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Abstract. We carry out a concrete security analysis of signature schemes
obtained from five-move identification protocols via the Fiat-Shamir trans-
form. Concretely, we obtain tightly-secure signatures based on the com-
putational Diffie-Hellman (CDH), the short-exponent CDH, and the Fac-
toring (FAC) assumptions. All our signature schemes have tight reduc-
tions to search problems, which is in stark contrast to all known signa-
ture schemes obtained from the classical Fiat-Shamir transform (based
on three-move identification protocols), which either have a non-tight
reduction to a search problem, or a tight reduction to a (potentially)
stronger decisional problem. Surprisingly, our CDH-based scheme turns
out to be (a slight simplification of) the Chevallier-Mames signature
scheme (CRYPTO 05), thereby providing a theoretical explanation of
its tight security proof via five-move identification protocols.
Keywords: Signatures, Five-Move Identification Protocols, Fiat-Shamir,
Tightness.

1 Introduction

The security of public-key cryptographic primitives is commonly analyzed via a
security reduction to a suitable cryptographic assumption (such as the factoring
assumption). Concretely, a security reduction converts a successful adversary A
against the cryptographic scheme’s security into a successful solver B against
the hardness of the underlying assumption. If the reduction provides the bound
εA ≤ L ·εB (where εA is A’s success probability and εB is B’s success probability)
then L is called the (multiplicative) security loss of the reduction.1 Clearly, it
is desirable to have the security loss L as small as a constant so that εA ≈ εB.
If furthermore the running times of A and B are approximately the same, then
the reduction is said to be tight. Cryptographic schemes with tight reductions
recently drew a large amount of attention (e.g., [31, 18, 12, 13, 29, 30, 4]) due to
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1 We ignore the additive negligible terms to simplify our discussion.
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the fact that tightly-secure schemes do not need to compensate for the security
loss with increased parameters.

Digital signature schemes are one of the most important public-key cryp-
tographic primitives. They have numerous applications and often serve as a
building block for advanced cryptographic protocols. Ideally, we desire to have
signature schemes with short signature sizes, efficient signing and verification
algorithms, and tight security based on weak, well studied assumptions.

Tightness, Efficiency, and Decisional Assumptions. We will focus on
signature schemes in the random oracle model [8] which usually have better ef-
ficiency than the ones in the standard model. Even in the random oracle model,
there seems to be a prevalence of efficient, yet tightly-secure signature schemes
based on decisional rather than search assumptions [34, 3, 33, 2]. Notable ex-
ceptions are the Rabin-Williams (RW) scheme from factoring (FAC) [9, 10], the
BLS and RSA-PSS variants with the “selector bit” technique [9, 14, 26, 34], the
Chevallier-Mames scheme (and its variants) (CM) from CDH [20, 26], and the
Micali-Reyzin scheme (MR) from FAC [39, 7].

The Fiat-Shamir Transform and its Tightness. The Fiat-Shamir (FS)
method [21] transforms a (canonical) three-move identification scheme ID into a
digital signature scheme SIG[ID] using a hash function. A canonical identification
scheme ID as formalized by [1] is a three-move public-key authentication protocol
of a specific form. The prover (holding the secret-key) sends a commitment R
to the verifier. The verifier (holding the public-key) returns a random challenge
h, uniformly chosen from a set ChSet (of exponential size). The prover sends a
response s. Finally, using the verification algorithm, the verifier publicly checks
correctness of the transcript (R, h, s). There is a large number of canonical iden-
tification schemes known (e.g., [21, 28, 11, 40, 49, 15, 23, 42, 41, 34, 26], the most
popular among them being the scheme by Schnorr [49].

As discussed above, obtaining tightly secure signatures with short parameters
has been proven to be notoriously hard. In particular, schemes obtained via the
classical FS transform are usually proven via the Forking Lemma [46] and there-
fore are not tightly secure. For example, the Schnorr signature is obtained from
the Fiat-Shamir transform and has an inherently loose security reduction [50, 22,
35] to the discrete logarithm problem. This issue was addressed by [34, 3] who
showed how to improve the tightness of signature schemes obtained from the FS
transform by basing their security on decisional assumptions such as DDH (and
a short exponent variant thereof), quadratic residuosity, and (Ring)-LWE. How-
ever, to the best of our knowledge, there is currently no FS-derived signature
scheme known which can be tightly proven secure under a search assumption.
Moreover, there seems to be some evidence to support that this is impossible:
the results of [22] show that the Schnorr scheme cannot be proven tightly secure
under any non-interactive assumption. However, tight variants of the FS trans-
form for three-move schemes may still exist if the scheme meets some additional
requirements.
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1.1 Our Contributions

In this work, we consider the Fiat-Shamir transform applied to a five-move iden-
tification scheme (rather than a three-move scheme). More precisely, we first
formalize syntax and security of a five-move identification scheme and, follow-
ing [35], provide a concrete and modular security analysis of the Fiat-Shamir
transformed signature scheme. Next, we instantiate our framework to obtain
schemes with security from search assumptions, such as the classical CDH and
FAC assumptions. All our security reductions are tight.

Five-move Identification Schemes. A five-move identification scheme ID
is an extension of the three-move identification scheme, where there are two
“commitment-challenge” rounds (compared to one), followed by a final response
output by the prover. (Each round has two moves, so five moves in total.) Intu-
itively, the additional rounds give us the handle to tightly embed the challenge
of a search assumption. Following [35], we consider PIMP-KOA security (paral-
lel impersonation against key-only attacks) of identification schemes where the
adversary, given the public-key, tries to impersonate a prover in one of many
parallel “commitment-challenge” sessions.

Fiat-Shamir for Five-Move Identification Schemes. We consider two
variants FS[ID] and OF[ID] of the five-move Fiat-Shamir transformation. Both
have tight security reductions given that the identification scheme has honest-
verifier zero-knowledge (HVZK) and is secure against parallel impersonation at-
tacks. 2 The two variants come with different trade-offs. OF[ID] requires special
soundness but results in an online/offline signature scheme [52], which allows to
pre-compute most of the signature in an offline phase to have a computation-
ally cheap online signing phase (that requires knowledge of the message to be
signed). FS[ID] does not require special soundness but does not come with the on-
line/offline property. Interestingly, we are able to explain the Chevallier-Mames
signature scheme [20] in our framework and show that it can be obtained from
a five-move identification scheme by applying OF[ID]. We now give some details
of our obtained signature schemes. A detailed comparison of their properties is
given in Table 1.

A New Online/Offline Scheme With a Tight Security Reduction. Us-
ing our OF[ID] transform, we present a modified version of the Girault-Poupard-
Stern (GPS) signature scheme [24]. The main interest of this scheme lies within
its online signing step which can be made extremely efficient, given that most of
the work can be precomputed in the offline-step, i.e., before seeing the message
m. Concretely, the scheme only performs arithmetics over the integers in its on-
line step, thereby even getting rid of modular reductions. [24] provide a loose
security reduction to the Short-Exponent Discrete Logarithm (SEDL) assump-
tion [36] which states that the discrete logarithm problem remains hard even if

2 We also consider identification schemes with correctness error and statistical HVZK
and define the notion of non-aborting HVZK. In this section, we ignore these for
simplicity.
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the discrete logarithm is known to lie in some fixed interval. Subsequently, [3]
proved a tight reduction for the GPS scheme to the decisional variant of the
SEDL [36]. However, so far, there has been no known tight reduction of the
GPS scheme to a search assumption. Our scheme resolves this issue by offering a
tight reduction to the Short Exponent CDH (SCDH) assumption. The relation
between these aforementioned problems is explained in [36] as follows. First, the
SEDL assumption is (non-tightly) equivalent to its decisional version. Second,
the SCDH assumption is (non-tightly) equivalent to the assumption that both
the full length CDH problem and the SEDL problem are hard.

A Tightly Secure Factoring-Based Scheme With Efficient Signing.
As an application of our second transform, FS[ID], we present a new signature
scheme with a tight security reduction to factoring. While our signature genera-
tion step and size are not quite as efficient than the ones of the factoring-based
schemes of [39, 9, 10], our scheme highlights the usefulness of our (generic) FS[ID]
transform.

A Tightly Secure Scheme from CDH. Our instantiation from CDH results
in a slight simplification of the Chevallier-Mames signature scheme [20]. (Slight
simplification in the sense that some inputs to the hash function can be left out in
our scheme.) We believe that our framework provides interesting insights to the
original scheme and underlines the usefulness of our (generic) OF[ID] transform.

Scheme Origin Approx. Size Off-line Comp. On-line Comp. Ass. Search Ass.?
KW [26] k + |p| (2,0,0) (0,1,1) DDH –
GJKW [26] G+ k + |p| (1,0,0) (2,1,2) CDH X
FSCDH new G+ k + |p| (1,0,0) (2,1,2) CDH X
OFCDH [20] G+ k + |p| (3,0,1) (0,1,1) CDH X
AFLT [3] 2k + c (1,0,0) (0, 1∗, 1) DSDL –
FSSCDH new G+ 2k + c (1,0,0) (2, 1∗, 2) SCDH X
OFSCDH new G+ 2k + c (3,0,1) (0, 1∗, 1) SCDH X
MR [39, §4.3] k + |N | (1, 0, 0) (1, const, 1) FAC X
BR [9] k + |N | (0, 0, 0) (0, const, 1) FAC X
FDHRSA [33] |N | (0,0,0) (1,0,1) ΦH –
FSFAC new G+ k + |N | (1,0,0) (2, 1, 2) FAC X

Table 1: Comparison between some known tightly-secure signature schemes in the
random oracle model. Top: schemes in a cyclic group G of prime order p. Bottom:
schemes over ZN for composite N . Elements of G have bit length G and k denotes the
security parameter. c < |p| is a parameter for the short Diffie-Hellman assumptions.
Computational cost (x, y, z) denotes x modular exponentiations, y modular multipli-
cations, and z hash operations, ∗ indicates multiplication over integers, and const is a
small constant.



Tightly-Secure Signatures from Five-Move Identification Protocols 5

1.2 Related Work

There exists a large body of literature on variants and improvements for the Fiat-
Shamir transform. [35] give a concrete and modularized security treatment for
signatures obtained from identification schemes via the Fiat-Shamir transform in
both the multi- and single user settings which yields optimal security parameters
for a wide array of important signatures in the ROM, in particular for Schnorr
signatures. Our work is based on their modular framework. More recently, [7]
put forth a new framework which includes multiple transforms that allow to
tightly convert an ID scheme satisfying certain requirements into a signature.
Their framework captures some existing transformations that have so far not
received any theoretical treatment. Most notably, they give a characterization
of the ‘swap’ method used in [38] to obtain a signature based tightly on the
factoring assumption. [26, 2, 3] propose methods to obtain tight security for FS-
derived signature schemes, with two of the schemes in [3] satisfying (conjectured)
post-quantum security.

Deriving signature schemes from five-move ID schemes (or more generally
from schemes with 2n + 1 rounds) in an FS-like manner is a natural idea and
thus has already been in the literature [51, 55, 54, 44, 45, 16, 17, 48, 53, 5, 19]. Sur-
prisingly, many of them in the context of post-quantum security. However, none
of these works proposes generic transforms for five-move ID schemes which makes
the resulting proofs rather complex. Furthermore, none of the presented signa-
ture schemes admits a tight security reduction.

2 Preliminaries

2.1 Notations

We define [N ] := {1, . . . , N} and ZN := Z/NZ as the residual ring for an integer
N . Let S be a finite set. a← S denotes choosing an element a from S uniformly
at random. Our algorithms are considered to be probabilistic polynomial time
unless stated otherwise. If A is an algorithm, then a← A(b) denotes the random
variable which is defined as the output of A on input b. With a ∈ A(b) we
denote a possible output a of the execution of A on input b. When we want to
make the randomness explicit, we use the notation a := A(b; ρ) meaning that
the algorithm is executed on input b and randomness ρ. Note that A’s execution
is now deterministic.

2.2 Digital Signatures

We begin by defining syntax and security of a (digital) signature scheme. Let
par denote some common system parameters shared among all participants.

Definition 1 (Signature Scheme). A digital signature scheme SIG := (Gen,
Sign,Ver) is defined as follow.
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– The key generation algorithm Gen takes system parameters par as inputs
and returns the public and secret keys (pk, sk). We assume that pk implicitly
defines a message spaceM and a signature space Σ.

– The signing algorithm Sign takes a secret key sk and a message m ∈ M as
inputs and returns a signature σ ∈ Σ.

– The deterministic verification algorithm Ver takes a public key pk, a message
m and a signature σ as inputs and returns 1 (accept) or 0 (reject).

SIG has correctness error ρ if for all (pk, sk) ∈ Gen(par) and all messages m ∈
M, with probability at least 1 − ρ Sign(sk,m) outputs a valid signature σ such
that Ver(pk,m, σ) = 1.

Definition 2 (UF-CMA Security). A signature scheme SIG is said to satisfy
(t, ε,Qs)-UF-CMA security (unforgeability against chosen message attacks) if for
all adversaries A running in time at most t and making at most Qs queries to
the signing oracle,

Pr
[

Ver(pk,m∗, σ∗) = 1
∧ m∗ /∈M

∣∣∣∣ (pk, sk)← Gen(par)
(m∗, σ∗)← ASign(·)(pk)

]
≤ ε,

where on query m the signing oracle Sign adds m to list M and returns σ ←
Sign(sk,m) to A, i.e., a signature on message m under public-key pk.

As a special case of UF-CMA security, we define (t, ε)-UF-KOA security (un-
forgeability against key-only attacks) as (t, ε, 0)-UF-CMA security, i.e. Qs = 0.
In other words, the adversary is not allowed to make any signing query in the
UF-KOA security experiment.
Security in the random oracle model. A common approach to analyze the
security of signature schemes that involve a hash function is to use the random
oracle model [8] in which hash queries are answered by an oracle H. H is defined
as follows. On input x, it first checks whether H(x) has previously been defined.
If so, it returns H(x). Otherwise, it sets H(x) to a uniformly random value
in the codomain of H and then returns H(x). This allows us to parametrize
the maximal number of hash queries in our security notions. As an example,
we define (t, ε,Qs, Qh)-UF-CMA as security against any adversary that makes at
most Qh queries to H in the UF-CMA game. Furthermore, we make the standard
convention that any random oracle query that is asked as a result of a query to
the signing oracle in the UF-CMA game is also counted as a query to the random
oracle. This implies that Qs ≤ Qh.

2.3 Identification Schemes

A five-move identification protocol of the form depicted in Figure 1 is defined as
follows.

Definition 3 (Five-move Identification Scheme). A five-move identifica-
tion scheme ID := (IGen,P,ChSet1,ChSet2,V) is defined as follow.
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Prover P(sk) Verifier V(pk)

(R1,St1)← P1(sk)

h1 ← ChSet1

(R2,St2)← P2(sk,R1, h1,St1)

h2 ← ChSet2

s← P3(sk,R1, h1, R2, h2,St2) d = V(pk,R1, h1, R2, h2, s)

R1

h1

R2

h2

s

Fig. 1: A 5-move identification scheme and its transcript (R1, h1, R2, h2, s).

– The key generation algorithm IGen takes system parameters par as input and
returns a public key and a secret key (pk, sk). We assume that pk defines
two challenge sets ChSet1 and ChSet2.

– The prover algorithm P = (P1,P2,P3) is split into three algorithms. P1 takes
as input the secret key sk and returns a first-move commitment R1 and a
state St1; P2 takes as input the secret key sk, a first-move commitment R1,
a challenge h1, and a state St1 and returns a second-move commitment R2;
P3 takes as input the secret key sk, a transcript (R1, h1, R2, h2), and a state
St2 and returns a response s.

– The deterministic verifier algorithm V takes the public key pk and the con-
versation transcript as input and outputs a decision, 1 (acceptance) or 0
(rejection).

We define some useful terms. A transcript for a canonical five-move identi-
fication scheme is of the form (R1, h1, R2, h2, s). A transcript (R1, h1, R2, h2, s)
is valid (with respect to pk) if V(pk,R1, h1, R2, h2, s) = 1 and it is real if it
is output by the following algorithm SKTran(sk). We elaborate further on the
purpose of SKTran below when defining the notion of naHVZK (non-aborting
honest-verifier zero-knowledge).

SKTran(sk):
(R1,St1)← P1(sk)
h1 ← ChSet1
(R2,St2)← P2(sk,R1, h1,St1)
h2 ← ChSet2
s← P3(sk,R1, h1, R2, h2,St2)
If s =⊥ then T := (⊥,⊥,⊥,⊥,⊥)
Else T := (R1, h1, R2, h2, s)
Return T
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Definition 4 (Correctness error ρ). We call an ID has correctness error ρ
if, for all (pk, sk) ∈ IGen(par), the following holds:
– For all (R1, h1, R2, h2, s) ← SKTran(sk) with s 6= ⊥, we have V(pk,R1, h1,
R2, h2, s) = 1.

– A real transcript (R1, h1, R2, h2, s) contains s = ⊥ with probability at most
ρ, i.e., Pr[s = ⊥ | (R1, h1, R2, h2, s)← SKTran(sk)] ≤ ρ.

Generalizing [35] we now define parallel impersonation against key-only at-
tacks (KOA) for five-move identification schemes.

Definition 5 (Non-aborting (Parallel) Impersonation). A five-move iden-
tification scheme ID is (t, ε,QCh1 , QCh2 , QO)-naPIMP-ATK secure (non-aborting
parallel impersonation against ATK attacks, ATK ∈ {KOA,PA}) if for all ad-
versaries A running in time at most t and making at most QCh1 queries to the
challenge oracle Ch1 and QCh2 queries to oracle Ch2, we have

Pr
[

V(pk,R1, h1, R2, h2, s
∗) = 1

∧ (R1, h1) ∈ L1 ∧ (R2, h2) ∈ L2

∣∣∣∣ (pk, sk)← IGen(par)
s∗ ← ACh1(·),Ch2(·)(pk,St)

]
≤ ε,

where the challenge oracles Chi(Ri) (i ∈ {1, 2}) return hi ← ChSeti to A and
store (Ri, hi) in set Li.3 For different kinds of attacks, oracle O is defined as
follows.
– If ATK = KOA (key-only attack), then O always returns ⊥.
– If ATK = PA (passive attack), then O := Tran, and the transcript oracle

Tran() returns a real transcript (R′1, h′1, R′2, h′2, s′) to A, i.e., (R′1, h′1, R′2,
h′2, s

′)← SKTran(sk).
We do not use the parameter QO for ATK = KOA and simply speak of (t, ε,QCh1 ,
QCh2)-naPIMP-KOA. Moreover, (t, ε,QO)-naIMP-ATK ( impersonation against
ATK attack) security is defined as (t, ε, 1, 1, QO)-naPIMP-ATK security, i.e., the
adversary is only allowed QCh1 = 1 query to the Ch1 oracle and QCh2 = 1 to
Ch2.

Definition 6 (Special Soundness). A five-move identification scheme ID is
SS (special sound) if there exists an extractor Ext such that, for all (pk, sk) ∈
IGen(par), given any two valid transcripts (R1, h1, R2, h2, s) and (R1, h

′
1, R

′
2, h
′
2,

s′) with h2 6= h′2, it outputs a valid secret key sk∗ such that (pk, sk∗) ∈ IGen(par),
i.e., we have Pr[(sk∗, pk) ∈ IGen(par) | sk∗ ← Ext(pk,R1, h1, R2, h2, s, h

′
1, R

′
2,

h′2, s
′)] = 1. The winning condition (pk, sk∗) ∈ IGen(par) means that the tuple

(pk, sk∗) is in the support of IGen(par), i.e., that A outputs a valid secret-key sk∗
with respect to pk.

We now introduce the notion of (statistical) non-aborting honest-verifier zero-
knowledge [37], abbreviated as naHVZK. This notion generalizes the standard def-
inition of honest-verifier zero-knowledge by including also identification schemes
3 On two queries Chi(Ri) and Chi(R′i) with the same input Ri = R′i the oracle returns
two independent random challenges hi ← ChSeti and h′i ← ChSeti.
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ID with correctness error ρ. Note that a real run of ID might produce a tran-
script of the form (R1, h1, R2, h2,⊥) with probability ρ. Unfortunately, it might
not be efficiently possible to simulate a correctly distributed transcript in this
case. Therefore, we again make use of the algorithm SKTran which on input a
secret key sk internally generates a valid transcript of ID (with respect to the
matching public key pk), but outputs ⊥ if the transcript matches an execution
of ID in which s =⊥. We now require an efficient simulator Sim that produces
transcripts which are statistically close in distribution to the ones output by
SKTran.

Definition 7 (∆-Statistical Non-Aborting Honest-Verifier Zero-Knowl-
edge with α Bits Min-Entropy). A five-move identification scheme ID is said
to be ∆-statistically naHVZK (non-aborting honest-verifier zero-knowledge) with
α bits min-entropy if there exists an algorithm Sim that, given a valid public key
pk, outputs (R1, h1, R2, h2, s) such that the distribution of (R1, h1, R2, h2, s) has
statistical distance at most ∆ from the distribution of a transcript output by
SKTran on input sk and if for all (pk, sk) ∈ IGen(par) and strings R′1, R′2 we
have

Pr
[
R1 = R′1 or R2 = R′2

∣∣ (R1, h1, R2, h2, s)← Sim(pk)
]
≤ 2−α.

If ∆ = 0, we say that ID is perfectly naHVZK.

3 Signatures from Five-move Identification Schemes

We extend the generalized Fiat-Shamir transform [6] to construct signatures for
5-move identification schemes. We also present an online/offline variant of our
transformation, where parts of the computation can be performed off-line which
leads to a better performance in the signing step, but requires special soundness
for the underlying identification schemes. Furthermore, we give an alternative
Fiat-Shamir transform, which outputs shorter signatures, but retains the same
security.

3.1 The Fiat-Shamir transform and its Online/Offline variant

Fix some system parameters par. Let ID := (IGen,P,ChSet1,ChSet2,V) be a five-
move identification scheme andH1 : {0, 1}∗ → ChSet1 andH2 : {0, 1}∗ → ChSet2
be two hash functions. We also fix ` ∈ N which controls the scheme’s correctness.
The signature scheme FS[ID, H1, H2, `] := (Gen,Sign,Ver) from ID is defined as
follows. Its online/offline variant OF[ID, H1, H2, `] := (Gen,Signo,Vero) is defined
with the boxed differences.
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Gen(par):
(pk, sk)← IGen(par)
Return (pk, sk)

Ver(pk,m, σ), Vero(pk,m, σ) :
Parse σ = (R1, R2, s)
h1 = H1(R1,m)
h1 = H1(R1)
h2 = H2(R2,m)
Return V(pk,R1, h1, R2, h2, s)

Sign(sk,m), Signo(sk,m) :
i := 0
While i ≤ ` and s = ⊥:
i := i+ 1
(R1,St1)← P1(sk)
h1 = H1(R1,m)
h1 = H1(R1)

(R2,St2)← P2(sk,R1, h1,St1)
h2 = H2(R2,m)
s← P2(sk,R1, h1, R2, h2,St2)

If s = ⊥ then σ := ⊥
Else σ := (R1, R2, s)
Return σ

If ID has correctness error ρ, then both FS[ID, H1, H2, `] and OF[ID, H1, H2, `]
are signature schemes with correctness error ρ`.

The following theorem states the security of FS[ID, H1, H2, `] and OF[ID, H1,
H2, `].

Theorem 1 (Security of FS and OF). Suppose that ID has ∆-statistical naHVZK
with α bits min-entropy and is (t, ε,QCh1 , QCh2)-naPIMP-KOA secure. Then the
signature scheme FS[ID, H1, H2, `] is (t′, ε′, Qs, Q1, Q2)-UF-CMA-secure in the
random oracle model, where

ε′ ≤ ε+ (Q1+Q2)Qs
2α +Qs · `∆, t ≈ t′, Q1 = QCh1 − 1, Q2 = QCh2 − 1,

and QCh1 and QCh2 are upper bounds on the number of Ch1 and Ch2 queries in
the PIMP-KOA experiment, respectively, and Qs, Q1, and Q2 are upper bounds on
the number of signing and random oracles H1 and H2 queries in the UF-CMA ex-
periment, respectively. Moreover, if ID has special soundness (SS), then OF[ID, H1, H2, `]
is (t′, ε′, Qs, Q1, Q2)-UF-CMA-secure in the random oracle model, where

ε′ ≤ ε+ (Q1+Q2)Qs
2α +Qs · `∆+ 1

|ChSet2| , t ≈ t′,
Q1 = QCh1 − 2, Q2 = QCh2 − 2.

The proof of Theorem 1 is obtained by combining Lemmas 1 to 3.

Alternative Fiat-Shamir Transform. We call ID partially commitment-
recoverable if the second-move commitment R2 can be partitioned into R2 =
(RL, RR), a left part RL and a right part RR, and V(pk,R1, h1, R2, h2, s) is
such that it first recomputes R′1 = V1(pk, h2, s) and R′R = V2(pk,RL, h1, h2, s)
and then outputs 1 iff (R′1, R′R) = (R1, RR). It is fully commitment-recoverable if
R2 = RR and RL is the empty string. For commitment-recoverable ID, we can de-
fine an alternative Fiat-Shamir transformation FS′[ID, H1, H2, `] := (Gen,Sign′,Ver′),
where Gen is as in FS[ID, H1, H2, `]. Algorithm Sign′(sk,m) is defined as Sign(sk,m)
with the modified output σ′ = (RL, h2, s). Algorithm Ver′(pk,m, σ′) first parses
σ′ = (RL, h2, s), then recomputesR′1 = V1(pk, h2, s) andR′R := V2(pk,RL, h1, h2, s),
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where h1 = H1(R′1), and finally returns 1 iff H2((RL, R′R),m) = h2. Its on-
line/offline variant OF′[ID, H1, H2, `] := (Gen,Signo

′,Vero
′) is defined in the sim-

ilar manner with the boxed differences.

Gen(par):
(pk, sk)← IGen(par)
Return (pk, sk)

Ver′(pk,m, σ′), Vero
′(pk,m, σ′) :

Parse σ′ = (RL, h2, s)
R1 = V1(pk, h2, s)
h1 = H1(R1,m)
h1 = H1(R1)
RR = V2(pk,RL, h1, h2, s)
R2 = (RL, RR)
If h2 = H2(R2,m)
then return 1

Else return 0

Sign′(sk,m), Signo
′(sk,m) :

i := 0
While i ≤ ` and s = ⊥:

(R1,St1)← P1(sk)
h1 = H1(R1,m)
h1 = H1(R1)

(R2,St2)← P2(sk,R1, h1,St1)
h2 = H2(R2,m)
s← P2(sk,R1, h1, R2, h2,St2)

If s = ⊥ then σ′ := ⊥
Else σ′ = (RL, h2, s)
Return σ′

Since σ = (R1, R2, s) can be publicly transformed into σ′ = (RL, h2, s) and
vice versa, FS[ID, H1, H2, `] and FS′[ID, H1, H2, `] are equivalent in terms of se-
curity. The same argument holds for OF[ID, H1, H2, `] and OF′[ID, H1, H2, `]. On
the one hand, the alternative Fiat-Shamir transform yields shorter signatures if
h2 ∈ ChSet2 has a smaller representation size than (R1, RR). On the other hand,
signatures of the Fiat-Shamir transform maintain their algebraic structure which
in some cases enables useful properties such as batch verification.

Lemma 1 (UF-KOA security of FS and OF). Suppose that ID is (t, ε,QCh1 ,
QCh2)-naPIMP-KOA-secure. Then the signature schemes FS[ID, H1, H2, `] and
OF[ID, H1, H2, `] are (t′, ε′, Q1, Q2)-UF-KOA-secure in the random oracle model,
where

ε = ε′, t ≈ t′, Q1 = QCh1 − 1, Q2 = QCh2 − 1,

and Q1, Q2 are upper bounds on the numbers of hash queries to H1 and H2,
respectively.

Proof. We prove the statement for OF[ID, H1, H2, `]; the proof for FS[ID, H1,
H2, `] is identical. Assume that an adversary A breaks the (t′, ε′, Q1, Q2)-UF-KOA-
security of OF[ID, H1, H2, `]. We construct an adversary B that breaks the (t, ε,
QCh1 , QCh2)-PIMP-KOA security of ID, with (t, ε,QCh1 , QCh2) as claimed.

At the beginning, after obtaining pk from the PIMP-KOA experiment, B
forwards it to A. If A makes a query R1 to the random oracle H1, B returns
H1(R1) if it is already defined, otherwise B makes a query h1 ← Ch1(R1) and
programs H1(R1) := h1. If A makes a query (R2,m) to the random oracle
H2, B returns H2(R2,m) if it is already defined, otherwise B makes a query
h2 ← Ch(R2) and programs the random oracle H2(R2,m) := h2.

Eventually, A submits a forgery (m,σ = (R1, R2, s)), and terminates. We
assume that h1 := H1(R1) and h2 := H2(R2,m) were already queried by A.
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(Otherwise, B queries H1(R1) and H2(R2,m) which are simulated as described
above.) Hence, in total, there are QCh1 = Q1 + 1 and QCh2 = Q2 + 1 queries to
H1 and H2, respectively. Adversary B outputs s and terminates. According to
the simulations of H1 and H2, we have (R1, h1) ∈ L1 and (R2, h2) ∈ L2, and
(R1, h1, R2, h2, s) is a valid transcript and hence breaks the PIMP-KOA security
if A’s forgery is valid. This establishes ε = ε′. The running time of B is roughly
that of A, and thus t′ ≈ t.

Lemma 2 (UF-CMA security of FS). If ID is ∆-statistically naHVZK with
α-bits min-entropy and FS[ID, H1, H2, `] is (t, ε,Q1, Q2)-UF-KOA secure, then
FS[ID, H1, H2, `] is (t′, ε′, Qs, Q′1, Q′2)-UF-CMA secure in the random oracle model,
where

ε′ ≤ ε+ (Q′1 +Q′2)Qs
2α +Qs · `∆, t′ ≈ t, Q′1 = Q1 Q′2 = Q2

and Q1 and Q2 are upper bounds on the numbers of hash queries to H1 and H2,
respectively, and Qs, Q′1 and Q′2 are upper bounds on the number of signing and
hash queries to H ′1 and H ′2 in the UF-CMA experiment, respectively.

Proof. Assume that an adversary A breaks (t′, ε′, Qs, Q′1, Q′2)-UF-CMA secu-
rity of FS[ID, H1, H2, `]. We construct an adversary B invokes A and breaks
(t, ε,Q1, Q2)-UF-KOA security of FS[ID, H1, H2, `] with (t, ε) as stated in the
lemma. Adversary B is executed in the UF-KOA experiment. It obtains public
key pk and has access to random oracles H1 and H2.

Adversary B runs A on input pk answering hash queries to random oracles
H ′1 and H ′2 and signing queries as follows.
Simulation of hash queries. A hash query H ′1(R,m) is answered by B by
querying its own hash oracle H1(R,m) and storing its answer and returning it.
H ′2 is simulated in the same way by using B’s own oracle H2.
Simulation of signing queries. On A’s signature querym, B uses the naHVZK
property of ID to generate a signature σ on message m. Concretely, B defines
i := 0 and simulates the signing query as follows.
– While i ≤ ` and s = ⊥:
• (R1, h1, R2, h2, s)← Sim(pk) and i := i+ 1;

– If s = ⊥, then return ⊥;
– Else
• If H ′1(R1,m) 6= ⊥ or H ′2(R2,m) 6= ⊥, then define Incon := 1 and return
⊥

• Else define
H ′1(R1,m) := h1, H

′
2(R2,m) := h2 (1)

and return σ := (R1, R2, s).
We note that, by Equation (1), B makes the hash functions inconsistent,

since H1(R1,m) 6= h1 =: H ′1(R1,m) and H2(R2,m) 6= h2 =: H ′2(R2,m) with
high probability. Adversary A can detect this inconsistence if Incon = 1, namely,
A queries the exact H ′1(R1,m) or H ′2(R2,m) before asking the signing query on
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m. For each signing query, this can be bounded (namely, B aborts because of
Incon = 1) by probability at most (Q′1+Q′2)/2α, since ID has α-bits min-entropy.
Moreover, for each signing query, B runs Sim at most ` times and produces a real
transcript from SKTran(sk) oracle with statistical distance at most ∆ in each of
these runs. Since the number of signing queries is bounded by Qs, the statistical
distance between the real UF-CMA experiment and the simulated one is at most
Qs · ((Q′1 +Q′2)/2α + `∆).
Forgery. Eventually, A submits its forgery (m,σ := (R1, R2, s)). We assume
that it is a valid forgery in the UF-CMA experiment, namely, for h1 = H ′1(R1,m)
and h2 = H ′2(R2,m) we have V(pk,R1, h1, R2, h2, s) = 1. Furthermore, it satis-
fies the freshness condition, i.e., m 6∈ M. Note that by the freshness condition,
we have H1(R1,m) = H ′1(R1,m) = h1 and H2(R2,m) = H ′2(R2,m) = h2 since
H ′1(R1,m) and H ′2(R2,m) were not programmed via (1). After receiving A’s
forgery, B computes a forgery for the UF-KOA experiment as σ = (R1, R2, s).

Overall, B returns a valid forgery of UF-KOA experiment with probability

ε ≥ ε′ − (Q′1 +Q′2)Qs
2α −Qs · `∆.

The running time of B is that of A plus the Qs executions of Sim. We write
t′ ≈ t. This completes the proof.

Lemma 3 (UF-CMA-security of OF). If ID is ∆-statistically naHVZK with α-
bits min-entropy, has SS, and OF[ID, H1, H2, `] is (t, ε,Q1, Q2)-UF-KOA secure,
then OF[ID, H1, H2, `] is (t′, ε′, Qs, Q′1, Q′2)-UF-CMA secure in the random oracle
model, where

ε′ ≤ ε+ (Q′1 +Q′2)Qs
2α +Qs ·`∆+ 1

|ChSet2|
, t′ ≈ t, Q′1 = Q1−1 Q′2 = Q2−1

and Q1 and Q2 are upper bounds on the numbers of hash queries to H1 and H2,
respectively, and Qs, Q′1 and Q′2 are upper bounds on the number of signing and
hash queries to H ′1 and H ′2 in the UF-CMA experiment, respectively.

Proof. Let A be an algorithm that breaks (t′, ε′, Qs, Q′1, Q′2)-UF-CMA security
of OF[ID, H1, H2, `]. We will describe an adversary B invoking A that breaks
(t, ε,Q1, Q2)-UF-KOA security of OF[ID, H1, H2, `] with (t, ε) as stated in the
lemma. Adversary B is executed in the UF-KOA experiment and obtains public-
key pk, and has access to random oracles H1 and H2.

Adversary B runs A on input pk answering hash queries to random oracles
H ′1 and H ′2 and signing queries as follows.
Simulation of hash queries. A hash query H ′1(R) is answered by B by query-
ing its own hash oracle H1(R) and storing its answer and returning it. H ′2 is
simulated in the same way by using B’s own oracle H2.
Simulation of signing queries. The simulation here is similar to that in
Lemma 2 except for the simulation of H ′1. For completeness, we present the
details as follows.
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On A’s signature query m, B uses the naHVZK property of ID to generate a
signature σ on message m. Concretely, B defines i := 0 and simulates the signing
query as follows.
– While i ≤ ` and s = ⊥:
• (R1, h1, R2, h2, s)← Sim(pk) and i := i+ 1;

– If s = ⊥, then return ⊥;
– Else
• If H ′1(R1) 6= ⊥ or H ′2(R2,m) 6= ⊥, then define Incon := 1 and return ⊥
• Else define

H ′1(R1) := h1, H
′
2(R2,m) := h2 (2)

and return σ := (R1, R2, s).
We note that, by Equation (2), B makes the hash functions inconsistent, since
H1(R1) 6= h1 =: H ′1(R1) and H2(R2,m) 6= h2 =: H ′2(R2,m) with high probabil-
ity. Adversary A can detect this inconsistence if Incon = 1, namely, A queries
the exact H ′1(R1) or H ′2(R2,m) before asking the signing query on m. For each
signing query, this can be bounded (namely, B aborts because of Incon = 1)
by probability at most (Q′1 + Q′2)/2α, since ID has α-bits min-entropy. More-
over, for each signing query, B runs Sim at most ` times and produces a real
transcript from SKTran(sk) oracle with statistical distance at most ∆ in each of
these runs. Since the number of signing queries is bounded by Qs, the statistical
distance between the real UF-CMA experiment and the simulated one is at most
Qs · ((Q′1 +Q′2)/2α + `∆).
Forgery. Eventually, A will submit its forgery (m,σ := (R1, R2, s)). We assume
that it is a valid forgery in the UF-CMA experiment, namely, for h1 = H ′1(R1) and
h2 = H ′2(R2,m) we have V(pk,R1, h1, R2, h2, s) = 1. Furthermore, it satisfies
the freshness condition, i.e., m 6∈ M. After receiving A’s forgery, B computes a
forgery for the UF-KOA experiment according to the following case distinction.
– Case 1: R1 was defined in a signing query on some message m′ via (2),

i.e., (R1, h
′
1, R

′
2, h
′
2, s
′) was generated by using Sim(pk). The freshness con-

dition implies m′ 6= m and hence h2 = H ′2(R2,m) 6= H ′2(R′2,m′) = h′2,
except with probability 1/|ChSet2|. In that case we have two valid tran-
scripts (R1, h1, R2, h2, s) and (R1, h

′
1, R

′
2, h
′
2, s
′) with h2 6= h′2. By the special

soundness of ID, B extracts a valid sk∗ by running Ext such that (pk, sk∗) ∈
IGen(par), and then B use sk∗ to generate a fresh and valid UF-CMA forgery.
In this case, Q′1 = Q1 + 1 and Q′2 = Q2 + 1.

– Case 2: R1 was queried to the H ′1 oracle, i.e., H1(R1) = H ′1(R1) = h1. By the
freshness condition, h2 = H ′2(R2,m) was defined in a hash query, but not in
a signing query, i.e., h2 = H ′2(R2,m) = H2(R2,m). B returns σ = (R1, R2, s)
as a valid forgery to its UF-CMA experiment.

Overall, B returns a valid forgery of UF-KOA experiment with probability

ε ≥ ε′ − (Q′1 +Q′2)Qs
2α −Qs · `∆−

1
|ChSet2|

.

The running time of B is that of A plus the Qs executions of Sim. We write
t′ ≈ t. This completes the proof.



Tightly-Secure Signatures from Five-Move Identification Protocols 15

4 Instantiations

In the following, let par := (p, g,G) be a set of system parameters, where G = 〈g〉
is a cyclic group of prime order p.

4.1 Instantiation from CDH

We briefly recall the CDH problem.

Definition 8 (Computation Diffie-Hellman Assumption). The computa-
tional Diffie-Hellman problem CDH is (t, ε)-hard in par if for all adversaries A
running in time at most t,

Pr
[
Z = gxy | x, y ← Zp;Z ← A(gx, gy)

]
≤ ε.

Identification Scheme. The identification scheme IDCDH := (IGen,P,ChSet1,
ChSet2,V) is defined as follows.

IGen(par):
sk := x← Zp

pk := X = gx

ChSet1 := G; ChSet2 := {0, ..., 2k − 1}
Return (pk, sk)

V(pk,R1, h1, R2, h2, s):
Parse R2 := (RL, RR)
If R1 = gs ·X−h2 and RR = hs

1 ·R−h2
L

then return 1
Else return 0

P1(sk):
St1 := r ← Zp; R1 = gr

Return (R1,St1)

P2(sk,R1, h1,St1):
Parse St1 := r
RL := hx

1 ; RR := hr
1

Return (R2 := (RL, RR),St2 := r)

P3(sk,R1, h1, R2, h2,St2):
Parse St2 = r
Return s = x · h2 + r mod p

Lemma 4. IDCDH is a perfectly correct five-move identification scheme and has
perfect non-aborting honest-verifier zero-knowledge (naHVZK) with α = log p
bits min-entropy and special soundness (ß). Moreover, if CDH is (t, ε)-hard in
par = (p, g,G) then IDCDH is (t′, ε′, QCh1 , QCh2)-PIMP-KOA secure, where t ≈ t′

and ε ≥ ε′ − QCh2
2k .

Proof. The perfect correctness of IDCDH is straightforward to verify. We show
the other properties as follows:
Perfect Non-Aborting Honest-Verifier Zero-Knowledge (naHVZK).
Given public key pk = X, Sim first samples s, w, h2 ← Zp. It then computes
h1 := gw, R1 := gsX−h2 , RL := Xw, and RR := Rw1 , defines R2 := (RL, RR) and
outputs the transcript (R1, h1, R2, h2, s). Clearly, (R1, h1, R2, h2, s) is distributed
the same as the one from SKTran(sk), since s is uniformly random over Zp and
R1, RL and RR satisfy R1 = gs · X−h2 and RR = hs1 · R

−h2
L . Moreover, we

note that the entropy of (R1,St1 := r)← P1(sk) and (R2,St2)← P2(sk,R1, h1)
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comes only from R1, which is uniformly random over G. Hence, since the outputs
of Sim(pk) are identically distributed to the outputs of SKTran(sk), IDCDH has
log |G| = log p bits min-entropy as claimed.
Special Soundness. Given two accepting transcripts (R1, h1, R2, h2, s) and
(R1, h

′
1, R

′
2, h
′
2, s
′) with h2 6= h′2, we define an extractor Ext with the property

that Ext(pk,R1, h1, R2, h2, s, h
′
1, R

′
2, h
′
2, s
′) outputs x∗ := (s− s′i)/(h2−h′2) mod

p. We have Pr[gx∗ = X] = 1 for all (X := gx, x) ∈ IGen(par), since R1 =
gs ·X−h2 = gs

′ ·X−h′2 and X = g(s−s′)/(h2−h′2).
PIMP-KOA-Security. Let A be an attacker against the (t′, ε′, QCh1 , QCh2)-
PIMP-KOA security of IDCDH. We construct an attacker B that (t, ε)-breaks CDH.
Construction of B. Let (X := gx, Y := gy) denote the CDH instance. B runs
A with input pk := X and answers A’s challenge queries as follows.

For A’s Ch1 query on R1 ∈ G, B chooses a← Zp and computes h1 = Y · ga.
For A’s Ch2 query on R2 ∈ G × G, B chooses h2 ← Zp and returns it to A.
Clearly, B’s simulation of the PIMP-KOA game is perfect, since both h1 and h2
are uniformly random over G and Zp, respectively.

Eventually, A returns its response s∗ for the PIMP-KOA experiment. We
assume that A’s response is valid, i.e., there exist (R1, h1) ∈ L1 and (R2 :=
(RL, RR), h2) ∈ L2 such that R1 = gs

∗ ·X−h2 and RR = hs
∗

1 ·R
−h2
L . We denote

the discrete logarithm of RL based on h1 by x′ = DLh1(RL) and do the following
cases distinction:
– Case 1: x = x′. By the simulation of Ch1, we have RL = hx1 = (Y gai)x =
Y xXai for some i ∈ [QCh1 ]. Thus, B returns Z := RL ·X−ai = Y x to break
the CDH problem.

– Case 2: x 6= x′. We show in this case even an unbounded adversary A can only
win with probability QCh2/2k. For each index i ∈ [QCh2 ], before receiving
h2,i, A first commits to some R1 = gr1 , RL = hx

′

1 and RR = hr2
1 (for arbitrary

r1, r2, x
′ ∈ Zp and x′ 6= x) and there exists (R1, h1) ∈ L1. A can only win if

there exists an si ∈ Zp such that

r1 + h2,ix = si = r2 + h2,ix
′ ⇔ h2,i = r2−r1

x−x′ .

where h2,i ← ChSet2 := {0, ..., 2k − 1} is chosen independently of r1, r2 and
x′. This happens with probability at most 1/|ChSet2| = 2−k. By the union
bound we obtain the bound QCh2/2k as claimed.
Overall, B returns a valid solution of the CDH challenge with probability

ε ≥ ε′ − QCh2
2k . This completes the proof.

(Online/offline) Signature. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ →
{0, ..., 2k − 1} be two hash functions. As IDCDH is perfectly correct and partially
commitment-recoverable, we can use the alternative Fiat-Shamir transforma-
tion from Section 3.1 with ` := 1 to obtain the signature scheme FSCDH :=
(Gen,Sign,Ver) and its online/offline variant OFCDH := (Gen,Signo,Vero). Here,
FSCDH does not include X, R1 and (g, h1) in the hash H2, which is slightly
simpler than the Chevallier-Mames scheme in [20].
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Gen(par):
sk := x← Zp

pk := X = gx

Return (pk, sk)

Sign(sk,m), Signo(sk,m) :
r ← Zp; R1 = gr

h1 = H1(R1,m); h1 = H1(R1)
RL = hx

1 ∈ G; RR = hr
1

R2 := (RL, RR)
h2 = H2(R2,m) ∈ {0, ..., 2k − 1}
s = x · h2 + r ∈ Zp

σ = (RL, h2, s)
Return σ

Ver(pk,m, σ), Vero(pk,m, σ) :
Parse σ := (RL, h2, s)
R1 = gs ·X−h2

h1 = H1(R1,m); h1 = H1(R1)
RR = hs

1 ·R−h2
L

R2 := (RL, RR)
If h2 = H2(R2,m)
then return 1

Else return 0.

By Lemma 4 and Theorem 1, we have

Theorem 2 (Security of FSCDH and OFCDH). If CDH is (t, ε)-hard in par :=
(p, g,G) then scheme FSCDH is (t′, ε′, Qs, Q1, Q2)-UF-CMA secure and scheme
OFCDH is (t′′, ε′′, Qs, Q1, Q2)-UF-CMA secure in the programmable random oracle
model, where

ε′ ≤ ε+ Q2 + 1
2n + (Q1 +Q2)Qs

2n , t′ ≈ t,

ε′′ ≤ ε+ Q2 + 2
2n + (Q1 +Q2)Qs

2n + 1
2n , t′′ ≈ t.

4.2 Instantiation from Short CDH

We recall the short exponent CDH assumption from [36].

Definition 9 (c-SCDH Assumption). The c-short exponent computational Diffie-
Hellman problem c-SCDH is (t, ε)-hard in par if for all adversaries A running in
time at most t,

Pr
[
Z = gxy | x, y ← {0, ..., 2c − 1};Z ← A(gx, gy)

]
≤ ε.

Identification Scheme. Let par := (p, g,G, k, k′, c) be a set of system param-
eters, where G = 〈g〉 is a cyclic group of prime order p with a hard c-SCDH
problem and k = ω(log p). The identification scheme IDSCDH := (IGen,P,ChSet1,
ChSet2,V) is defined as follows. Here the response s is computed over the integers
(rather than over Zp).
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IGen(par):
sk := x← {0, ..., 2c − 1}
pk := X = gx

ChSet1 := G; ChSet2 := {0, ..., 2k − 1}
Return (pk, sk)

V(pk,R1, h1, R2, h2, s):
Parse R2 := (RL, RR)
If s /∈ {2k+c, ..., 2k+k′+c − 1}
then return 0

If R1 = gsX−h2 and RR = hs
1R
−h2
L

then return 1
Else return 0

P1(sk):
St1 := r ← {0, ..., 2k+k′+c − 1};
R1 = gr

Return (R1,St1)

P2(sk,R1, h1,St1):
Parse St1 := r
RL = hx

1 ; RR = hr
1

R2 := (RL, RR); St2 := St1
Return (R2,St2)

P3(sk,R1, h1, R2, h2,St2):
Parse St2 := r
s = x · h2 + r
If s 6∈ {2k+c, ..., 2k+k′+c − 1}
then return ⊥

Else return s

Lemma 5 ([3]). Let x← {0, ...2c−1}, h2 ← {0, ..., 2k−1}, r ← {0, ..., 2k′+k+c−
1}. Then, s := xh2 + r ∈ {2k+c, ..., 2k′+k+c− 1} with probability 1− 2−k′ . More-
over, if s ∈ {2k+c, ..., 2k′+k+c−1}, then it is uniformly distributed in this interval.

Lemma 6. IDSCDH is a five-move identification scheme with correctness error
2−k′ and has perfect non-aborting honest-verifier zero-knowledge (naHVZK) with
α = c bits min-entropy and special soundness. Moreover, if c-SCDH is (t, ε)-hard
in par = (p, g,G) then IDSCDH is (t′, ε′, QCh1 , QCh2)-PIMP-KOA-secure, where
ε′ ≤ ε+QCh2/2k and t′ ≈ t.

Proof. By Lemma 5, IDSCDH has correctness error 2−k′ . We note that the entropy
of R1 = gr and R2 := (hx1 , hr1) comes only from r, which is chosen uniformly
from {0, ..., 2c − 1}. Hence IDSCDH has c bits min-entropy. We show the other
properties as follows.
Perfect naHVZK. Given public key pk = X, simulator Sim first samples s ←
{2k+c, ..., 2k′+k+c − 1}, w ← Zp and h2 ← {0, ..., 2k − 1}. It then computes h1 =
gw, R1 = gsX−h2 , RL = Xw, and RR = Rw1 , defines R2 := (RL, RR) and outputs
the transcript (R1, h1, R2, h2, s) with probability 1−2−k′ , or (⊥,⊥,⊥,⊥,⊥) with
probability 2−k′ . Clearly, the output of Sim(pk) is identical to that of SKTran(sk).
According to the simulation, with probability 1 − 2−k′ , Sim(pk) will output
a transcript (R1, h1, R2, h2, s), where s is uniformly random over the interval
{2k+c, ..., 2k′+k+c − 1} and R1, RL and RR are values satisfying R1 = gs ·X−h2

and RR = hs1 · R
−h2
L . Due to Lemma 5, the probability that such a transcript

is output by Sim is the same as that for SKTran, and, moreover, the probability
that Sim outputs (⊥,⊥,⊥,⊥,⊥) is also the same as that for SKTran. We note
that the entropy of R1 = gr and R2 := (hx1 , hr1) comes only from r, which is cho-
sen uniformly from {0, ..., 2c − 1}. Since Sim(pk) outputs transcripts identically
distributed to the ones output by SKTran(sk), IDSCDH has c bits min-entropy.
Thus, IDSCDH is perfectly naHVZK.
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Special Soundness. Given two accepting transcripts (R1, h1, R2, h2, s) and
(R1, h

′
1, R

′
2, h
′
2, s
′) with h2 6= h′2, we define an extractor Ext with the property

that Ext(pk,R1, h1, R2, h2, s, h
′
1, R

′
2, h
′
2, s
′) outputs x∗ := (s− s′i)/(h2 − h′2). We

note that x∗ ∈ {0, ..., 2c − 1}, since s, s′i ∈ {2k+c, ..., 2k+k′+c − 1} and h2, h
′
2 ∈

{0, ..., 2k}. Moreover, for all (X := gx, x) ∈ IGen(par), we have Pr[X = gx
∗ ] = 1,

since R1 = gsX−h2 = gs
′
X−h

′
2 and then X = g(s−s′)/(h2−h′2).

PIMP-KOA-security. Let A be an attacker against the (t′, ε′, QCh1 , QCh2)-
PIMP-KOA security of IDSCDH. We construct an attacker B that (t, ε)-breaks
c-SCDH.

Construction of B. Let (X := gx, Y := gy) denote the c-SCDH instance. B
runs A with input pk := X and answers A’s challenge queries as follows.

For A’s Ch1 query on R1 ∈ G, B chooses a← Zp and computes h1 = Y · ga.
For A’s Ch2 query on R2 ∈ G × G, B chooses h2 ← {0, ...2k − 1} and returns
it to A. Clearly, B’s simulation of the PIMP-KOA game is perfect, since both h1
and h2 are uniformly random over G and {0, ..., 2k}, respectively.

Eventually, A returns its response s∗ for the PIMP-KOA experiment. We
assume that A’s response is valid, i.e., s∗ ∈ {2k+c, ..., 2k+k′+c − 1} and there
exist (R1, h1) ∈ L1 and (R2 := (RL, RR), h2) ∈ L2 such that R1 = gs

∗ · X−h2

and RR = hs
∗

1 · R
−h2
L . We denote the discrete logarithm of RL based on h1 by

x′ = DLh1(RL) and do the following cases distinction:
– Case 1: x = x′. By the simulation of Ch1, we have RL = hx1 = (Y gai)x =
Y xXai for some i ∈ [QCh1 ]. Thus, B returns Z := RL ·X−ai = Y x to break
the c-SCDH problem.

– Case 2: x 6= x′. We show in this case even an unbounded adversary A can only
win with probability QCh2/2k. For each index i ∈ [QCh2 ], before receiving
h2,i, A first commits to some R1 = gr1 , RL = hx

′

1 and RR = hr2
1 (for arbitrary

r1, r2, x
′ ∈ Zp and x′ 6= x) and there exists (R1, h1) ∈ L1. A can only win if

there exists an si ∈ {2k+c, ..., 2k+k′+c − 1} such that

r1 + h2,ix = si = r2 + h2,ix
′ ⇔ h2,i = r2−r1

x−x′ ,

where h2,i ← ChSet2 := {0, ..., 2k} is chosen independently of r1, r2 and x′.
This happens with probability at most 1/2k. By the union bound we obtain
the bound QCh2/2k as claimed.
Overall, B returns a valid solution of the c-SCDH challenge with probability

ε ≥ ε′ − QCh2
2k . This completes the proof.

(Online/Offline) Signature. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ →
{0, ..., 2k − 1} be two hash functions. Since IDSCDH has 2−k′ correctness error,
given the required correctness of the signature, we fix a ` ∈ N, and as the scheme
IDSCDH is partially commitment recoverable, we can use the alternative Fiat-
Shamir transform to obtain the signature scheme FSSCDH := (Gen,Sign,Ver) and
its online/offline variant OFSCDH := (Gen,Signo,Vero). For simplicity of notation,
let I := {2k+c, ..., 2k+k′+c − 1}.
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Gen(par):
x←{0, ..., 2c−1}
pk := X = gx

sk := x
Return (pk, sk)

Sign(sk,m), Signo(sk,m) :
i := 0
While i ≤ ` and s = ⊥:
i := i+ 1
r ← {0, ..., 2k+k′+c − 1}
R1 = gr

h1 = H1(R1,m) ∈ G
h1 = H1(R1) ∈ G
R2 := (RL, RR) := (hx

1 , h
r
1)

h2 =H2(R2,m)∈{0, ..., 2k − 1}
s = x · h2 + r
If s /∈ I then s := ⊥

If s = ⊥ then σ := ⊥
Else σ := (RL, h2, s)
Return σ

Ver(pk,m, σ), Vero(pk,m, σ) :
Parse σ = (RL, h2, s)
R1 = gs ·X−h2

h1 = H1(R1,m)
h1 = H1(R1)
RR = hs

1 ·R−h2
L

R2 := (RL, RR)
If s ∈ I ∧ h2 = H2(R2,m)
then return 1

Else return 0.

By Lemma 6 and Theorem 1, we have

Theorem 3 (Security of FSSCDH and OFSCDH). If c-SCDH is (t, ε)-hard in
par := (p, g,G) then FSSCDH is (t′, ε′, Qs, Q1, Q2)-UF-CMA secure and OFSCDH is
(t′′, ε′′, Qs, Q1, Q2)-UF-CMA secure in the programmable random oracle model,
where

ε′ ≤ ε+ Q2 + 1
2k + (Q1 +Q2)Qs

2c , t′ ≈ t,

ε′′ ≤ ε+ Q2 + 2
2k + (Q1 +Q2)Qs

2c + 1
2k , t′′ ≈ t.

Size of Parameters. We follow the analyses provided in [25, 20, 35]. We set
t′ = t = Qs = Qh := Q1 + Q2. Let A be and adversary that runs in time t′,
makes at most Qs signature queries, at most Qh has queries and breaks the
UF-CMA-security of FSSCDH with probability at least ε′ (the analysis applies
also to OFSCDH). If A is run multiple times, the expected time to produce a
forgery is t′/ε′, so we are looking for a security parameter κ with ε′/t′ ≤ 2−κ.
Setting ε′/t′ ≈ (ε + Q2+1

2k + (Q1+Q2)Qs
2c )/t, we can bound each of the additive

terms separately by 2−κ by choosing k and c accordingly. Concretely, we choose
c = 2κ and k = κ. Given that the Pollard lambda algorithm [47] running in time
O(
√

2c) is the best algorithm for solving the c-SCDH problem over G, εt ≤
t

2c ≤
2c/2

2c = 2−κ. Also, by assumption, Q2+1
t2k ≤

t
2kt = 2−κ and (Q1+Q2)Qs

t2c = t2

t2c = t
2c

which we have already shown to be bounded by 2−κ. Setting k′ = 8, this gives
a signature of size of about `′ + 4 · κ + 8, where `′ denotes the size of a group
element.

4.3 Instantiation from Factoring

Signed Quadratic Residues and the Factoring Assumption. We begin
by recalling the useful group of signed quadratic residues from [27, 32]. For n ∈ N
we denote the set of all n/2-bit primes by Pn/2 and Blumn := {N | N = (2p +
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1)(2q + 1) ∧ (2p+ 1), (2q + 1), p, q ∈ Pn/2 ∧ p 6= q}. Let ϕ(N) = 4pq be Euler’s
totient function for N ∈ Blumn.

We define the factoring assumption as follows.

Definition 10 (Factoring Assumption). The factoring problem FAC is (t, ε)-
hard for Blumn if for all adversaries A running in time at most t,

Pr
[
N = PQ ∧ P,Q ∈ Pn/2

∣∣N ← Blumn; (P,Q)← A(N)
]
≤ ε.

For an element a ∈ ZN , we define the absolute value

|x| :=
{
x if x ≤ (N − 1)/2
−x otherwise

.

We define the group of signed quadratic residues as QR+
N := {|x| : x ∈ QRN}.

We have that (QR+
N , ◦) is a cyclic group with order |QR+

N | = ϕ(N)/4, where,
for all a, b ∈ QR+

N and x ∈ ZN , group operations are defined as follows:

a◦b := |a·b mod N |, ax := a ◦ a ◦ ... ◦ a︸ ︷︷ ︸
x times

= |ax mod N |, a−1 := |a−1 mod N |.

By Theorem 2 of [32], we note that the factoring assumption tightly implies
the CDH assumption over QR+

N (henceforth denoted as CDHN ). Let par1 :=
Blumn and par2 := (N, g,QR+

N ), where N ← Blumn and g is a random generator
of QR+

N .

Corollary 1 (FAC −→ CDHN). If FAC is (t, ε)-hard in par1, then CDHN is
(t′, ε′)-hard in par2, where t′ ≈ t and ε′ ≤ ε+ 2−n/2.

Identification Scheme. Let par := Pn/2. The identification scheme IDFAC :=
(IGen,P,ChSet1,ChSet2,V) is defined as follows.

IGen(par):
p, q ← Pn/2 s.t. P = 2p+ 1 ∈ Pn/2
and Q = 2q + 1 ∈ Pn/2
N = PQ
x← ZN/4; X := gx

sk := (x, p, q)
pk := (X,N)
ChSet1 := QR+

N

ChSet2 := {0, ..., 2k − 1}
Return (pk, sk)

V(pk,R1, h1, R2, h2, s):
Parse R2 := (RL, RR)
If R1 = gs ◦X−h2 and RR = hs

1 ◦R−h2
L

then return 1
Else return 0

P1(sk):
r ← ZN/4; R1 = gr; St1 := r
Return (R1,St1)

P2(sk,R1, h1,St1):
Parse St1 := r
RL = hx

1 ; RR = hr
1

R2 := (RL, RR); St2 := St1
Return (R2,St2)

P3(sk,R1, h1, R2, h2,St2):
Parse St2 := r
s = xh2 + r mod (ϕ(N)/4)
Return s
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Lemma 7. Let N ′ := dN/4e, G := QR+
N , and X ← ZN ′ , Y ← Z|G|. Then the

statistical distance D(X,Y ) satisfies D(X,Y ) ≤ 2(P+Q)
PQ .

Proof. We split the term D(X,Y ) as

D(X,Y ) =
∑
x∈ZN′

∣∣∣Pr[X = x]− Pr[Y = x]
∣∣∣

=
∑
x∈Z|G|

∣∣∣Pr[X = x]− Pr[Y = x]
∣∣∣+

∑
x∈[N ′−|G|]

∣∣∣Pr[X = x]− Pr[Y = x]
∣∣∣ .

In the first term, Pr[X = x] = 1
N ′ ≤

4
PQ ,Pr[Y = x] = 1

|G| = 4
(P−1)(Q−1) . There-

fore, the first summand is equal to
∣∣∣ 1−P−Q

PQ

∣∣∣ ≤ P+Q
PQ . Similarly, the second term

can be bounded by P+Q
PQ and thus, D(X,Y ) ≤ 2(P+Q)

PQ .

Lemma 8. IDFAC is a perfectly correct five-move identification scheme and has
2(P+Q)
PQ -statistical non-aborting honest-verifier zero-knowledge (naHVZK) with

α = log(ϕ(N)/4)− 2(P+Q)
PQ bits min-entropy. Moreover, if FAC is (t, ε)-hard then

IDFAC is (t′, ε′, QCh1 , QCh2)-PIMP-KOA-secure, where ε′ ≤ ε+ 1
2k and t′ ≈ t.

Proof. The perfect correctness of IDFAC is straightforward to verify, since R1 =
gs ◦X−h2 and RR = hs1 ◦R

−h2
L hold if and only if s = xh2 +r mod ϕ(N)/4 holds.

2(P+Q)
PQ -Statistical naHVZK. Given public key pk = X, Sim first samples

s, w, h2 ← ZN/4. It then computes h1 := gw, R1 := gs ◦ X−h2 , RL := Rw1 , and
RR := Xw and outputs the transcript (R1, h1, RL, RR, h2, s).

The simulated transcript (R1, h1, R2, h2, s) is close to the transcript output
by SKTran(sk) with statistical distance 2(P+Q)/(PQ), since s has statistical dis-
tance at most 2(P+Q)

PQ from a uniformly random variable over Z|QR+
N
|, according

to Lemma 7 and R1, RL and RR are values R1 = gs ◦X−h2 and RR = hs1 ◦R
−h2
L .

The entropy of (R1,St1) ← P1(sk) and (R2,St2) ← P2 comes only from R1,
which is uniformly random from QR+

N . Since the transcripts output by Sim(pk)
are statistically 2(P+Q)

PQ close to the ones produced by SKTran(sk), IDFAC has
log |QR+

N | = log(ϕ(N)/4)− 2(P+Q)
PQ bits min-entropy.

PIMP-KOA-security. Let A be an attacker against the (t′, ε′, QCh1 , QCh2)-
PIMP-KOA security of IDFAC. We construct an attacker B that (t, ε)-breaks CDH
over QR+

N .

Construction of B. Let (X := gx, Y := gy) denote the CDH instance. B runs
A with input pk := X and answers A’s challenge queries as follows.

For A’s Ch1 query on R1 ∈ QR+
N , B chooses a ← ZN/4 and computes h1 =

Y ◦ ga. For A’s Ch2 query on R2 ∈ QR+
N × QR+

N , B chooses h2 ← ZN/4 and
returns it to A. Clearly, B’s simulation of the PIMP-KOA game is perfect, since
both h1 and h2 are uniformly random over QR+

N and ZN/4, respectively.
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Eventually, A returns its response s∗ for the PIMP-KOA experiment. We
assume that A’s response is valid, i.e., there exist (R1, h1) ∈ L1 and (R2 :=
(RL, RR), h2) ∈ L2 such that R1 = gs

∗ ◦X−h2 and RR = hs
∗

1 ◦R
−h2
L . We denote

the discrete logarithm of RL based on h1 by x′ = DLh1(RL) mod (ϕ(N)/4) and
do the following cases distinction:
– Case 1: x = x′ mod (ϕ(N)/4). By the simulation of Ch1, we have RL =
hx1 = (Y ◦ gai)x = Y x ◦ Xai for some i ∈ [QCh1 ]. Thus, B returns Z :=
RL ◦X−ai = Y x to break the CDH problem over QR+

N .
– Case 2: x 6= x′ mod (ϕ(N)/4). We show in this case even an unbounded

adversary A can only win with probability QCh2/2k. For each index i ∈
[QCh2 ], before receiving h2,i, A first commits to some R1 = gr1 , RL = hx

′

1
and RR = hr2

1 (for arbitrary r1, r2, x
′ ∈ ZN/4 and x′ 6= x mod (ϕ(N)/4))

and there exists (R1, h1) ∈ L1. A can only win if there exists an si ∈ ZN/4
such that

r1 + h2,ix = si = r2 + h2,ix
′ mod (ϕ(N)/4)

⇔ h2,i = r2 − r1

x− x′
mod (ϕ(N)/4)

where h2,i is distributed uniformly over {0, ..., 2k − 1} and independently of
r1, r2 and x′. The equation h2,i = r2−r1

x−x′ mod (ϕ(N)/4) holds with proba-
bility at most 1/2k. By the union bound we obtain the bound QCh2/2k as
claimed.
Overall, B returns a valid solution of the CDH challenge with probability

ε ≥ ε′ − QCh2
2k . This completes the proof.

Signature Scheme. Let H1 : {0, 1}∗ → QR+
N and H2 : {0, 1}∗ → {0, ..., 2k−1}

be two hash functions. We note that H1 has been used in [32, 43]. As IDFAC is
perfectly correct and partial commitment-recoverable, we can use the alternative
Fiat-Shamir transformation from Section 3.1 with ` := 1 to obtain the signature
scheme FSFAC := (Gen,Sign,Ver).

Gen(par):
p, q ← Pn/2 s.t.
P = 2p+ 1 ∈ Pn/2
Q = 2q + 1 ∈ Pn/2
N = PQ
x← ZN/4; X := gx

sk := (x, p, q)
pk := (X,N)
Return (pk, sk)

Sign(sk,m):
r ← ZN/4; R1 = gr

h1 = H1(R1,m) ∈ QR+
N ;

RL = hx
1 ; RR = hr

1
R2 := (RL, RR)
h2 = H2(R2,m) ∈ {0, ...2k − 1}
s = xh2 + r mod (ϕ(N)/4)
σ = (RL, h2, s)
Return σ

Ver(pk,m, σ):
Parse σ = (RL, h2, s)
R1 = gs ◦X−h2

h1 = H1(R1,m);
RR = hs

1 ◦R−h2
L

R2 := (RL, RR)
If h2 = H2(R2,m)
then return 1

Else return 0.

By Corollary 1, Lemma 8 and Theorem 1, we have

Theorem 4 (Security of FSFAC). If FAC is (t, ε)-hard in par := Blumn then
FSFAC is (t′, ε′, Qs, Q1, Q2)-UF-CMA secure in the programmable random oracle
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model, where

ε′ ≤ ε+ 1
2n/2 + Q2 + 1

2k + (Q1 +Q2)Qs
2n−3 + Qs(P +Q)

2n−1 , t′ ≈ t.

Size of Parameters. We argue along the lines of our analysis provided above.
We again set Qs = Qh = t′ = t. Here, we only need to bound the term Q2+1

t2k ≤
1

2k , as all terms in the above theorem vanish. Thus, we set again k = κ to achieve
a security of κ bits. This yields a signature of size 2 · `′ + κ bits where again `′
denotes the size of a group element of G.
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