
Yoyo Tricks with AES

Sondre Rønjom1,2, Navid Ghaedi Bardeh2, Tor Helleseth2,3

1 Nasjonal sikkerhetsmyndighet, Oslo, Norway
2 Department of Informatics, University of Bergen, Norway

3 Forsvarets Forskningsinstitutt (FFI), Norway
firstname.lastname@uib.no

Abstract. In this paper we present new fundamental properties of SPNs.
These properties turn out to be particularly useful in the adaptive chosen
ciphertext/plaintext setting and we show this by introducing for the first
time key-independent yoyo-distinguishers for 3- to 5-rounds of AES. All
of our distinguishers beat previous records and require respectively 3, 4
and 225.8 data and essentially zero computation except for observing dif-
ferences. In addition, we present the first key-independent distinguisher
for 6-rounds AES based on yoyos that preserve impossible zero di↵erences
in plaintexts and ciphertexts. This distinguisher requires an impractical
amount of 2122.83 plaintext/ciphertext pairs and essentially no computa-
tion apart from observing the corresponding di↵erences. We then present
a very favorable key-recovery attack on 5-rounds of AES that requires
only 211.3 data complexity and 231 computational complexity, which as
far as we know is also a new record. All our attacks are in the adaptively
chosen plaintext/ciphertext scenario.
Our distinguishers for AES stem from new and fundamental properties
of generic SPNs, including generic SAS and SASAS, that can be used to
preserve zero di↵erences under the action of exchanging values between
existing ciphertext and plaintext pairs. We provide a simple distinguisher
for 2 generic SP-rounds that requires only 4 adaptively chosen cipher-
texts and no computation on the adversaries side. We then describe a
generic and deterministic yoyo-game for 3 generic SP-rounds which pre-
serves zero di↵erences in the middle but which we are not capable of
exploiting in the generic setting.

Keywords: SPN, AES, Zero-Di↵erences, Secret-key distinguisher, Impossible
Di↵erences, Key-recovery

1 Introduction

Block ciphers are typically designed by iterating an e�ciently implementable
round function many times in the hope that the resulting composition behaves
like a randomly drawn permutation. The designer is typically constrained by
various practical criterion, e.g. security target, implementation boundaries, and
specialised applications, that might lead the designer to introduce symmetries
and structures in the round function as a compromise between e�ciency and

2

security. In the compromise, a round function is iterated enough times to make
sure that any symmetries and structural properties that might exist in the round
function vanish. Thus, a round function is typically designed to increasingly de-
correlate with structure and symmetries after several rounds.

Yoyo game cryptanalysis was introduced by Biham et al. in [1] for crypt-
analysis of 16 rounds of SKIPJACK. The yoyo game, similarly to Boomerang
attacks [2], is based on adaptively making new pairs of plaintexts and ciphertexts
that preserve a certain property inherited from the original pair. The ciphertext
and/or plaintext space can in this case typically be partitioned into subsets of
plaintexts or pairs of plaintexts closed under exchange operations where all pairs
in a set satisfy the same property. A typical situation is that a pair of plaintexts
and/or ciphertexts satisfy a certain zero di↵erence after a few rounds and where
new pairs of ciphertexts and plaintexts that satisfy the same zero di↵erence
can be formed simply by swapping words or bytes between the corresponding
ciphertexts or plaintexts that preserve the same property. This type of crypt-
analysis is typically structural and has previously been particularly successful
on Feistel designs. Recently, Biryukov et. al. [3] used the yoyo game to provide
generic distinguishers against Feistel Networks with secret round functions up
to 7 rounds. Boomerang attacks are quite similar to yoyos and in [4], Biryukov
describes 5- and 6-round Boomerang key-recovery attacks on AES. Other types
of structural attacks relevant in our setting include invariant subspace attacks [5,
6] and subspace trail cryptanalysis [7, 8]. Moreover, one may also note the paper
by Ferguson et al. [9] and its implied result on 5-round AES.

Low data- and computational-complexity distinguishers and key-recovery at-
tacks on round-reduced block ciphers have recently gained renewed interest in
the literature. There are several reasons for this. In one direction cryptanalysis
of block ciphers have focused on maximising the number of rounds that can be
broken without exhausting the full codebook and key space. This often leads to
attacks marginally close to that of pure brute force. These are attacks that typ-
ically have been improved over time based on many years of cryptanalysis. The
most successful attacks often become de-facto standard methods of cryptanalysis
for a particular block cipher and might discourage anyone from pursuing new
directions in cryptanalysis that do not reach the same number of rounds. This
in itself might hinder new breakthroughs, thus it can be important to investi-
gate new promising ideas that might not have reached their full potential yet.
New methods of cryptanalysis that break or distinguish fewer rounds faster and
with lower complexity than established cryptanalysis are therefore interesting
in this process. Many constructions employ reduced round AES as part of their
design. Reduced versions of AES have nice and well-studied properties that can
be favorably as components of larger designs (see for instance Simpira [10]). The
state of the art analysis of low-complexity cryptanalysis of AES was presented in
Bouillaguet et al. [11] and further improved by Derbez et al. [12] using automatic
search tools. When it comes to distinguishers, the best attacks on 3-round AES
are either based on truncated di↵erentials [13] or integral cryptanalysis [14].
While the integral attack needs 28 chosen plaintexts, a truncated di↵erential

3

needs 24.3 texts at the expense of a little more computation. When it comes to
4 rounds of AES, an impossible di↵erential attack requires 216.25 chosen plain-
texts and roughly the same amount of computation. Then at Crypto 2016, Sun
et al. [15] presented the first 5-round key-dependent distinguisher for AES that
was later improved to 298.2 chosen plaintexts with 2107 computations. Later,
at Eurocrypt 2017, Grassi et al. [8] proposed a 5-round key-independent distin-
guisher for 5-rounds AES that requires 232 chosen texts and computational cost
of 235.6 look-ups into memory of size 236 bytes with a 99% probability success
rate.

1.1 Our Contribution

We present for the first time applications of cryptanalysis based on the yoyo
game introduced in [1] to generic Substitution Permutation Networks(SPNs) that
iterate a generic round function A �S where S is a non-linear layer consisting of
at least two concatenated s-boxes and A is a generic a�ne transformation. The
s-boxes and a�ne layers can be all di↵erent. This way it resembles the setting
of SAS and SASAS [16] cryptanalysis.

First we provide a generic framework for the yoyo game on generic SP-
networks. Then we show that distinguishing two generic SP rounds with a yoyo
game requires encryption and decryption of in total one pair of plaintexts and one
pair of ciphertexts respectively and no computational e↵ort on the adversaries
part; the distinguisher is purely structural and immediate. We then provide a
generic framework for analysing 3 rounds generic SPN which seems to be the
maximum possible number of generic rounds achievable with a deterministic
yoyo game and a generic SPN. We then apply our generic results to the most
well-studied block cipher in use today, AES. Since an even number of AES-
rounds can be viewed as a generic SPN with half the number of rounds, our
2- and 3-round generic SPN distinguishers apply directly to 4- and 6-rounds of
AES. We extend the generic distinguishers to cover 3- and 5-rounds AES in a
natural way, including a new secret key recovery for 5 rounds. All of our secret
key distinguishers improve on previously published results both in terms of time
and data complexity.

1.2 Overview of This Paper and Main Results

In Section 2 we analyse generic SPNs formed by iterating a round function con-
sisting of concatenated layers of s-boxes and generic a�ne linear transformations.
In Section 2.1 we describe a simple yoyo distinguisher for two non-secret but
generic SPN rounds that is purely structural and requires only one chosen pair
of plaintexts and one (adaptively) chosen pair of ciphertexts. The distinguisher
involves no computation. In Section 2.2 we describe generic zero di↵erential
properties for 3-round SPN that are preserved in a yoyo game. If the di↵erence
of a pair of plaintexts (or ciphertexts) is zero in particular words in the middle
rounds, then the yoyo game preserves this property and can be used to generate
”infinitely” many new pairs with the exact same zero di↵erence pattern in the

4

middle rounds with probability 1. The current drawback in the generic setting
is that the adversary needs a way to distinguish this condition. In Section 3 we

Table 1. Comparison of key-recovery on 5 rounds of AES

Attack Rounds Data Computation Memory Ref.

MitM 5 8 CP 264 256 [17]

Imp. Polyt. 5 15 CP 270 241 [18]

Integral 5 211 CP 245.7 small [19]

Imp. Di↵. 5 231.5 CP 233 238 [20]

Boomerang 5 239 ACC 239 233 [4]

Yoyo 5 211.3 ACC 231 small Sect. 3.5

Table 2. Secret-Key Distinguishers for AES

Property Rounds Data Cost Key-Independent Ref.

Trun. Di↵. 3 24.3 CP 211.5 XOR X [21, 7]

Integral 3 28 CP 28 XOR X [14]

Yoyo 3 3 ACC 2 XOR X Sect. 3.1

Imp. Di↵. 4 216.25 CP 222.3 M X [20]

Integral 4 232 CP 232 XOR X [14]

Yoyo 4 4 ACC 2 XOR X Sect. 3.2

Struct. Di↵. 5 233 236.6 M X [8]

Imp. Di↵. 5 298.2 CP 2107 M [7]

Integral 5 2128 CC 2128 XOR [15]

Yoyo 5 225.8 ACC 224.8 XOR X Sect. 3.3

Yoyo 6 2122.83 ACC 2121.83 XOR X Sect. 3.4

apply our generic results to AES. Two rounds of AES, essentially corresponding
to four parallel superboxes and a large linear super-mixlayer, can essentially be
viewed as one generic SP-round and thus our generic method can be applied
directly to it. We begin Section 3.1 by presenting a simple distinguisher for 3
rounds of AES. It requires one chosen pair of plaintexts and one chosen cipher-
text and no computation. Then in Section 3.2 we directly apply the generic yoyo
distinguisher presented in Section 2.1 to 4 rounds of AES. It requires one chosen
pair of plaintexts and one chosen pair of ciphertexts, and no computation. In
Section 3.3 we extend the 4-round yoyo distinguisher to 5 rounds by testing for
pairs derived by the yoyo game that obey unusual byte collisions in the plaintext
(or ciphertext) di↵erences. Then, in Section 3.4 we apply the theory on 3 generic

5

SP-rounds presented in Section 2.2 directly to form the first 6-round AES secret
key distinguisher using 2122.83 texts derived from multiple yoyo-games.

The current best key-recovery attacks for 5-rounds of AES are found in Ta-
ble 1, while a list of the current best secret-key distinguishers for 3 to 6 rounds is
given in Table 2. We have adopted that the data complexity is measured in min-
imum number of chosen plaintexts/ciphertexts CP/CC or/and adaptive chosen
plaintexts/ciphertexts ACP/ACC. Time complexity is measured in equivalent
encryptions (E), memory accesses (M) or XOR operations (XOR) - adopting
that 20 M ⇡ 1 Round of Encryption.

2 Yoyo Analysis of Generic SPNs

We start o↵ by analysing permutations on Fn
q for q = 2k of the form

F (x) = S � L � S � L � S (1)

where S is a large s-box formed by concatenating n smaller s-boxes s over Fq and
where L is a linear transformation acting on elements of Fn

q . Notice that our re-

sults apply directly to S�A�S�A�S where A are a�ne transformations, however

restricting to linear transformations L slightly simplifies our presentation. We
call an element of Fq a word and a vector of words ↵ = (↵0,↵1, . . . ,↵n�1) 2 Fn

q

is called a state to emphasize that we are thinking of states in a block cipher.
A vector of words in Fn

q can also be viewed as a list of k-bit vectors of length n.
The Hamming weight of a vector x = (x0, x1, . . . , xn�1) is defined as the number
of nonzero components in the vector and is denoted by wt(x).

We refer to the small s-boxes operating on words in Fq as component s-boxes
to not confuse them with the large s-box S they are part of and that operates
on Fn

q .
Two vectors (or a pair of di↵erences of two vectors) that are di↵erent can be

zero in the same positions, and we will be interested in comparing two di↵erences
according to their zero positions so it is useful to define the following.

Definition 1 (The zero di↵erence pattern). Let ↵ 2 Fn
q and define the zero

di↵erence pattern
⌫(↵) = (z0, z1, . . . , zn�1)

that returns a binary vector in Fn
2 where zi = 1 indicates that ↵i is zero or zi = 0

otherwise.

The complement of a zero di↵erence pattern is often called activity pattern in
literature. For a linear transformation L on Fn

q we generally do not have that
the di↵erences ↵�� and L(↵)�L(�) are zero in the same positions for random
values of ↵ and �. However, permutations S do and the zero di↵erence pattern
is thus an invariant of S.

Lemma 1. For two states ↵,� 2 Fn
q , the zero pattern of their di↵erence is

preserved through S, hence

⌫(↵� �) = ⌫(S(↵)� S(�)).

6

Proof. Since S is a permutation s-box this leads to ↵i � �i = 0 if and only if
s(↵i)� s(�i) = 0, thus the pattern vector of the di↵erence is preserved through
S.

Although this is rather trivial, we leave it as a lemma for later reference. The
following definition is central to the paper.

Definition 2. For a vector v 2 Fn
2 and a pair of states ↵,� 2 Fn

q define a new

state ⇢v(↵,�) 2 Fn
q such that the i’th component is defined by

⇢v(↵,�)i = ↵ivi � �i(vi � 1).

This is equivalent to

⇢v(↵,�)i =

⇢
↵i if vi = 1,
�i if vi = 0.

Notice that (↵0,�0) = (⇢v(↵,�), ⇢v(�,↵)) is a new pair of states formed by
swapping individual words between ↵ and � according to the binary coe�cients
of v. From the definition it can be seen that

⇢v(↵,�)� ⇢v(�,↵) = ↵� �. (2)

Let v be the complement of v. Note that ⇢v(↵,�) = ⇢v(�,↵) and therefore
{⇢v(↵,�), ⇢v(�,↵))} = {⇢v(↵,�), ⇢v(�,↵))}, implying that v and v result in the
same pair. The maximum number of possible unique pairs (↵0,�0) generated
this way is 2n�1 (including the original pair). The maximum is only attainable
if ↵i 6= �i for all 0 i < n. Assume this is the case. If we restrict v to the
2n�1 binary vectors in Fn

2 with the last coe�cient set to 0 we span exactly 2n�1

unique pairs, including (↵,�). If v = (0, 0, 0, . . . , 0) is avoided, we generate only
new pairs (⇢v(↵,�), ⇢v(�,↵)) all unequal to (↵,�).

The function ⇢v has some interesting properties. We leave the following in as
a lemma for further reference.

Lemma 2. Let ↵,� 2 Fn
q and v 2 Fn

2 . Then we have that ⇢ commutes with the

s-box layer,

⇢v(S(↵), S(�)) = S(⇢v(↵,�))

and thus

S(↵)� S(�) = S(⇢v(↵,�))� S(⇢v(�,↵)).

Proof. S operates independently on individual words and so the result follows
trivially from the definition of ⇢v.

Lemma 3. For a linear transformation L(x) = L(x0, x1, x2, . . . , xn�1) acting

on n words we have that

L(↵)� L(�) = L(⇢v(↵,�))� L(⇢v(�,↵))

for any v 2 Fn
2 .

7

Proof. Due to the linearity of L it follows that L(x) � L(y) = L(x � y). More-
over, due to relation (2), ⇢v(↵,�) � ⇢v(�,↵) = ↵ � � and thus L(⇢v(↵,�)) �
L(⇢v(�,↵)) = L(↵)� L(�).

So from Lemma 3 we have that L(↵) � L(�) = L(⇢v(↵,�)) � L(⇢v(�,↵)) and
from Lemma 2 we showed that S(↵) � S(�) = S(⇢v(↵,�)) � S(⇢v(�,↵)). This
implies that

L(S(↵))� L(S(�)) =L(S(⇢v(↵,�)))� L(S(⇢v(�,↵))) (3)

however it does not generally hold that

S(L(↵))� S(L(�)) =S(L(⇢v(↵,�)))� S(L(⇢v(�,↵))). (4)

However it is easy to see that the zero di↵erence pattern does not change when
we apply L or S to any pair ↵0 = ⇢v(↵,�) and �0 = ⇢v(�,↵). As described in
Lemma 3 we clearly have that

⌫(L(↵)� L(�)) = ⌫(L(⇢v(↵,�))� L(⇢v(�,↵)))

and the di↵erences are zero in exactly the same positions. For the function S we
notice that if the di↵erence between two words ↵i and �i before a component
s-box is zero, then it is also zero after the component s-box. In other words,

⌫(S(↵)� S(�)) =⌫(S(⇢v(↵,�))� S(⇢v(�,↵))).

Thus it follows that, although (4) does not hold, we do have that

⌫(S(L(↵))� S(L(�))) =⌫(S(L(⇢v(↵,�)))� S(L(⇢v(�,↵)))) (5)

always holds, i.e. words are zero in exactly the same positions in the di↵erence
for any pair ↵0 = ⇢v(↵,�) and �0 = ⇢v(�,↵) through L and S.

The yoyo attack is heavily based on the simple result in the lemma below
that summarises the properties above.

Theorem 1. Let ↵,� 2 Fn
q and ↵0 = ⇢v(↵,�), �0 = ⇢v(�,↵) then

⌫(S � L � S(↵)� S � L � S(�)) = ⌫(S � L � S(↵0)� S � L � S(�0))

Proof. The proof follows from the three steps below:

– Lemma 2 implies that S(↵)� S(�) = S(↵0)� S(�0).
– The linearity of L gives L(S(↵))� L(S(�)) = L(S(↵0))� L(S(�0)).
– Using Lemma 1 it follows, since S is a permutation and preserves the zero

di↵erence pattern, that
⌫(S(L(S(↵)))� S(L(S(�)))) = ⌫(S(L(S(↵0)))� S(L(S(�0)))).

8

2.1 Yoyo Distinguisher for Two Generic SP-Rounds

Two full generic rounds are equal to G0
2 = L � S � L � S. However, to simplify

the presentation, we remove the final linear layer and restrict our attention to

G2 =S � L � S. (6)

We show that G2 can be distinguished, with probability 1, using two plaintexts
and two ciphertexts. The distinguisher is general, in the sense that each of the
S and L transformations can be di↵erent and does not require any computation
on the adversaries part.

The idea is simple. If we fix a pair of plaintexts p0, p1 2 Fn
q with a particular

zero di↵erence pattern ⌫(p0 � p1), then from the corresponding ciphertexts c0 =
G2(p0) and c1 = G2(p1) we can construct a pair of new ciphertexts c00 and c01

that decrypt to a pair of new plaintexts p00, p01 whose di↵erence has exactly
the same zero di↵erence pattern. Moreover this is deterministic and holds with
probability 1.

Theorem 2. (Generic yoyo game for 2-rounds)

Let p0 � p1 2 Fn
q , c0 = G2(p0) and c1 = G2(p1). Then for any v 2 Fn

2 let

c00 = ⇢v(c0, c1) and let c01 = ⇢v(c1, c0). Then

⌫(G�1
2 (c00)�G�1

2 (c01)) =⌫(p00 � p01)

=⌫(p0 � p1).

Proof. This follows directly from Equation 3 and we have that

L�1(S�1(c0))� L�1(S�1(c1)) = L�1(S�1(⇢v(c0, c1)))� L�1(S�1(⇢v(c1, c0))).

Since the di↵erences are equal the r.h.s. di↵erence and the l.h.s. di↵erences are
zero in exactly the same words. Thus we must have that ⌫(G�1

2 (c00)�G�1
2 (c01)) =

⌫(p0 � p1).

By symmetry, the exact same property obviously also holds in the decryption
direction.

What Theorem 2 states is that if we pick a pair of plaintexts p0 and p1 with
a zero di↵erence ⌫(p0 � p1), we can encrypt the pair to a pair of ciphertexts c0

and c1, construct a new set of ciphertexts c00 = ⇢v(c0, c1) and c01 = ⇢v(c1, c0)
(simply interchanging words between the original pair) then decrypt to a pair
of new plaintexts with the exact same zero di↵erence pattern. Thus this leaves
us with a straight-forward distinguisher that requires two plaintexts and two
adaptively chosen ciphertexts. There is no need for any computation on the
adversaries part as the result is immediate.

By symmetry we could of course instead have started with a pair of cipher-
texts with a given zero di↵erence pattern and instead adaptively picked a new
pair of plaintexts that would decrypt to a new pair of ciphertexts whose zero
di↵erence pattern corresponds to the first ciphertext pair.

9

2.2 Analysis of Three Generic SP-Rounds

In this section we show that there is a powerful deterministic di↵erence symmetry
in 3 generic SPN rounds, where we cut away the final linear L-layer, and analyse

G3 =S � L � S � L � S (7)

where we also omit numbering the transformations to indicate that they can be
all di↵erent.

The three round property follows from the two round property. We have
already shown in Theorem 2 that for two states ↵ and � it follows that

⌫(G�1
2 (⇢v(G2(↵), G2(�)))�G�1

2 (⇢v(G2(�), G2(↵)))) = ⌫(↵� �).

Since G2 and G�1
2 have identical forms, it also follows that

⌫(G2(⇢
v(G�1

2 (↵), G�1
2 (�)))�G2(⇢

v(G�1
2 (�), G�1

2 (↵)))) = ⌫(↵� �)

Also, from Lemma 1 we know that zero di↵erence patterns are preserved
through s-box layers S, that is

⌫(↵� �) = ⌫(S(↵)� S(�)).

Thus, assuming a particular zero di↵erence pattern in front of the middle S-layer
in (7) is equivalent to assuming the same zero di↵erence pattern after it. Hence,
the following Theorem follows straightforwardly.

Theorem 3. (Generic yoyo game for 3-rounds)

Let G3 = S �L�S �L�S. If p0, p1 2 Fn
q and c0 = G3(p0) and c1 = G3(p1). Then

⌫(G2(⇢
v1(p0, p1))�G2(⇢

v1(p1, p0))) = ⌫(G�1
2 (⇢v2(c0, c1))�G�1

2 (⇢v2(c1, c0)))

for any v1, v2 2 Fn
2 . Moreover, for any z 2 Fn

2 , let RP (z) denote the pairs of

plaintexts where ⌫(G2(p0)�G2(p1)) = z and RC(z) the pairs of ciphertexts where
⌫(G�1

2 (c0)�G�1
2 (c1)) = z. Then it follows that

(G3(⇢
v(p0, p1)), G3(⇢

v(p1, p0))) 2 RC(z)

for any (p0, p1) 2 RP (z) while

(G�1
3 (⇢v(c0, c1)), G�1

3 (⇢v(c1, c0))) 2 RP (z)

for any (c0, c1) 2 RC(z).

Thus, from a single pair of plaintexts p1, p2, we can continuously generate
new elements that with probability 1 belong to RC(z) and RP (z), which contain
exactly the pairs of plaintexts and ciphertexts that have di↵erence pattern z in
the middle.

A distinguisher for this requires first to test a number of pairs until there is
one that has a particular Hamming weight of the zero di↵erence pattern, then

10

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

Fig. 1. Two rounds AES in the super-box representation

try to distinguish this case when it happens. The probability that a random
pair of plaintexts has a sum with zero di↵erence pattern containing exactly m

zeros (the di↵erence is non-zero in exactly m words) in the middle is
�n
m

� (q�1)�m

qn

where q = 2k. Thus we need to test approximately the inverse of that number
of pairs to expect to find one correct pair, and thus require that the complexity
of any distinguisher which succeeds in detecting the right condition times the
number of pairs to be checked is substantially less than brute force.

We leave this case with a small observation. Assume that we have in fact
found a pair of plaintexts that belongs to RP (z) for a particular zero di↵erence
pattern of Hamming weight n � m. In this case we will continuously generate
new pairs that are guaranteed to be contained in RP (z) and RC(z). However we
need a way to distinguish that this is in fact happening. Let A be the a�ne layer
in an SASAS construction. Assume that S�1(c1) = x� z while S�1(c2) = y � z
where A�1(x) and A�1(y) are non-zero only in the positions where z is zero,
while A�1(z) is non-zero only in the positions where z is zero. It follows that x
and y belong to a linear subspace U of dimension m� n while z must belong to
the complementary subspace V of dimension m such that U �V = Fn

q . Hence, a
problem for further study is to investigate whether c1� c2 = S(x� z)�S(y� z)
for x, y 2 U and z 2 V has particular generic distinguishing properties. A dis-
tinguisher for this would of course apply equally well to the plaintext side, i.e.
p1 � p2 = S�1(x0 � z0)� S�1(y0 � z0) for x0, y0 2 U 0 and z0 2 V 0.

3 Applications to AES

The round function in AES [19] is most often presented in terms of operations
on 4 ⇥ 4 matrices over Fq where q = 28. One round of AES consists of Sub-

11

Bytes (SB), ShiftRows (SR), MixColumns (MC) and AddKey (AK). SubBytes
applies a fixed 8-bit s-box to each byte of the state, ShiftRows rotates each row
a number of times, while MixColumns applies a fixed linear transformation to
each column. Four-round AES can be described with the superbox representa-
tion [22–24] operating on four parallel 32-bit words (or elements of F4

28) instead
of bytes where leading and trailing linear layers are omitted for sake of clarity.
A similar description of AES is given in [25]. The superbox representation of
AES now consists of iterating four parallel keyed 32-bit sboxes and a large linear
”super”-layer. Thus while one round is a composition AK �MC �SR �SB, two
rounds of AES is equal to the composition

(AK �MC � SR � SB) � (AK �MC � SR � SB). (8)

Since we are only considering di↵erences, we can leave out AddKey(AK) for
sake of clarity. Now since SR commutes with SB we can rewrite (8) as

R20 = MC � SR � (SB �MC � SB) � SR. (9)

The initial SR has no e↵ect in our analysis, thus we leave it out and only consider

R2 =MC � SR � (SB �MC � SB) = MC � SR � S

where S = SB �MC � SB constitutes four parallel super-boxes acting indepen-
dently on 32-bits of the state. In terms of the generic SPN-analysis in the previous
section, the state of AES consists of four words where each word contains four
bytes. This is equivalent to the superbox [23] representation shown in Figure 1
where the initial ShiftRows has been omitted. Thus, let S = SB �MC �SB and
L = SR �MC � SR. Four rounds of AES can be viewed in a similar way simply
by repeating the composition of (9)

R40 = MC � SR � S � L � S � SR

and we end up with

R4 = S � L � S (10)

if we omit the linear layers before the first and after the last s-box layer. The
designers of AES used this representation to provide an elegant proof that the
lower bound on the number of active s-boxes over 4 rounds is 5 · 5 = 25. The
number of active super-boxes in Figure 3 due to the linear layer L is at least 5,
while the minimum number of active s-boxes inside a super-box is also 5 due to
the MixColumns matrix, thus the total number of active s-boxes is at least 25.

Similarly, 6 rounds of AES is equal to

R60 =MC � SR � S � L � S � L � S � SR (11)

which, when the leading and trailing linear layers are removed, becomes

R6 =S � L � S � L � S. (12)

12

Thus two rounds of AES can be viewed as one generic SPN-round consisting
of a state-vector of 4 words from F4

28 consisting of one s-box layer of 4 parallel
concatenated superboxes and one large linear layer. Therefore can any even
number of rounds be seen as half the number of generic SP rounds. It follows
that our generic analysis presented in the previous section applies directly to 4
and 6 rounds of AES.

Since two rounds of AES correspond to one generic SPN-round, our generic
analysis on SP-rounds does not cover odd rounds of AES. However, we extend
the 2- and 4-round distinguishers by one round in a natural way by exploiting
properties of one AES round. The following observation is used to extend our
distinguishers to 3 and 5 rounds. First, 3 rounds of AES can be written as Q �S
where Q = SB�MC �SR by adding a round at the end and 5 rounds of AES can
be written as S �L�S �Q0 where Q0 = SR�MC �SB where a round is added at
the beginning of 4 AES rounds. We have again omitted the trailing and leading
linear layers. Both our 3-rounds distinguisher and our 5-round distinguishers
exploit properties of one AES-round, and in particular the e↵ect of MixColumns
in Q and Q0.

Definition 3. Let Q = SB �MC � SR.

For a binary vector z 2 F4
2 of weight t let Vz denote the subspace of q4·(4�t)

states x = (x0, x1, x2, x3) formed by setting xi to all possible values of F4
q if

zi = 0 or to zero otherwise. Then, for any state a = (a0, a1, a2, a3), let

Tz,a = {Q(a� x) |x 2 Vz}.

It is important to note that the sets Tz,a in Definition 3 in practice depend
on variable round keys xored in between layers which we assume are implicit
from the context in which we use them.

Let Hi denote the image of the it’h word in SR(a � x) when x is in Vz.
Observe that |Hi| = q4�t. Then define

T z,a
i = SB �MC(Hi).

Since SB and MC operate on each word individually then Tz,a has T z,a
i as

its i’th word.

Lemma 4. The set Tz,a satisfies

Tz,a = T z,a
0 ⇥ T z,a

1 ⇥ T z,a
2 ⇥ T z,a

3

where |T z,a
i | = q4�wt(z)

.

Proof. In Figure 2 it is easy to see that each word contributes one independent
byte to each word after SR. Thus if 4 � t words are nonzero, and each word
contributes a single independent byte to each word after applying SR, it follows
that each word after SR can take on exactly q4�t independent values. Since
Hi denotes the set of q4�t possible values that word i can have after SR and
MC and SB operate independently and in parallel on words, it follows that
T z,a
i = SB �MC(Hi).

13

It is not hard to see that the inverse of Q0, Q0�1, enjoys the same property.

We ask the reader to keep one thing in mind. In our analysis, the lastMC�SR
layers and first SR layers are omitted for simplicity of presentation. Thus, when
we say that we swap ciphertexts c0 and c1 to form c00 = ⇢v(c0, c1) and c01 =
⇢v(c1, c0), then for it to work for the real full round AES, we instead apply the
transformation

c00 = MC � SR(⇢v(SR�1 �MC�1(c0), SR�1 �MC�1(c1)))

and
c01 = MC � SR(⇢v(SR�1 �MC�1(c1), SR�1 �MC�1(c0))).

Similarly, when we swap words in the plaintexts we need to account for the extra
SR-layer in the full rounds, i.e.

p00 = SR�1(⇢v(SR(p0), SR(p1)))

and
p01 = SR�1(⇢v(SR(p1), SR(p0))).

All our results, except for the 6-round distinguisher, have been, and are easy,

to verify experimentally on a laptop and require only to implement very simple

operations. In the following sections we present our results on AES.

Algorithm 1 Swaps the first word where texts are di↵erent and returns one
text

function SimpleSWAP(x0
, x

1) //x

0 6= x

1

x

00 x

1

for i from 0 to 3 do
if x

0
i 6= x

1
i then

x

00
i x

0
i

return x

00

end if
end for

end function

For the pseudo-codes we use Algorithm 1 to simplify the presentation. If the
input pairs are distinct in at least two words, which happens with probability
(1 � 2�94), then this algorithm always returns a new text. If a pair in fact is
equal in exactly three words, then the pair is simply discarded. Since we use a
simplified swap operation, we have to go a few more rounds back and forth in
the yoyo game to construct pairs, instead of returning all possible swap-pairs at
once for a ciphertext pair or plaintext pair.

4

4 C-code for our attacks can be found at https://github.com/sondrer/YoyoTricksAES.

14

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

Fig. 2. Three rounds SB �MC � SR � S = Q � S

3.1 Yoyo Distinguisher for Three Rounds of AES

Two rounds of AES correspond to one generic SPN round and can be distin-
guished trivially. If we consider three full AES rounds minus the linear layer
before the first and after the last s-box layer, we have that

R3 = SB �MC � SR � S
= Q � S

which is depicted in Figure 2. The basis for our distinguisher is implicit in
Lemma 4. Let p0 and p1 denote two plaintexts with z = ⌫(p0�p1) and wt(z) = t,
i.e. the di↵erence between the plaintexts is zero in t of the words. Due to Lemma 1
we have that ⌫(S(p0) � S(p1)) = ⌫(p0 � p1) thus the zero di↵erence pattern is
preserved through the superbox layer S. Then, since S(p0) and S(p1) can be re-
garded as two states that di↵er only in 4� t words, it follows from Lemma 4 that
both Q(S(p0)) = c0 and Q(S(p1)) = c1 belong to the same set Tz,a, which are
generally unknown due to the addition of secret keys. However, the ciphertexts
themselves span subsets of Tz,a. Since both c0 and c1 are in the same set Tz,a,
it follows that each word c0i and c1i of c0 = (c00, c

0
1, c

0
2, c

0
3) and c1 = (c10, c

1
1, c

1
2, c

1
3)

are drawn from the same subsets T z,a
i ⇢ F4

q of size q4�t. In particular, the set

T 0
z,a ={c00, c10}⇥ {c01, c11}⇥ {c02, c12}⇥ {c03, c13}

must be a subset of Tz,a of at most size 24, where {c0i , c1i } is a subset of T z,a
i as

shown in Lemma 4. In other words, if we pick any ciphertext c0 6= c0, c1 from
T 0
z,a it follows that ⌫(Q�1(c0)�S(p0)) = ⌫(Q�1(c0)�S(p1)) = ⌫(S(p0)�S(p1))

and in particular, ⌫(R�3(c0)� p0) = ⌫(R�3(c0)� p1) = ⌫(p0 � p1). This implies
a straightforward distinguisher for 3 rounds of AES that requires two chosen
plaintexts and one adaptively chosen ciphertext. To simplify, the adversary picks
two plaintexts p0 and p1 that di↵er in only one word such that t = wt(⌫(p0 �
p1)) = 3. The corresponding ciphertexts c0 and c1 specify a subset T 0

z,a ⇢ Tz,a

of size 24 including the original ciphertexts. Thus if the adversary picks any
ciphertext c0 = ⇢v(c0, c1) 2 T 0

z,a not equal to c0 or c1 and asks for the decryption

15

Algorithm 2 Distinguisher for 3 rounds of AES

Input: A pair of plaintext with wt(⌫(p0 � p

1)) = 3
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR �MC

c

0 enck(p
0
, 3), c1 enck(p

1
, 3) //encrypt pair

c

0 SimpleSWAP(c0, c1)
p

0 deck(c
0
, 3) //decrypt c

0

if ⌫(p0 � p

1) = ⌫(p0 � p

1) then
return 1.

else
return �1

end if

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

Fig. 3. The structure of S � L � S

of it p0, then with probability 1 we have that ⌫(p0�p0) = ⌫(p0�p1) = ⌫(p0�p1).
Thus the di↵erence of p0 and any of the initial plaintexts pi is zero in exactly
the same words as the initially chosen di↵erence p0 � p1. This can only happen
at random with probability 2�96.

3.2 Yoyo Distinguisher for Four Rounds of AES

In this section we present a remarkably simple and e�cient distinguisher for 4-
rounds AES. For 4 rounds of AES we simply apply the distinguisher for 2 rounds
generic SPN in Section 2.1. Four rounds of AES is equal to

R04 = MC � SR � S � L � S � SR

where S � L � S consists of the ”super-layers” in AES. To simplify the notation,
we omit the last layer of MC � SR together with the initial SR-layer and apply

16

Algorithm 3 Distinguisher for 4 rounds of AES

Input: A pair of plaintexts with wt(⌫(p0 � p

1)) = 3
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR �MC

c

0 enck(p
0
, 4), c1 enck(p

1
, 4) //encrypt pair

c

00 SimpleSWAP(c0, c1), c01 SimpleSWAP(c1, c0)
p

00 deck(c
00
, 4), p01 deck(c

01
, 4) //decrypt pair

if ⌫(p00 � p

01) = ⌫(p0 � p

1) then
return 1.

else
return �1

end if

the distinguisher directly to

R4 = S � L � S.

Following Section 2.1, the adversary picks a pair of plaintexts p0 and p1 whose
di↵erence is zero in exactly t out of four words. The adversary then asks for the
encryption of the plaintexts and receives the corresponding ciphertexts c0 and c1

and picks a new pair of ciphertexts c00 = ⇢v(c0, c1) and c01 = c00� c0� c1 for any
v 2 F4

2. That is, he makes a new pair of ciphertexts simply by exchanging any
words between the c0 and c1. The new pair of ciphertexts now decrypts to a pair
of new plaintexts p00 and p01 that has exactly the same zero di↵erence pattern
as p0 and p1. By symmetry, the same distinguisher works in the decryption
direction.

3.3 Yoyo Distinguisher for Five Rounds of AES

We can extend the 4-round distinguisher to a 5-round distinguisher by combining
the 4-round yoyo distinguisher together with the observation used in the 3-rounds
distinguisher and described in Lemma 4. We add a round MC �SB, shifting out
the SR-layer in that round, at the beginning of 4 rounds S �L � S � SR and get

R5 =S � L � S � SR �MC � SB
=S � L � S �Q0

=R4 �Q0

as depicted in Figure 4 where Q0 = SR �MC � SB. Notice that Q0�1 = SB�1 �
MC�1 � SR�1 enjoys the same property as Q in Lemma 4, though with inverse
components. The main idea of our distinguisher is that if the di↵erence between
two plaintexts after the first round (essentially afterQ0) is zero in t out of 4 words,
we apply the yoyo game and return new plaintext pairs that are zero in exactly
the same words after one round. Then, due to Lemma 4, the plaintexts must
reside in the same sets and this is a property we will exploit in our distinguisher.
In particular, assume that we have two plaintexts p0 and p1 where Q0(p0) �

17

SB

SB

MC

SB

MC

MC

SB

MC

SB

SB

SB

MC

SB

MC

MC

SB

MC

SB

SB

SB

MC

SB

MC

MC

SB

MC

SB

SB

SB

MC

SB

MC

MC

SB

MC

SB

Fig. 4. Five Rounds R4 �Q0

Q0(p1) = a0 � a1 is zero in 3 out of 4 words. Then since each byte of a word is
mapped to distinct words through SR�1, it follows from Lemma 4 that p0 and
p1 belongs to the same set Tz,a = T z,a

0 ⇥ T z,a
1 ⇥ T z,a

2 ⇥ T z,a
3 for wt(z) = 3 and

where each set T z,a
i ⇢ F4

q has size exactly q = q4�wt(z). In other words, if a pair
of plaintexts p0 and p1 encrypt one round (through Q0) to a pair of intermediate
states whose di↵erence is zero in 3 out of 4 words, then p0 and p1 have probability
q�1 of having the same value in a particular word. We do not actually know the
sets T z,a

i since they are key-dependent, but we know their size. However, due to
the MixColumns matrix M we can add an even more fine grained property and
we now explain the last property that we use in our distinguisher. The 4 ⇥ 4
MixColumns matrix M satisfy wt(x)+wt(xM) � 5 for any non-zero x 2 F4

28 . In
particular, if x has t > 0 non-zero bytes, then x ·M has at least 5� t non-zero
bytes. In other words, if x has 4� t zeros, then x ·M can not contain t or more
zeros. This follows because the total number of non-zero bytes before and after
M can not be less than 5, and this therefore means that the total number of
zeros before and after M can not be more than 8 � 5 = 3. The same property
holds for the inverse M�1 of M . We add it as a Lemma for reference.

Lemma 5. Let M denote a 4⇥ 4 MixColumns matrix and x 2 F4
q. If t bytes in

x are zero, then x ·M or x ·M�1
can not contain 4� t or more zeros.

Proof. Follows directly from the well-known properties of M .

18

Algorithm 4 Distinguisher for 5 rounds of AES
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR �MC

cnt1 0
while cnt1 < 213.4 do

cnt1 cnt1 + 1
p

0
, p

1 generate random pair with wt(⌫(p0 � p

1)) = 3
cnt2 0, WrongPair False

while cnt2 < 211.4 & WrongPair = False do
cnt2 cnt2 + 1
c

0 enck(p
0
, 5), c1 enck(p

1
, 5)

c

00 SimpleSWAP(c0, c1), c01 SimpleSWAP(c1, c0)
p

00 deck(c
00
, 5), p01 deck(c

01
, 5)

p (p00 � p

01)
for i from 0 to 3 do

if wt(⌫(pi)) � 2 then
WrongPair True

end if
end for
p

0 SimpleSWAP(p00, p01), p1 SimpleSWAP(p01, p00)
end while
if WrongPair = False then

return 1. //Did not find di↵erence with two or more zeros

end if
end while
return �1.

Thus, if a pair of plaintexts encrypt one round to a pair of states Q0(a) and
Q0(b) that has a zero di↵erence pattern of weight t (only 4� t out of four words
are active), we have the following, where Q0 = SR �MC � SB.

Theorem 4. Let a and b denote two states where the zero di↵erence pattern

⌫(Q0(a) � Q0(b)) has weight t. Then the probability that any 4 � t bytes are

simultaneously zero in a word in the di↵erence a� b is qt�4
. When this happens,

all bytes in the di↵erence are zero.

Proof. The proof follows from the explanation above. First of all, it follows from
Lemma 4 that two words in the same position of a and b are drawn from a same
set T z,a

i of size q4�t where wt(z) = t. Thus words in the same positions of a
and b are equal with probability q�(4�t) = qt�4. Since t out of 4 words are zero
in Q0(a) � Q0(b), we have that t bytes are zero in each word in the di↵erence
SR�1(a)� SR�1(b) at the input to SB�1 �MC�1. Due to Lemma 5, it follows
that 4� t bytes can not be zero in each word in the di↵erence after MC�1. This
is preserved in the di↵erence through SB�1 and xor with constants.

We now have the machinery to build a distinguisher for 5 rounds of AES.
First the adversary picks enough pairs of plaintexts so that he can expect to
find one that the di↵erence has exactly t zero words after one round. Let B =

19

MC � s4 where s4 denotes the concatenation of 4 copies of the AES s-box. Then
Q0 = SR � MC � SB can be seen as four parallel applications of B, one on
each word, composed with ShiftRows. If two words are equal on input to B,
they are equal at the output and thus their di↵erence is zero. So the adversary
picks pairs whose di↵erence is nonzero in exactly one word. Then he tries enough
pairs (p0, p1) until the di↵erence of the output word of the active B contains t
zero bytes. When this di↵erence is passed through the SR-layer, it means that t
words are zero in the state di↵erence Q0(p0)�Q0(p1). If he then plays the yoyo
game on the next four rounds, the yoyo returns with at most 7 new pairs of
plaintexts (p00, p01) that satisfy the exact same zero di↵erence pattern after one
round. Hence, if the initial pair (p0, p1) satisfy z = ⌫(Q0(p0)�Q0(p1)), then each
of the new pairs returned by the yoyo obey the same property. In particular,
each returned pair of plaintexts obey Theorem 4 which can then be used to
distinguish on probability of collisions in bytes of words.

The distinguisher is now straightforward. The probability that a pair p0 and
p1, with zero di↵erence pattern of weight 3, is encrypted through Q0 (essentially
one round) to a pair of states, with zero di↵erence pattern of weight t, can be
well approximated by

pb(t) =

✓
4

t

◆
q�t

where q = 28. Thus, in a set of pb(t)�1 pairs P we expect to find one satisfying
pair. Now, for each pair in P we need a way to distinguish the case when we hit
a correct pair. For a random pair of plaintexts, the probability that 4� t bytes
are zero simultaneously in any of the 4 words is roughly

4pb(4� t) = 4 ·
✓
4

t

◆
· qt�4

while, for a correct case, it is 4 · qt�4. Hence, for each pair of initial plaintexts
in P, we need to generate roughly pb(4 � t)�1/4 pairs with the yoyo game to
distinguish wrong pairs from the right pair. Thus, in total, the adversary needs
to test a set P containing at least pb(t)�1 pairs, and for each pair he needs to
generate roughly pb(4� t)�1/4 new plaintext pairs using the yoyo game. Thus,
the total data complexity is

2 · (pb(t)�1 · (4 · pb(4� t))�1) =
pb(t)�1 · pb(4� t)�1

2
.

For t 2 {1, 3} we get a data complexity of 227 while for t = 2 we get away with
roughly 225.8. Since the yoyo returns at most 7 new pairs per plaintext pair, we
have to repeat the yoyo on new received plaintext pairs by applying the swap-
technique in Definition 2 to new plaintexts back and forth over 5 rounds until
enough pairs are gathered. Thus, the adversary can always continue the test a
few times on a right pair to ensure that the condition is met, but this does not
contribute to the overall data complexity.

20

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

SB

MC

SB

MC

SB

MC

SB

MC

SB

MC

SB

Fig. 5. Six Rounds S � L � S � L � S

3.4 Impossible Di↵erential Yoyo Distinguisher for 6 Rounds

In this section we present for the first time a secret key distinguisher for 6 rounds
of AES that requires 2122.83 adaptively chosen plaintexts and ciphertexts. We
apply the 3-rounds yoyo game described in Section 2.2 for generic SPNs directly
to 6 rounds of AES in the superbox form R6 = S � L � S � L � S where S is a
superbox and L = SR�MC �SR is the linear superlayer. In Section 2.2, we were
unable to come up with a generic distinguisher for 3 generic SP-rounds. However,
for AES we can exploit impossible zero di↵erence conditions induced by the L
layer. Moreover, we use the fact that the total number of active super-boxes over
four full AES rounds is at least 5 (see for instance [23]). This also means that the
minimal number of active words over the first L�S layer is 5. Moreover, if we pick
a pair of plaintexts (p0, p1) whose di↵erence is zero in exactly two words after
L�S, it follows that the plaintexts themselves must di↵er in at least three words
since the total number of active words is at least 5. In other words, a pair of
plaintexts with a di↵erence containing two zero-words can not partially decrypt
through the inverse of L � S to a pair whose di↵erence is zero in two or more
words also. Now, if a pair of plaintexts (p0, p1) partially encrypt through L � S
to a pair of states that are zero in two words with zero di↵erence pattern z, then
using the yoyo game on new ciphertext and plaintext pairs back and forth gen-
erates ”infinitely” many pairs that have the exact same zero di↵erence pattern
after L�S. But since ⌫(L�S(p0)�L�S(p1)) = ⌫(S�L�S(p0)�S�L�S(p1)) = z,
it follows that the di↵erence between pairs of ciphertexts can not contain two
or more zero-words either. Hence, if the adversary has one pair of plaintexts
(p0, p1) that satisfy ⌫(L � S(p0)� L � S(p1)) = 2, he can generate as many new
pairs of plaintext and ciphertext pairs as he wants using the yoyo, and all of

21

Algorithm 5 Distinguisher for 6 rounds of AES

Input: Set P contains 261.4 plaintext pairs (p0, p1)
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR �MC

for (p0, p1) 2 P do
WrongPair False, counter 0
while counter < 260.4 & WrongPair = False do

if wt(⌫(p0 � p

1)) � 2 then
WrongPair True //Too many zeros in di↵erence

end if
c

0 enck(p
0
, 6), c1 enck(p

1
, 6)

if wt(⌫(c0 � c

1)) � 2 then
WrongPair True //Too many zeros in di↵erence

end if
c

00 SimpleSWAP(c0, c1), c01 SimpleSWAP(c1, c0)
p

00 deck(c
00
, 6), p0 deck(c

01
, 6)

p

0 SimpleSWAP(p00, p01), p1 SimpleSWAP(p01, p00)
counter counter + 1

end while
if WrongPair = False then

return 1.
end if

end for
return �1.

these will have the exact same zero di↵erence in the middle. Moreover, none of
these plaintext and ciphertext pairs can ever collide in two or more words. This
suggests a simple, though impractical, distinguisher for 6 rounds of AES.

First we have that wt(⌫(L�S(p0)�L�S(p1))) = t with a probability
�4
t

�
(232�

1)4�t/232·4 that can be well approximated by

pw(t) =

✓
4

t

◆
2�t·32

for a random pair of plaintexts. If the pair is correct, there is generally a

pw(4� t) =

✓
4

4� t

◆
2(4�t)·(�32)

probability of a collision in 4 � t words at the same time in either the cipher-
text or the plaintext. Thus by testing both plaintext and ciphertext pairs, the
probability becomes 2 · pw(4 � t) that the di↵erence of random pairs of plain-
texts or ciphertexts are zero in 4 � t words. But this is impossible in AES for
right pairs, since the total number of zero words in the di↵erences p0 � p1 and
L�S(p0)�L�S(p1) can not be more than 3 due to the L-layer. Thus a straight-
forward distinguisher is as follows. We prepare pw(t)�1 pairs in a set P. For each

22

pair, we run the yoyo game back and forth until we have generated pw(4�t)�1

2
pairs. If there is a collision in 4�t words we discard the pair from P and continue
with a new pair until there are no such collisions. In that case, we conclude a
success for the distinguisher. The total data complexity of the 6-rounds distin-
guisher is

D(t) = pw(t)
�1 · pw(4� t)�1

where the lowest data-complexity is found by setting t = 2 such that D(t) =
2122.83.
This is as far as we know the first 6-round secret key distinguisher for AES
that does not use the full codebook. Philosophically, one could argue that 2 · r
AES-rounds should exhibit the same properties as r generic SP-round consisting
of four s-boxes and one large linear layer. However, to conclude that 6 rounds
of AES is weaker than the 3 rounds generic SP, requires a deeper study of the
3-rounds yoyo game in Section 2.1.

3.5 A 5-Round Key Recovery Yoyo on AES

The 5-round key-recovery is formed by adding a round Q0 = SR �MC � SB in
front of S �L � S, just like in Section 3.3, and aim at finding the first round-key
xored in front of R5 = S � L � S � Q. The MixColumns matrix M in AES is
defined by the circular matrix

2

664

↵ ↵� 1 1 1
1 ↵ ↵� 1 1
1 1 ↵ ↵� 1

↵� 1 1 1 ↵

3

775 .

The function MC � SB works on each word of the state independently, thus
assume we pick two pairs of plaintexts p0 and p1 where the first words are
given by p00 = (0, i, 0, 0) and p10 = (z, z � i, 0, 0) where z is a random non-
zero element of Fq. The three other words are equal for the two plaintexts. Let
k0 = (k0,0, k0,1, k0,2, k0,3) denote the key-bytes XORed with the first word of the
plaintext. Then the di↵erence between the first words after the partial encryption
of the two plaintexts through MC � SB �AK becomes

↵b0 � (↵� 1)b1 =y0

b0 � ↵b1 =y1

b0 � b1 =y2

(↵� 1)b0 � b1 =y3.

where b0 = s(k0,0)� s(z� k0,0) and b1 = s(k0,1 � z� i)� s(k0,1 � i), where s(x)
is the AES-sbox. Since the plaintexts are equal in the last two bytes, this part
cancels out in the di↵erence. In particular, if we look at the third equation,

s(k0,0)� s(z � k0,0)� s(k0,1 � z � i)� s(k0,1 � i) = y2

23

it is not hard to see that it is zero for i 2 {k0,0 � k0,1, z � k0,0 � k0,1}. Thus, if
we let i run through all values of Fq, we are guaranteed that there are at least
two values for which the third equation is zero.

We prepare a set P of plaintext pairs as follows. For each i, generate a pair
of plaintexts p0 and p1 where the first word of p0 is p00 = (0, i, 0, 0) while the
first word in the second text is p10 = (z, z � i, 0, 0). Then encrypt this pair
with five rounds to ciphertexts c0 and c1. Then pick 5 new ciphertext pairs
c00, c01 = (⇢v(c0, c1), ⇢v(c1, c0)) and return the corresponding plaintexts p00 and
p01. If a pair is of the correct form, the first words of p00 and p01 will satisfy

M � s4(p000 � k0)�M � s4(p010 � k0) =(z0, z1, 0, z3) (13)

where M is the MC matrix and s4 is the concatenation of 4 parallel s-boxes. The
adversary can now test each of the 224 remaining candidate keys and determines
whether the third coordinate in (13) is zero for all 5 pairs of plaintexts returned
by the yoyo, where we already known that k0,0 � k0,1 2 {i, i � z} for known
values i and z. This equation holds for all 5 pairs at random with probability
2�8·5 = 2�40 thus a false positive might occur with probability 2�16 when testing
224 keys. In practice, the adversary can always remove uncertainty by generating
a few more pairs when the test succeeds on the first five pairs, since this happens
rarely and does not a↵ect the total data complexity per attack. Thus, the total
number of adaptively chosen plaintexts needed for finding a correct pair is 28 · 5
pairs, which corresponds to

D = 2 · 28 · 5 ⇡ 211

ciphertexts and plaintexts.
For the total computational complexity, testing key guesses for one set should

be 224 instead of 2 · 224, because it is su�cient to test k0,1 = k0,0 � i and there
is no need to test k0,1 = k0,0 � i � z, considering i will run over all 28 possible
values and k0,0 also runs over all 28 possible values. This corresponds to 229.3

s-box look-ups because to check that the third component in equation (13) is
zero for each key on 5 pairs one needs 2 ·4 s-box look-ups for each of the 5 pairs.
This has to be done 28 times, one run for each pair in P. Thus the total number
of s-box look-ups corresponds to 224 · 2 · 4 · 5 · 28 = 229.3+8 = 237.3. This roughly
corresponds to 231 5-rounds of AES where we assume that one round costs 16
s-box lookups. Notice that when we have found one of the correct subkeys, it is
trivial (and extremely e�cient) to determine the rest of the subkeys.

Since the adversary now knows the first subkey k0, he can make a pair of
words a00, b

0
0 2 F4

28 that di↵er only in their first byte. He then makes a new pair
by first applying the inverse MixColumns matrix M�1 and then applying the
inverse s-box to each byte of the pair of words. Finally he XORs the first subkey
k0 to each word which results in a pair of words a0 and b0. He can now make
a pair of full plaintexts p0 = (a0, 0, 0, 0) and p1 = (b0, 0, 0, 0) (they must be
equal in the last three words) whose di↵erence after SR � MC � SB � AK is
guaranteed to be non-zero in only the first word. However, this first initial pair
of plaintexts p0 and p1 is useless for recovering the remaining subkeys since they

24

Algorithm 6 Key recovery for 5 rounds of AES

Input: Set P contains 28 plaintext pairs (p0, p1) where p

0
0 = (0, i, 0, 0) and p

1
0 =

(1, 1� i, 0, 0) for i = 0, ..., 28 � 1 (p0j = p

1
j = 0 for j = 1, 2, 3)

Output: Secret key k0

// r-round AES enc/dec without first SR and last SR �MC

for i from 0 to 28 � 1 do
p

0 0, p1 0 //initialize to all zero state
p

0
0 (0, i, 0, 0), p10 (1, 1� i, 0, 0)

S {(p0, p1)}
while len(S) < 5 do //generate 4 new plaintext pairs

c

0 enck(p
0
, 5), c1 enck(p

1
, 5)

c

00 SimpleSWAP(c0, c1), c01 SimpleSWAP(c1, c0)
p

00 deck(c
00
, 5), p01 deck(c

01
, 5)

p

0 SimpleSWAP(p00, p01), p1 SimpleSWAP(p01, p00)
S S [{(p0, p1)}

end while
for all 224 remaining key candidates k0 do

for all (p0, p1) 2 S do
//Check if third equation l3(a� b) = 0 in (13) holds
if l3(s

4(p00 � k0)� s

4(p10 � k0)) 6= 0 then
break and jump to next key

end if
end for
return k0; //Eq. 13 is zero for all values and k0 is correct

end for
end for

are equal in the three last words. But the adversary can now use this initial pair
to generate m new plaintext pairs p00 and p01 using the yoyo that are with high
probability di↵erent in their three last words and satisfy the same condition after
SR �MC � SB �AK. In particular, MC � SB �AK(p00)�MC � SB �AK(p01)
has exactly one active byte in each word which yields simple relations that can
be used for recovering the remaining subkeys. If we continue with attacking the
second subkey k1, it follows that each of the m pairs returned by the yoyo now
satisfy a relation

M � s4(p001 � k1)�M � s4(p011 � k1) =(0, w, 0, 0) (14)

for an unknown plaintext pair dependent variable w and fixed k1. Since (14)
holds, we must also have that the relation

M�1 · (0, w, 0, 0) =w · (↵0,↵1,↵2,↵3) = s4(p001 � k1)� s4(p011 � k1) (15)

holds for an unknown variable w and known values (↵0,↵1,↵2,↵3) determined
by the second column in M�1. Thus, when one keybyte of k1 is guessed, the
remaining keybytes are determined by simple relations between byte values in
Equation 15 and leaves out at most spending 4 · 28 guesses to find the correct

25

key. The remaining subkeys are found by solving similar equations determined
by the cyclically equivalent columns of M�1.

The adversary needs at least 2 pairs of plaintexts to recover a unique solution
for one of the remaining subkeys. However, since he is recovering 3 subkeys at
once, and wants all of them to be correct, he should test the solutions against 4
pairs to leave a comfortable margin against false positives in repeated attacks.
Thus, since the first initial pair is useless, the adversary typically uses 5 pairs
to recover the full key with a comfortable margin. However, even if the attacker
brute-forced each 32-bit subkey individually against the relations in (15) above
it would not a↵ect the total complexity. Thus, guessing the remaining subkeys
does not add to the total time and data complexity, and so recovering the full
round key is dominated by guessing the first subkey which costs roughly 231 5-
round AES encryptions and 211.32 adaptively chosen ciphertexts and plaintexts
(corresponding to 210.32 pairs).

4 Conclusion

In this paper we describe new and fundamental properties of SPNs. Our new
analysis show that AES is particularly susceptible to adaptive cryptanalysis for
up to 6 rounds. We emphasize this by providing new key-independent secret
key distinguishers for 3- to 5-rounds AES that breaks all previous records in
the literature, in addition to the first key-independent secret-key distinguisher
for 6-rounds AES. In addition, we have described a 5-round secret key recovery
that requires only 211.3 plaintexts/ciphertexts and 231 computations. Our results
apply directly to similar designs and opens up the way for new and interesting
applications in cryptanalysis.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments and suggestions. This Research was supported by the Norwegian Research
Council.

References

1. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial Ob-
servations on Skipjack: Cryptanalysis of Skipjack-3XOR. In: Selected Areas in
Cryptography: 5th Annual International Workshop, SAC’98 Kingston, Ontario,
Canada, August 17–18, 1998 Proceedings, Berlin, Heidelberg, Springer Berlin Hei-
delberg (1999) 362–375

2. Wagner, D.: The Boomerang Attack. In: Fast Software Encryption: 6th Inter-
national Workshop, FSE’99 Rome, Italy, March 24–26, 1999 Proceedings, Berlin,
Heidelberg, Springer Berlin Heidelberg (1999) 156–170

3. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of Feistel Networks with
Secret Round Functions. In: Selected Areas in Cryptography – SAC 2015: 22nd
International Conference, Sackville, NB, Canada, August 12–14, 2015, Revised
Selected Papers, Cham, Springer International Publishing (2016) 102–121

26

4. Biryukov, A.: The Boomerang Attack on 5 and 6-round Reduced AES. In: Pro-
ceedings of the 4th International Conference on Advanced Encryption Standard.
AES’04, Berlin, Heidelberg, Springer-Verlag (2005) 11–15

5. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis
of PRINTcipher: The Invariant Subspace Attack. In: Advances in Cryptology –
CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg
(2011) 206–221

6. Leander, G., Minaud, B., Rønjom, S.: A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: Advances in Cryptol-
ogy – EUROCRYPT 2015: 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, Berlin, Heidelberg, Springer Berlin Heidelberg (2015) 254–283

7. Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its Ap-
plications to AES. IACR Trans. Symmetric Cryptol. 2016(2) (2016) 192–225

8. Grassi, L., Rechberger, C., Rønjom, S.: A New Structural-Di↵erential Property
of 5-Round AES. In: Advances in Cryptology – EUROCRYPT 2017: 36th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 – May 4, 2017, Proceedings, Part II, Cham,
Springer International Publishing (2017) 289–317

9. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In Goos, G., Hartmanis, J., van Leeuwen,
J., Schneier, B., eds.: Fast Software Encryption: 7th International Workshop, FSE
2000 New York, NY, USA, April 10–12, 2000 Proceedings, Berlin, Heidelberg,
Springer Berlin Heidelberg (2001) 213–230

10. Gueron, S., Mouha, N.: Simpira v2: A Family of E�cient Permutations Using the
AES Round Function. In Cheon, J.H., Takagi, T., eds.: Advances in Cryptology –
ASIACRYPT 2016: 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, Berlin, Heidelberg, Springer Berlin Heidelberg (2016) 95–125

11. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.A., Keller, N., Rijmen, V.:
Low-Data Complexity Attacks on AES. IEEE Transactions on Information Theory
58(11) (Nov 2012) 7002–7017

12. Derbez, P., Fouque, P.A.: Automatic Search of Meet-in-the-Middle and Impossible
Di↵erential Attacks. In: Advances in Cryptology – CRYPTO 2016: 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II, Berlin, Heidelberg, Springer Berlin Heidelberg (2016)
157–184

13. Knudsen, L.R.: Truncated and higher order di↵erentials. In: Fast Software En-
cryption: Second International Workshop Leuven, Belgium, December 14–16, 1994
Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (1995) 196–211

14. Daemen, J., Knudsen, L.R., Rijmen, V., et al.: The Block Cipher Square. In: Fse.
Volume 97. (1997) 149–165

15. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New Insights on AES-Like SPN
Ciphers. In Robshaw, M., Katz, J., eds.: Advances in Cryptology – CRYPTO 2016:
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2016, Proceedings, Part I, Berlin, Heidelberg, Springer Berlin Heidel-
berg (2016) 605–624

16. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. Journal of Cryp-
tology 23(4) (2010) 505–518

27

17. Derbez, P.: Meet-in-the-middle on AES. In: PhD Thesis, Ecole normale supieure
de Paris - ENS Paris, 2013. (2013)

18. Tiessen, T.: Polytopic Cryptanalysis. In Fischlin, M., Coron, J.S., eds.: Advances
in Cryptology – EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, Berlin, Heidelberg, Springer Berlin Heidelberg (2016)
214–239

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. In: Springer. (2002)

20. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: 3rd AES
Conference. Volume 230. (2000)

21. Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Cryptanal-
ysis. In: CHES. Volume 4727 of Lecture Notes in Computer Science., Springer
(2007) 195–208

22. Rijmen, V.: Cryptanalysis and design of iterated block ciphers. Doctoral Disser-
tation, K.U.Leuven (1997)

23. Daemen, J., Rijmen, V.: Plateau characteristics. IET Information Security 1(1)
(2007) 11–17

24. Daemen, J., Rijmen, V.: Understanding Two-Round Di↵erentials in AES. In:
Security and Cryptography for Networks: 5th International Conference, SCN 2006,
Maiori, Italy, September 6-8, 2006. Proceedings, Berlin, Heidelberg, Springer Berlin
Heidelberg (2006) 78–94

25. Gilbert, H.: A Simplified Representation of AES. In Sarkar, P., Iwata, T., eds.:
Advances in Cryptology – ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, Berlin, Heidelberg,
Springer Berlin Heidelberg (2014) 200–222

