0”, and each message for the outer DailyBFT
with the prefix “1” to avoid namespace collision.
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txpool

Hybrid Consensus

Figure 2: Modular composition of the hybrid consensus protocol.

Subprotocol mempool

On initialize: TXs := ∅
On receive TXs1: TXs := TXs ∪ TXs1

On input propose(TXs1): TXs := TXs ∪ TXs1, gossip TXs1

On input query(confirmed): return TXs\confirmed

Figure 3: The mempool subprotocol keeps track of transactions, and upon query, proposes a set
of outstanding transactions. An obvious practical optimization not documented here for simplicity
is that the mempool can purge transactions that are already confirmed in LOG.

• Signed daily log hashes. When committee members output done, they also output a signed
digest of the final daily log — later, our HybridConsensus protocol will stamp this digest onto
the snailchain.

Theorem 8 (DailyBFT from BFT). Suppose that the signature scheme Σ employed by DailyBFT is
secure, and that hash is a random oracle. Suppose that BFT is secure against (1 − Q)-corruption
with liveness parameter Tbft

′ for Q > 2
3 . Then, DailyBFT is secure against (1−Q)-corruption with

liveness parameter Tbft := Tbft
′ + δ.

The proof of this theorem is deferred to Section 8.

5.3 Hybrid Consensus Protocol

We now describe our final product, the hybrid consensus protocol. Hybrid consensus consumes
multiple instances of DailyBFT where rotating committees agree on daily logs. Hybrid consensus
primarily does the following:

• It manages the spawning and termination of DailyBFT instances effectively using snailchain as a
global clock that offers weak synchronization among honest nodes;

• Recall that each DailyBFT instance does not ensure security for nodes that spawn too late, since
committee members can become corrupt far out in the future at which point they can sign
arbitrary tuples. Therefore, hybrid consensus introduces an on-chain stamping mechanism to
extend security guarantees to even nodes that spawn late.

Figure 4 is an algorithmic description of the HybridConsensus protocol. Figure 2 illustrates the
modular composition of the hybrid consensus protocol. Specifically, the hybrid consensus protocol
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Protocol HybridConsensusλ, parametrized by λ

On init: R := 0, LOGs := ∅, LOG := ∅, csize := λ.

Mempools:

• Fork an instance of mempool denoted snailpool that stores pending records for snailchain.

• Fork another instance of mempool that stores pending transactions, denoted txpool.

• On input TXs: txpool.propose(TXs).

Snailchain: Fork an instance of snailchain, in each time step:

• let chain denote the current local chain

• let pk := DailyBFT[R+ 1].keygen where R denotes the current day

• let recs := snailpool.query(ExtractRecs(chain[: −λ])), input (recs, pk) to snailchain

Preprocess:

Wait till |chain| ≥ csize + λ
L := Find in history maximal, ordered list of (R, logR) tuples such that R is incrementing
with no gaps, and (R, hash(logR)) is on-chain valid w.r.t. chain

LOG := log1||log2|| . . . ||log|L|

Daily Offchain Consensus:

Let R := |L|, fork an instance of DailyBFT[R+ 1]:
Loop:

Wait till |chain| ≥ upper(R+ 1) + λ, let R := R+ 1
Let commR := MinersOf(chain[lower(R) : upper(R)]) where MinersOf parses each block as
(recsi, pki) and returns a list containing all pkis
If an instance DailyBFT[R− 1] exists, DailyBFT[R− 1].stop
Fork an instance of DailyBFT[R+ 1]
DailyBFT[R].start(commR)

Each time step: let TXs := txpool.query(LOG), input TXs to DailyBFT[R]

Output: In each time step: let R denote the current day. Let isdone(r) = true if DailyBFT[r] has
output done in this or earlier time steps.

• If DailyBFT[R − 1] outputs done(log−1, recs) in this time step: LOGs := LOGs||log−1,
snailpool.propose(recs)

• Let log−1 and log be the output logs of DailyBFT[R − 1] and DailyBFT[R] in this time step
respectively (or ∅ if nothing is output)

• If isdone(R− 1): LOG := LOGs||log; else LOG := LOGs||log−1. Output LOG

On-chain valid: A tuple (R, h) is on-chain valid w.r.t chain iff the following holds

• For at least th := dcsize/3e distinct pk ∈ MinersOf(chain[lower(R), upper(R)]):
{R, h}pk−1 is the first occurrence in chain[: −λ] where pk signed some tuple of the form
(R, ).

Figure 4: Main HybridConsensus protocol. A newly spawned, honest node starts running this
protocol. We assume history is the set of all historical transcripts sent and received. We assume that
message routing to subprotocol instances is implicit: whenever any subprot[sid] instance is forked,
history[subprot[sid]] and protocol messages pertaining to subprot[sid] are automatically routed to the
subprot[sid] instance.
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internally runs the following subprotocol instances: two mempool instances denoted snailpool and
txpool respectively, a snailchain instance, and multiple DailyBFT instances. We now explain these
subprotocol instances more concretely.

Transaction mempools. The HybridConsensus protocol maintains two instances of the mempools
protocol (see Figure 3), denoted txpool and snailpool respectively. The txpool is a mempool used for
maintaining outstanding transactions to be confirmed with DailyBFT instances, and the snailpool
is used for maintaining daily log digests to be stamped on the snailchain. The mempool protocol
is very simple: it gossips transactions over the network whenever the environment inputs new
transactions. Whenever it hears transactions from the network, it saves them in the mempool.

snailchain. The HybridConsensus protocol internally forks a snailchain instance. First, the snailchain
is used for reaching agreement on committees who will then run the offchain BFT consensus. The
committee is selected as the miners of csize := λ consecutive blocks. The chain quality property of
the underlying snailchain ensures that sufficiently many of these miners are honest for sufficiently
long. Second, this snailchain instance is used not for committing transactions, but for stamping daily
log digests such that the protocol can resist retroactive corruptions where the adversary corrupts
committee members in the future.

DailyBFT instances. The HybridConsensus protocol forks multiple instances of the DailyBFT pro-
tocol, and we use the index R to denote the session identifier of each instance. R is also referred to
as the day number, and hence each DailyBFT[R] instance outputs a “daily log”. In each DailyBFT[R]
instance, the elected committee members rely on the underlying BFT protocol to commit trans-
actions and output a daily log over time, whereas committee non-members count signatures from
committee members to populate their daily logs.

Operations. Each node maintains a history of all past transcripts denoted history — we assume
this for simplicity of formalism, and it can be optimized away in practice. Nodes that newly spawn
obtain the historical transcripts instantly (in practice this can be instantiated by having honest
nodes offer a history retrieval service).

When a new node spawns, it populates its LOG as follows:

• Matching on-chain valid tuples. A newly spawned node first identifies all on-chain valid tuples
of the form (R, h), where R is the day number and h is the hash of the daily log. Then, the
node will search history and identify an appropriate daily log logR that is consistent with h. The
node populates LOG with these daily logs. This on-chain matching process effectively provides
a safe mechanism for a newly spawned node to catch up and populate old entries of its output
LOG.

• Through daily offchain consensus. Once this catch-up process is complete, the node will hence-
forth rely on DailyBFT instances to further populate remaining entries of its output LOG. In
each DailyBFT instance, a node can act as a committee member of a committee non-member.

To do this, a node monitors its output chain from the snailchain instance. As soon as the chain
length exceeds csize · R + λ, the R-th day starts, at which point the node inputs stop to the
previous DailyBFT[R − 1] instance (if one exists), and inputs start(MinersOf(chain[lower(R) :
upper(R)])) to the DailyBFT[R] instance. There is typically a period of overlap during which
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both DailyBFT[R − 1] and DailyBFT[R] instances are running simultaneously and outputting
their respective daily logs. When nodes assimilate their daily logs into the final output LOG,
they make sure that LOG is always contiguous leaving no gaps in between. Due to the timely
termination property of DailyBFT, the old DailyBFT[R − 1] will terminate fairly soon at which
point the new DailyBFT[R] instance fully takes over.

5.4 Theorem Statements

Definition 6 (Admissible parameters for hybrid consensus Γhc
ρ ). Let Tbft := O(mδ) be the liveness

parameter for BFT with m nodes. We define Γhc
ρ (n, α, δ, τ) = 1 iff the following holds:

• n > 0, δ > 0, τ ≥ 0 are all polynomial functions in λ; α > 0 is a constant;

• There exists a constant η > 0 such that p(1 − (2δ + 2)p) ≥ (1 + η)q. (This is needed for the
underlying snailchain to be secure.)

• There exists a constant η0 > 0 such that Q := 1− (1 + η0) qγ >
2
3 . (This is needed such that we

get > 2/3 chain quality for snailchain.)

• There exists a constant η1 > 0 such that G′ := (1 + η1)nρ < λ
Tbft+δ

for any λ ∈ N. (This is
needed such that the chain does not grow too fast to ensure liveness.)

• There exists a constant η2 > 0 such that τ > 4λ(1 + η2)/γ + cλδ for some appropriately large
constant c. (This is needed such that the adversary is sufficiently constrained in agility.)

In the above, parameters p, q, γ are functions in n, α, δ as defined in Section 4.1.

Theorem 9 (Main theorem for HybridConsensus). Suppose that hash,H : {0, 1}∗ → {0, 1}λ are
independent random oracles, and that the signature scheme Σ is secure. Then, for any constant η >
0, hybrid consensus instantiated with Nakamoto as snailchain and with mining difficulty parameter
ρ is secure with liveness parameters (Twarmup, Tconfirm) w.r.t. any p.p.t. Γhc

ρ (n, α, δ, τ)-admissible
(A,Z), where

Twarmup := 2λ(1 + η)/γ, Tconfirm := O(λδ)

Note that the above Tconfirm parameter is for the worst-case, in the optimistic case, hybrid
consensus achieves a transaction confirmation time of O(δ).

The proofs of the above theorem will be presented in Section 8.

Typical parametrizations. Typically in practice, if we set the puzzle’s difficulty parameter
ρ := Θ( 1

n∆) to be sufficiently small, where ∆ is a possibly loose upper bound on the network’s
delay known a priori. Under such parametrization, if the overall corruption α is roughly 3/4, then
we ensure roughly 2/3 chain quality.

Corollary 3 (Typical parameters for hybrid consensus over Nakamoto: restatement of Theorem 3).
Assume that α = 1

4 − ε for an arbitrary constant ε > 0. Then for every n, δ, there exists sufficiently
small ρ0 := Θ( 1

δn) such that hybrid consensus with Nakamoto as the underlying snailchain and with
mining difficulty parameter ρ < ρ0 is secure w.r.t. any p.p.t. Γhc

ρ (n, α, δ, τ)-admissible (A,Z),
where

Twarmup := 8λ/3nρ, Tconfirm := O(λδ)
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5.5 Practical Considerations and Possible Optimizations

The scheme described above is optimized for simplicity and to aid formal analysis, but not for
practical performance. There are many possible optimizations. For example, instead of having
committee members sign each transaction one by one, they could instead sign a batch of transactions
at a time. During stamping, instead of having each node send a separate signature onto snailchain,
we can rely on a threshold signature scheme and stamp a single signature of the daily log’s hash
onto snailchain. It is also easy to prune storage of old transcripts. We leave practical optimizations
and implementation to future work.

6 Extension: Fruitchain as the Underlying snailchain

Pass and Shi recently propose a new blockchain protocol called Fruitchain [48]. For a sufficiently
small puzzle difficulty parameter ρ := Θ( 1

nδ ), and α := 1
3 − ε for an arbitrarily small constant ε > 0,

Fruitchain achieves Q > 2
3 chain quality over any sufficiently large window of consecutive blocks. It

is not too hard to compose hybrid consensus and Fruitchains to obtain a responsive permissionless
consensus protocol that is resilient against 1/3−ε overall corruption for an arbitrarily small constant
ε > 0.

Fruitchain provides the same formal abstraction as Nakamoto consensus, but with different
parameters. Henceforth we will use the term “fruit quality” to mean Fruitchain’s chain quality, and
“fruit growth” to mean Fruitchain’s chain growth. Under typical parameters stated in Section 4.1.2
and Corollary 2, to obtain η-optimal chain quality, Fruitchain requires the fruit quality window to
be reasonably large, i.e., Θ(λ/η). Similarly, fruit growth also requires the time window to be
reasonably long. In light of this, when we adopt Fruitchain as the underlying snailchain, we need
to make the following changes to the protocol described in Section 5:

• Let HybridConsensusλ,η be parametrized with parameters λ, and η.

• Redefine csize := λ
η , lower(R) := (R−1)λ

η +1, and upper(R) := R·λ
η . In other words, the committee

size is set to λ
η , and the protocol waits for the chain length |chain| ≥ upper(R) + λ to start the

R-th day.

Definition 7 (Admissible parameters for hybrid consensus over Fruitchain Γhcfruit
ρ,η ). Let Tbft :=

O(mδ) be the liveness parameter for BFT with m nodes. We define Γhcfruit
ρ,η (n, α, δ, τ) = 1 iff the

following holds:

• n > 0, δ > 0, τ ≥ 0 are all polynomial functions in λ; α > 0 is a constant;

• There exists a constant η′ > 0 such that p(1 − (2δ + 2)p) ≥ (1 + η′)q. (This is needed for the
underlying snailchain to be secure.)

• Q := (1− 5η)(1− α) > 2
3 . (This is needed such that we get > 2/3 chain quality for snailchain.)

• G′ := (1 + 5η)nρ < λ
η(Tbft+δ)

for any λ ∈ N. (This is needed such that the chain does not grow

too fast to ensure liveness.)

• τ > 3λ(1+ 1
η )/((1−5η)(1−α)nρ)+cλδ for some appropriately large constant c. (This is needed

such that the adversary is sufficiently constrained in agility.)

In the above, parameters p, q, γ are functions in n, α, δ as defined in Section 4.1.
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Theorem 10 (Hybrid consensus over Fruitchain: restatement of Theorem 4). For any (arbitrarily
small) constant ε > 0, let α = 1

3 − ε, and for every n, δ, there exists a sufficiently small ρ :=

Θ( 1
δn), a suitable κ = Θ(λ), and constant η > 0, such that HybridConsensusλ,η over Fruitchain with

parameters (ρ, κ), is secure w.r.t. any p.p.t. Γhcfruit
ρ,η (n, α, δ, τ)-admissible (A,Z), where

Twarmup := 1.5λ(1 +
1

η
)/(1− 5η)nρ, Tconfirm := O(λδ)

Again, the above Tconfirm = O(λδ) is the worst-case transaction confirmation time (i.e., even
when under attack). The optimistic transaction confirmation time is O(δ), i.e., independent of the
security parameter λ.

7 Proof Roadmap

Before presenting the detailed proofs, we first describe a high-level roadmap to aid understanding.
For simplicity, we use hybrid consensus over Nakamoto as an example in our description, since the
proof for hybrid consensus over Fruitchain is the same except with different parameters.

HybridConsensus from DailyBFT. Our proof will proceed in the following steps.

1. First, primarily in Lemma 2, Lemma 3, and Fact 4, we prove that when executing as a subpro-
tocol of HybridConsensus, all instances of DailyBFT have a valid environment with overwhelming
probability. Once we show this, we can henceforth rely on the the security properties of DailyBFT
in the remainder of the proof.

2. Next, we prove a pair of lemmas that establishes Tstamp(R) as a “deadline” for each day R. All
honest committee members’ actions will have completed and taken effect by time Tstamp(R).

Lemma 4 says, roughly, that all honest committee members for day R will have stamped a
correct signed daily hash to snailchain by time Tstamp(R). Fact 5 says, roughly, that nodes which
spawn later than Tstamp(R) will not create a DailyBFT(R) instance, but will rely on on-chain
stamped daily log hashes to decide the R-th day’s daily log.

3. Having established Tstamp(R) as a deadline for day R, we then prove consistency using the
following strategy (Lemma 5 and Theorem 11):

• For nodes that actually created a DailyBFT(R) instance, we know that they must have spawned
before Tstamp(R). We therefore rely on properties of DailyBFT(R) to prove consistency for such
nodes (committee member or non-member alike).

• For nodes that did not spawn a DailyBFT(R) instance, we show that they would satisfy con-
sistency too if they recovered their daily log by examining what is stamped on the snailchain.
Intuitively, committee members always stamp the correctly signed daily log hash on snailchain
before they ever become corrupt. Therefore, even if they become corrupt later and can hence-
forth stamp arbitrary things onto snailchain, it will be too late since honest node only recognize
the first stamped daily log hash for committee member’s public key.
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4. Finally, we prove the liveness of hybrid consensus (Theorem 12) roughly as follows. Informally,
suppose the environment inputs tx to an honest node during day R (roughly speaking). There
are two cases: 1) tx is proposed early enough in day R, such that the liveness property of the
DailyBFT[R] instance applies; and 2) tx is proposed too late to be incorporated in day R’s log
since tx is closed very close to the end of day. In this case, tx will be rolled over to day R + 1.
Intuitively since the DailyBFT[R] instance will terminate quickly, and by the liveness property
of DailyBFT[R + 1], it also will not take too long before tx is incorporated into the log of day
R+ 1.

The above, however, only applies to nodes who actually spawned a DailyBFT[R] (or DailyBFT[R+
1]) instance. For any node that joins too late and did not spawn a DailyBFT[R] (or DailyBFT[R+
1]), it will output some daily log for day R the moment they spawn by processing historical
transcripts. Now, by the consistency property, we know that whatever daily log the late node
outputs, it will contain tx as well.

DailyBFT from BFT. The most technical part of this proof involves proving the following. Ob-
serve that when BFT is run as a subprotocol inside DailyBFT, the environment perceived by BFT
is partially specified by the DailyBFT protocol. Recall that the environment for BFT needs to im-
plement a signing oracle for BFT. When run inside DailyBFT as a subprotocol, the signing oracle
is implemented by the DailyBFT protocol. By definition of the honest DailyBFT protocol, honest
nodes never disclose their signature secret keys. For such an environment (of BFT), if the security
properties specified in Section 4.2 can be broken by a p.p.t. adversary A, we can construct a
reduction Re that breaks signature security.

The above essentially allows us to prove that when BFT is run inside DailyBFT as a subprotocol
instance, the environment for BFT is nice such that all of the stated security properties for BFT
will hold except with negligible probability. The remainder of this proof henceforth relies on these
properties of BFT to make arguments.

8 Detailed Proofs

Below we present our proofs for hybrid consensus over Nakamoto, and the proof for hybrid consensus
over Fruitchain is the same except with altered parameters.

8.1 Terminology and Simple Facts

Environment for a subprotocol. In an execution of the protocol HybridConsensus with A,Z,
let (A,Z)[subprot[sid]] be the adversary/environment pair that subprotocol instance subprot[sid]
interfaces with. (A,Z)[subprot[sid]] is defined by (A,Z) and the part of HybridConsensus outer to
subprot[sid]. We also use the notation Z[subprot[sid]] to denote the environment that subprotocol
instance subprot[sid] interfaces with. Recall that Figure 2 in Section 5.3 illustrates the modular
composition of our HybridConsensus protocol.

The following fact says that if DailyBFT’s environment inputs some start(comm) where comm
contains a pk output by a node i that is honest at time t ≥ Tstart, then node i must have output
pk before Tstart. In other words, DailyBFT’s environment cannot predict future pk pairs output by
honest nodes. This simple fact is handy throughout, since whenever we say that some pk ∈ comm
is output by an honest node i, this honest node is implicitly a committee member. Recall that by
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definition, for a node i to be considered a committee member, it must have output some pk ∈ comm
prior to Tstart.

Fact 1 (Unpredictability of public keys.). Assume that the signature scheme is secure, it must hold
that for any p.p.t. (A,Z) and any λ ∈ N, the following property holds for exec[DailyBFT](A,Z, λ),
with 1− negl(λ) probability:

If the Z inputs to any honest node start(comm), and let i be a node that is honest at time
t ≥ Tstart and moreover has output pk ∈ comm, then it holds that node i is an honest committee
member w.r.t. DailyBFT at time t, i.e., the aforementioned pk ∈ comm must be output by i before
Tstart.

Proof. Straightforward by the fact that a secure signature scheme must have high-entropy public
keys.

Fact 2. For a secure signature scheme, polynomially many honestly generated public keys will not
collide with 1− negl(λ) probability.

Therefore henceforth we simply assume that signature public keys generated by honest nodes
do not collide.

8.2 Hybrid Consensus Proofs

Times for notable events. Given Lemma 2, we know that for every polynomially bounded
R ∈ N , (A,Z)[DailyBFT[R]] respects committee agreement. Therefore the notion of an honest
committee member is well-defined for protocol instance DailyBFT[R]. For convenience, we explicitly
define the following times for important events.

• Tstart(R): earliest time that an honest committee member inputs start to its DailyBFT[R]
instance;

• Tstop(R): earliest time that an honest committee member inputs stop to its DailyBFT[R] in-
stance.

• Tstamp(R) := Tstart(R) + λ/G+ Tbft + δ + Tsnail.

Lemma 2 (DailyBFT’s environment satisfies committee agreement, close start and stop, and tem-
porary static corruption). Let (A,Z) be (n, α, δ, τ)-valid w.r.t. HybridConsensus for any n ∈ N, α >
0, δ > 0, and τ > 3λ/G+Tbft + δ+Tsnail such that snailchain satisfies consistency, Q-chain quality,
and (G,G′)-chain growth w.r.t. (A,Z)[snailchain]. Then, for any λ ∈ N, the following properties
hold for exec[HybridConsensus](A,Z, λ) with 1− negl(λ) probability:

For any R = poly(λ) ∈ N, (A,Z)[DailyBFT[R]] satisfies committee agreement, close start and
stop, and temporary static corruption.

Proof. Committee agreement follows in a straightforward manner from the definition of HybridConsensus
and from the consistency property of snailchain.

Close start and stop follows in a straightforward manner from the definition of HybridConsensus
and from the consistent length property of snailchain (which is part of chain growth).

Temporary static corruption follows in a straightforward manner from the definition of Tstamp(R)
and the underlying τ -agile corruption model.
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Fact 3 (Bounded day length). Let (A,Z) be (n, α, δ, τ)-valid w.r.t. HybridConsensus for any
n ∈ N, α > 0, δ > 0, and τ ≥ 0 such that snailchain satisfies consistency, Q-chain quality, and
(G,G′)-chain growth w.r.t. (A,Z)[snailchain]. Then, for any λ ∈ N, the following holds for
exec[HybridConsensus](A,Z, λ) with 1− negl(λ) probability:

2λ/G′ ≤ Tstart(1) ≤ 2λ/G,

∀R = poly(λ) ∈ N : Tstart(R) + λ/G′ ≤ Tstop(R) = Tstart(R+ 1) ≤ Tstart(R) + λ/G

Proof. For a (A,Z) pair satisfying the above requirements, the following statements hold with
1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

The fact that Tstop(R) = Tstart(R + 1) follows in a straightforward manner from the definition
of the honest HybridConsensus protocol. Further, by the definition of the honest HybridConsensus
protocol, honest nodes send stop to DailyBFT[R−1] when their local chain length reaches csizeR+λ.
By (G,G′)-chain growth, it follows that Tstart(R) + λ/G′ ≤ Tstop(R) = Tstart(R + 1) ≤ Tstart(R) +
csize/G = Tstart(R) + λ/G. Similarly, by (G,G′)-chain growth, it holds that 2λ/G′ ≤ Tstart(1) ≤
2λ/G.

Henceforth, we will assume that exec[HybridConsensus](A,Z, λ) will assert the bad events de-
clared in Fact 1, Lemma 2, and Fact 3. If such bad events ever happen, the execution aborts.
Since all these bad events occur with negl(λ) probability, the new execution with the bad events
asserted is computationally indistinguishable to an (A,Z) pair that satisfies the conditions specified
in Fact 1, Lemma 2, and Fact 3.

In particular, since we assume committee agreement, henceforth we will use the notation commR

to denote the globally agreed upon committee for the R-th day in any specific view in the support
of exec[HybridConsensus](A,Z, λ).

Lemma 3 (Sufficiently many commR members remain honest till Tstamp(R)). Let Q,G,G′ be
polynomially-bounded functions in λ, n, α, δ. For any Tbft > 0, and any constant η > 0, let Tsnail :=
(1 + η)λ/G, let (A,Z) be (n, α, δ, τ)-valid w.r.t. HybridConsensus for any n ∈ N, α > 0, δ > 0,
and τ > 3λ/G + Tbft + δ + Tsnail such that snailchain satisfies consistency, Q-chain quality, and
(G,G′)-chain growth w.r.t. (A,Z)[snailchain]. Then, for any λ ∈ N, the following property holds
for exec[HybridConsensus](A,Z, λ) with 1− negl(λ) probability:

For any R = poly(λ) ∈ N, at least Q fraction of commR are output by nodes that remain honest
till

Tstamp(R) := Tstart(R) + λ/G+ Tbft + δ + Tsnail,

Proof. For a (A,Z) pair satisfying the above requirements, the following statements hold with
1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

Let chain be an honest node’s local chain at any time s.t. |chain| ≥ upper(R). By Q-chain
quality and since csize = λ, at least Q-fraction of chain[lower(R), upper(R)] are intact blocks w.r.t.
chain[: lower(R) − 1]. This means that for at least Q fraction of indices i ∈ [lower(R), upper(R)],
there exists a node j that was intact at some earlier time t, such that it output to Z[snailchain]
chain′ that contains the prefix chain[: lower(R)− 1] at time t− 1, and Z[snailchain] provided input
chain[i] := (recs, pk) to node j at time t. By definition of the HybridConsensus protocol, pk ∈ commR
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and pk must be an output of some DailyBFT[R] instance of node j at time t. Now due to (G,G′)-
chain growth, at most (csize + λ)/G = 2λ/G time elapsed between t and Tstart(R). Finally, due to
τ > (3λ/G+Tbft + δ+Tsnail)-agility, we have that node j remains honest till Tstamp(R). Therefore,
at least Q fraction of commR are output by nodes that remain honest till Tstamp(R).

Next, we show that Tstamp(R) is chosen sufficiently far out to give enough time for all commR

members’ DailyBFT instances to output a final daily log (possibly empty) that is consistent with
each other.

Fact 4 (DailyBFT’s environment is valid.). Let Q,G,G′ be polynomially-bounded functions in
λ, n, α, δ. For any Tbft > 0, and any constant η > 0, let Tsnail := (1+η)λ/G, let (A,Z) be (n, α, δ, τ)-
valid w.r.t. HybridConsensus for any n ∈ N, α > 0, δ > 0, and τ > 3λ/G+Tbft + δ+Tsnail such that
snailchain satisfies consistency, Q-chain quality, and (G,G′)-chain growth w.r.t. (A,Z)[snailchain].

Then, for any λ ∈ N, with 1−negl(λ) probability, the following holds for exec[HybridConsensus](A,Z, λ):
(A,Z)[DailyBFT[R]] is (n,Q, δ, τ, Tstamp(R), Tbft)-valid w.r.t. DailyBFT.

Proof. Straightforward by combining Lemmas 2, 3 and Fact 3.

Lemma 4 (Timely stamping). Let G,G′, Q be polynomially-bounded functions in λ, n, α, δ, Suppose
that DailyBFT is secure against (1−Q)-corruption with liveness parameter Tbft. For any constant
η > 0, let Tsnail := (1 + η)λ/G. Let (A,Z) be (n, α, δ, τ)-valid w.r.t. HybridConsensus for some
n ∈ N, α > 0, δ > 0, and τ > 3λ/G + Tbft + δ + Tsnail such that snailchain satisfies consistency,
Q-chain quality, and (G,G′)-chain growth except w.r.t. (A,Z)[snailchain]. Then, for any λ ∈ N,
with 1 − negl(λ) probability, the following property holds for exec[HybridConsensus](A,Z, λ) and
for any R = poly(λ) ∈ N.

Suppose that any honest node outputs a chain at time t ≥ Tstamp(R). For any pk ∈ commR

output by some node i that is honest at Tstamp(R), let h := hash(logR) where logR represents the
final log output by node i’s DailyBFT[R] instance, then, a valid record of the form {R, h}pk−1 (where
validity is defined by signature verification) is included in chain[: −λ], and it is not preceeded by
any other valid record of the form {R, h′}pk−1 for a different h′ 6= h.

Proof. For a (A,Z) pair satisfying the above requirements, the following statements hold with
1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

Due to Fact 4, (A,Z)[DailyBFT[R]] is (n, α, δ, τ,Q, Tstamp(R), Tbft)-valid w.r.t. DailyBFT. By
Fact 1, for such a pk ∈ commR output by node i that is honest at time Tstamp(R), node i is an
honest committee member w.r.t. DailyBFT[R]. Therefore, by timely termination of DailyBFT, node
i’s DailyBFT[R] instance will have output some tuple done(log, recs) by time Tstop(R) + Tbft. By
definition of honest HybridConsensus algorithm, node i will have called snailpool.propose(recs) by
Tstop(R) + Tbft; and by definition of the mempool protocol, every honest node’s snailpool.TXs will
contain recs by Tstop(R)+Tbft +δ. Therefore, starting at time Tstop(R)+Tbft +δ, in every time step,
Z[snailchain] will include recs in its input to snailchain for every honest node whose local chain[: −λ]
does not yet contain rec. By the liveness property of snailchain, any time after Tstop(R) + Tbft +
δ + Tsnail, recs will appear in every honest node’s local chain[: −λ]. By the completeness property
of the DailyBFT protocol, {R, h}pk−1 ∈ recs, where h := hash(log). Finally, due to Fact 3, Tstop(R)
- Tstart(R) < λ/G. Therefore it holds that by time Tstamp(R) = Tstart(R) + λ/G+ Tbft + δ + Tsnail,
every honest node’s local chain[: −λ] will contain {R, hash(log)}pk−1 , where log is the final daily log
output by node i’s DailyBFT[R] instance.
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We now prove that such a tuple rec := {R, h}pk−1 is the first of its kind to appear in chain[: −λ],
i.e., there is no other valid record of the form rec′ := {R, h′}pk−1 where h′ 6= h preceeding rec in
chain. We prove by contradition. Suppose there is such a tuple rec′ preceeding rec in chain[: −λ].
Since rec must have appeared in chain[: −λ] at time Tstamp , due to the consistency property of
snailchain, so must rec′. However, by the definition of the honest DailyBFT algorithm, an honest
node should not have output two different done( , ) messages with different final logs. Therefore,
if rec′ appears in an honest node’s chain[: −λ] by time Tstamp, this would obviously violate the
unforgeability property of DailyBFT.

Fact 5 (No late spawning of DailyBFT). Let G,G′, Q be polynomially-bounded functions in λ, n, α, δ,
Suppose that DailyBFT is secure against (1 − Q)-corruption with liveness parameter Tbft. For any
constant η > 0, let Tsnail := (1 + η)λ/G. Let (A,Z) be (n, α, δ, τ)-valid w.r.t. HybridConsensus for
some n ∈ N, α > 0, δ > 0, and τ > 3λ/G+Tbft + δ+Tsnail such that snailchain satisfies consistency,
Q-chain quality, and (G,G′)-chain growth w.r.t. (A,Z)[snailchain]. Then, for any λ ∈ N, with
1−negl(λ) probability, the following property holds for exec[HybridConsensus](A,Z, λ) and for any
R = poly(λ) ∈ N.

An honest node only forks an DailyBFT[R] instance if it spawns by time Tstamp(R).

Proof. Straightforward by the definition of the HybridConsensus algorithm and Lemma 4.

Lemma 5 (Retroactive consistency). Let Q > 2
3 , let G,G′ be polynomially-bounded functions

in λ, n, α, δ. Suppose that DailyBFT is secure against (1 − Q)-corruption with liveness parame-
ter Tbft. For any constant η > 0, let Tsnail := (1 + η)λ/G, let (A,Z) be (n, α, δ, τ)-valid w.r.t.
HybridConsensus for some n ∈ N, α > 0, δ > 0, and τ > 3λ/G+ Tbft + δ+ Tsnail such that snailchain
satisfies consistency, Q-chain quality, and (G,G′)-chain growth w.r.t. (A,Z)[snailchain]. Then, for
any λ ∈ N, with 1−negl(λ) probability, the following property holds for exec[HybridConsensus](A,Z, λ)
and for any R = poly(λ) ∈ N.

Let chain denote the output of an honest node at any time. Suppose that (R, h) is an on-chain
valid tuple w.r.t. chain, it holds that there exists a pk ∈ commR output by a node i that is honest
at Tstamp(R), and h = hash(logR) where logR is the (unique) final daily log output by node i’s
DailyBFT[R] instance.

Proof. For a (A,Z) pair satisfying the above requirements, the following statements hold with
1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

For (R, h) to be a valid on-chain tuple w.r.t. chain, for at least dcsize/3e number of pk ∈ commR:
1) a correctly signed tuple {R, h}pk−1 must appear in chain[: −λ]; and 2) this tuple is the first
occurrence of any valid tuple of the form {R, }pk−1 on chain.

By Fact 4, at least Q fraction of commR were output by nodes that are honest at time Tstamp(R).
By assumption Q > 2

3 , and due to the pigeon-hole principle, for at least one such signature signed
by some public key pk, it must hold that it is output by a node i (prior to Tstart(R)) that remains
honest till Tstamp(R). By Lemma 4, this signature must vouch for (R, hash(log)) where log denotes
the (unique) final log output by node i.

Theorem 11 (Consistency for Hybrid Consensus). Suppose that hash,H : {0, 1}∗ → {0, 1}λ are
independent random oracles, and that the signature scheme Σ is secure. Let Q > 2

3 , let G,G′

be polynomially bounded functions in λ, n, α, δ. Suppose that DailyBFT is secure against (1 − Q)-
corruption with liveness parameter Tbft. For any constant η > 0, let Tsnail := (1+η)λ/G. Let (A,Z)
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be (n, α, δ, τ)-valid w.r.t. HybridConsensus for some n ∈ N, α > 0, δ > 0, and τ > 3λ/G + Tbft +
δ+Tsnail such that snailchain satisfies consistency, Q-chain quality, and (G,G′)-chain growth w.r.t.
(A,Z)[snailchain]. Then, for any λ ∈ N, with 1−negl(λ) probability, exec[HybridConsensus](A,Z, λ)
satisfies consistency as defined in Section 3.2.

Proof. Self-consistency holds trivially from the definition of HybridConsensus. Below we focus on
proving common prefix. For a (A,Z) pair satisfying the above requirements, the following state-
ments hold with 1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

By definition of the honest HybridConsensus algorithm, we can parse an honest node’s LOG as
the following for some R ∈ N:

LOG := log1||log2|| . . . ||logR−1||logR

For each logr where r ∈ [R], it can be one of the following cases:

1. Final log of daily offchain consensus. logr is the final log output by a DailyBFT[r] instance. By
Fact 5, it holds that this node spawned before Tstamp(r).

2. Non-final log of daily offchain consensus. logr is contained in an output of a DailyBFT[r] instance,
where the output is in the form of notdone(logr) — in this case, by definition of the honest
HybridConsensus algorithm, it must be the case that logr is the last daily log included in LOG.
Further, by Fact 5, it holds that this node spawned before Tstamp(r).

3. Matching on-chain valid tuple. There is an on-chain valid tuple (r, h) w.r.t. the honest node’s
local chain[: −λ] such that hash(logr) = h.

First, note that if an honest node i’s DailyBFT[r] instance outputs logr due to 1, and an honest
node j’s DailyBFT[r] instance (same or different), outputs log′r due to 1, it must hold that logr =
log′r. This is straightforward by the consistency property of DailyBFT.

Second, note that if an honest node i’s DailyBFT[r] instance outputs logr due to 1, and an
honest node j’s DailyBFT[r] instance (same or different), outputs log′r due to 2, then it must hold
that log′r ≺ logr. This follows immediately from the consistency property of DailyBFT.

Next, if an honest node j (same or different), outputs log′r due to 3, there must exist an honest
node i that outputs logr due to 1, such that logr = log′r. This follows directly from Lemma 5, as
well as the fact that the hash oracle has negligible probability of collision.

The rest of the proof follows in a straightforward manner, by observing that day lengths are
polynomially bounded in λ due to Fact 3; and that for all r = poly(λ) ∈ N, at least at least one
pk ∈ commr is honest at Tstamp(r) and will have output done( , ) by time Tstamp(r).

Theorem 12 (Liveness for Hybrid Consensus). Suppose that hash,H : {0, 1}∗ → {0, 1}λ are inde-
pendent random oracles, and that the signature scheme Σ is secure. Let Q > 2

3 , let G be a function
in λ, n, α, δ. Suppose that DailyBFT is secure against (1 − Q)-corruption with liveness parame-
ter Tbft. For any constant η > 0, let Tsnail := (1 + η)λ/G. Let (A,Z) be (n, α, δ, τ)-valid w.r.t.
HybridConsensus for some n ∈ N, α > 0, δ > 0, and τ > 3λ/G+ Tbft + δ+ Tsnail such that snailchain
satisfies consistency, Q-chain quality, and (G,G′)-chain growth w.r.t. (A,Z)[snailchain] for some
G′ < λ

Tbft+δ
. Then, for any λ ∈ N, with 1−negl(λ) probability, exec[HybridConsensus](A,Z, λ) sat-

isfies liveness as defined in Section 3.2 with parameters Twarmup := 2λ/G, and Tconfirm := 2Tbft +2δ.
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Proof. For a (A,Z) pair satisfying the above requirements, the following statements hold with
1− negl(λ) probability for exec[HybridConsensus](A,Z, λ) for any λ ∈ N.

Suppose that Z inputs TXs to some honest node at time t ≥ Twarmup = 2λ/G. By definition of
the txpool protocol, at time t+ δ, all honest nodes have TXs ⊆ txpool.TXs. Suppose that an honest
node i is honest at some time t′ ≥ t+ Tconfirm = t+ 2Tbft + 2δ, and we show that node i’s output
LOG at time t′ must include all of TXs.

By Fact 3, and the fact that G′ > λ
Tbft+δ

, Tstart(1) ≤ 2λ/G = Twarmup. Further, for any
R ∈ N, Tstart(R) < Tstop(R) − Tbft − δ < Tstart(R + 1). Let R be the smallest integer such that
t ≤ Tstop(R)− Tbft − δ. Now, one of the following two cases has to be true:

• Case 1: t ≥ Tstart(R) = Tstop(R− 1).

In this case, by definition of HybridConsensus and Fact 4, there exists an honest commR member
whose Z[DailyBFT[R]] will include TXs\LOG to in its input to DailyBFT[R] by t+δ < Tstop(R)−
Tbft.

• Case 2: Tstop(R− 1)− Tbft − δ < t < Tstop(R− 1) = Tstart(R) < Tstop(R)− Tbft

In this case, by definition of HybridConsensus and Fact 4, there exists an honest commR member
whose Z[DailyBFT[R]] will include TXs\LOG to in its input to DailyBFT[R] by Tstart(R) <
t+ Tbft + δ.

Therefore, in either case, there exists an honest commR member whose Z[DailyBFT[R]] will
include TXs\LOG to in its input to DailyBFT[R] by at time t∗ < t+ Tbft + δ such that Tstart(R) ≤
t∗ < Tstop(R) − Tbft. Henceforth let the LOG∗ denote the output LOG of this committee member
at time t∗.

• We first show that if node i ever forked a DailyBFT[R] instance, and is honest at time t′ ≥
t+ 2Tbft + 2δ, then node i’s output LOG at time t′ will include all of TXs.

By Fact 5, if a node i forked a DailyBFT[R] instance, its tspawn ≤ Tstamp(R). By the liveness
property of the DailyBFT protocol and Fact 4, if node i is honest at time t′ ≥ t+ 2Tbft + 2δ, then
by t′ node i’s DailyBFT[R] instance must have output done(logR, ) such that TXs\LOG∗ ⊆ logR.

Now, for any 1 ≤ r ≤ R − 1, by definition of the honest HybridConsensus protocol, either node i
did not fork a DailyBFT[r] instance and logr was computed during Preprocess (see Figure 4); or
node i did fork a DailyBFT[r] instance. In the latter case, we know that node i forked by Tstamp(r)
due to Fact 5. By Fact 4 and the timely termination property of the the DailyBFT protocol, if
node i is honest at time t′ ≥ t+ 2Tbft + 2δ, node i’s DailyBFT[r] instance will have output done

by time t′.

By the definition of the honest HybridConsensus protocol, if node i’ is honest at time t′ ≥ t +
2Tbft + 2δ, its output LOG will contain all of TXs\LOG∗ at time t′.

• Now, consider the case when node i did not fork a DailyBFT[R] instance. In this case, node i
must have computed logR by matching on-chain valid tuples, and logR is output in time tspawn.

Due to the Fact 4, there must exist at least one pk ∈ commR output by some node ν that is honest
at time Tstamp(R), and by the timely termination property of DailyBFT, node ν’s DailyBFT[R]
instance will output logR during the time it is honest. By the liveness property of DailyBFT,
this final log logR output by node ν must include all of TXs\LOG∗.

Due to Theorem 11, the logR output by node i must be the same as that output by node ν’s
DailyBFT[R] instance, and thus must include all of TXs\LOG∗ as well.
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Finally, due to the consistency property of HybridConsensus, for any node that is honest at time
t′ ≥ t+ 2Tbft + 2δ > t∗ let LOG be its output at time t′, then it holds that either LOG∗ ≺ LOG or
LOG ≺ LOG∗. However, since TXs\LOG∗ ⊆ LOG, it must be the case that LOG∗ ≺ LOG. Therefore
we conclude that TXs ⊆ LOG.

8.3 Daily Offchain Consensus Proofs

In some view, suppose that (A,Z) is an adversary/environment pair for the protocol DailyBFT,
we use the notation (A,Z)[BFT] to denote the adversary/environment pair that interfaces with a
BFT subprotocol instance. (A,Z)[BFT] is jointly defined by (A,Z) as well as the honest DailyBFT
protocol. Notice that upon corruption of a node i, Z[BFT] reveals to A[BFT] all public/secret keys
of all BFT instances running on node i.

Lemma 6 (BFT security within the context of DailyBFT). If BFT is strongly secure against (1−Q)
corruption and with liveness parameter Tbft by Definition 5, and further BFT is instantiated with
a secure signature scheme Σ, then for any n, δ, Tstamp > 0, τ ≥ 0, for any p.p.t. (A,Z) that is
(n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT, there exists a negligible function negl such that for
any λ ∈ N,

Pr
[
view← exec[DailyBFT](A,Z, λ) : secureTbft(view) = 1

]
≥ 1− negl(λ)

where secureTbft(view) is as defined as in Section 4.2 — but replace any occurrence of “an honest
node” with “an honest BFT virtual node”.

Proof. We construct a p.p.t. reduction Re as below.

• The reduction Re interacts with a signature challenger Σ∗, and obtains a signature public key
denoted pk∗ upfront. Henceforth we refer to pk∗ as the challenge public key.

• The reduction Re will simulate in its head all honest nodes running DailyBFT. When some
honest node’s BFT virtual node asks for keygen, Re flips a random coin, and with probability
1/n, it will return the challenge public key pk∗; otherwise, the reduction Re generates the signing
key pair using the honest algorithm. Therefore, the reduction Re knows all secret signing keys
except for the coordinate where the challenge public key pk∗ is embedded. Whenever an honest
node’s BFT virtual node issues a sign query for the challenge public key pk∗, Re simply forwards
the query to the signature challenger.

• The reduction Re interacts with the environment Z. Whenever Z inputs anything to honest
nodes, Re simply forwards the message to the corresponding honest node being simulated in
its head. Whenever a simulated honest node needs to output anything to Z, the reduction Re
simply forwards the message. Similarly, the reduction Re also forwards any messages between
Z and A.

Now, if an honest node becomes corrupt at some point, Re needs to return the node’s private
state to Z. As long as the corrupt node is not the one where pk∗ is embedded, the reduction
Re can successfully simulate. If the corrupt node happens to be where pk∗ is embedded, the
reduction simply aborts. It is obvious that the probability that the reduction does not abort is
non-negligible.
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It is obvious that conditioned on the event that the reduction Re does not abort, the reduction’s
interfaces to (A,Z) are identically distributed as a real execution of the DailyBFT protocol.

It is not hard to see that if (A,Z) is (n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT, then with
1 − negl(λ) probability, (A,Z)[BFT] is (n,Q, δ, τ, Tstamp)-valid w.r.t. BFT. In particular, honestly
generated public keys using the Σ.Gen(1λ) algorithm have negl(λ) probability of collision, since
otherwise the signature scheme can easily be broken.

For the sake of a contradition, suppose that the lemma is not true, i.e., there exists some
polynomial g and p.p.t. (A,Z) that is (n,Q, δ, τ, Tstamp, Tbft)-valid w.r.t. DailyBFT such that

Pr
[
view← exec[DailyBFT](A,Z, λ) : secureTbft(view) 6= 1

]
≥ g(λ)

where secureTbft(view) is defined just like in Section 4.2, but with respect to the virtual BFT nodes
inside DailyBFT. By definition of strong security (see Definition 5), we know that there exists a
p.p.t. adversary B and polynomial g′ such that

Pr [view← exec[DailyBFT](B,Z, λ) : forgery(view) = 1] ≥ g′(λ)

Now, consider an execution where the reduction Re is interacting with (B,Z). As mentioned
earlier, as long as the execution does not abort, the execution is identically distributed as a real
execution from the perspectives of (B,Z). Therefore, with non-negligible probability, B will output
to Re some forgery, and if the forgery happens to be for pk∗ which happens with non-negligible
probability, the reduction Re will have found a forgery to the signature scheme.

Theorem 13 (DailyBFT from BFT, restatement of Theorem 8). Suppose that the signature scheme
Σ employed by DailyBFT is secure, and that hash is a random oracle. Suppose that BFT is secure
against (1 − Q)-corruption with liveness parameter Tbft

′ for Q > 2
3 . Then, DailyBFT is secure

against (1−Q)-corruption with liveness parameter Tbft := Tbft
′ + δ.

Proof. For any n, δ, Tstamp > 0, any τ ≥ 0, for any (A,Z) that is (n,Q, δ, τ, Tstamp, Tbft)-valid
w.r.t. DailyBFT, the following properties hold for exec[DailyBFT](A,Z, λ) except with negligible
probability:

• Timely termination. Since the environment of BFT respects close stop, all BFT virtual nodes
receive stop by Tstop +δ. By the liveness property of BFT, and definition of DailyBFT, all honest
committee members that remain honest till Tstop +Tbft

′+δ = Tstop +Tbft will have in their log by
time Tstop + Tbft, stop transactions signed by d|comm|/3e distinct public keys in comm. When
this happens, by definition of DailyBFT honest committee members gossip the signed hash of
their daily log, and output done( , ). Since at least Q > 2

3 fraction of comm were output by
committee members that remain honest till Tstamp > Tstop + Tbft, it is not hard to see that if a
committee non-member is honest at time Tstop +Tbft +δ, it will have collected enough signatures
and will have output done( , ).

• Consistency.

– Self-consistency. Self-consistency is obvious by definition of DailyBFT.

– Termination agreement. By definition, DailyBFT an honest committee member simply out-
puts the same final log as the final log output by the inner BFT0 virtual node (with stop

transactions removed). By the consistency property of the underlying BFT, if an honest
committee member i’s BFT outputs log at some time t < Tstamp, and an honest committee
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member j’s BFT outputs log′ at some time t′ < Tstamp, it must hold that log ≺ log′ or
log ≺ log′.

If both node i and j spawned before Tstamp and output done( , ) while they are still honest,
then done( , ) must be output no later than Tstamp. By the definition of the honest DailyBFT
algorithm, it must be the case they output identical daily logs upon termination.

We now extend the termination agreement proof to committee non-members who spawned
before Tstamp. This will rely on the security of the signature scheme. Suppose that some
committee non-member k spawned before Tstamp, and outputs done(log∗, ) at some time at
which it is honest. It must be the case that

1. done(log∗, ) is output by time Tstamp due to the timely termination property;

2. log∗ can be parsed as
log∗ = tx∗1||tx∗2|| . . . tx∗`∗

3. For each (R, i, txi) where i ∈ [`∗], and for the tuple (R, `) where R is the session identifier,
node k has received valid signatures signed by at least d1

3 |comm|e number of distinct public
keys in comm.

Due to the fact that that at least Q fraction of comm are output by committee members
which are honest at Tstamp, and by the pigeonhole principle, at least one valid signature on
each tuple (R, i, txi) or the tuple (R, `∗) is by pk ∈ comm output by a node ν that remains
honest till Tstamp. As mentioned earlier, honest committee members output identical final
daily logs, henceforth denoted log. Parse log := tx1|| . . . ||tx`.

Suppose for a contradiction that log∗ 6= log. Then there must exist a tuple (R, i, tx∗i ) or (R, `∗)
such that tx∗i 6= txi or `∗ 6= `. Without loss of generality, assume that tx∗i 6= txi (the other case
is similar). Then, node k will have received at least one valid signature on (R, i, tx∗i ) signed by
a pk ∈ comm output by a node ν that remains honest till Tstamp. If there exists p.p.t. (A,Z)
such that log∗ 6= log with non-negligible probability, then we can build a reduction that break
the signature scheme. Basically this reduction simulates all honest users and interact with
the (A,Z) pair. Whenever Z inputs keygen, it has a choice of embedding a pk from the
signature’s challenger. To do this, every time a keygen is queried, the reduction makes a
random guess and decides whether to embed the signature challenger’s pk. Such guesses are
correct with 1/poly(λ) probability – and if the guess turns out to be wrong later the reduction
simply aborts. Whenever the embedded pk needs to sign something, the reduction queries
the signature challenger. For all other key pairs the reduction knows the corresponding secret
key and can disclose it to (A,Z) when a node becomes corrupt. Finally, when (A,Z) outputs
a valid signature on such a tuple {R, i, tx∗i }pk−1 , the reduction outputs this as a forgery. Note
that the reduction should never have to make such a query to the signature challenger since
tx∗i 6= txi.

– Common prefix. Suppose that committee members i and j are honest at times t and t′

respectively and i outputs log at time t and j outputs log at time t′. Due to the timely
termination property, it must be the case that t < Tstamp and t′ < Tstamp. Now, due to the
consistency property of the underlying BFT and definition of DailyBFT, it is not hard to see
that either log ≺ log′ or log′ ≺ log.

We now extend the argument to committee non-members who spawned before Tstamp. Here
we rely on the security of the signature scheme. Let k be any committee non-member that
spawned before Tstamp. We have argued that if node k outputs done(log′, ) then log′ must
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agree with honest committee members’ final log denoted log — as we argued earlier, all honest
committee members must output an identical final log; and by definition there exists at least
one committee member who remains honest till Tstamp.

If node k outputs notdone(log∗) at a time when it is honest, then due to the timely termination
property and the fact that honest nodes never output again after outputting done( , ), it must
hold that notdone(log∗) is output before Tstamp. Now parse log∗ := log∗1|| . . . ||log∗m, and parse
log := log1|| . . . ||log`. Then it must hold that ` ≥ m and log∗i = logi — the latter can be
shown using exactly the same type of argument as termination agreement.

• Liveness. By definition of the DailyBFT protocol, any TXs input to an honest committee member
at time t is input to the inner BFT virtual nodes in the same time step t. Further, the inner
BFT virtual nodes have the same Tstart and Tstop as the outer DailyBFT, since honest committee
members simply pass start and stop commands to the inner BFT virtual nodes.

By liveness of the BFT protocol, if Tstart ≤ t < Tstop−Tbft, for any committee member honest at
time t+Tbft, its inner BFT virtual nodes will have output a log that includes all of TXs by time
t + Tbft. Since t < Tstop − Tbft, complete(log) must return false, since otherwise we can easily
construct an adversary that breaks signature security.

Now consider the set of all committee members honest at time t + Tbft, for each committee
member, consider the longest log it has output by time t+Tbft. Now take the intersection of all
such logs and denote it as log′. We have argued that TXs ⊆ log′, and clearly complete(log′) =
false. Now, by definition of the DailyBFT protocol, for every i ∈ [|log′|], for every pk ∈ comm
output by some node that is honest at Tstamp, it must hold that every node honest at time
t + Tbft + δ must have received a validly signed tuple {R, i, log′[i]}pk−1 where R is the session
identifier of DailyBFT. There must be at least dQ|comm|e number of pks in comm output by
nodes who remain honest till Tstamp > t + Tbft + δ. Since Q > 2

3 , any node honest at time
t+Tbft +δ will have output a log∗ s.t. |log∗| ≥ i by time t+Tbft +δ. By consistency of DailyBFT,
log∗[i] = log′[i], and therefore tx ∈ log∗.

• Completeness. Obvious by definition of DailyBFT and correctness of the signature scheme.

• Unforgeability. If there exists p.p.t. (A,Z) such that unforgeability can be broken with non-
negligible probability, then we can build a reduction that break the signature scheme. Basically
this reduction simulates all honest users and interact with the (A,Z) pair. Whenever Z inputs
keygen, it has a choice of embedding a pk from the signature’s challenger. To do this, every
time a keygen is queried, the reduction makes a random guess and decides whether to embed
the signature challenger’s pk. Such guesses are correct with 1/poly(λ) probability – and if the
guess turns out to be wrong later the reduction simply aborts. Whenever the embedded pk
needs to sign something, the reduction queries the signature challenger. For all other key pairs
the reduction knows the corresponding secret key and can disclose it to (A,Z) when a node
becomes corrupt. Henceforth we assume that the embeded pk belongs to node i. Finally, when
(A,Z) outputs a valid signature on such a tuple {R, h}pk−1 , the reduction outputs this as a
forgery. Note that the reduction should never have to make such a query (R, h) to the signature
challenger since by definition, for the (A,Z) pair to break unforgeability, it must be the case
that node i has not output done(log, ) by the forgery such that h = hash(log).
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8.4 Extending the Proof for Hybrid Consensus over Fruitchain

So far, we have completed the proof for hybrid consensus over Nakamoto. When we use Fruitchain as
the underlying snailchain, the proof is almost the same, except that parameters must be readjusted.

Consider HybridConsensusλ,η parametrized with η. In other words, the committee size csize is
chosen to be csize := λ/η. In the proof, we can plug in the following modified parameters:

• Tsnail := (2λ+ λ
η )/G;

• Tstamp(R) := Tstart(R) + λ
ηG + Tbft + δ + Tsnail;

• τ > (2λ
η + λ)/G+ Tbft + δ + Tsnail = 3λ(1 + 1

η )/G+ Tbft + δ;

• Twarmup := λ(1 + 1
η )/G;

• G′ > λ
η(Tbft+δ)

;

• G = (1− 5η)(1− α)nρ, and G′ = (1 + 5η)nρ.

With these new parameters, the rest of the proof follows in the same manner as hybrid consensus
over Nakamoto.

9 Lower Bound

9.1 Proof-of-Work Cannot Stop

We now prove a lower bound suggesting that any secure permissionless consensus protocol must
invoke proofs-of-work infinitely often, assuming no additional trust assumptions. We stress that
this lower bound does not rule out approaches that rely on additional trust assumptions such as
proofs-of-stake [8, 36,49,50].

Theorem 14 (Any secure permissionless consensus protocol must call proofs-of-work infinitely
often.). Let Γ denote any binary function in n, α, δ, τ such that Γ(n, α, δ, τ) = 1 for some n, δ
that are positive polynomials (in λ), non-negative polynomial τ , and α > 1/poly for some positive
polynomial poly. Let Π be a protocol such that for any p.p.t. (A,Z) that is Γ-admissible, there
exists a polynomial function poly such that for every λ ∈ N, exec[Π](A,Z, λ) satisfies the following
properties with 1/poly(λ) probability:

• Bounded proof-of-work. Honest nodes stop querying H after some time Tpow := poly0(n, α, δ, λ)
for some polynomial poly0;

• Liveness. Liveness as defined in Section 3.2 is satisfied with parameters Tconfirm = poly1(n, α, δ, λ),
Twarmup = poly2(n, α, δ, λ), and Tbootstrap = poly3(n, α, δ, λ), for some non-negative polynomial
poly1, poly2, and poly3.

Then, there exists p.p.t. (A,Z) that is Γ-admissible, such that for any λ ∈ N, exec[Π](A,Z, λ)
does not satisfy consistency with probability 1/poly(λ) for some polynomial poly.

Intuitively, this theorem says that any permissionless consensus protocol secure against 1/poly(λ)
fraction of corruption must call proofs-of-work infinitely often — even in the synchronous network
model and against static corruptions.
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Proof. Let Π be any protocol such that for any p.p.t. (A′,Z ′) that is Γ-admissible, there exists a
polynomial function poly such that for every λ ∈ N, with 1/poly(λ) probability, exec[Π](A′,Z ′, λ)
satisfies bounded proof-of-work and liveness as defined above. We now show how to construct p.p.t.
(A,Z) that is Γ-admissible such that exec[Π](A,Z, λ) breaks the common prefix property with
1/poly(λ) probability for some polynomial poly.

We consider a pair (A,Z) that is Γ-admissible w.r.t. Π, and behaves as follows.

Transaction input. At time Twarmup, Z samples tx
$←{0, 1}λ, and inputs TXs := {tx} to an

honest node. Besides this, Z does not input any other transactions.

Real execution. A instructs all corrupt nodes to behave honestly in the real execution.

Simulated execution. Starting at time Tpow, A also simulates an imaginary execution in its
head. To do this, A simulates the execution of all honest nodes and the environment Z. Sup-
pose that in this simulated execution, the simulated environment Z inputs TXs := {tx∗} where

tx∗
$←{0, 1}λ at simulated time Twarmup.

Network and corruption. In both the real and the simulated execution, the adversary A de-
livers messages instantly, i.e., within the next time step. The environment statically corrupts α
fraction of the nodes.

Late spawning node. Suppose that a new node i spawns at time tspawn := max(Tpow +
Tpow/α, Twarmup + Tconfirm) + 1. At this moment, the adversary A will have all the simulated
honest nodes interact with node i where all simulated honest nodes follow the honest protocol.
Whenever node i gossips a message, the message is delivered to both the honest nodes in the real
execution within δ = 1 time, as well as delivered to honest nodes in the simulated execution.

No consistency. Now, with 1/poly(λ) probability, both bounded proof-of-work and liveness are
satisfied for the real and simulated execution. Conditioned on the fact these properties are satisfied
for the real and simulated execution, we argue that consistency cannot be satisfied with at least
1/2 probability.

Given that α fraction of the nodes are corrupt, it is not hard to see that at any time t ≥ tspawn−1,
the adversary A is able to output a simulated execution that is identically distributed as the real
execution, since the adversary A will have enough time to make all the necessary H queries.

Now, due to liveness, honest nodes in the real execution must have output a LOG by tspawn − 1
where tx ∈ LOG and tx∗ /∈ LOG — except with negl(λ) probability since the the real execution
cannot know tx∗ before tspawn. Similarly, except with negl(λ) probability, honest nodes in the
simulated execution must have output a LOG by tspawn − 1 and where tx∗ ∈ LOG and tx /∈ LOG.

Due to liveness, the newly spawned node i must output a non-empty LOG by time max(tspawn +
Tbootstrap, Twarmup + Tconfirm) such that tx ∈ LOG. And since the real and simulated execution
are identically distributed, tx∗ ∈ LOG too. Since the real and simulated execution are identically
distributed, the probability that tx∗ precedes tx in LOG is at least 1/2 — in which case consistency
(for the real execution) cannot be satisfied.
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9.2 1/3 Corruption is Tight for Responsive Protocols

We now show that in the permissionless model, even when the protocol knows an a-priori upper
bound ∆ of the network’s delay, there does not exist responsive protocols that can tolerate 1/3
or more corruption in terms of hashpower. Since our hybrid consensus protocol tolerates 1/3 − ε
corruption, it is (nearly) tight since no responsive protocol can tolerate more than 1/3 corruption.

Our lower bound is a straightforward modification of a related lower bound proven by Som-
polinsky [1], who showed that in the partially synchronous setting, if the network’s delay upper
bound is unknown to the protocol, then no secure permissionless consensus protocol can tolerate
more than 1/3 corruption. Our lower bound proof (and also Sompolinsky’s) is also close in spirit to
the partially synchronous lower bound shown by Dwork, Lynch, and Stockmeyer [23] — however,
their bound needs to be adapted to the permissionless setting with proof-of-work. In particular,
Dwork et al.’s lower bound constructs an explicit attack with 3 nodes, where one node controlled
by the adversary acts as two separate nodes with different inputs, and interact with two honest
nodes to split their views. In the proof-of-work setting, the difficulty is that the adversary cannot
simultaneously simulate two nodes since to do that it would have to solve twice the proof-of-work.
However, we use a trick similar to Sompolinsky [1], where the adversary still acts as two players, but
space out the proof-of-work over time — and the victim honest node cannot distinguish whether
the adversary started solving puzzles late, or simply the network delay is large.

Theorem 15 (Responsive protocols cannot tolerate 1/3 corruption). No secure permissionless
consensus protocol that is also responsive can tolerate 1/3 or more corruption.

Proof. Suppose that there exists a protocol Π that defends against 1/3 corruption and is responsive,
i.e., its liveness parameter Tconfirm = Tconfirm(λ, n, α, δ) is a function of the network’s actual delay
δ, but not of the a-priori known upper bound delay ∆. This means that after some Twarmup =
poly(λ, n, α, δ,∆) time, a transaction input to an honest node will be included in any honest node’s
output LOG within Tconfirm time, even when 1/3 of the nodes crash.

We now describe an explicit attack that can break consistency when α = 1/3. Suppose that there
are 3 nodes, A, P0, and P1, where A is controlled by the adversary A, and P0 and P1 are honest.
Let ∆ := 2Tconfirm(λ, n, α, Tconfirm(λ, n, α, 1)) which is polynomial bounded in terms of λ. The
adversary A first behaves honestly and delivers all messages instantly until Twarmup(λ, n, α, 1,∆)
time has passed.

At this time, the adversary A starts to delay messages between P0 and P1 for the maximum
amount ∆, but delivers messages instantly between P0 and A. At this time, the environment Z
inputs a transaction tx

$←{0, 1}λ to P0 and a different transaction tx′
$←{0, 1}λ to P1. Further, the

corrupt node A stops sending messages to P1; however, it remembers and stores every message
received from P1. The corrupt node follows the honest protocol when interacting with P0. Since
the protocol is responsive even when 1/3 nodes crash, except with negligible probability, P0’s output
LOG will include tx in some fixed polynomial time Tconfirm(λ, n, α, 1) < ∆.

Let t∗ = Twarmup(λ, n, α, 1,∆) + Tconfirm(λ, n, α, 1) denote an upper bound on the time when tx
is included in P0’s output LOG. At time t∗, the corrupt node A stops sending messages to P0, but
begins interating with P1 as follows. First, A resets its internal state to what it was at time Twarmup.
Recall that A queues all messages received P1 in a buffer. It will now pretend that any real time
t ≥ t∗ is fake time t−Tconfirm(λ, n, α, 1), and that it replays (from the buffer) all messages received
from P1 during the real time step t−Tconfirm(λ, n, α, 1). Now A follows the honest protocol, and for
every message destined for P1, the adversary delivers the message instantly. Note that P1 cannot
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distinguish whether A started solving proofs-of-work Tconfirm(λ, n, α, 1) time late, or whether the
network link from A to P1 has Tconfirm(λ, n, α, 1) actual delay, but the P1 to A link delivers messages
instantly. Since the protocol is responsive even when 1/3 nodes crash, P1 will include tx′ 6= tx in its
output LOG in Tconfirm(λ, n, α, Tconfirm(λ, n, α, 1)) < ∆ time. Note that since ∆ is large, P1 has not
heard the transaction tx from P0 yet. Therefore, the probability that tx is in P1’s output log at time
Tconfirm(λ, n, α, Tconfirm(λ, n, α, 1)) is negligibly small in λ. Clearly, this breaks consistency.

Remark. We note that it is not hard to show a similar lower bound for the classical permissioned
setting. Specifically, in the classical permissioned setting even when assuming PKI, any responsive,
secure consensus protocol cannot tolerate 1/3 corruption or more. Such a lower bound would be
a straightforward generalization of Dwork et al.’s lower bound proof for partial synchrony with an
unknown ∆ (in the permissioned setting).
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Appendix

A Background on Permissioned BFT

We briefly describe one possible instantiation of the permissioned BFT protocol using PBFT [18]
as an example. Roughly speaking, PBFT [18] is a partially synchronous protocol for Byzantine
state machine replication.

Below we informally describe the protocol for the case when n = 3f+1. It is not hard to modify
the protocol for the more general case n > 3f + 1. In our description, we assume transactions are
proposed in units called batches.

Normal-case operations. We first describe the normal-case operations of the PBFT protocol,
where all messages are signed by the sender.

1. The leader of the current view proposes a tuple (“propose”, v, `, batch) to all nodes where v
denotes the view number and ` denotes the sequence number.

2. When an honest node hears (“propose”, v, `, batch), if it has not sent a prepare message for (v, `),
it multicasts (“prepare”, v, `, batch).

3. When an honest node collects (“prepare”, v, `, batch) from 2f + 1 distinct nodes for the same
(v, `, batch) tuple, it multicasts (“commit”, v, `, batch). Further, the honest node now considers
prepared(v, `, batch) := 1.

4. When an honest node first collects (“commit”, v, `, batch) from 2f+1 distinct nodes for the same
(v, `, batch) tuple; or when it first collects (“commited”, v, `, batch) from f + 1 distinct nodes
for the same (v, `, batch) tuple: the node considers lcommitted(v, `, batch) := 1 and multicasts
(“commited”, v, `, batch). Here lcommitted is short for “locally committed”.

The normal-case protocol satisfies the following important properties:

• Agreement. If two honest nodes each believes that prepared(v, `, batch) := 1 and prepared(v, `, batch′) :=
1 respectively, then batch = batch′.

• Liveness under an honest leader. If the leader is honest and no honest node has timed out since
start of the latest view, then any batch submitted by an honest node will be locally committed
by all honest nodes in O(1) atomic time steps.

• Ample proofs of preparedness. If at least one honest node considers lcommitted(v, `, batch) := 1,
then at least f + 1 honest node considers prepared(v, `, batch) := 1.

If an honest node believes that prepared(v, `, batch) := 1, then it can produce 2f + 1 signed
prepare messages that led to this belief. We refer to the collection of these 2f + 1 prepare
messages a proof-of-preparedness.

Notice that an immediate corrolary of the agreement property is that if two honest nodes each
believes that lcommitted(v, `, batch) := 1 and lcommitted(v, `, batch′) := 1 respectively, then batch =
batch′. However, the normal-case operation does not guarantee, under a potentially corrupt leader,
that if one honest node thinks lcommitted(v, `, batch) := 1, other honest nodes will necessarily think
lcommitted(v, `, batch) := 1. This therefore motivates the view change protocol.
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View change. The normal-case protocol alone does not guarantee liveness when the leader is
corrupt. To guarantee liveness even when the leader is corrupt, a view change protocol is invoked
upon timeouts. To obtain O(nδ) worst-case response time, we can make a small modification to
PBFT’s original exponential backoff strategy: instead, the timeouts could double every n view
changes. In the partially synchronous model, when the timeout backs off to Θ(δ) and the leader is
honest, liveness ensues.

Roughly speaking, if an honest node hears f + 1 valid view change requests for a new view v′,
it will echo the view change request by multicasting a view change message itself for view v′.

When the new view’s leader collects 2f + 1 valid view change requests, the set of 2f + 1 valid
view change requests together form a new-view message. The leader then proposes the new-view
message to all nodes. When an honest node receives the new-view message, For every (v, `, batch)
with a valid proof-of-preparedness contained in the new-view message, the node acts as if it has just
received a (“propose”, v, `, batch) message, therefore multicasts a prepare message for the tuple,
and continues as in the normal-case operations.

Due to the “ample proofs of preparedness” property of the normal-case operation, the following
property holds: If an honest node believes that lcommitted(v, `, batch) = 1, then at least one valid
proof-of-preparedness will be included in any valid new-view message. This ensures that if at least
one honest node believes that lcommitted(v, `, batch) = 1, the tuple (v, `, batch) is guaranteed to
carry over to the new view, and therefore if other honest nodes locally commits (v, `, batch′) in the
new view, it holds that batch = batch′.

Finally, as long as the new leader is honest and no honest node has timed out yet in the new
view, then liveness ensues for the new view.

We refer the reader to the PBFT paper [18] for a detailed description of the view change protocol
as well as the checkpointing optimization. It is not difficult to formalize the proofs in the PBFT
paper [18] and extend them to a cryptographically sound framework. Further, it is not difficult to
show that the PBFT protocol realizes our strong notion of security as defined in Section 4.2.
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