
Faster packed homomorphic operations and
efficient circuit bootstrapping for TFHE

Ilaria Chillotti1, Nicolas Gama2,1, Mariya Georgieva3, and Malika Izabachène4

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université
Paris-Saclay, 78035 Versailles, France

2 Inpher, Lausanne, Switzerland
3 Gemalto, 6 rue de la Verrerie 92190,

4 CEA LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France

Abstract. In this paper, we present several methods to improve the
evaluation of homomorphic functions in TFHE, both for fully and for lev-
eled homomorphic encryption. We propose two methods to manipulate
packed data, in order to decrease the ciphertext expansion and optimize
the evaluation of look-up tables and arbitrary functions in RingGSW
based homomorphic schemes. We also extend the automata logic, intro-
duced in [19, 12], to the efficient leveled evaluation of weighted automata,
and present a new homomorphic counter called TBSR, that supports all
the elementary operations that occur in a multiplication. These improve-
ments speed-up the evaluation of most arithmetic functions in a packed
leveled mode, with a noise overhead that remains additive. We finally
present a new circuit bootstrapping that converts LWE into low-noise
RingGSW ciphertexts in just 137ms, which makes the leveled mode of
TFHE composable, and which is fast enough to speed-up arithmetic func-
tions, compared to the gate-by-gate bootstrapping given in [12]. Finally,
we propose concrete parameter sets and timing comparison for all our
constructions.
Keywords: FHE, leveled, bootstrapping, LWE, GSW, packing,
weighted automata, arithmetic

1 Introduction

Fully homomorphic encryption (FHE) allows arbitrary computations over en-
crypted data, without decrypting them. The first construction was proposed in
2009 by Gentry [20], which introduced a new technique called bootstrapping to
handle the noise propagation in ciphertexts. Although many efforts have been
done since this first proposal to improve FHE, it remains too slow for real world
applications. The most promising constructions are [5, 21, 30]. We focus on con-
structions based on the LWE problem, introduced by Regev in 2005 [28], and its

Acknowledgements: This work has been supported in part by the CRYPTO-
COMP project.

ring variants [25]. Some public implementations are available, namely Helib [22,
23], FV-NFlib [24] and SEAL [29], based on BGV [5, 18], and FHEW [17] and
TFHE [14], based on GSW [21, 17, 12].
BGV-based schemes use in general slow operations, but they can treat a lot of
bits at the same time, so they can pack and batch many operations in a SIMD
manner, like in GPUs. Further, the set of operations that are efficient with BGV
are very constrained by the parameter set. Some parameters allow very fast vec-
torial sums and products modulo a fixed modulus (as in AES). But with these
parameters, a comparison, a classical addition, extracting one bit or more com-
plicated bit operations (as in SHA-256) are very slow.
On the other hand, recent developments have shown that GSW operations can
evaluate very fast independent elementary operations on bits, like in a CPU.
In the TFHE scheme (presented in [12] and based on GSW [21] and its ring
variant [17]) the elementary operations are all the binary gates. Therefore, it is
easy to represent any function that has few gates, and the running time is simply
proportional to their number. Some papers describing GSW-based schemes have
already tried to perform multibit or packed/batched operations. In [4] it is pro-
posed an extension of FHEW [17] on which the bootstrapping is used to evaluate
non-linear functions with a few input bits. Unfortunately, the parameter sizes
must increase exponentially with the number of bits in the plaintext space. But
until this work, it was not clear how to perform efficient evaluations on packed
data or batch operations, as it is in BGV-based schemes.
Homomorphic encryption falls in two families: leveved (LHE) and fully (FHE)
homomorphic encryption. Informally, in LHE, for each function, there exist pa-
rameters that can homomorphically evaluate it . The structure of the function to
be evaluated (multiplicative depth in BGV or depth of compositions of branching
algorithms for GSW) translates into a noise overhead, and the parameters must
be chosen large enough to support this noise bound. This concept is represented
in the paper by the notion of parameter levels. In FHE, a single parameter set
allows to evaluate any function. This generalized definition implies that FHE is
a particular case of LHE.
In many FHE schemes, the elementary operations consist in leveled gates with a
symmetric noise propagation formula, and where non-linear gates cost more than
linear ones. The papers [3, 26] improve the efficiency of fully homomorphic im-
plementations by optimizing the placement of bootstrapping between the gates
throughout the circuit. This strategy does not really apply to GSW schemes that
strongly rely on the asymmetric noise propagation formula, in which all circuits
are expressed as deterministic automata or branching algorithms, because the
depth of the circuit has a very small impact on the noise.
The TFHE construction of [12] proposes two modes of operations: a FHE mode
composed of bootstrapped binary gates, and a LHE mode which can evaluate a
deterministic automata or branching algorithms and which supports very large

To simplify, we include the key size and the noise rate.

2

depth transitions . Note however that in the LHE mode of [12], the inputs and
the output are of different types, which makes it non-composable. In this pa-
per we optimize both FHE/LHE modes, and we solve the non-composability
constraint.

Our Contribution. In this paper, we improve the TFHE construction of [12] for
both FHE and LHE modes.
We first propose a blind rotation algorithm that we describe in Section 2.
In FHE mode, this algorithm contributes to the acceleration of the gate
bootstrapping of [12], and its implementation is now included in the core of the
TFHE library [14]. This algorithm is also one of the building block we use to
improve the LHE mode of TFHE.
Because of the asymmetric noise propagation, operating over packed ciphertexts
in GSW-based schemes is harder than in BGV-based schemes. We describe two
different techniques, that we call horizontal packing and vertical packing, that
can be used to improve the evaluation of leveled circuits. An arbitrary function
from {0, 1}n → Tp can be represented as a truth table with p columns and 2s

rows. By packing these coefficients horizontally, the homomorphic evaluation of
the function can be batched, and the p outputs can be produced in parallel. This
technique is classical, but is only efficient if p is very large. We propose another
technique, called vertical packing, which packs the coefficients column-wise, and
which achieve its maximal speed-up also when p is equal to 1.
We also extend the deterministic finite automata framework proposed in [19,
12] by working with deterministic weighted finite automata. For most multibit
arithmetic functions, such as addition, multiplication and maximum value,
these latter allow to compute the whole output in a running time that would
have previously produced only a single bit.
In fact, thanks to the presence of weights (which could be seen as a memory
that stores partial results), the final result is given in a single pass. When
an arithmetic operation is evaluated by a deterministic automata, only the
destination state matters. The only bit of information that is retained is
whether or not the the destination state is accepting, and the rest of the path
is forgotten. Thus, we need one automata evaluation for each bit of the result.
Instead, by assigning a vector of weights on each transition, we are able to
retain enough information along the path to get all the bits of the result at once
in a single pass of the automata. Hence, the complexity of these operations is
decreased by at least one order of magnitude. Furthermore, we propose a new
homomorphic counter (called TBSR) that can support all the homomorphic
basic operations related to the multiplication (such as incrementation, division
by 2 and extraction of bits). This technique gives another speed-up by a factor
equal to the bit-size of the input. We show how to use it to represent the

The TFHE construction is implemented and publicly available [14]. The actual run-
ning timings are 13ms for each bootstrapped binary gate in FHE mode, and 34µs per
transition in LHE mode. The implementation also includes optimizations described
in Section 2.

3

O(d2) (with d equal to the size of the input) schoolbook multi-addition or
multiplication circuits, without increasing the homomorphic depth and with
very low noise overhead.
Our last contribution solves the main problem of the leveled mode of TFHE,
which is the non-composability, due to the fact that inputs and outputs are of
different types. The inputs are in fact RingGSW ciphertexts, while the outputs
are LWE ciphertexts. We introduce a new bootstrapping, called circuit bootstrap-
ping, that allows to transform LWE ciphertexts back to RingGSW ciphertexts
that can be reused as inputs in leveled circuits. The implementation of this
circuit bootstrapping is publicly available [14] and it runs in 137ms, improving
all previous techniques. The introduction of the circuit bootstrapping closes the
loop and allows all the new techniques previously described to be applied also in
a FHE mode. To show how these techniques improve homomorphic evaluations,
we propose several examples with concrete parameters and running time. For
instance, we show that we can evaluate a 10 bits to 1 bit ({0, 1}10 → {0, 1})
look-up table in 340µs and we can bootstrap the output in just 137ms.

Paper organization. We first review mathematical definitions for the continuous
LWE and RingGSW encryption over the torus and review the algorithmic pro-
cedures for the homomomorphic evaluation of gates. In particular, we extend
the keyswitching algorithm to evaluate public or private Z-module morphisms,
and explain how it can be used to pack, unpack and move data across slots of
a ciphertext. In Section 3, we show various techniques to speed-up operations
on packed data: horizontal and vertical packing, our method to evaluate arith-
metic functions via weighted automata and our TBSR counter technique. In
Section 4, we introduce our circuit bootstrapping algorithm which makes it pos-
sible to connect gates of either RingGSW or LWE types and give the practical
execution timings we have obtained. Section 5 depicts all our complexity results
for different parameters set.

2 Preliminaries

This section introduces and revisits some basic concepts to understand the rest
of the paper. The homomorphic constructions we present are based on the LWE
problem, presented by Regev in 2005 [28], and on the GSW construction, pro-
posed by Gentry-Sahai-Waters in 2013 [21]. We use the generalized definitions of
TLWE and TGSW (the T stands for the torus representation) proposed in [12],
and extend some of their results.

2.1 Background on TFHE

We denote by λ the security parameter. The set {0, 1} is written as B. The real
torus R/Z = R mod 1 of real numbers mod 1 is denoted by T. R is the ring
Z[X]/(XN +1) of integer polynomials modulo XN +1, and TN [X] is the module
R[X]/(XN + 1) mod 1 of torus polynomials, where N is a power of 2. BN [X]

4

denotes the subset of R of polynomials with binary coefficients. Note that T
is a Z-module and that TN [X] is a R-module. The set of vectors of size n in
E is denoted by En, and the set of n ×m matrices with entries in E is noted
Mn,m(E). As before, Tn (resp. TN [X]n) and Mn,m(T) (resp. Mn,m(TN [X]))
are Z-modules (resp. R-modules).

Distance, Lipschitzian functions, Norms We use the standard `p-distance
over T, and use the (more convenient but improper) ‖x‖p notation to denote the
distance between 0 and x. Note that it satisfies ∀m ∈ Z, ‖m · x‖p ≤ |m| ‖x‖p. For

an integer or torus polynomial a modulo XN + 1, we write ‖a‖p the norm of its
unique representative coefficients of degree ≤ N − 1. the notion of lipschitzian
function always refers to the `∞ distance: a function f is R-lipschitzian iff.
‖f(x)− f(y)‖∞ ≤ R ‖x− y‖∞ for all inputs x, y.

TLWE TLWE is a generalized and scale invariant version of the LWE problem,
proposed by Regev in 2005 [28], over the Torus T.

Given a small linear lipshtitzian function ϕs from TN [X]k+1 to TN [X] (that
depends on the secret key) and which we’ll call the phase function, the TLWE
encryption of µ ∈ TN [X] simply consists in picking a ciphertext c which is a
Gaussian approximation of a preimage ϕ−1

s (µ). If the Gaussian noise is small
enough, the distribution of ϕs(c) (over the probability space Ω of all possi-
ble choices of Gaussian noise) remains concentrated around the message µ, i.e.
included in a ball of radius < 1

4 around µ. Because this distribution is con-
centrated, it allows to properly define the intuitive notions of expectation and
variance, which would in general not exist over the Torus: in this case, the expec-
tation of ϕs(c) is the original message µ, and its variance is equal to the variance
of the Gaussian noise that was added during encryption. We refer to [12] for a
general definition of Ω-space, concentrated distribution, expectation, variance,
Gaussian and sub-Gaussian distributions over the Torus.

More precisely, a TLWE secret key s ∈ BN [X]k is a vector of k binary poly-
nomials of degree N . We assume that each coefficient of the secret key is chosen
uniformly, so the key has n = kN bits of entropy.

Definition 2.1 (TLWE, phase). TLWE ciphertexts or samples are c = (a, b) ∈
TN [X]k+1 that fall in one of the three cases:

– Noiseless Trivial of µ: a = 0 and b = µ. Note that this sample is independent
of the secret key.

– Fresh TLWE sample of µ of standard deviation α: a is uniformly in TN [X]k

and b follows a continuous Gaussian of standard deviation α centered in
µ + s · a, where the variance is α2. In the following, we will write (a, b) ∈
TLWEs,α(µ).

– Combination of TLWE samples: c =
∑p
j=1 rj · cj is a TLWE sample, where

c1, . . . , cp are TLWE sample under the same key and r1, . . . , rp in Z or R.

The phase of a sample c is defined as ϕs(c) = b− s · a.

5

Like in [12], we say that a TLWE sample c is valid iff there exists a key
s ∈ BN [X]k such that the distribution of the phase ϕs(c) is concentrated. The
message of a sample c, written msg(c) is defined as the expectation of its phase
over the Ω-probability space. We will write c ∈ TLWEs(µ) iff msg(c) = µ. The
error of a TLWE sample c, Err(c) is then computed as ϕ(c)−msg(c). The variance
of the error will be denoted Var(Err(c)) and its maximal amplitude ‖Err(c)‖∞.

The message of a fresh sample in TLWEs,α(µ) is µ and its variance is α2. The
message function is linear: msg(

∑p
j=1 rj · cj), where cj ∈ TLWEs(rjµj) is equal

to
∑p
j rjµj provided that the variance Var(Err(c)) ≤

∑p
j=1 ‖rj‖

2
2 · Var(Err(cj))

and the maximal amplitude ‖Err(c)‖∞ ≤
∑p
j=1 ‖rj‖1 ·‖Err(cj)‖∞ remains small.

This definition of message has the great advantages to be linear, continuous,
and that it works with infinite precision even over the continuous torus. In the
practical case where the message is known to belong to a discrete subset M
of TN [X] and that the noise amplitude of c is smaller than the packing radius
of M, then the decryption algorithm can retrieve the message in practice by
rounding the phase of the sample to its nearest element inM. For example with
M = {(0, 1/2)}[X], the packing is 1/4 and thus the samples of variance smaller
than (1/210) are decryptable with overwhelming probability.

Distinguishing TLWE encryptions of 0 from random samples in TN [X]k ×
TN [X] is equivalent to the LWE problem initially defined by Regev [28] and its
ring [25] and Scale invariant [6, 11, 13] variants.

The main parameters of TLWE are the noise rate α and the key entropy
n, and the security parameter is a function of those parameters, as specified
in [12, Sec.6]. By choosing N = 1 and k large, TLWE-problem is the (Scalar)
binary-TLWE-problem. When N large and k = 1, TLWE is binary-RingLWE.

TGSW In the same line as TLWE, TGSW generalizes the GSW encryption
scheme, proposed by Gentry, Sahai and Waters in 2013 [21]. The gadget ma-
trix H is defined with respect to a base Bg ∈ N as the ((k+1)`)× (k+1) matrix
with ` repeated super-decreasing T-polynomials (1/Bg, . . . , 1/B

`
g) as:

H =



1/Bg . . . 0
...

. . .
...

1/B`g . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`g


∈M(k+1)`,k+1(TN [X]). (1)

With this choice of gadget, it is possible to efficiently decompose elements
of TN [X]k+1 as a small linear combination of rows of H. As in [12], we use
approximate decomposition. For a quality parameter β ∈ R>0 and a precision
ε ∈ R>0, we call DecH,β,ε(v) the (possibly randomized) algorithm that outputs
a small vector u ∈ R(k+1)`, such that ‖u‖∞ ≤ β and ‖u ·H − v‖∞ ≤ ε. In this

6

paper we will always use this gadget H with the decomposition in base Bg, so
we have β = Bg/2 and ε = 1/2B`g.

TGSW samples. Let s ∈ BN [X]k be a TLWE secret key and H ∈
M(k+1)`,k+1(TN [X]) the gadget previously defined. A TGSW sample C of a
message µ ∈ R is equal to the sum C = Z + µ ·H ∈M(k+1)`,k+1(TN [X]) where
Z ∈ M(k+1)`,k+1(TN [X]) is a matrix such that each line is a random TLWE
sample of 0 under the same key.

A sample C ∈M(k+1)`,k+1(TN [X]) is a valid TGSW sample iff there exists a

unique polynomial µ ∈ R/H⊥ and a unique key s such that each row of C−µ •H
is a valid TLWE sample of 0 w.r.t. the key s. We denote msg(C) the message
µ of C. By extension, we can define the phase of a TGSW sample C as the list
of the (k + 1)` TLWE phases of each line of C, and the error as the list of the
(k + 1)` TLWE errors of each line of C.

In addition, if we linearly combine TGSW samples C1, . . . , Cp of messages
µ1, . . . , µp with the same keys and independent errors, s.t. C =

∑
i=1 ei ·Ci is a

sample of message
∑p
i=1 ei · µi. The variance Var(C) =

∑p
i=1 ‖ei‖

2
2 ·Var(Ci) and

noise infinity norm ‖Err(C)‖∞ =
∑p
i=1 ‖ei‖1 · ‖Err(C)‖∞. And, the lipschitzian

property of the phase is preserved, i.e. ‖ϕs(A)‖∞ ≤ (Nk + 1) ‖A‖∞.

Homomorphic Properties. As GSW, TGSW inherits homomorphic properties.
We can define the internal product between two TGSW samples and the external
� product already defined and used in [7, 12]. The external product is almost
the GSW product [21], except that only one vector needs to be decomposed.

Definition 2.2 (External product). We define the product � as

� : TGSW × TLWE −→ TLWE

(A, b) 7−→ A� b = Dech,β,ε(b) ·A.

The following theorem on the noise propagation of the external product was
shown in [12, Sec 3.2]:

Theorem 2.3 (External Product). If A is a valid TGSW sample of message
µA and b is a valid TLWE sample of message µb, then A� b is a TLWE sample
of message µA · µb and ‖Err(A� b)‖∞ ≤ (k + 1)`Nβ ‖Err(A)‖∞ + ‖µA‖1 (1 +
kN)ε + ‖µA‖1 ‖Err(b)‖∞ (worst case), where β and ε are the parameters used
in the decomposition algorithm. If ‖Err(A� b)‖∞ ≤ 1/4 then A � b is a valid
TRLWE sample. And assuming the heuristic 2.4, we have that Var(Err(A�b)) ≤
(k + 1)`Nβ2Var(Err(A)) + (1 + kN) ‖µA‖22 ε2 + ‖µA‖22 Var(Err(b)).

There also exists an internal product between two TGSW samples, already
presented in [21, 1, 19, 17, 12], and which consists in (k + 1)` independent �
products, and maps to the product of integer polynomials on plaintexts, and
turns TGSW encryption into a ring homomorphism. Since we do not use this
internal product in our constructions, so we won’t detail it.

7

Independence heuristic All our average-case bounds on noise variances rely
on the independence heuristic below. They usually corresponds to the square-
root of the worst-case bounds which don’t need this heuristic. As already noticed
in [17], this assumption matches experimental results.

Assumption 2.4 (Independence Heuristic). We assume that all the error
coefficients of TLWE or TGSW samples of the linear combinations we consider
are independent and concentrated. In particular, we assume that they are σ-
subgaussian where σ is the square-root of their variance.

Notations In the rest of the paper, the notation TLWE is used to denote the
(scalar) binary TLWE problem, while for the ring mode, we use the notation
TRLWE. TGSW is only used in ring mode with notation TRGSW, to keep uni-
formity with the TRLWE notation.

Sum-up of elementary homomorphic operations Table 1 summarizes the
possible operations on plaintexts that we can perform in LHE mode, and their
correspondence over the ciphertexts. All these operations are expressed on the
continuous message space T for TLWE and TN [X] for TRLWE. As previously
mentionned, all samples contain noise, the user is free to discretize the message
space accordingly to allow practical exact decryption. All these algorithms will
be described in the next sections.

Operation Plaintext Ciphertext Variance

Translation µ+ w c + (0, w) ϑ

Rotation Xuiµ Xuic ϑ

Z[X]-linear
∑
viµi

∑
vici

∑
‖vi‖22ϑi

SampleExtract
∑
µiX

i → µp SampleExtract (Sect. 2.2) ϑ

Z-linear f(m1, . . . ,mp) PubKSKS(f, c1, . . . , cp)(Alg.1) R2ϑ+ n log
(

1
α

)
CstKS

R-lipschitzian PrivKSKS(f)(c1, . . . , cp)(Alg.2) R2ϑ+ np log
(

1
α

)
CstKS

Ext. product b1 · µ2 C1 � c2 (Thm.2.3) b1ϑ2 + CstTRGSWϑ1

CMux b1?µ2 : µ3 CMux(C1, c2, c3) (Lem.2.7) max(ϑ2, ϑ3) + CstTRGSWϑ1

T-non-linear X−ϕ(c1)µ2 BlindRotate (Alg.3) ϑ+ nCstTRGSW
Bootstrapping decrypt(c)?m : 0 Gate Bootstrapping (Alg.4) Cst

Table 1. TFHE elementary operations - In this table, all µi’s denote plaintexts in
TN [X] and ci the corresponding TRLWE ciphertext. The mi’s are plaintexts in T and
c their TLWE ciphertext. The bi’s are bit messages and Ci their TRGSW ciphertext.
The ϑi’s are the noise variances of the respective ciphertexts. In the translation, w is in
TN [X]. In the rotation, the ui’s are integer coefficients. In the Z[X]-linear combination,
the vi’s are integer polynomials in Z[X].

8

2.2 Key switching revisited

In the following, we instantiate TRLWE and TRGSW with different parameter
sets and we keep the same name for the variables n,N, α, `, Bg, . . . , but we alter-
nate between bar over and bar under variables to differentiate input and output
parameters. In order to switch between keys in different parameter sets, but also
to switch between the scalar and polynomial message spaces T and TN [X], we
use slightly generalized notions of sample extraction and keyswitching. Namely,
we give to keyswitching algorithms the ability to homomorphically evaluate lin-
ear morphisms f from any Z-module Tp to TN [X]. We define two flavors, one
for a publicly known f , and one for a secret f encoded in the keyswitching key.
In the following, we denote PubKS(f,KS, c) and PrivKS(KS(f), c) the output of
Algorithm 1 and Algorithm 2 on input the functional keyswitching keys KS and
KS(f) respectively and ciphertext c.

Algorithm 1 TLWE-to-TRLWE Public Functional Keyswitch

Input: p LWE ciphertexts c(z) = (a(z), b(z)) ∈ TLWEK(µz) for z = 1, . . . , p, a public
R-lipschitzian morphism f from Tp to TN [X], and KSi,j ∈ TRLWEK(Ki

2j
).

Output: A TRLWE sample c ∈ TRLWEK(f(µ1, . . . , µp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i)

3: let ãi be the closest multiple of 1
2t

to ai, thus ‖ãi − ai‖∞ < 2−(t+1)

4: Binary decompose each ãi =
∑t
j=1 ãi,j · 2

−j where ãi,j ∈ BN [X]
5: end for
6: return (0, f(b(1), . . . , b(p)))−

∑n
i=1

∑t
j=1 ãi,j × KSi,j

Theorem 2.5. (Public KeySwitch) Given p LWE ciphertexts c(z) ∈ TLWEK(µz)
and a public R-lipschitzian morphism f of Z-modules, from Tp to TN [X], and

KSi,j ∈ TRLWEK,γ(Ki
2j) with standard deviation γ, Algorithm 1 outputs a TRLWE

sample c ∈ TRLWEK(f(µ1, . . . , µp)) where:

- ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + ntNAKS + n2−(t+1) (worst case),
- Var(Err(c)) ≤ R2Var(Err(c)) + ntNϑKS + n2−2(t+1) (average case), where AKS

and ϑKS = γ2 are respectively the amplitude and the variance of the error of KS.

We have a similar result when the function is private. In this algorithm, we
extend the input secret key K by adding a (n + 1)-th coefficient equal to −1,
so that ϕK(c) = −K · c. A detailed proof for both the private and the public
keyswitching is given in the full version.

Theorem 2.6. (Private KeySwitch) Given p TLWE ciphertexts c(z) ∈
TLWEK(µz), KSi,j ∈ TRLWEK,γ(f(0, . . . , Ki2j , . . . , 0)) where f is a private R-

lipschitzian morphism of Z-modules, from Tp to TN [X], Algorithm 2 outputs a
TRLWE sample c ∈ TRLWEK(f(µ1, . . . , µp)) where

- ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + (n+ 1)R2−(n+1) + p(n+ 1)AKS (worst-case),

9

Algorithm 2 TLWE-to-TRLWE Private Functional Keyswitch

Input: p TLWE ciphertexts c(z) ∈ TLWEK(µz), KSz,i,j ∈
TRLWEK(f(0, . . . , 0, Ki

2j
, 0, . . . , 0)) where f is a secret R-lipschitzian morphism

from Tp to TN [X] and Ki
2j

is at position z (also, Kn+1 = −1 by convention).
Output: A TRLWE sample c ∈ TRLWEK(f(µ1, . . . , µp)).
1: for i ∈ [[1, n+ 1]], z ∈ [[1, p]] do

2: Let c̃
(z)
i be the closest multiple of 1

2t
to c

(z)
i , thus |c̃(z)i − c

(z)
i | < 2−(t+1)

3: Binary decompose each c̃
(z)
i =

∑t
j=1 c̃

(z)
i,j · 2

−j where c̃
(z)
i,j ∈ {0, 1}

4: end for
5: return −

∑p
z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j · KSz,i,j

- Var(Err(c)) ≤ R2Var(Err(c)) + (n+ 1)R22−2(n+1) + p(n+ 1)ϑKS (average case),
where AKS and ϑKS = γ2 are respectively the amplitude and the variance of the
error of KS.

Sample Packing and Sample Extraction. A TRLWE message is a polyno-
mial with N coefficients, which can be viewed as N slots over T. It is easy to
homomorphically extract a coefficient as a scalar TLWE sample. To that end,
we will use the following convention in the rest of the paper: for all n = kN ,
a binary vector K ∈ Bn can be interpreted as a TLWE key, or alternatively as
a TRLWE key K ∈ BN [X]k having the same sequence of coefficients. Namely,

Ki is the polynomial
∑N−1
j=0 KN(i−1)+j+1X

j . In this case, we say that K is the
TRLWE interpretation of K, and K is the TLWE interpretation of K.

Given a TRLWE sample c = (a, b) ∈ TRLWEK(µ) and a position p ∈
[0, N − 1], we call SampleExtractp(c) the TLWE sample (a, b) where b = bp
and aN(i−1)+j+1 is the (p − j)-th coefficient of ai (using the N-antiperiodic in-
dexes). This extracted sample encodes the p-th coefficient µp with at most the
same noise variance or amplitude as c. In the rest of the paper, we will simply
write SampleExtract(c) when p = 0. In the next Section, we will show how the
KeySwitching and the SampleExtract are used to efficiently pack, unpack and
move data across the slots, and how it differs from usual packing techniques.

2.3 Gate bootstrapping overview

This lemma on the evaluation of the CMux-gate extends Thm 5.1, Thm 5.2 in [12]
from the message space {0, 1/2} to TN [X]:

Lemma 2.7 (CMux Gate). Let d1,d0 be TRLWE samples and let C ∈
TRGSWs({0, 1}). Then, msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0). And
we have ‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞ , ‖Err(d1)‖∞) + η(C),
where η(C) = (k+ 1)`Nβ ‖Err(C)‖∞+ (kN + 1)ε. Furthermore, under Assump-
tion 2.4, we have: Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1)))+
ϑ(C), where ϑ(C) = (k + 1)`Nβ2Var(Err(C)) + (kN + 1)ε2.

The proof is the same as for Thm 5.1 and Thm 5.2 in [12] because the noise
of the output does not depend on the value of the TRLWE message.

10

Blind rotate In the following, we give faster sub-routine for the main loop of
Algorithm 3 in [12]. The improvement consists in a new CMux formula in the
for loop of the algorithm 3 instead of the formula in algorithm 3 of [12]. The
BlindRotate algorithm multiplies the polynomial encrypted in the input TRLWE
ciphertext by an encrypted power of X. Theorem 2.8 follows from the fact that
algorithm 3 calls p times the CMux evaluation from Lemma 2.7.

Algorithm 3 BlindRotate

Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p+ 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ
2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K

Output: A TRLWE sample of X−ρ.v where ρ = b−
∑p
i=1 si.ai mod 2N with key K

3: ACC← X−b • c
4: for i = 1 to p
5: ACC← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

Theorem 2.8. Let H ∈M(k+1)`,k+1(TN [X]) the gadget matrix and DecH,β,ε its
efficient approximate gadget decomposition algorithm with quality β and preci-
sion ε defining TRLWE and TRGSW parameters. Let α ∈ R≥0 be a standard
deviation, K ∈ Bn be a TLWE secret key and K ∈ BN [X]k be its TRLWE
interpretation. Given one sample c ∈ TRLWEK(v) with v ∈ TN [X], p + 1
integers a1, . . . , ap and b ∈ Z/2NZ, and p TRGSW ciphertexts C1, . . . , Cp,
where each Ci ∈ TRGSWK,α(si) for si ∈ B. Algorithm 3 outputs a sample
ACC ∈ TRLWEK(X−ρ · v) where ρ = b−

∑p
i=1 siai such that

- ‖Err(ACC)‖∞ ≤ ‖Err(c)‖∞ + p(k + 1)`NβAC + p(1 + kN)ε (worst case),
- Var(Err(ACC)) ≤ Var(Err(c)) + p(k + 1)`Nβ2ϑC + p(1 + kN)ε2 (average case),
where ϑC = α2 and AC are the variance and amplitudes of Err(Ci).

We define BlindRotate(c, (a1, . . . , ap, b), C), the procedure described in Algo-
rithm 3 that outputs the TLWE sample ACC as in Theorem 2.8.

Algorithm 4 Gate Bootstrapping TLWE-to-TLWE (calling algorithm 3)

Input: A constant µ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
), with x ∈ B a

bootstrapping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]],
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · µ1)
1: Let µ = 1

2
µ1 ∈ T (Pick one of the two possible values)

2: Let b̃ = b2N̄be and ãi = b2N̄aie ∈ Z for each i ∈ [[1, n]]

3: Let v := (1+X+ . . .+XN̄−1) ·X
N̄
2 · µ ∈ TN̄ [X]

4: ACC← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))
5: Return (0, µ) + SampleExtract(ACC)

11

Gate Bootstrapping (TLWE-to-TLWE)

Theorem 2.9 (Gate Bootstrapping (TLWE-to-TLWE)). Let
H̄ ∈ M(k̄+1)¯̀,k̄+1(TN̄ [X]) the gadget matrix and DecH̄,β̄,ε̄ its efficient ap-

proximate gadget decomposition algorithm, with quality β̄ and precision ε̄
defining TRLWE and TRGSW parameters. Let K ∈ Bn and K̄ ∈ Bn̄ be two TLWE
secret keys, and K̄ ∈ BN̄ [X]k̄ be the TRLWE interpretation of the key K̄, and
let ᾱ ∈ R≥0 be a standard deviation. Let BKK→K̄,ᾱ be a bootstrapping key,
composed by the n TRGSW encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]].
Given one constant µ1 ∈ T, and one sample c ∈ Tn+1 whose coefficients are
all multiples of 1

2N̄
, Algorithm 4 outputs a TLWE sample c̄ ∈ TLWEK̄(µ) where

µ = 0 iff. |ϕK(c)| < 1
4 , µ = µ1 otherwise and such that:

- ‖Err(c̄)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄ (worst case),
- Var(Err(c̄)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 (average case),
where ĀBK is the amplitude of BK and ϑ̄BK its variance s.t.
Var(Err(BKK→K̄,ᾱ)) = ᾱ2.

Sketch of Proof. Algorithm 4 is almost the same as Algorithm 3 in [12] except
that the main loop has been put in a separate algorithm (Algorithm 3) at line 2.
In addition, the final KeySwitching has been removed which suppresses two terms
in the norm inequality of the error. Note that the output is encrypted with the
same key as the bootstrapping key. Another syntactic difference is that the
input sample is a multiple of 1/2N (which can be achieved by rounding all its
coefficients). Also, a small difference in the way we associate CMux operations
removes a factor 2 in the noise compared to the previous gate bootstrapping
procedure, and it is also faster.

Homomorphic operations (revisited) via Gate Bootstrapping. The
fast bootstrapping of [17] and improved in [4] [12] is presented for Nand gates.
They evaluate a single Nand operation and they refresh the result to make it
usable for the next operations. Other elementary gates are presented: the And,
Or, Xor (and trivially Nor, Xnor, AndNot, etc. since NOT is cheap and noiseless).
The term gate bootstrapping refers to the fact that this fast bootstrapping is
performed after every gate evaluation.

The ternary Mux gate (Mux(c, d0, d1) = c?d1 : d0 = (c ∧ d1) ⊕ ((1 − c) ∧ d0),
for c, d0, d1 ∈ B) is generally expressed as a combination of 3 binary gates. As
already mentioned in [17], we can improve the Mux evaluation by performing
the middle ⊕ as a regular addition before the final KeySwitching. Indeed, this
xor has at most one operand which is true, and at this location, it only affects
a negligible amount of the final noise, and is compensated by the fact that we
save a factor 2 in the gate bootstrapping in the blind rotation from Algorithm 3.
Overall, the ternary Mux gate can be evaluated in FHE mode by evaluating only

Actually, the gate bootstrapping technique can be used even if we do not need to
evaluate a specific gate, but just to refresh noisy ciphertexts.

12

two gate bootstrappings and one public keyswitch. We call this procedure native
MUX, which computes:

– c ∧ d1 via a gate bootstrapping (Alg. 4) of (0,− 1
8) + c+ d1;

– (1− c) ∧ d0 via a gate bootstrapping (Alg. 4) of (0, 1
8)− c+ d0;

– a final keyswitch on the sum (Alg. 1) which dominates the noise.

This native Mux is therefore bootstrappable with the same parameters as
in [12]. More details are given in the full version. In the rest of the paper, when we
compare different homomorphic techniques, we refer to the gate-bootstrapping
mode as the technique consisting in evaluating small circuits expressed with
any binary gates and/or the native Mux, and we use the following experimental
timings (see Section 5):

Gate bootstrapping mode
Pre-bootstrap 1 bit tGB = 13ms
Time per any binary gate (And, Or, Xor, ...) tGB = 13ms
Time per MUX 2tGB = 26ms

3 Leveled Homomorphic circuits

Various packing techniques have already been proposed for homomorphic en-
cryption, for instance the Lagrange embedding in Helib [23, 22], the diagonal
matrices encoding in [27] or the CRT encoding in [2]. The message space is often
a finite ring (e.g. Z/pZ), and the packing function is in general chosen as a ring
isomorphism that preserves the structure of Z/pZN . This way, elementary addi-
tions or products can be performed simultaneously on N independent slots, and
thus, packing is in general associated to the concept of batching a single oper-
ation on multiple datasets. These techniques has some limitations, especially if
in the whole program, each function is only run on a single dataset, and most of
the slots are unused. This is particularly true in the context of GSW evaluations,
where functions are split into many branching algorithms or automata, that are
each executed only once.

In this paper, packing refers to the canonical coefficients embedding func-
tion, that maps N Scalar-TLWE messages µ0, . . . , µN−1 ∈ T into a single TRLWE

message µ(X) =
∑N−1
i=0 µiX

i. This function is a Z-module isomorphism. Mes-
sages can be homomorphically unpacked from any slot using the (noiseless)
SampleExtract procedure. Reciprocally, we can repack, move data across the
slots, or clear some slots by using our public functional key switching from Al-
gorithm 1 to evaluate respectively the canonical coefficient embedding function
(i.e. the identity), a permutation, or a projection. Since these functions are 1-
lipschitzian, by theorem 2.5, these keyswitch operations only induce a linear
noise overhead. It is arguably more straightforward than the permutation net-
work technique used in Helib. But as in [2, 10, 15], our technique relies on a

13

circular security assumption, even in the leveled mode since our keyswitching
key encrypts its own key bits.

We now analyse how packing can speed-up TGSW leveled computations, first
for lookup tables or arbitrary functions, and then for most arithmetic functions.

3.1 Arbitrary functions and Look-Up Tables

The first class of functions that we analyse are arbitrary functions f : Bd → Ts.
Such functions can be expressed with a Look-Up Table (LUT), containing a list
of 2d input values (each one composed by d bits) and corresponding LUT values
for the s sub-functions (1 element in T per sub-function fj).

In order to compute f(x), where x =
∑d−1
i=0 xi2

i is a d-bit integer, the classical
evaluation of such function, as proposed in [8, 12] consists in evaluating the s
subfunctions separately, and each of them is a binary decision tree composed
by 2d − 1 CMux gates. The total complexity of the classical evaluation requires
therefore to execute about s · 2d CMux gates. Let’s call oj = fj(x) ∈ T the j-
th output of f(x), for j = 0, . . . , s − 1. Figure 1 summarizes the idea of the
computation of oj .

In this section we present two techniques, that we call horizontal and vertical
packing, that can be used to improve the evaluation of a LUT.

Horizontal packing corresponds exactly to batching. In fact, it exploits the
fact that the s subfunctions evaluate the same CMux tree with the same inputs
on different data, which are the s truth tables. For each of the 2d possible input
values, we pack the LUT values of the s sub-functions in the first s slots of a
single TRLWE ciphertext (the remaining N − s are unused). By using a single
2d size CMux tree to select the right ciphertext and obtain the s slots all at once,
which is overall s times faster than the classical evaluation. Our vertical packing
is very different from the batching technique. The basic idea is to pack several
LUT values of a single sub-function in the same ciphertext, and to use both
CMux and blind rotations to extract the desired value. Unlike batching, this can
also speed up functions that have only a single bit of output. In the following
we detail these two techniques.

In order to evaluate f(x), the total amount of homomorphic CMux gates to be
evaluated is s(2d−1). If the function f is public, trivial samples of the LUT values
σj,0, . . . , σj,N−1 are used as inputs in the CMux gates. If f is private, the LUT
values σj,0, . . . , σj,N−1 are given encrypted. An analysis of the noise propagation
in the binary decision CMux tree was already given in [19] and [12].

Horizontal Packing The idea of the Horizontal Packing is to evaluate all the
outputs of the function f together, instead of evaluating all the fj separately.
This is possible by using TRLWE samples as the message space is TN [X]. In
fact, we could encrypt up to N LUT values σj,h (for a fixed h ∈ [[0, 2d − 1]]) per

Circular security assumption could still be avoided in leveled mode if we accept to
work with many keys.

14

x0 . . . xd−1 f0 . . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0 σj,0

1 . . . 0 σ0,1 . . . σs−1,1 σj,1

0 . . . 0 σ0,2 . . . σs−1,2 σj,2

1 . . . 0 σ0,3 . . . σs−1,3 σj,3

...
.

...
...

...
...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4 σj,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3 σj,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2 σj,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1 σj,2d−1

0

1

0

1

0

1

0

1

0

1

0

1

. . . 0

1
oj

fj x0 x1 . . . xd−1

Fig. 1. LUT with CMux tree - Intuitively, the horizontal rectangle encircles the bits
packed in the horizontal packing, while the vertical rectangle encircles the bits packed
in the the vertical packing. The dashed square represents the packing in the case where
the two techniques are mixed. The right part of the figure represents the evaluation of
the sub-function fj on x =

∑d−1
i=0 xi2

i via a CMux binary decision tree.

TRLWE sample and evaluate the binary decision tree as described before. The
number of CMux gates to evaluate is d sN e(2

d − 1). This technique is optimal if
the size s of the output is a multiple of N . Unfortunately, s is in general ≤ N ,
the number of gates to evaluate remains 2d − 1, which is only s times smaller
than the non-packed approach, and is not advantageous if s is small. Lemma 3.1
specifies the noise propagation and it follows immediately from lemma 2.7 and
from the construction of the binary decision CMux tree, which has depth d.

Lemma 3.1 (Horizontal Packing). Let d0, . . . ,d2d−1 be TRLWE samples
such that dh ∈ TRLWEK(

∑s
j=0 σj,hX

j) for h ∈ [[0, 2d − 1]]. Here the σj,h are

the LUT values relative to an arbitrary function f : Bd → Ts. Let C0, . . . , Cd−1

be TRGSW samples, such that Ci ∈ TRGSWK(xi) with xi ∈ B (for i ∈ [[0, d−1]]),

and x =
∑d−1
i=0 xi2

i. Let d be the TRLWE sample output by the f evaluation of
the binary decision CMux tree for the LUT (described in figure 1). Then, using
the same notations as in lemma 2.7 and setting msg(d) = f(x):
- ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),
- Var(Err(d)) ≤ ϑTRLWE + d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case),
where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
of the TRLWE samples ant the TRGSW samples respectively and ϑTRLWE and
ϑTRGSW are upper bounds of their variances.

The TRLWE samples can be trivial samples, in the case where the function f and
its LUT are public.

15

Algorithm 5 Vertical Packing LUT of fj : Bd → T (calling algorithm 3)

Input: A list of 2d

N
TRLWE samples dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i) for p ∈ [[0, 2d

N
−

1]], a list of d TRGSW samples Ci ∈ TRGSWK(xi), with xi ∈ B and i ∈ [[0, d− 1]],
Output: A TLWE sample c ∈ TLWEK(oj = fj(x)), with x =

∑d−1
i=0 xi2

i

1: Evaluate the binary decision CMux tree of depth d − δ, with TRLWE inputs
d0, . . . ,d 2d

N
−1

and TRGSW inputs Cδ, . . . , Cd−1, and output a TRLWE sample d

2: d← BlindRotate(d, (20, . . . , 2δ−1, 0), (C0, . . . , Cδ−1))
3: Return c = SampleExtract(d)

Vertical Packing In order to improve the evaluation of the LUT, we propose
a second optimization called Vertical Packing. As for the horizontal packing we
use the TRLWE encryption to encode N values at the same time. But now,
instead of packing the LUT values σj,h with respect to a fixed h ∈ [[0, 2d − 1]]
i.e. “horizontally”, we pack N values σj,h “vertically”, with respect to a fixed
j ∈ [[0, s−1]]. Then, instead of just evaluating a full CMux tree, we use a different
approach. If the LUT values are packed in boxes, our technique first uses a packed
CMux tree to select the right box, and then, a blind rotation (Algorithm 3) to
find the element inside the box.

We now explain how to evaluate the function f , or just one of its sub-functions
fj , on a fixed input x =

∑d−1
i=0 xi2

i. We assume we know the LUT associated to
fj as in figure 1. For retrieving the output of fj(x), we just have to return the
LUT value σj,x in position x.

Let δ = log2(N). We analyse the general case where 2d is a multiple of
N = 2δ. The LUT of fj , which is a column of 2d values, is now packed as 2d/N
TRLWE ciphertexts d0, . . . ,d2d−δ−1, where each dk encodes N consecutive LUT
values σj,kN+0, . . . , σj,kN+N−1. To retrieve fj(x), we first need to select the block
that contains σj,x. This block has the index p = bx/Nc, whose bits are the d− δ
most significant bits of x. Since the TRGSW encryption of these bits are among
our inputs, one can use a CMux tree to select this block dp. Then, σj,x is the ρ-th

coefficient of the message of dp where ρ = x mod N =
∑δ−1
i=0 xi2

i. The bits of ρ
are the δ least significant bits of x, which are also available as TRGSW ciphertexts
in our inputs. We can therefore use a blind rotation (Alg. 3) to homomorphically
multiply dp by X−ρ, which brings the coefficient σj,x in position 0, and finally,
we extract it with a SampleExtract. Alg. 5 details the evaluation of fj(x).

The entire cost of the evaluation of fj(x) with algorithm 5 consists in 2d

N −
1 CMux gates and a single blind rotation, which corresponds to δ CMux gates.
Overall, we get a speed-up by a factor N on the evaluation of each partial
function, so a factor N in total.

Lemma 3.2 (Vertical Packing LUT of fj). Let fj : Bd → T be a sub-
function of the arbitrary function f , with LUT values σj,0, . . . , σj,2d−1. Let

d0, . . . ,d 2d

N −1
be TRLWE samples, such that dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i)

16

for p ∈ [[0, 2d

N − 1]]. Let C0, . . . , Cd−1 be TRGSW samples, such that Ci ∈
TRGSWK(xi), with xi ∈ B and i ∈ [[0, d− 1]].

Then algorithm 5 outputs a TLWE sample c such that msg(c) = fj(x) = oj
where x =

∑d−1
i=0 xi2

i and using the same notations as in 2.7 and 2.8, we have:
- ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (1 + kN)ε) (worst case),
- Var(Err(d)) ≤ ϑTRLWE + d · ((k + 1)`Nβ2ϑTRGSW + (1 + kN)ε2) (average case),
where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
in the TRLWE samples ant the TRGSW samples respectively, while ϑTRLWE and
ϑTRGSW are upper bounds of the variances.

Proof. (Sketch) The proof follows immediately from the results of lemma 2.7
and theorem 2.8, and from the construction of the binary decision CMux tree. In
particular, the first CMux tree has depth (d− δ) and the blind rotation evaluates
δ CMux gates, which brings a total factor d in the depth. As the CMux depth is
the same as in horizontal packing, the noise propagation matches too.

Remark 1. As previously mentioned, the horizontal and vertical packing tech-
niques can be mixed together to improve the evaluation of f in the case where
s and d are both small, i.e. the previous two methodology cannot be applied
separately but we have 2d · s > N . In particular, if we pack s = x coefficients
horizontally and y = N/x coefficients vertically, we need d2d/ye − 1 CMux gates
plus one vertical packing LUT evaluation in order to evaluate f , which is equiv-
alent to log2(y) CMux evaluations. The result is composed of the first x TLWE
samples extracted.

3.2 Arithmetic operations via Weighted Automata

In [12], the arithmetic operations were evaluated via deterministic finite au-
tomata using CMux gates. It was made possible thanks to the fact that the mes-
sages were binary. In this paper, the samples on which we perform the arith-
metic operations pack several torus values together. A more powerful tool is thus
needed to manage the evaluations in an efficient way. Deteministic weighted fi-
nite automata (det-WFA) are deterministic finite automata where each transi-
tion contains an additional weight information. By reading a word, the outcome
of a det-WFA is the sum of all weights encountered along the path (here, we
work with an additive group), whereas the outcome of a deterministic finite
automata (DFA) is just a boolean that states whether the destination state is
accepting. The weights of a det-WFA can be seen as a memory that stores the
bits of the partial result, all along the evaluation path. Let’s take for example
the evaluation of the MAX circuit, that takes in input two d-bit integers and
returns the maximal value between them. With DFA, to retrieve all the d bits
of the result we need d different automata, for a total of O(d2) transitions. By

If the sub-function fj and its LUT are public, the LUT values σj,0, . . . , σj,2d−1 can

be given in clear. This means that the TRLWE samples dp, for p ∈ [[0, 2d

N
− 1]] are

given as trivial TRLWE samples dp ← (0,
∑N−1
i=0 σj,pN+iX

i) in input to algorithm 5.

17

introducing the weights, all the bits of the result are given in one pass after only
O(d) transitions. To our knowledge, our paper is the first one introducing this
tool on the FHE context. In this section, we detail the use of det-WFA to evalu-
ate some arithmetic functions largely used in applications, such as addition (and
multi-addition), multiplication, squaring, comparison and max, etc. We refer to
[9] and [16] for further details on the theory of weighted automata.

Definition 3.3 (Deterministic weighted finite automata (det-WFA)).
A deterministic weighted finite automata (det-WFA) over a group (S,⊕) is a
tuple A = (Q, i,Σ, T , F), where Q is a finite set of states, i is the initial state,
Σ is the alphabet, T ⊆ Q×Σ×S×Q is the set of transitions and F ⊆ Q is the

set of final states. Every transition itself is a tuple t = q
σ,ν−→ q′ from the state q

to the state q′ by reading the letter σ with weight w(t) equal to ν, and there is at
most one transition per every pair (q, σ).

Let P = (t1, . . . , td) be a path, with tj = qj−1
σj ,νj−→ qj . The word σ =

σ1 . . . σd ∈ Σd induced by P is accepted by the det-WFA A if q0 = i and qd ∈ F .
The weight w(σ) of a word σ is equal to

⊕d
j=1 w(tj), where the w(tj) are all

the weights of the transitions in P : σ is called the label of P . Note that every
label induces a single path (i.e. there is only one possible path per word).

Remark 2. In our applications, we fix the alphabet Σ = B. Definition 3.3 re-
straints the WFA to the deterministic (the non-deterministic case is not sup-
ported), complete and universally accepting case (i.e all the words are ac-
cepted). In the general case, the additive group would be replaced by a semi-ring
(S,⊕,⊗, 0, 1). In the rest of the paper we set (S,⊕) as (TN [X],+).

Theorem 3.4 (Evaluation of det-WFA). Let A = (Q, i,B, T , F) be a det-
WFA with weights in (TN [X],+), and let |Q| denote the total number of
states. Let C0, . . . , Cd−1 be d valid TRGSWK samples of the bits of a word
σ = σ0 . . . σd−1. By evaluating at most d · |Q| CMux gates, we output a TRLWE
sample d that encrypts the weight w(σ), such that (using the same notations as
in lemma 2.7)
- ‖Err(d)‖∞ ≤ d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),
- Var(Err(d)) ≤ d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case),
where ATRGSW is an upper bound on the infinite norm of the error in the TRGSW
samples and ϑTRGSW is an upper bound of their variance. Moreover, if all the
words connecting the initial state to a fixed state q ∈ Q have the same length,
then the upper bound on the number of CMux to evaluate decreases to |Q|.

Proof. (Sketch) This theorem generalizes theorem 5.4 of [12] for det-WFA. The
automaton is still evaluated from the last letter σd−1 to the first one σ0, using one
TRLWE ciphertext cj,q per position j ∈ [[0, d−1]] in the word and per state q ∈ Q.
Before reading a letter, all the TRLWE samples cd,q, for q ∈ Q, are initialized

to zero. When processing the j-th letter σj , each pair of transitions q
0,ν0−→ q0

and q
1,ν1−→ q1 is evaluated as cj,q = CMux(Cj , cj+1,q1 + (0, ν1), cj+1,q0 + (0, ν0)).

18

The final result is c0,i, which encodes w(σ) by induction on the CMux graph.
Since translations are noiseless, the output noise corresponds to a depth-d of
CMux. Like in [12], the last condition implies that only |Q| of the d|Q| CMux are
accessible and need to be evaluated. ut

MAX In order to evaluate the MAX circuit of two d-bit integers, x =
∑d−1
i=0 xi2

i

and y =
∑d−1
i=0 yi2

i, we construct a det-WFA that takes in input all the bits
xd−1, . . . , x0 of x and yd−1, . . . , y0 of y, and outputs the maximal value between
them. The idea is to enumerate the xi and yi, starting from the most significant
bits down to the least significant ones. The det-WFA described in Figure 2 has
3 principal states (A, B, E) and 4 intermediary states ((A), (B), (E, 1), (E, 0)),
which keeps track of which number is the maximum, and in case of equality
what is the last value of xi. A weight + 1

2X
i is added on all the transitions that

reads the digit 1 from the maximum. Overall, the next lemma, which is a direct
consequence of Theorem 3.4, shows that the Max can be computed by evaluating
only 5d CMux gates, instead of Θ(d2) with classical deterministic automata.

· · ·

A

E

B

(A)

(E, 0)

(E, 1)

(B)

A

E

B

· · ·

xi yi

1
0

1,+ 1
2X

i

0

1,+ 1
2X

i

0

1,+ 1
2X

i

0

1
0

0

1

1,+
1
2
X
i

0

Fig. 2. Max: det-WFA - The states A and (A) mean that y is the maximal value, the
states B and (B) mean that x is the maximal value, and finally, the states E, (E, 1)
and (E, 0) mean that x and y are equals on the most significant bits. If the current
state is A or B, the following state will stay the same. The initial state is E. If the
current state is E, after reading xi there are two possible intermediate states: (E, 1) if
xi = 1 and (E, 0) if xi = 0. After reading the value of yi, the 3 possible states A, B
and E are possible. The det-WFA is repeated as many times as the bit length of the
integers evaluated and the weights are given in clear.

Remark 3. In practice, to evaluate the MAX function, we convert the det-WFA
in a circuit that counts 5d CMux gates. Roughly speaking, we have to read the
automata in the reverse. We initialize 5 states A,B,E0, E1, E as null TRLWE
samples. Then, for i from d− 1 to 0, we update the states as follows:

E0 := CMux(Cyi , A+ (0, 1
2X

i), E);

E1 := CMux(Cyi , E,B);

A := CMux(Cyi , A+ (0, 1
2X

i), A);

E := CMux(Cxi , E1 + (0, 1
2X

i), E0);

B := CMux(Cxi , B + (0, 1
2X

i), B).

19

Here the Cxi and Cyi are TRGSW encryptions of the bits xi and yi respectively,
and they are the inputs. The output of the evaluation is the TRLWE sample E,
which contains the maximal value.

Lemma 3.5 (Evaluation of Max det-WFA). Let A be the det-WFA of the
Max, described in Figure 2. Let Cx0 , . . . , C

x
d−1, C

y
0 , . . . , C

y
d−1 be TRGSWK samples

of the bits of x and y respectively. By evaluating 5d CMux gates (depth 2d), the
Max det-WFA outputs a TRLWE sample d encrypting the maximal value between
x and y and (with same notations as in lemma 2.7)
- ‖Err(d)‖∞ ≤ 2d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case);
- Var(Err(d)) ≤ 2d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case).
Here ATRGSW and ϑTRGSW are upper bounds of the amplitude and of the variance
of the errors in the TRGSW samples.

Multiplication For the multiplication we use the same approach and we con-
struct a det-WFA which maps the schoolbook multiplication. We illustrate the
construction on the example of the multiplication between two 2-bits integers
x = x1x0 and y = y1y0. After an initial step of bit by bit multiplication, a
multi-addition (shifted of one place on the left for every line) is performed. The
bits of the final result are computed as the sum of each column with carry.

The det-WFA computes the multiplication by keeping track of the partial
sum of each column in the states, and by using the transitions to update these
sums. For the multiplication of 2-bits integers, the automaton (described in figure
3) has 6 main states (i, c0, c10, c11, c20, c21), plus 14 intermediary states that
store the last bit read (noted with capital letters and parenthesis). The value of
the i-th output bit is put in a weight on the last transition of each column.

y1 y0

× x1 x0

x0y1
2

x0y0
1

+ x1y1
4

x1y0
3

m3 m2 m1 m0

i

(A1)

(A0) c0

(B1)

(B0)

(C1)

(C0)

(D11)

(D10)

(D01)

(D00)

c11

c10

(E11)

(E10)

(E01)

(E00)

c21

c20

1

0

1,+ 1
2

0

1
0

1

0

1

0

1
0

1

0

1

0

10,+
1
2 X0/1,+

1
2 X

1,+ 1
2 X
0

1
0

1

0

1

0

1,+ 1
2 X 3

0,+
1
2 X

20/1,+
1

2 X
21,+ 1

2 X 2

0
1
0

x0 y0 x0 y1 x1 y0 x1 y1

Fig. 3. Schoolbook 2-bits multiplication and corresponding det-WFA

20

For the generic multiplication of two d-bits integers, we can upper bound
the number of states by 4d3, instead of Θ(d4) with one classical automata per
output bit. For a more precise number of states we wrote a C++ program to
eliminate unreachable states and refine the leading coefficient. The depth is 2d2

and the noise evaluation can be easily deducted by previous results. The same
principle can be used to construct the multi-addition, and its det-WFA is
slightly simpler (one transition per bit in the sum instead of two).

3.3 TBSR counter techniques

We now present another design which is specific to the multi-addition (or its
derivatives), but which is faster than the generic construction with weighted
automata. The idea is to build an homomorphic scheme that can represent small
integers, say between 0 and N = 2p, and which is dedicated to only the three
elementary operations used in the multi addition algorithm, namely:
1. Extract any of the bits of the value as a TLWE sample;
2. Increment the value by 1 and
3. Integer division of the value by 2.
We will now explain the basic idea, and then, we will show how to implement it
efficiently on TRLWE ciphertexts.

For j ∈ [0, p = log2(N)] and k, l ∈ Z, we call B
(l)
j,k the j-th bit of k + l

in the little endian signed binary representation. The latter form very simple

binary sequence: B
(0)
0 = (0, 1, 0, 1, ...) is 2-periodic, B

(0)
1 = (0, 0, 1, 1, 0, 0, 1, 1...)

is 4-periodic, more generally, for all j ∈ [0, p] and l ∈ Z, B
(l)
j is 2j-antiperiodic,

and is the left shift of B
(0)
j by l positions. Therefore, it suffices to have 2j ≤ N

consecutive values of the sequence to (blindly) deduce all the remaining bits.

And most importantly, for each integer k ∈ Z, (B
(l)
0,k, B

(l)
1,k, ..., B

(l)
p,k) is the (little

endian signed) binary representation of l + k mod 2N . We now suppose that
an integer l in [0, N − 1] is represented by its Bit Sequence Representation,

defined as BSR(l) = [B
(l)
0 , . . . , B

(l)
p]. And we see how to compute BSR(l + 1)

and BSR(bl/2c) using only copy and negations operations on bits at a fixed
position which does not depend on l (blind computation). Then, we will see how
to represent these operations homomorphically on TRLWE ciphertexts.

Increment: Let U = [u0, . . . , up] be the BSR of some unknown number l ∈
[0, N − 1]. Our goal is to compute V = [v0, . . . , vp] which is the BSR of l + 1.
Again, we recall that it suffices to define the sequence vi on N consecutive values,
the rest is deduced by periodicity. To map the increment operation, all we need
to do is shifting the sequences by 1 position: vj,k := uj,k+1 for all k ∈ [0, N − 1].

Indeed, this operation transforms each B
(l)
j,k into B

(l)
j,k+1 = B

(l+1)
j,k , and the output

V is the BSR of l + 1.
Integer division by two: Let U = [u0, . . . , up] be the BSR of some unknown

number l ∈ [0, N − 1]. Our goal is to compute V = [v0, . . . , vp] which is the BSR
of b l2c. First, we note that the integer division by 2 corresponds to a right shift
over the bits. Thus for j ∈ [0, p−1] and k ∈ N, we can set vj,k = uj+1,2k. Indeed,

21

r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

r0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

↓ ·X−5 ↓ πdiv2

r0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

r′0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r′1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

r′2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

r′3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

Fig. 4. TBSR - example of addition +5 and division by 2.

uj+1,2k is the j+1-th bit of l+2k is the j-th bit of its half bl/2c+k, which is our

desired vj,k = B
(bl/2c)
j,k . This is unfortunately not enough to reconstruct the last

sequence vp, since we have no information on the p + 1-th bits in U . However,
in our case, we can reconstruct this last sequence directly. First, the numbers
b l2c+ k for k ∈ [0, N/2− 1] are all < N , so we can blindly set the corresponding
vp,k = 0. Then, we just need to note that (up,0, . . . , up,N−1) is N − l times 0
followed by l times 1, and our target (vp,N/2, . . . , vp,N−1) must consist N/2 − l
times 0 followed by bl/2c times 1. Therefore, our target can be filled with the
even positions (up,0, up,2, . . . , up,N−2). To summarize, division by 2 corresponds
to the following blind transformation:


vj,k = uj+1,2k for j ∈ [0, p− 1], k ∈ [0, N − 1]
vp,k = 0 for k ∈ [0, N2 − 1]
vp,N/2+k = up,2k for k ∈ [0, N2 − 1]

We now explain how we can encode these BSR sequences on TRLWE cipher-
texts, considering that all the coefficients need to be in the torus rather than
in B, and that we need to encode sequences that are either N -periodic or N -
antiperiodic. Furthermore, since the cyclic shift of coefficients is heavily used in
the increment operation, we would like to make it correspond to the multiplica-
tion by X, which has a similar behaviour on coefficients of torus polynomials.
Therefore, this is our basic encoding of the BSR sequences: Let U = [u0, . . . , up]
be the BSR of some unknown number l ∈ [0, N − 1], For j ∈ [0, p− 1], we repre-

sent uj with the polynomial µi =
∑N−1
k=0

1
2uj,kX

k, and we represent the last up

with the polynomial µp =
∑N−1
k=0 (1

2up,k −
1
4)Xk. This simple rescaling between

the bit representation U and the torus representation M = [µ0, . . . , µp] is bijec-
tive. Using this encoding, the integer division transformation presented above
immediately rewrites into this affine function, which transforms the coefficients

22

(µj,k)j∈[1,p],k∈[0,2,...,2N−2] ∈ TpN into (µ′0, . . . , µ
′
p) as follow:

πdiv2 :


µ′j,k = µj+1,2k for j ∈ [0, p− 2], k ∈ [0, N − 1]

µ′p−1,k = µp,2k + 1
4 for k ∈ [0, N − 1]

µ′p,k = − 1
4 for k ∈ [0, N2 − 1]

µ′p,N/2+k = µp,2k for k ∈ [0, N2 − 1]

Finally, we call TBSR ciphertext of an unknown integer l ∈ [0, N−1] a vector
C = [c0, ..., cp] of TRLWE ciphertexts of message [µ0, . . . , µp].

Definition 3.6 (TBSR encryption).

– Params and keys: TRLWE parameters N with secret key K ∈ BN [X], and a
circular-secure keyswitching key KSK→K,γ from K to itself, noted just KS.

– TBSRSet(l): return a vector of trivial TRLWE ciphertexts encoding the torus

representation of [B
(l)
0 , . . . , B

(l)
p].

– TBSRBitExtractj(C): Return SampleExtract0(cj) when j < p.
– TBSRIncrement(C): Return X−1.C.
– TBSRDiv2(C): Use KS to evaluate πdiv2 homomorphically on C. Since it

is a 1-lipschitzian affine function, this means: apply the public functional
KeySswitch to KS, the linear part of πdiv2 and C, and then, translate the
result by the constant part of πdiv2.

Theorem 3.7 (TBSR operations). Let N ,K, and KS be TBSR parame-
ters..., and C a TBSR ciphertext of l with noise amplitude η (or noise variance
ϑ). Then for j ∈ [0, p − 1], TBSRBitExtractj(C) is a LWEK ciphertext of the
j-th bit of l, over the message space {0, 1

2}, with noise amplitude (resp. variance)
≤ η (resp. ≤ ϑ). If l ≤ N − 2, TBSRIncrement(C) is a TBSR ciphertext of l+ 1
with noise amplitude (resp. variance) ≤ η (resp. ≤ ϑ). C ′ = TBSRDiv2(C) is a
TBSR ciphertext of bl/2c such that:
- ‖Err(C ′)‖∞ ≤ A+N2tAKS +N2−(t+1) (worst-case);
- Var(Err(C ′)) ≤ ϑ+N2tϑKS +N2−2(t+1) (average case).

Proof. (sketch) Correctness has already been discussed, the noise corresponds
to the application of a public keyswitch on the same key: with n = N .

Using the TBSR counter for a multi-addition or a multiplication.

The TBSR counter allows to perform a multi-addition or multiplication using the
school-book elementary algorithms. This leads to a leveled multiplication circuit
with KeySwitching which is quadratic instead of cubic with weighted automata.

Lemma 3.8. Let N ,Bg,` and KS be TBSR and TRGSW parameters with the
same key K, We suppose that each TBSR ciphertext has p ≤ 1+log(N) TRLWE

For the p-th bit, one would return SampleExtract(cp) + (0, 1
4
), but it is always 0 if

l ∈ [0, N − 1].

23

ciphertexts. and let (Ai) and (Bi) for i ∈ [0, d − 1] be TRGSW-encryptions of
the bits of two d-bits integers (little endian), with the same noise amplitude AA
(resp. variance ϑA).

Then, there exists an algorithm (see the full version for more details) that
computes all the bits of the product within 2d2p CMux and (2d − 2)p public
keyswitch, and the output ciphertexts satisfy:
- ‖Err(Out)‖∞ ≤ 2d2((k+1)`NβAA+(kN+1)ε)+(2d−2)(N2tAKS+N2−(t+1));
- Var(Err(Out)) ≤ 2d2((k + 1)`Nβ2ϑA + (kN + 1)ε2) + (2d − 2)(N2tϑKS +
N2−2(t+1)).

4 Combining leveled with bootstrapping

In the previous sections, we presented efficient leveled algorithms for some
arithmetic operations, but the input and output have different types (e.g.
TLWE/TRGSW) and we can’t compose these operations, like in a usual algo-
rithm. In fully homomorphic mode, connecting the two becomes possible if we
have an efficient bootstrapping between TLWE and TRGSW ciphertexts. Fast
bootstrapping procedures have been proposed in [17, 12], and the external prod-
uct 2.3 from [12, 7] has contributed to accelerate leveled operations. Unfortu-
nately, these bootstrapping cannot output GSW ciphertexts. Previous solutions
proposed in [21, 1, 19] based on the internal product are not practical. In this
section, we propose an efficient technique to convert back TLWE ciphertexts to
TRGSW, that runs in 137ms. We call it circuit bootstrapping.

Our goal is to convert a TLWE sample with large noise amplitude over some
binary message space (e.g amplitude 1

4 over {0, 1
2}), into a TRGSW sample with

a low noise amplitude < 2−20 over the integer message space {0, 1}.
In all previous constructions, the TLWE decryption consists in a circuit,

which is then evaluated using the internal addition and multiplication laws over
TRGSW ciphertexts. The target TRGSW ciphertext is thus the result of an arith-
metic expression over TRGSW ciphertexts. Instead, we propose a more efficient
technique, which reconstructs the target directly from its very sparse internal
structure. Namely, a TRGSW ciphertext of a message µ ∈ {0, 1} is a vector of
(k+1)` TRLWE ciphertexts. Each of these TRLWE ciphertexts encrypts the same
message as µhi, where hi is the corresponding line of the gadget matrix H. De-
pending on the position of the row (which can be indexed by u ∈ [1, k + 1] and
j ∈ [1, `]), this message is µ−Ku ·Bg−j where Ku is the u-th polynomial of the
secret key and Kk+1 = −1. So we can use ` times the TLWE-to-TLWE bootstrap-
ping of [12] to obtain a TLWE sample of each message in {µBg−1, . . . , µB−`g }.
Then we use the private key-switching technique to ”multiply” these ciphertexts
by the secret −Ku, to reconstruct the correct message.

4.1 Circuit Bootstrapping (TLWE-to-TRGSW)

Our circuit bootstrapping, detailed in algorithm 6, crosses 3 levels of noise and
encryption. Each level has its own key and parameters set. In order to distin-
guish the different levels, we use an intuitive notation with bars. The upper bar

24

Ring Scalar

Level 2̄ key: K̄

Level 1 key: K key: K

Level 0 key: K

PrivK
S

KSK̄→K
,γ

SampleExtract

K → K

pre-PubKS
K→ K

Bootstrapping

BKK→K̄,ᾱ

Eval
Circuit

Fig. 5. The figure represents the three levels of encryption on which our construction
shifts. The arrows show the operations that can be performed inside each level or how
to move from a level to another. In order to distinguish the objects with respect to
their level, we adopted the intuitive notations “superior bar” for level 2, “no bar” for
level 1 and “under bar” for level 0. We highlight in blue the different stages of the
circuit bootstrapping (whose detailed description is given below).

will be used for level 2 variables, the under bar for the level 0 variables and level
1 variables will remain without any bar. The main difference between the three
levels of encryption is the amount of noise supported. Indeed, the higher the level
is, the smaller is the noise. Level 0 corresponds to ciphertexts with very large
noise (typically, α ≥ 2−11). Level 0 parameters are very small, computations are
almost instantaneous, but only a very limited amount of linear operations are
tolerated. Level 1 corresponds to medium noise (typically, α ≥ 2−30). Cipher-
texts in level 1 have medium size parameters, which allows for relatively fast
operations, and for instance a leveled homomorphic evaluation of a relatively
large automata, with transition timings described in Section 5 of [12]. Level 2
corresponds to ciphertexts with small noise (typically, ᾱ ≥ 2−50). This level
corresponds to the limit of what can be mapped over native 64-bit operations.
Practical values and details are given in section 5.

Our circuit bootstrapping consists in three parts:
–TLWE-to-TLWE Pre-keyswitch The input of the algorithm is a TLWE sam-
ple with a large noise amplitude over the message space {0, 1

2}. Without loss
of generality, it can be keyswitched to a level 0 TLWE ciphertext c = (a, b) ∈
TLWEK,η(µ · 1

2), of a message µ ∈ B with respect to the small secret key K ∈ Bn

and a large standard deviation η ∈ R (typically, η ≤ 2−5 to guaranty correct
decryption with overwhelming probability). This step is standard.
–TLWE-to-TLWE Bootstrapping (algorithm 4): Given a level 2 bootstrapping
key BKK→K̄,ᾱ = (BKi)i∈[[1,n]] where BKi ∈ TRGSWK̄,ᾱ(Ki)), we use ` times the
TLWE-to-TLWE Bootstrapping algorithm (algorithm 4) on c, to obtain ` TLWE
ciphertexts c̄(1), . . . , c̄(`) where c̄(w) ∈ TLWEK̄,η̄(µ · 1

B̄g
w), with respect to the

same level 2 secret key K̄ ∈ Bn̄, and with a fixed noise parameter η̄ ∈ R which
does not depend on the input noise. If the bootstrapping key has a level 2 noise

25

Algorithm 6 Circuit Bootstrapping (calling algorithms 4 and 2)

Input: A level 0 TLWE sample c = (a, b) ∈ TLWEK,η(µ · 1
2
), with µ ∈ B , a boot-

strapping key BKK→K̄,ᾱ = (BKi ∈ TRGSWK̄,ᾱ(Ki))i∈[[1,n]], k + 1 private keyswitch

keys KS
(fu)

K̄→K,γ corresponding to the functions fu(x) = −Ku · x when u ≤ k, and

fk+1(x) = 1 · x.
Output: A level 1 TRGSW sample C ∈ TRGSWK,η(µ)
1: for w = 1 to `
2: c̄(w) ← BootstrappingBK, 1

Bwg

(c)

3: for u = 1 to k + 1
4: c(u,w) = PrivKS(KS(fu), c̄(w))
5: Return C = (c(u,w))1≤u≤k+1,1≤w≤`

ᾱ, we expect the output noise η̄ to remain smaller than level 1 value.
–TLWE-to-TRLWE private key-switching (algorithm 2): Finally, to recon-
struct the final TRGSW ciphertext of µ, we simply need to craft a TRLWE ci-
phertext which has the same phase as µ · hi, for each row of the gadget matrix
H. Since hi contains only a single non-zero constant polynomial in position
u ∈ [1, k+ 1] whose value is 1

Bwg
where w ∈ [1, `], the phase of µ ·hi is µKu · 1

Bwg

where Ku is the u-th term of the key K. If we call fu the (secret) morphism
from T to TN [X] defined by fu(x) = Ku ·x, we just need to apply fu homomor-
phically to the TLWE sample c̄(w) to get the desired TRLWE sample. Since fu is
1-lipschitzian (for the infinity norm), this operation be done with additive noise
overhead via the private functional keyswitch (Alg.2).

Theorem 4.1 (Circuit Bootstrapping Theorem). Let n, α,N, k,Bg, `,H, ε
denote TRLWE/TRGSW level 1 parameters, and the same variables names with
underbars/upperbars for level 0 and 2 parameters. Let K ∈ Bn, K ∈ Bn and K̄ ∈
Bn̄, be a level 0, 1 and 2 TLWE secret keys, and K,K, K̄ their respective TRLWE
interpretation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW
encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. For each u ∈ [[1, k + 1]], let fu

be the morphism from T to TN [X] defined by fu(x) = Ku · x, and KSfu
K̄→K,γ =

(KS
(u)
i,j ∈ TRLWEK,γ((K̄iKu ·2−j)))i∈[[1,n̄]],j∈[[1,t]] be the corresponding private-key-

switching key. Given a level 0 TLWE sample c = (a, b) ∈ TLWEK(µ · 1
2), with

µ ∈ B, the algorithm 6 outputs a level 1 TRGSW sample C ∈ TRGSWK(µ) such
that

– ‖Err(C)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ABK + n(1 + k̄N̄)ε̄+ n̄2−(t+1) + n̄tAKS (worst);
– Var(Err(C)) ≤ n(k̄+1)¯̀N̄ β̄2ϑ̄BK+n(1+k̄N̄)ε̄2+n̄2−2(t+1)+n̄tϑKS (average).

Here ϑ̄BK = ᾱ2 and ABK is the variance and amplitude of Err(BKK→K̄,ᾱ), and

ϑKS = γ2 and AKS are the variance and amplitude of Err(KSK̄→K,γ).

Proof. (sketch) The output TRGSW ciphertext is correct, because by construc-
tion, the i-th TRLWE component c(u,w) has the correct message msg(µ ·Hi) =

26

µKu/B
w
g . c(u,w) is obtained by chaining one TLWE-to-TLWE bootstrapping (al-

gorithm 4) with one private key switchings, as in algorithm 2. The values of
maximal amplitude and variance of Err(C) are directly obtained from the partial
results of lemma 2.9 and theorem 2.6. In total, Algorithm 6 performs exactly `
bootstrappings (Algorithm 4), and `(k+1) private key switchings (Algorithm 2).

ut

Comparison with previous bootstrappings for TGSW The circuit boot-
strapping we just described evaluates a quasilinear number of level-2 external
products, and a quasilinear number of level 1 products in the private keyswitch-
ings. With the parameters proposed in the next section, it runs in 0.137 seconds
for a 110-bit security parameter, level 2 operations take 70% of the running time,
and the private keyswitch the remaining 30%.

Our circuit bootstrapping is not the first bootstrapping algorithm that out-
puts a TRGSW ciphertext. Many constructions have previously been proposed
and achieve valid asymptotical complexities, but very few concrete parameters
are proposed. Most of these constructions are recalled in the last section of [19].
In all of them, the bootstrapped ciphertext is obtained as an arithmetic expres-
sion on TRGSW ciphertexts involving linear combinations and internal products.
First, all the schemes based on scalar variants of TRGSW suffer from a slowdown
of a factor at least quadratic in the security parameter, because the products of
small matrices with polynomial coefficients (via FFT) are replaced with large
dense matrix products. Thus, bootstrapping on TGSW variants would require
days of computations, instead of the 0.137 seconds we propose. Now, assuming
that all the bootstrapping uses (Ring) instantiations of TRGSW, the design in [8]
based on the expansion of the decryption circuit via Barrington theorem, as well
as the expression as a minimal deterministic automata of the same function
in [19] require a quadratic number of internal level 2 TRGSW products, which
is much slower than what we propose. Finally, the CRT variant in [1] and [19]
uses only a quasi-linear number of products, but since it uses composition be-
tween automata, these products need to run in level 3 instead of level 2, which
induces a huge slowdown (a factor 240 in our benchs), because elements cannot
be represented on 64-bits native numbers.

5 Comparison and practical parameters

We now explicit the practical parameters for our scheme, and we give the running
time comparison for the evaluation of the homomorphic circuits described before
in LHE and FHE mode (with or without the new optimization techniques).

In [12] the timing for the gate bootstrapping was 52ms. We improved it
to 13ms: a speed up of a factor 2 is due to the dedicated assembly FFT for
XN + 1 in double precision. An additional speed ups (by a factor 1.5) is due
to a new choice of parameters, for the same security level (in particular the `
TRGSW parameter is reduced to 2 instead of 3). Finally, we replaced the core of
the gate bootstrapping with the simpler CMux and blindRotate (Algorithm 3)

27

described in Section 2, which gives the last 1.33x speed-up. For the same reason,
the external product is now executed in 34µs. We added these optimizations to
the public repository of the TFHE library [14]. A experimental measurement of
the noise confirmed the average case bounds on the variance, predicted under
the independance assumption.

As a consequence, all binary gates are executed in 13ms, and the native boot-
strapped MUX (also described in Section 2) gate takes 26ms on a 64-bit single
core (i7-4910MQ) at 2.90GHz. Starting from all these considerations, we imple-
mented our circuit bootstrapping as a proof of concept. The code is available
in the experimental repository of TFHE [14]. We perform a Circuit Bootstrap-
ping in 0.137 seconds. One of the main constraints to obtain this performance
is to ensure that all the computations are feasible and correct under 53 bits of
floating point precision, in order to use the fast FFT. This requires to refine the
parameters of the scheme. We verified the accuracy of the FFT with a slower
but exact Karatsuba implementation of the polynomial product.

Concrete Parameters In our three levels, we used the following TRLWE and
TRGSW parameter sets, which have at least 110-bits of security, according to
the security analysis in [12].

Level Minimal noise α n Bg `
0 α = 2−15.33 n = 500 N.A. N.A.
1 α = 2−32.33 n = 1024 Bg = 28 ` = 2
2 ᾱ = 2−45.33 n̄ = 2048 B̄g = 29 ¯̀= 4

Since we assume circular security, we will use only one key per level, and
the following keyswitch parameters (in the leveled setting, the reader is free to
increase the number of keys if he does not wish to assume circularity).

Level t γ Usage
1→ 0 t = 12 γ = 2−14 Circuit Bootstap, Pre-KS
2→ 1 t̄ = 30 γ̄ = 2−31 Circuit Bootstap, Step 4 in Alg. 6
1→ 1 t = 24 γ = 2−24 TBSR

Thus, we get these noise variances in input or in output

Output TLWE Fresh TRGSW in LHE TRGSW Output of CB Bootst. key
ϑ ≤ 2−10,651 ϑ = 2−60 ϑ ≤ 2−47.03 ϑBK = 2−88

And finally, this table summarizes the timings (Core i7-4910MQ laptop),
noises overhead, and maximal depth of all our primitives.

CPU Time Var Noise add max depth
Circuit bootstrap tCB = 137ms N.A. N.A
Fresh CMux tXP = 34µs 2−23.99 16384
CB CMux tXP = 34µs 2−20.86 3466
PubKSTBSR tKS = 180ms 2−23.42 16384

More details on these parameter choices are provided in the full version.

28

Time Comparison With these parameters, we analyse the (single-core) exe-
cution timings for the evaluation of the LUT, MAX and Multiplication in LHE
and FHE mode.

In the LHE mode (left hand side of Fig. 6), all inputs are fresh ciphertexts
(either TRLWE or TRGSW) and we compare the previous versions [12] (without
packing/batching or gate bootstapping) with the new optimizations i.e. horizon-
tal/vertical packing; with weighted automata or with TBSR techniques. In the
FHE mode (right hand side of Fig. 6), all inputs and outputs are TLWE samples
on the {0, 1

2} message space with noise amplitude 1
4 . Each operation starts by

bootstrapping its inputs. We compare the gate-by-gate bootstapping strategy
with the mixed version where we use leveled encryption with circuit bootsrap-
ping. Our goal is to identify which method is better for each of the 6 cases. We
observe that compared to the gate bootstrapping, we obtain a huge speed-up for
the homomorphic evaluation of arbitrary function in both LHE and FHE mode,
in particular, we can evaluate a 8 bits to 1 bit lookup table and bootstrap the
output in just 137ms, or evaluate an arbitrary 8 bits to 8 bits function in 1.096s,
and an arbitrary 16 bits to 8 bits function in 2.192s in FHE mode. For the mul-
tiplication in LHE mode, it is better to use the weighted automata technique
when the number is less than 128 bits, and the TBSR counter after that. In
the FHE mode, the weighted automata becomes faster than gate-bootstrapping
after 4 bits of inputs, then the TBSR optimization becomes faster for > 64 bits
inputs.

Conclusion

In this paper we improved the efficiency of TFHE, by proposing some new pack-
ing techniques. For the first time we use det-WFA in the context of homomorphic
encryption to optimize the evaluation of arithmetic circuits, and we introduced
the TBSR counter. By combining these optimizations, we obtained a significant
timing speed-up and decrease the ciphertext overhead for TLWE and TRGSW
based encryption. We also solved the problem of non universal composability of
TFHE leveled gates, by proposing the efficient circuit bootstrapping that runs
in 134ms; we implemented it in the TFHE project [14].

References

1. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In
Crypto, pages 297–314, 2014.

2. D. Benarroch, Z. Brakerski, and T. Lepoint. Fhe over the integers: Decomposed
and batched in the post-quantum regime. Cryptology ePrint Archive, 2017/065.

3. F. Benhamouda, T. Lepoint, C. Mathieu, and H. Zhou. Optimization of bootstrap-
ping in circuits. In ACM-SIAM, pages 2423–2433, 2017.

4. J. Biasse and L. Ruiz. FHEW with efficient multibit bootstrapping. In LATIN-
CRYPT 2015, pages 119–135, 2015.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

6. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D.Stehlé. Classical hardness
of learning with errors. In Proc. of 45th STOC, pages 575–584. ACM, 2013.

29

Leveled homomorphic encryption Fully homomorphic encryption

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

1.07*10
9

 5 10 15 20 25 30

No packing
Gate Bootstrapping
Horizontal Packing

Vertical Packing

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

1.07*10
9

 5 10 15 20 25 30

Gate Bootstrapping
Circuit Bootstrapping HP
Circuit Bootstrapping VP

(a.) Leveled LUT (d-bits input and s = 8-bits output)

- No packing: s(2d − 1)tXP

- Gate bootst.: s(2d − 1)tGB

- Horizontal Packing (HP): (2d − 1)tXP

- Vertical Packing (VP): s(2d/N − 1 + logN)tXP .

(b.) LUT (d-bits input and s = 8-bits output)

- Gate bootst.: (d + s(2d − 1))tGB

- Circuit bootst. with HP: dtCB + (2d − 1)tXP

- Circuit bootst. with VP: dtCB+s(2d/N−1+logN)tXP .

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

 1 4 16 64 256 1024

No packing
Gate Bootstrapping

Det-WFA

62.50*10
-3

250.00*10
-3

1.00*10
0

4.00*10
0

16.00*10
0

64.00*10
0

256.00*10
0

1.02*10
3

 1 4 16 64 256 1024

Gate Bootstrapping
Circuit Bootstrapping

(c.) Leveled Max (2 inputs of d-bits each)
- No packing: 3(d(d + 1)/2)tXP
- Gate bootst.: 5dtGB
- Det Weighted automata (Det WFA): 5dtXP

(d.) Max (2 inputs of d-bits each)
- Gate bootst.: 7dtGB
- Circuit bootst. with VP: 2dtCB + 5dtXP

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

1.07*10
9

 1 4 16 64 256 1024

No packing
Gate Bootstrapping

Det-WFA
TBSR

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

 1 4 16 64 256 1024

Gate Bootstrapping
Circuit Bootstrapping det-WFA

Circuit Bootstrapping TBSR

(e.) Leveled Multiplication (2 inputs of d-bits each)

- No packing: (d4 + o(d4))tXP
- Gate bootst.: (6d2 − 5d)tGB
- Det WFA: Θ(d3)tXP
(computed by optimization program)

- TBSR: 2d2tXP + (2d − 2)tKS

(f.) Multiplication (2 inputs of d-bits each)

- Gate bootst.: (6d2 − 3d)tGB
- Circuit bootst with Det WFA.: 2dtCB + Θ(d3)tXP
(computed by optimization program)
- Circuit bootst with TBSR:
(computed by optimization program)

Fig. 6. The y coordinate represents the running time in seconds (in logscale) , the x
coordinate represents the number of bits in the input (in logscale for c,d,e,f).

30

7. Z. Brakerski and R. Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In Crypto’2016, volume 9814, pages 190–213, 2016.

8. Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In
ITCS, pages 1–12, 2014.

9. A. L. Buchsbaum, R. Giancarlo, and J. R. Westbrook. On the determinization of
weighted finite automata. SIAM Journal on Computing, 30(5):1502–1531, 2000.

10. J. H. Cheon, J. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun.
Batch fully homomorphic encryption over the integers. In EUROCRYPT 2013.

11. J. H. Cheon and D. Stehlé. Fully homomophic encryption over the integers revis-
ited. In EUROCRYPT 2015, pages 513–536. 2015.

12. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT 2016, pages
3–33. Springer, 2016.

13. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. A homomorphic lwe
based e-voting scheme. In PQ Cryptography, pages 245–265. Springer, 2016.

14. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homo-
morphic encryption library. https://tfhe.github.io/tfhe/, August 2016.

15. J. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryp-
tion over the integers. In PKC 2014, pages 311–328, 2014.

16. M. Droste and P. Gastin. Weighted automata and weighted logics. In Handbook
of weighted automata, pages 175–211. Springer, 2009.

17. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Eurocrypt, pages 617–640, 2015.

18. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
https://eprint.iacr.org/2012/144, 2012.

19. N. Gama, M. Izabachène, P. Q. Nguyen, and X. Xie. Structural lattice reduction:
Generalized worst-case to average-case reductions. (EUROCRYPT 2016) ePrint
Archive, 2014/283.

20. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
21. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto’13.
22. S. Halevi and I. V. Shoup. Helib - an implementation of homomorphic encryption.

https://github.com/shaih/HElib/, September 2014.
23. S. Halevi and V. Shoup. Algorithms in helib. In Crypto’2014, pages 554–571.
24. T. Lepoint. FV-NFLlib: Library implementing the Fan-Vercauteren homomorphic

encryption scheme. https://github.com/CryptoExperts/FV-NFLlib, May 2016.
25. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

errors over rings. In EUROCRYPT, pages 1–23, 2010.
26. M. Paindavoine and B. Vialla. Minimizing the number of bootstrappings in fully

homomorphic encryption. In SAC, pages 25–43, 2015.
27. M. A. R. Hiromasa and T. Okamoto. Packing messages and optimizing bootstrap-

ping in gsw-fhe. In PKC ’15, pages 699–715, 2015.
28. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In STOC, pages 84–93, 2005.
29. SEAL. Simple encrypted arithmetic library. https://sealcrypto.codeplex.com/.
30. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic

encryption over the integers. In Eurocrypt, pages 24–43, 2010.

31

