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Abstract. We improve secure function evaluation (SFE) by optimizing
circuit representation of the function and designing new SFE protocols.

1) We propose a heuristic for constructing a circuit C0, universal for a
given set of Boolean circuits S = {C1, ..., Ck}. Namely, given each Ci, we
view it as a directed acyclic graph (DAG) Di by ignoring the Boolean
gate functions of Ci. We embed D1, ..., Dk in a new DAG D0, such that
each Ci can be obtained by a corresponding programming of D0 (i.e. by
assignment of Boolean gates to the nodes of D0). DAG D0, viewed as a
Boolean circuit with unprogrammed gates, is the S-universal circuit C0.

2) Our heuristic often produces C0 significantly smaller than Valiant’s
universal circuit or a circuit incorporating all C1, ..., Ck. Exploiting this,
we construct new Garbled Circuit (GC) and GMW-based SFE protocols,
which are particularly efficient for circuits with if/switch clauses.

Our GMW protocol evaluates 8-input Boolean gates at the same cost as
the usual 2-input gates. This advances general GMW-based SFE, and is
particularly useful for circuits with if/switch conditional clauses.

Experimentally, for a switch containing 32 simple circuits, our construction
resulted in ≈ 6.1× smaller circuit C0. This directly translates into ≈ 6.1×
improvement in GMW SFE computing this switch. Recent state-of-the-
art generic circuit optimizations from hardware design adapted to SFE
report 10− 20% circuit (garble table) reduction.

Our SFE is in the semi-honest model, and is compatible with Free-XOR.
We further show that optimal embedding is NP-hard.

Keywords: set-universal circuit, secure computation, garbled circuit,
GMW

1 Introduction

Eliminating costs imposed by the circuit representation of Garbled Ci-
rcuits (GC) and Goldreich, Micali and Wigderson (GMW) techniques has been
an important open problem since the introduction of GC/GMW, with moderate
success to date. There are two natural redundancies: GC/GMW must unroll the
loops and evaluate all conditional (if/switch) clauses so as to hide which was



evaluated. (There is a third redundancy, protecting memory access patterns at
the expense of processing entire input/array/data structure, which is applicable
to both circuit and random-access representation. It is addressed by the influen-
tial work on Oblivious RAM (ORAM), started by [13] with then-“impractical”
log4 n factor overhead.)

Our work aims to solve the second kind of circuit redundancy. Constructing
a small circuit C0, universal for k given circuits, will allow to garble, transfer
and evaluate just C0, when computing switch on the k circuits. We believe this
could be a useful tool in Secure Function Evaluation (SFE) compiler design.

On the cost of SFE and OT rounds. Our GC protocol may add a round
of communication for each switch statement. We argue that the associated la-
tency cost is negligible in many practical scenarios. This is because often the
latency-related idling will be productively used for computation and communi-
cation in the same or another SFE instance. This is the case, e.g., in larger-scale
SFE deployments, where many instances will be run in parallel, and where SFE
throughput is a far more important parameter than latency. Note, in our GMW
protocols there is no increase in the number of rounds due to switch.

1.1 Motivating applications

Functions with switch statements. In Blind Seer [25, 7], a GC-based private
database (DB) system, private DB search is achieved by two players jointly
securely evaluating the query match function on the search tree of the data. Blind
Seer does not fully protect query privacy: it leaks the query circuit topology as
the full universal circuit is not practical, as admitted by the authors. Applying
our solution to that work would hide this important information, cheaply. Indeed,
say, by policy the DB client is allowed to execute one of several (say, 2-50) types
of queries. The privately executed SQL query can then be a switch of the number
of clauses, each corresponding to an allowed query type. In Blind Seer the clause
is selected by client’s input, omitting some of the machinery. As a result, our
Blind Seer application is particularly effective bringing improvements with as
little as two clauses. Most of the cost of this DB system is in running SFE of the
query match function at a large scale, so improvement to the query circuit will
directly translate to overall improvement. We note that the core of the Blind
Seer system is in the semi-honest model, but a malicious client is considered
in [7].

(Part of) our work can be viewed as a heuristic aiming to construct a ci-
rcuit universal for a set of functions S = {C1, ..., Ck} (S-universal circuit) at
the cost less than that of full universal circuit. Thus (cf. next motivating exam-
ple), our work may improve applications where we want to evaluate and hide
which function/query was chosen by a player (say, which one of several functions
allowed by policy or known because of auxiliary information).

SFE of semi-private functions (SPF-SFE) (see additional discussion
in Sect 1.3) is a notion introduced in [26], bridging the gap between expen-
sive private function SFE (PF-SFE) based on Universal Circuit [30, 19, 15, 22],
and regular SFE (via GC) that does not hide the evaluated function. SPF-SFE
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partially hides the evaluated function; namely, given a set of functions, the eva-
luator will not learn which specific function was evaluated. Indeed, often only
specific subroutines are sensitive, and it is they that might be sufficiently pro-
tected by S-universal circuit for an appropriate set of circuits S. [26] presents
a convincing example of privacy-preserving credit checking, where the check
function itself needs to be protected, and shows that using S-universal circuits
as building blocks is an effective way of approaching this. Further, [26] builds a
compiler which assembles GC from the S-universal building blocks (which they
call PPB, Privately Programmable Blocks). While [26] provides only a few very
simple hand-designed blocks (see our discussion in Sect. 1.3), our work can be
viewed as an efficient general way of constructing such blocks. We stress that in
the SPF-SFE application, GC generator knows the computed function (clause
selection), and our contructions are particularly efficient.

CPU/ALU emulation. Extending the idea of SPF-SFE, one can imagine
a general approach where the players privately emulate the CPU evaluating a
sequence of complex instructions from a fixed instruction set (instruction choice
implemented as a GC switch). Additionally, if desired, instructions’ inputs can
be protected by employing the selection blocks of [19]. Such an approach can be
built within a suitable framework (e.g., that of [26]) from S-universal circuits
provided by this work. We note that circuit design and optimization is tedious,
and not likely to be performed by hand except for very simple instances, such as
those considered in [26]. Instead, a tool, such as the one we are proposing, will
be required.

In a recent work [32], a secure and practically efficient MIPS ALU is proposed,
where the ALU is implemented as a switch over 37 currently supported ALU
instructions evaluated on ORAM-stored data. TinyGarble [29] also design and
realize a garbled processor, using the MIPS I instruction set, for private function
evaluation. Our constructions would work with [32] in a drop-in replacement
manner.

1.2 Technical Contribution

We improve secure function evaluation (SFE) by optimizing circuit representa-
tion of the function and designing new SFE protocols.

Our contribution consists of several complementary technical advances. Our
most technically involved contribution is a novel algorithm to embed any k ci-
rcuits in a new circuit/graph C0. The embedding is such that a GC/GMW
evaluation of any of C1, ..., Ck could be implemented by a corresponding evalu-
ation of C0. The size of C0 could be smaller (6.1× smaller in our experiment)
than the sum of the sizes of C1, ..., Ck.

In the SPF-SFE case, when the evaluated clause Ci is circuit generator’s
private input, generator G simply sends the garbling implementing Ci.

For the general GC case, where clause is selected by an internal variable, we
construct a new GC protocol with total communication cost 3kn0+22n0s, where
s is the computational security parameter and n0 = |C0|. For efficient embed-
dings, this compares favorably to state-of-the-art GC. The half-gates GC [34] of
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the above k clauses will cost 2ns, where n =
∑
j |Cj |. We show how GC branches

can be nested, and we can apply our construction on each nesting level.
GMW SFE is more interesting. We make a novel observation that the cost

of evaluation of the GMW gates is similar to that for a moderate number of
boolean inputs, as that of a two-input gate. We exploit this to obtain an efficient
GMW protocol for circuits with clauses whose cost per gate is similar to that of
standard GMW.

Our approach is heuristic. We show that solving the graph embedding pro-
blem exactly is NP-hard.

Experimental validation and performance. For our experiment we con-
sidered 32 simple circuits implementing variants of several basic functions and
generated an embedding 6.1× smaller than the standard circuit implementing
the clauses. SPF-SFE and GMW of the corresponding switch is also improved
by 6.1×.

For the GC case when clause is selected by internal variable, our 6.1× smaller
embedding results in communication cost similar to that of classical Yao [33, 20],
due to per-gate overheads. We expect our protocol to overtake optimal GC [34]
for embeddings of slightly greater number of circuits or with further heuristic
improvements.

1.3 Background and Related Work

Garbled Circuit, GMW, OT and Universal Circuit. Significant part of
SFE research focuses on minimizing the size of the basic GC of Yao [33, 20],
such as garbled row reduction techniques Free-XOR [18] and its enhancements
FleXOR [17] and half-gates [34]. In contrast, in this work, we effectively eliminate
the need for evaluation of entire subcircuits.

The GMW protocol [11, 12] had received less attention in the 2-party SFE
literature than GC. In GMW, the two parties interact to compute the circuit
gate-by-gate as follows. Players start with 2-out-of-2 additively secret-shared
input wire values of the gate and obtain corresponding secret shares of the output
wire of the evaluated gate. Addition (XOR) gates are done locally, simply by
adding the shares. Multiplication (AND) gates are done using 1-out of-4 OT.
For binary circuits, there are four possible combinations of each of the player’s
shares. Thus an OT is executed, where one player (OT receiver) selects one of
the four combinations, and the other player (OT sender) provides/OT-sends the
corresponding secret shares of the output wire. In the semi-honest model, the
secret shares can be as short as a single bit. As in the GC approach, our work
greatly reduces the size of the evaluated circuit.

Asymptotically, the best way to embed a large number of sub-circuit graphs
into one circuit graph would be using the universal circuits [30, 19]. Respectively,
for sub-circuits of size n, the size of the universal circuit generated by [30, 19]
is ≈ 19n log n, and ≈ 1.5n log2 n + 2.5n log n. Very recent works [22, 15] polish
and implement Valiant’s construction. They report a more precise estimate of
the cost (in universal gates) of Valiant’s UC of between ≈ 5n log n and 10n log n.
Programming of universal gates may each cost 3 AND and 6 XOR gates (but
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will not be needed in PFE and applications we discuss in this work). In sum,
universal circuit approach becomes competitive for a number of clauses far larger
than a typical switch. In a universal circuit embedding [30, 19, 22, 15], gates
are embedded in gates and wires are embedded in pairwise disjoint chains of
wires (with possible intermediate gates). Our embedding is more general allowing
the chains of wires to overlap in a controlled way, leading to smaller container
circuits.

Another technique for Private Function Evaluation (PFE) was proposed by
Mohassel and Sadeghian [23]. They propose an alternative (to the universal
circuit) framework of SFE of a function whose definition is private to one of
the players. Their approach is to map each gate outputs to next gate outputs
by considering a mapping from all circuit inputs to all outputs, and evaluate
it obliviously. For GC, they achieve a factor 2 improvement as compared to
Valiant [30] and a factor 3 − 6 improvement as compared to Kolesnikov and
Schneider [19]. Similarly to [30, 19], [23] will not be cost-effective for a small
number of clauses.

Thus, (part of) our work can be viewed as heuristically constructing a circuit
universal for a set of functions S = {C1, ..., Ck} at the cost less than that of full
universal circuit.

One of our contributions is an improved 1-out of-k OT algorithm to deliver
the garbled switch clause to the evaluator. This is a special case of PIR (private
information retrieval). We note existing sublinear in k work on computational
PIR (CPIR) of 1 out of k `-bit strings, e.g., [2, 21, 24]. Note, a symmetric CPIR
(CSPIR) is needed for our application. CSPIR of [21] achieves costs Θ(s log2 k+
` log k), where s is a possibly non-constant security parameter. However, the
break-even points where the OT sublinearity brings benefit are too high. For
example, [2] costs more in communication than the naive linear-in-k OT for
k ≤ 240. Further, known CPIR protocols heavily (at least linearly in k) rely on
expensive public-key operations, such as, in case of [21], length-flexible additive-
homomorphic encryption (LFAH) of Damg̊ard and Jurik [4, 3].

We also mention, but do not discuss in detail, that hardware design considers
circuit minimization problems as well. However, their typical goal is to minimize
chip area while allowing multiple executions of the same (sub)circuit. Current
state-of-the-art in applying to MPC the powerful tool chains from hardware
design is producing 10− 20% circuit (garble table) reduction [29, 5, 6], while our
targeted circuit optimizations may result in better performance (≈ 6.1× circuit
reduction achieved in our experiment.)

Semi-private function SFE (SPF-SFE) [26]. As discussed in the Intro-
duction, SPF-SFE is a convincing trade-off between efficiency and the privacy
of the evaluated function. Our work on construction of container circuits corre-
sponds to that of privately programmable blocks (PPB) of [26], which were
hand-optimized in that work. In our view, the main contribution of [26] is
in identifying and motivating the problem of SPF-SFE and building a fra-
mework capable of integrating PPBs into a complete solutions. They provide
a number of very simple (but nevertheless useful) PPBs. In our notation,
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they consider the following sets for S-universal circuit: SCOMP = {<,>,≤
,≥, 6=},SADD,SUB = {+,−}, SMULT = {input ∗ constant}, SBOOLGATE =
{∨,∧,⊕, NAND,NOR,XNOR}, SUC = {all circuits}, as well as the fol-
lowing sets recast from [19]: SSEL = {input select circuits},SIN PERM =
{input permute circuits}, SSEL = {Y bit selector},SSEL = {X bit selector}.
Each of these sets only consists of functions with already identical or near-
identical topology; this is what enabled hand-optimization and optimal sizes of
the containers. Other than the universal circuit PPB, no attempt was made to
investigate construction PPBs of circuits of a priori differing topology.

In contrast, we can work with any set S of circuits for S-universal circuit and
heuristically improve on the full universal circuit, and on the standard option of
evaluating of all S circuits and selecting the output.

GMW for multi-input gates. In independent and concurrent work, Des-
souky et al. [6] discovered the same method of obtaining cheap GMW gates with
multi-valued inputs by using the OT extension of [16] (multiple boolean inputs
and multi-valued inputs are easily interchangeable due to [16]). In their work,
Dessouky et al. make several performance optimizations to the usage of [16].
They also show in detail that for some functions, (e.g., AES), multi-input GMW
gates are advantageous. In their notation, this approach is called lookup-table
(LUT)-based secure computation. Our work focuses on different application of
LUT-based computation, circuit clause overlay, and may achieve, in its domain,
higher performance improvement.

1.4 Notation

Let f be the function we want to evaluate and C a boolean circuit representing f .
We consider a switch statement inside f , evaluating one of k clauses depending
on the internal variable or input of f . Let C1, ..., Ck be the subcircuits of C
corresponding to the k clauses of f . We will often use the terms “clause” and
“subcircuit” interchangeably, and their meaning will be clear from the context.
For simplicity we will often discuss clauses of the same size n, although in the
evaluation section we consider concrete examples with different clause sizes.

We define directed acyclic graphs (DAGs) D1, ..., Dk from circuits C1, ..., Ck
where, with the exception of auxiliary nodes representing circuit inputs and
outputs, the graph’s nodes represent circuit gates and the graph’s directed edges
represent circuit wires. These graphs represent the topology or the wiring of
the corresponding circuits. When the meaning is obvious from context we may
interchangeably refer to these graphs/circuits as Di or Ci. From DAGs D1, ..., Dk

we will build a container DAG D0, with the property that any of C1, ..., Ck can
be implemented from D0 by assigning corresponding gate functions to the nodes
of D0. We will usually call this programming of D0. We note that for efficiency
we may produce partially programmed D0, i.e. one where some of the gates
are already fixed. We will interchangeably refer to this container graph/circuit
as D0 and C0. Circuits C0 are, of course, generated for circuit-based secure
computation. We specifically discuss GC and GMW protocols. We will often
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unify our references to the use of GC and GMW. For example, when clear from
the context, by “garbling C0” we will mean using C0 in either GC or GMW.

Other standard variables we will use are s, which is the computational secu-
rity parameter, and n0, which is the size of D0. Circuits C0 will then be evaluated
In the GC protocols there are two players, GC constructor, which we will denote
P1, and GC evaluator, or P2.

2 Technical Solution Overview

In this section, our goal is to describe the complete intuition behind our appro-
ach. Having this big-picture view should help put in perspective the formaliza-
tions and details that follow in the next sections.

Consider the SFE of a circuit C, and inside it a switch statement with k
clauses/subcircuits C1, ..., Ck, only one of which is evaluated based on a player’s
input or an internal variable. In this overview we focus on the more complex
and more general second scenario (internal variable), while pointing out the
very efficient solution to the first scenario as well.

Our starting point is the widely known observation that in some GC variants
(e.g. in classical Yao [33, 20]), the evaluator will not learn the logic of any gate,
but only the structure of the wiring of the circuit. We start by supposing that
all our subcircuits already have the same wiring, i.e. the underlying DAGs are
the same. We provide intuition on how to unify the wiring in the following
Section 2.3.

2.1 Improved GC for switch of Identically-Wired Clauses

If all k clauses/subcircuits had the same topology/wiring, all that is needed is
for the circuit generator to generate and deliver to the evaluator the garbling of
the right subcircuit.

SPF-SFE. In the important special case where switch clause is selected by
a player’s private input, this is trivial and has no extra overhead: this player will
be the GC generator and he simply sends the set of garbled tables programming
the clause which corresponds to his input.

General case. Consider the case where switch is selected by an internal
variable. One natural way to deliver the garbling would be to execute a 1-out-of-
k OT on the clauses. Unfortunately, this, under the hood, would require sending
garblings of each of C1, ..., Ck to the evaluator1, which would not improve over
the standard GC.

We can do better. To sketch the main idea, we let each Ci be a {∨,∧,⊕}-
circuit2. (As all Ci are identically wired, their DAG representations Di are the
same, and the container DAG D0 is equal to Di. Recall, in our notation, |D0|=
1 See related work in Section 1.3 for discussion on the high costs of sublinear PIR for

smaller-size DBs.
2 We could reduce the set of considered circuit gates, e.g., by eliminating the OR

gate and implementing it with AND and XOR gates. This would present us with
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n0.) For now do not consider Free-XOR; it will be clear later that our approach
works with Free-XOR. Now, enumerate the gates in each Ci and let di be a string
of length n0 defining the sequence of gates in Ci (in our construction, each symbol
in di will denote one of a five possible gates – {∨,∧,⊕}, as well as an auxiliary
left and right input wire pass-through gates L and R). Perform 1-out-of-k OT on
the strings di to deliver to the evaluator the right circuit definition string. Then
for each gate, the players will run 1-out-of-5 OT, where the generator’s input
will be the five possible gate garblings, and the evaluator will use the previously
obtained di to determine its OT choices.

Notice that each string di reveals to the evaluator precisely which circuit
has been transferred. This is easy to hide: for each gate gj , the GC constructor
selects a random permutation πj on the five types of gates and applies πj to
the j-th symbol of di during di construction. He also applies πj to permute his
OT input of five garbled tables. Finally, sending to the evaluator di based on
the internal state is easy. For a switch with two clauses, the generator simply
sends d1 encrypted with the 0-key of the selection wire, and d2 encrypted with
the corresponding 1-key. For a switch with k clauses, each string di will be
encrypted with the key derived from the wire labels corresponding to the choice
of the i-th clause.

For the reader familiar with the details of standard GC, it should be clear that
the above switch-evaluation algorithm can be readily plugged into the standard
GC protocol. Let s be the computational security parameter. Following cost
calculations presented after Theorem 1 and in Section 8, the communication cost
of evaluating the switch on the k clauses will be approximately 3kn0 + 22n0s.
In contrast, standard GC would require sending all k garblings at the cost of
4ns (2ns using recent half-gate garbling [34]), where n =

∑
i|Ci|. The 4ns term

is the most expensive term; reducing it to 22n0s and making it independent of n
is the contribution of our GC protocol. We again stress that if clause is selected
by GC generator, we can use all GC optimizations, and our GC cost is 2n0s.
Finally, we note that in above calculations we did not account for the cost of
circuitry selecting the output of the right clause and ignoring outputs of other
clauses. This circuit is linear in ko, where o is the number of outputs in each
clause. This circuit needs to be evaluated in the state-of-the-art GC, but not in
our solution.

We further note that switch clauses can be nested. We discuss this in
Section 4.

2.2 Improved GMW for switch of Identically-Wired Clauses

An approach similar to the one described above in Section 2.1 can be particularly
efficiently applied in the GMW setting. We will take advantage of our novel
observation on the cost of multi-input GMW gates under the OT extension of
Kolesnikov and Kumaresan [16].

the trade off between more efficient gate processing and potentially larger circuits.
Alternatively, we could consider a larger gate basis and have costlier gate processing.
We defer exploration of these trade-offs as future work.
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As in our GC protocol above, we consider the circuit definition strings di. As
in the GC protocol, for each gate gj , one player selects a random permutation
(or mask) πj on the five types of gates and applies πj to the j-th symbol of di
during di construction. This masked definition string is transferred to the other
player via OT.

In contrast with GC, we will not do the expensive 1-out of-5 OT on garbled
gates. In GMW, we will evaluate gates on three input wires: two circuit wires
and one 5-valued wire selecting the gate function ({∨,∧,⊕, L,R}). The players
thus will run 1-out of-20 OT (the 20 possibilities are the five gate functions, each
with four wire input possibilities) to obtain the secret share of the output.

Our simple but critical observation is that with using [16] OT, and because
the GMW secret shares are a single bit each, the evaluation of multi-input gate,
for moderate number of inputs, costs approximately the same as that of the two-
input gate. Indeed, the main cost of the OT is the [16] rows transfer. Sending
the encryptions of the actual secrets, while exponential in the number of inputs,
is dominated by the OT matrix row transfer for gates with up to about 8 binary
inputs. In our case, sending of 20 secrets requires only 20 bits (one bit per
secret) in addition to the OT matrix transfer. Thus, additional communication
as compared to standard 1-out of-4 GMW OT extension (also implemented
via [16]) is only 20− 4 = 16 bits!

As a result, the circuit reduction achieved by embedding several clauses into
one container is directly translated into the overall improvement for semi-honest
GMW protocol.

2.3 Efficient Circuit Embedding to Obtain Identically-Wired
Clauses

We now describe the intuition behind our graph/circuit embedding algorithm, as
well as summarize its performance in terms of the size of the embedding graph.
In Section 3, we describe a circuit embedding algorithm, which takes as input the
set of k circuits C1, ..., Ck and returns an (unprogrammed) container circuit C0

capable of embedding each of these circuits, as well as the programming strings
needed to generate the garblings of C0 which implement/garble each Ci.

Our approach is graph theoretic. Assume for simplicity that we have exactly
two input circuits. As a first step, we translate each circuit Ci to a directed
acyclic graph (DAG) Di (see Figure 1 for example and Section 3 for a formal
definition). The problem of finding a “small” container circuit embedding both
C1 and C2 is now reduced to finding a “small” DAG which “contains” D1 and
D2. Informally, a DAG D ‘contains’ another DAG D′ if through a series of node
deletions, edge deletions and replacing each 3-node path uvw where v has in-
degree and out-degree 1 with a 2-node path, i.e., an edge, uw in D, one can
recover a graph isomorphic to D′.

We start by showing that if the input DAGs are restricted to have out-degree
at most one, then there exists a polynomial time algorithm (Algorithm 1) to find
a DAG D0, also of out-degree at most one, of minimum size. We remark that
our approach is closely related to the classical polynomial time algorithm for
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Fig. 1. A 2-bit adder circuit C and corresponding circuit DAG D. Edges of D are
assigned weights to facilitate Free XOR optimizations (cf. Sect. 3).

testing whether or not two trees are isomorphic [31], though it is more difficult
than this. Indeed, the operation which replaces 3-node paths with 2-node paths
is closely related to edge contraction of graph minors [28].

Restricting DAGs to having out-degree at most one corresponds to restricting
circuits to having fan out at most one and is, of course, unrealistic. To develop
a general algorithm (see Figure 2 for a toy example), we observe that the nodes
of every DAG D with r sinks can be covered by a set of r DAGs each with
out-degree at most one, i.e. subtrees. For each pair of such subtrees (one from
D1 and one from D2) we first apply Algorithm 1 to determine the minimum
cost (roughly, the minimum |D0|) of co-embedding the pair. We use these costs
to weight an auxiliary complete bipartite graph: roughly, one part is labeled by
the subtrees of D1, one part is labeled by the subtrees of D2, and the weight
of the edge is the minimum cost of co-embedding the subtrees corresponding
to the edge’s endpoints. The minimum weight perfect matching in this graph
corresponds to a valid container circuit that can be easily constructed. In ge-
nerality, only considering subtrees covering the nodes of D1, D2 may leave out
some edges, which we then appropriately reinsert into D0 to guarantee that D0

will be universal for both D1, D2.

We now turn to the performance of our algorithm. Clearly any circuit em-
bedding of circuits C1 and C2 has size at least max{|C1|, |C2|} and needs to have
size at most |C1|+|C2|3. Our experimental validation (see Section 8) embeds two
circuits into a circuit whose size is on average 15.1 percent of the way between
these trivial lower and upper bounds. Assuming this embedding performance,
by divide-and-conquer repeated embedding we would obtain an embedding of k
circuits of size n into a circuit of size 1.151log kn = k0.203n (Lemma 1).

3 For some pairs of circuits our heuristic may produce a container circuit of size greater
than |C1|+|C2|. In this case, we will simply take C0 to include both C1 and C2.
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Fig. 2. Determining a low cost (circuit) DAG embedding two input (circuit) DAGs.

2.4 NP-hardness of Graph Embedding

In Section 7 we show that the problem of finding a minimum-cost circuit C0 into
which two given circuits C1 and C2 can be embedded is NP-complete. The proof
uses a reduction from the well-known NP-complete problem 3-sat [10]. In fact,
the reduction shows the somewhat stronger result that says that the problem
remains NP-complete even when one of C1 or C2 is a tree (and the other a DAG)
and both have bounded in-degree and out-degree.

Intuitively, the idea of the reduction is that the DAG, say C1, represents all
possible truth assignments of the variables and all possible ways to satisfy each
clause in the 3-sat instance while the tree C2 represents the requirement that
each variable must be set to true or false and the requirement that each clause
has (at least) one resulting literal that is true. Then we show that an embedding
of C2 into C1 is possible if and only if there is a satisfying assignment for the
3-sat instance. Clearly such an embedding has minimum cost. When such an
embedding exists, it can easily be interpreted as a particular truth assignment
to the variables and an “assignment” of one resulting true literal to each clause.

3 Definition of Circuit Embedding

In this section, we bridge circuit-based SFE and graph theory. In particular,
we describe the Circuit Embedding Algorithm, which takes as input the
set of k circuits C1, ..., Ck and returns the desired n0-gate container circuit C0

together with definition (programming) strings d1, ..., dk. Specifically, a container
circuit is an unprogrammed circuit, that is, a collection of gates each of whose
function is unspecified, though the wire connections between these gates are
fixed. The function of these gates is then specified by choosing a programming
stream, which is a mapping from the gates to the functions {∨,∧,⊕, L,R}, where
L (resp. R) is the left (resp. right) wire pass through gate. To describe the
Circuit Embedding Algorithm, we start by describing a mapping between
circuits and a specific type of weighted directed acyclic graphs (DAGs) and the
graph theoretic equivalent of the Garbled Circuit approach we are proposing.

Let C be a circuit defined by gates g1, ..., gn and wires w1, ..., wm. We use
the following weighted directed acyclic graph (DAG) D = (V,A,w) to represent
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it. The node set V has three parts: for each wire wi that is an input to C we
add an “input” node ni, for each output wire wi, we add an “output” node ni,
and for each gate gi, we introduce a “gate” node ni. All directed edges in E are
directed in the direction of evaluation. Specifically, for each input wire to gate
gi there is an edge from its corresponding “input” node to the “gate” node ni.
For each output wire from gate gi there is an edge from the “gate” node ni to
its corresponding “output” node. For each wire from gate gi to gate gj , there is
an edge from ni to nj . Finally, for simplicity in dealing with free-XORs and the
cost of circuit, we give each edge a weight. For a gate node gi corresponding to
an XOR-gate, we give all in-edges e of gi weight we = 0; for output nodes ni,
we give all in-edges e of ni weight we = 0; for all other edges e receive weight
we = 1. See Figure 1 for an example. We call such a DAG, the circuit DAG. We
remark that given a circuit DAG we can always determine an unprogrammed
circuit corresponding to it.

The cost of a circuit is the total size of the truth tables needed to represent
it, i.e.,

∑
non-XOR gi

2{fan in of gate gi}, where XOR-gates add zero cost [18]. This

translates to the corresponding circuit DAG as cost(D) :=
∑

u∈D 2
∑

v∈N−
D

(u)
wvu

,

where N−D (u) is the set of in-neighbors of node d ∈ D.
We are interested in the minimum cost container circuit C0 that can be used

to embed circuits C1, ..., Ck. Necessarily, this requires that for each Cj there is a
1-1 mapping f from the gates of Ci to C0, such that, for each wire of Cj between
gate gi and gi′ there is a set of wires linking f(gi) and f(gi′). Moreover and as
we now describe, the flow of information of Cj must be preserved in C0.

An out-arborescence is a directed acyclic graph that is weakly connected4

and every node has in-degree at most one. We define the source of an out-
arborescence T , denoted source(T ), as the unique vertex with in-degree zero.
Let D′ = (V ′, A′, w′) and D = (V,A,w) be DAGs.

Definition 1. An embedding of D′ into D is a mapping f from nodes of V ′

to out-arborescences of D and from (weighted) directed-edges of A′ to
(weighted) directed-edges of A satisfying

1. for all u′ 6= v′ ∈ V ′, f(u′) ∩ f(v′) = ∅,
2. for u′v′ = e′ ∈ A′, ∃x ∈ f(u′) such that f(e′) starts at x and ends at the

source of f(v′), and
3. for u′v′ = e′ ∈ A′, w′e′ ≤ wf(e′).

It follows immediately from the definition that there is a 1-1 mapping between
nodes of D′ and the sources of the out-arborescences in D specified by f . More-
over, for every node n′ of D′ and source of f(n′) = n, f is a mapping such that
for each in-edge e′ of n′ and there is a unique in-edge e = f(e′) of n such that
w′e′ ≤ we. From this it follows that the sum of the weights on the in-edges of n
is at least as large as the sum of the weights on the in-edges of n′. Hence, we
have the following observation.

4 A directed graph is weakly connected if replacing all edges with undirected edges
yields a connected graph, that is, every pair of nodes in the graph is connected by
some path.
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Observation 1 cost(D) ≥ cost(D′).

11
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(b) D

Fig. 3. An example embedding f of D′ in D.

We now are in a position to describe the Circuit Embedding Algorithm.
Let C1, ..., Ck be the set of k-input circuits. First, we find the corresponding
circuits DAGs D1, ..., Dk. Second, given this set of circuits DAGs, we determine a
low cost circuit DAG D0 that embeds each of D1, ..., Dk with functions f1, ..., fk.
The heuristic we describe in Section 6 is one approach to solve this second step.
Third, we determine the container circuit C0 as the circuit corresponding to D0.
Finally, we determine the programming string di for each i. To do so, we need
only specify the function of each gate node in D0. For a specific embedding fi,
each gate node v of D0 is either A) a source or B) a non-source node of some
out-arborescence. In the former case, di(v) is equal to either AND, OR or XOR
depending on the function of the pre-image of the out-arborescence rooted at v.
In the latter case, di(v) is equal to L as the left input wire pass-through.

4 GC Protocol for Overlaying Subcircuits

In this section we will formalize the intuition of Section 2.1. Namely, we will
present a full GC protocol with processing of k identically wired switch clauses
at approximately the cost of one such clause, and prove its security. Of course,
identically wired clauses are not typical in circuits. In Section 6 we show how to
embed a number of arbitrary circuits into a single container circuit, so that each
of the circuits could be implemented by a corresponding programming of the
gates of the container circuit. Our approach is heuristic, but we of course can
always fall back on running standard GC/GMW protocols if the performance of
the heuristic does not outperform.

Our approach can be instantiated using a number of GC garbling techniques.
For simplicity of presentation, and because it is a standard GC trick, in the
following presentation we omit assigning and processing the wire key pointers
which will tell the evaluator which garbled table row to decrypt. Also, we do not
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include Free-XOR in this algorithm. We will argue later that our construction
allows to take full advantage of Free-XOR. Finally, for ease of presentation and
w.l.o.g., our construction is for functions with a single switch.

Consider an {∨,∧,⊕} circuit C with a switch (C1, ..., Ck) statement, which
evaluates one of subcircuit clauses C1, ..., Ck based on an internal variable. Let
Enc,Dec be a semantically secure encryption scheme.

Protocol 1 (GC with switch statements)

1. Once-per-function Precomputation. Parse C, identify switch

(C1, ..., Ck), and call the graph embedding algorithm on C1, ..., Ck. Obtain
the container circuit C0 of size n0 as well as k circuit programming strings
d1, ..., dk, each of size n0. Each di will consist of symbols {∨,∧,⊕, L,R},
where L (resp. R) is the left (resp. right) input wire pass-through gate.
Denote the j-th symbol of di by di,j. Let C ′ be the C with the switch

(C1, ..., Ck) replaced with C0. C ′ is assumed known to both players before
the computation.

2. For each wire Wi of C ′, GC generator randomly generates two wire keys
w0
i , w

1
i .

3. For each gate gi of C ′ \ C0 in topological order, GC generator garbles gi to
obtain the garbled gate table. For each of 22 possible combinations of gi’s
input values va, vb ∈ {0, 1}, set

eva,vb = H(kvaa ||k
vb
b ||i)⊕ w

gi(va,vb)
c

Garbled table of gi is a randomly permuted set {eva,vb}, va, vb ∈ {0, 1}.
4. GC generator sends all generated garbled tables to GC evaluator. Garblings

of inputs of C ′ are sent to GC evaluator directly and via OT, as is standard
in GC.

5. GC generator generates n0 random permutations πi over {∨,∧,⊕, L,R}.
6. GC generator computes the following. Let Wj1 , ...Wjt be the wires defining

the switch choice, t = dlog ke. For i = 1 to k, set d̃i = π1(di,1), ..., πn0
(di,n0

).

Now, each d̃i looks random as an independent random permutation πj was

applied to each symbol di,j. Let ED = Enckey1(d̃1), ..., Enckeyk(d̃k). Here
key keyi is derived from wire keys of Wj1 , ...Wjt , corresponding to switch

selection i, by setting keyi = H(“switchkey′′, witj1 , ...w
it
jt

).
7. GC generator sends encrypted circuit definition strings ED to GC evaluator,

in a random order.
8. GC evaluator evaluates in topological order all gates that are possible5; in

particular, the wire keys defining the values of the switch statement will be
known to GC evaluator.

9. GC evaluator derives the decryption key for Enckeyi(d̃i) and decrypts to

obtain d̃i, the (permuted) definition string for the clause to be evaluated.
Evaluator will know which string to decrypt by including an additional poin-
ter bit in the wire labels of Wj1 , ...Wjt (point-and-permute).

5 Recall, for simplicity we did not explicitly include the standard permute-and-point
table row pointers in our protocol. We assume the evaluator knows decryption of
which row to use, e.g. via using the standard permute-and-point technique.
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10. For each gate gi ∈ C0, in topological order
(a) GC generator prepares five garbled tables, {T∨, T∧, T⊕, TL, TR} imple-

menting one each of gate functions {∨,∧,⊕, L,R}, i.e. OR, AND, XOR,
Left wire pass-through, Right wire pass-through. Note that all five garbled
tables are constructed with respect to the same input/output wire labels
of gate gi.

(b) The two players execute in parallel n0 semi-honest 1-out-of-5 OT
protocols, for j from 1 to n0. Here GC generator’s input is
πj({T∨, T∧, T⊕, TL, TR}), and GC evaluator’s input is the symbol of the
programming string obtained in Step 9, i.e. πj({∨,∧,⊕, L,R}). As a re-
sult, GC evaluator receives garbled gate tables of the remaining gates.

11. GC evaluator evaluates in topological order all remaining gates of C ′ and
sends output wire keys to generator for decryption.

Observation 2 For simplicity of presentation and to focus on the novel contri-
bution, we omitted explicitly writing out some standard GC techniques, such as
permute-and-point.

Observation 3 (Free-XOR compatibility) We presented the protocol wit-
hout regard to free-XOR. However, it is easy to see that our construction is
compatible with it. Indeed, as is also argued in discussion on the circuit embed-
ding heuristic in Section 6, the generated container circuit will have many gates
fixed to be XOR gates, rather than placeholders for one of {∨,∧,⊕, L,R}. It is
easy to see that since any of k clauses could be implemented in the container
circuit, and “permanently” fixing some of its gates to be XOR is done in circuit
pre-processing, this will not affect security.

In our circuit embedding heuristics, we aimed to maximize the number of
such gates so as to take the full advantage of free-XOR.

We note that it is not immediately clear how to use the 3-row garbled-row
reduction (GRR3) of [27] in our approach. This is because the GRR3 idea is to
define one of the garbled rows as a function of garbled values of the two input
wires which result in this output value (and omit that row from the table).
However, in our setting, we don’t know which gate function will be used. Hence,
the 0-1 semantics of the implicitly defined gate output label may be different for
different gate functions which may program this specific gate of C0. This will
cause problems for garbling subsequent gates. We thus do not use GRR3, and
use standard 4-row tables. We discuss optional inclusion of NOT gates in our
circuits in the full version.

Theorem 1. Let OT protocol be secure in the semi-honest model. Let Enc be
semantically-secure encryption. Let H be a hash function modeled by a random
oracle. Then Protocol 1 is secure two-party computation protocol in the semi-
honest model.

The proof (with respect to the standard security definition of secure compu-
tation) is deferred to the full version, due to the lack of space.
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Cost calculation. As compared to plain GC of C, our protocol uses additi-
onal OT instances. This comes cheap due to the Ishai et al.’s OT extension [14]
and follow-up optimizations, such as [1, 16]. Further, an extension of [14] for
1-out of-k OT of Kolesnikov and Kumaresan [16] can be effectively used for our
1-out of-5 OTs.

In detail, let s be the computational security parameter, and take the size of
each garbled table as 4s. Then the communication cost of evaluating the switch

on the k clauses embedded in container C0 of size n0 will be approximately
3kn0 + 22n0s.

Indeed, 1-out of-k OT of circuit programming strings will take approximately
3kn0 bits (k encryptions of 3n0-bit long strings, plus a 1-out of-k OT on short
decryption keys of size s, whose cost is small and is ignored.) Running 1-out of-5
OT on gate tables of size 4s is done via [16]. (Recall, [16] shows how to do 1-out
of-5 OT for only double the cost of 1-out of-2 OT.) The cost consists of sending
5 encryptions each of length 4s, and running 1-out of-4 OT on random secrets of
size s, which costs approximately 2s, i.e. one OT extension matrix row of [16].
Summing up, we get our cost approximately 3kn0 + 22n0s.

Ignoring lower order term 3kn0, we can view our communication cost per
gate as approximately factor 5.5 of that of the standard Yao-gate, and factor 11
of that of the optimal garbling of Zahur et al. [34]. We note that in cases where
clause is selected by the input of a player (GC generator), our cost of each gate
is the same as that of [34]. We finally note that we, in contrast with all prior GC
protocols, do not need to include the circuitry selecting the output of the right
clause and ignoring outputs of other clauses.

We discuss experimental results, which depend on the quality of embedding,
in Section 8.

Nesting switch statements

We observe that a natural implementation of switch nesting will be secure
and cheap. Intuitively, this is because the vast majority of the cost – OTs of
the gates – will remain unaffected by sub-switches, and only the programming
strings management will need to be adjusted.

Due to the lack of space, we present the detailed nesting construction in the
full version.

5 GMW Protocol for Overlaying Subcircuits

Our GMW protocol is a natural recasting of our GC protocol into the GMW
approach, with the exception of us making and exploiting the novel observation
that multi-input gates in GMW are cheap. In GMW, we will program a gate
simply by viewing it as having an additional 5-ary function definition input. The
circuit programming string will be secret-shared among the players with a (2, 2)
secret sharing, just like regular GMW wire values. Thus our programmable gate
evaluation is just a slight generalization of the GMW evaluation.
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Protocol 2 (GMW with switch statements, sketch)

1. Once-per-function Precomputation. Parse C, identify switch

(C1, ..., Ck), and call the graph embedding algorithm on C1, ..., Ck. Obtain
the container circuit C0 of size n0 as well as k circuit programming strings
d1, ..., dk, each of size n0. Each di will consist of symbols {∨,∧,⊕, L,R},
where L (resp. R) is the left (resp. right) input wire pass-through gate.
Denote the j-th symbol of di by di,j. Let C ′ be the C with the switch

(C1, ..., Ck) replaced with C0. C ′ is assumed known to both players before
the computation.

2. Beginning with the secret sharing of the inputs, for each gate gi of C ′ \C0 in
topological order, players evaluate the gates according to the GMW protocol.
In particular, wires defining the the switch choice will be processed.

3. Let Wj1 , ...Wjt be the wires defining the switch choice, t = dlog ke. Players
use OT to generate a (2, 2) secret sharing of the selected programming string
as follows.

(a) GC generator generates n0 random permutations π = {πj} over
{∨,∧,⊕, L,R}.

(b) GC generator computes the following. For i = 1 to k, set d̃i =
π1(di,1), ..., πn0(di,n0). Now, each d̃i looks random as an independent
random permutation πj was applied to each symbol di,j.

Player P2 uses his shares of Wj1 , ...Wjt to obtain (via OT with P1) the

permuted programming string d̃i.
4. Players proceed to evaluate all remaining gates of C ′. The gates in C0 have

an additional input specifying the gate function. This input is taken from the
circuit programming string d. Note that d is already secret-shared among the
two players: P1 has π, P2 has d̃i. Each (two-input Boolean) gate of C0 is
evaluated by a slight generalization of GMW, where 1-out of-4 · 5 OT is run
by the players.
Specifically, for each of the five possible gate functions {∨,∧,⊕, L,R} for
gate gj ∈ C0, P1 prepares four corresponding GMW OT secrets. Then P1

permutes the five groups of four GMW OT secrets according to πj. Then P1

and P2 run 1-out of-4 · 5 OT, where P2’s input is d̃i,j and the GMW shares
of the wire values.

5. Players combine their shares on the output wires of C ′ and reconstruct the
output.

Theorem 2. Let OT protocol be secure in the semi-honest model. Then Proto-
col 2 is a secure two-party computation protocol in the semi-honest model.

Proof. The proof of security of this protocol in the semi-honest model is
trivial. Indeed, assuming the security of OT, it is easy to check that players ever
receive only secret shares of the wire values. We omit this simple proof.

Cost calculation. As compared to standard GMW protocol, our protocol
requires OT of the programming strings. Additionally, it evaluates multi-input
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gates, resulting in 1-out of-20 OT. As discussed above, in particular in GC cost
calculation, the OT of programming strings is a low-order cost term and can be
ignored. Further, as explained in detail in Section 2.2, the cost of 1-out of-20
OT using [16] is only 16 bits greater than that of the 1-out of-4 OT, and hence
this difference can also be swept under the rug. We conclude that the above
Protocol 2 (GMW with switch statements) implements the oblivious circuit
programming at the cost similar to that of the standard GMW protocol.

Nesting switch statements. The discussion and results of GC-based nes-
ting (Section 4) directly applies to the GMW setting.

6 Embedding Circuits of Bounded Fan In

In this section, we sketch a heuristic algorithm which given a set of k circuit
DAGs, D1, ..., Dk, returns a circuit DAG D0 such that for each Di there exists
an embedding fi into D0, and D0 has as small of cost as possible. We proceed
in two main steps.

First, in Section 6.1, we restrict our attention to circuits that have fan out one
and fan in bounded by 2, though a straightforward generalization leads to fan in
bounded by any constant. These are commonly referred to as in-arborescences of
bounded in-degree 2, but for ease of exposition we will call them tree circuits. We
describe a polynomial time exact algorithm that given two circuit trees T1 and
T2 finds a circuit tree T of minimum cost embedding both T1 and T2. Specifically,
we prove the following.

Definition 2. The cost of embedding a set of circuit DAGs D1, ..., Dk, denoted
cost(D1, ...,Dk), is the cost of a circuit DAG D0 of minimum cost such that there
is an embedding of Di into D0 for all i = 1..k.

Theorem 3. Let T1 and T2 be tree circuits. There exists an O(|T1||T2|) algo-
rithm to determine an optimal, i.e. minimum cost, tree circuit T embedding both
T1 and T2.

Second, in Section 6.2, we remove the bound on the fan out, only requiring
that the input circuits have fan in bounded by 2. We describe an algorithm
which relies on the algorithm of Section 6.1 as a subroutine. Letting D1 and D2

be circuit DAGs of fan out 2, we describe a polynomial time heuristic algorithm
to a determine circuit DAG D0 embedding both D1 and D2.

A straightforward approach, using this heuristic as a subroutine, then allows
for k-circuit inputs. The following lemma describes an algorithm which returns
a circuit whose size grows sublinearly in the number of input circuits (assuming
certain performance of the heuristic). Because we condition it on the heuristic,
we stress that the Lemma cannot be universally applied. Rather, we use the
Lemma to formalize the embedding algorithm for larger number of clauses, as
well as to discuss its projected performance.

Lemma 1. Let τ > 1. Assume there exists an algorithm which takes as input
circuit DAGs D′ and D′′, each of size exactly n, and returns a circuit DAG
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D0 embedding both D′ and D′′ whose size is at most τn. Then there exists an
algorithm which takes as input circuit DAGs D1, ..., Dk, each of size exactly n,
and returns D0 of size at most klog2 τn.

Proof. Let D1, .., Dk be a set of circuit DAGs and assume k = 2`. We first apply
the heuristic of Section 6 to determine a circuit DAGs D2

i embedding both D2i−1

and D2i for each i = 1, ..., k/2. Iterating this for j ≥ 2, for each i = 1, ..., k/2j

we determine Dj
i from Dj+1

2i−1 and Dj+1
2i . We then return D = D`

1.
We prove the size bound by induction, where the base case is assumed. By

induction, assume that the algorithm returns Dj−1
i , i = 1, ..., k/2j , each of whose

size is at most τ j−1n. Hence, the size of Dj
i′ is at most (τ)∗τ j−1n = τ jn. Setting

j = ` = log k yields the desired result. ut

In Section 8, we evaluate the performance of the heuristic, which, in our expe-
riments on average achieves a τ value of 1.151. Assuming this τ value, Lemma 1
would imply the k-circuit size is at most k0.203 ×max{|D1|, |D2|, ..., |Dk|}.

6.1 Tree Circuits

In order to prove Theorem 3, we use dynamic programming and match pairs of
vertices of T1 and T2 as follows. For simplicity,we omit dealing with Free-XOR
for now. Let δ−(v) be the in-degree of a node.

Definition 3. For circuit DAG D and t ∈ D, let D[t] be the circuit DAG
induced on vertices v such that there exists a directed path from from v to t in
D.

Definition 4. Define the matchcost of a ∈ T1 and b ∈ T2 as the minimum cost
of a tree T such that there exists a mapping f1 that embeds T1[a] into T and a
mapping f2 that embeds T2[b] into T where f1(a) = f2(b). Denote this minimum
cost by match(a,b).

Consider computing cost(T1,T2) where a is the root of T1 and b is the root of T2.
Clearly, there is no advantage, with respect to cost, to mapping a and b to disjoint
subtrees of T and so either (i) f1(a) ∈ T [f2(b)], or (ii) f2(b) ∈ T [f1(a)]. From
this it follows that we can compute cost(T1,T2) by considering O(|T1|+|T2|)
matchcosts.

Definition 5. Let T1 and T2 be tree circuits with roots a and b, respectively.
Define:

(i) cost2(T1,T2) := mint∈T2 (cost(T2)− cost(T2[t]) + match(a, t)) .
(ii) cost1(T1,T2) := mint∈T1

(cost(T1)− cost(T1[t]) + match(t,b)) .

Lemma 2. Let T1 and T2 be tree circuits with roots a and b, respectively. Let T
be a minimum cost tree circuit with f1 embedding T1 and f2 embedding T2.

(i) If f1(a) ∈ T [f2(b)], then cost(T1,T2) = cost2(T1,T2),
(ii) If f2(b) ∈ T [f1(a)], then cost(T1,T2) = cost1(T1,T2).
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Proof. Without loss of generality, assume that f1(a) = t′ ∈ T [f2(b)] and consider
the minimum cost and minimum edge tree circuit T . The root r of T is equal
to f2(b) (by minimality) and there exists t ∈ T2 such that f2(t) = t′. We have
that cost(T1,T2) is equal to the cost of embedding the tree T2 − T2[t] plus the
minimum cost of a tree T ′ that embeds both T2[t] and T1 given that a and t are
mapped to the root of T ′. Hence, cost(T1,T2) = cost(T2−T2[t])+match(a, t) =
cost(T2)− cost(T2[t]) + match(a, t) = cost2(T1,T2). The lemma follows. ut

Corollary 1. cost(T1,T2) is equal to the minimum of cost1(T1,T2), and
cost2(T1,T2).

In order to achieve the runtime of Theorem 3, we observe that we can determine
these costs using the children of a and b together with a single match.

Lemma 3. Let T1 and T2 be tree circuits with roots a and b, respectively. Then,

cost1(T1,T2) = min

{
match(a,b),

min
a′∈N−T1

(a)
(cost(T1)− cost(T1[a′]) + cost1(T1[a′])(T2))

}
,

cost2(T1,T2) = min

{
match(a,b),

min
b′∈N−T2

(b)
(cost(T2)− cost(T2[b′]) + cost2(T1)(T2[b′]))

}
.

Proof. We have that

min
t∈T1[a′]

(cost(T1)− cost(T1[t]) + match(t,b))

= cost(T1)− cost(T1[a′]) + min
t∈T1[a′]

(cost(T1[a′])cost(T1[t]) + match(t,b))

= cost(T1)− cost(T1[a′]) + cost1[T1[a′]][T2].

Hence, cost1(T1,T2)

= min
t∈T1

(cost(T1)− cost(T1[t]) + match(t,b))

= min{match(a, t), min
a′∈N−T1

(a)
min

t∈T1[a′]
(cost(T1)− cost(T1[t]) + match(t,b))}

= min{match(a,b), min
a′∈N−T1

(a)
(cost(T1)− cost(T1[a′]) + cost1[T1[a′]][T2])},

completing the proof of the lemma. ut

From Lemma 2, in order to determine cost(T1,T2), it remains to show how
to determine match(a,b). Since the mapping of a and b are fixed, matchcosts
are easier to compute. Indeed, we can assume f1(a) = f2(b) is the root of T . Mo-
reover, if either T1[a] or T2[b] is a singleton then match(a,b) can be determined
in a straightforward way.
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Observation 4 If T1[a] is a singleton, then for all b ∈ T2, match(a,b) =
cost(T1[a],T2[b]) = cost(T2[b]). If T2[b] is a singleton, then for all a ∈ T1,
match(a,b) = cost(T1[a],T2[b]) = cost(T1[a]).

From Observation 4 it is trivial to determine match(a,b) whenever either a is
a leaf of T1 or b is a leaf of T2. Specifically, in the case that b is a leaf, we

have match(a,b) =
∑

t∈T1[a] 2

∑
v∈N−

T1
(t)

wvt

and when a is a leaf, match(a,b) =∑
t∈T2[a] 2

∑
v∈N−

T2
(t)

wvt

.

We therefore can assume that T1[a] and T2[b] each have at least three vertices.
To determine match(a,b) we simply consider all possible pairings of the children.

Lemma 4. For a ∈ T1 with in-neighbors a0, a1 and b ∈ T2 with in-neighbors
b0, b1 we have

match(a,b) = 22 + min
i∈{0,1}

min
j∈{0,1}

(cost(T1[ai],T2[bj]) + cost(T1[a1−i],T2[b1−j])).

Proof. Since δ(a) = δ−(b) = 2, the minimum cost of a tree circuit T embed-
ding both a and b is 22 plus the minimum cost of embedding the subtrees
T1[a0], T1[a1], T2[b0], and T2[b1]. We only need to check which of the four possible
feasible combinations achieves the minimum. ut

We now can finish the proof of Theorem 3 whose pseudo code is given as
Algorithm 1.

Proof (Proof of Theorem 3). Consider Algorithm 1. We note that by procee-
ding in a reverse BFS-ordering of both V (T1) and V (T2) we ensure that we
can compute cost1, cost2 and match in Lines 7,8 and 9. Hence, the correct-
ness of this algorithms follows from Lemmas 3 and 4 and Corollary 1. Clearly
the run time is equal to O(|T1||T2|) times the runtime of determining M [ai, bj ]
and C[ai, bj ]. We consider these two parts separately. First, by Observations 4
and Lemma 4, determining M [ai, bj ] takes constant time. Hence, the total time
taking determining the |T1|×|T2| array is O(|T1||T2|). By Lemma 3, determi-
ning C1[ai, bj ] takes O(δ−(a) + 1) time. Hence, the total time determining C1

is
∑
ai

∑
bj
O(δ−(ai) + 1) = |T2|

∑
ai
O(δ−(ai) + 1) = O(|T2||T1|). Similarly, the

total time determining C2 is O(|T1||T2|). The runtime now follow. Finally, de-
termining an optimal tree is now trivial given the choices made by Algorithm
1. ut

We finish this section by noting that to deal with XOR-gates, which are free,
when two XOR gates are mapped to the same node in T , we ensure zero addition
cost is added. With these modifications, it follows that Algorithm 1 can also be
used to compute cost(T1,T2) in this more general case.

6.2 General Circuits

Heuristic Algorithm We develop a polynomial time heuristic algorithm using the
machinery of Section 6.1. We then finish by sketching the proof of correctness. In
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1 Input: Binary tree circuits T1, T2

2 Output: cost(T1,T2)

3 let a1, ..., an1 be a BFS-ordering of V (T1)
4 let b1, ..., bn2 be a BFS-ordering of V (T2)
5 for i = n1 down to 1:
6 ... for j = n2 down to 1:
7 ...... determine M [ai, bj ] = match(ai,bj).
8 ...... determine C1[ai, bj ] = cost1(T1[ai],T2[bj]).
9 ...... determine C2[ai, bj ] = cost2(T1[ai],T2[bj]).

10 ...... set C[ai, bj ] = min(C1[ai, bj ], C2[ai, bj ]).
11 return C(T1[a1], T2[b1])

Algorithm 1: Determining cost(T1,T2)

Section 8, we present the results of our experimental validation for this algorithm.
For simplicity, assume every non-leaf node of T1 and T2 has weighted in-degree
exactly two and we omit dealing with Free-XOR for now. We remark that again
the ideas are easily extended to the general case.

We start by considering a related question. Let D1 = (V1, E1) and D2 =
(V2, E2) be input circuit DAGs, each with exactly one output wire node. Let
T1 be a spanning in-arborescence subgraph of D1 and let T2 be a spanning
in-arborescence subgraph of D2. We determine a minimum cost circuit DAG
D0 embedding both D1 and D2 subject to the restriction that there must be a
spanning in-arborescence subgraph T of D0 such that (A) both T1 and T2 embed
in T , and (B) leaves of T1, resp. T2, map to leaves of T . Denote the minimum
cost of such a DAG by cost(D1|T1

,D2|T2
) We remark that there always exists an

appropriate choice of T1 and T2 such that D0 will be a optimal embedding of D1

and D2. Further we remark, that we can essentially ignore Condition (B), since
given any embedding of Ti, it is always possible to extend the out-arborescence
of any leaf node of Ti down to a leaf node of T .

Analogous to Lemma 2, we can determine cost(D1[a]|T1[a],D2[b]|T2[b]) for
a ∈ T1 and b ∈ T2 by considering O(|T1|+|T2|) matchs.

Definition 6. Define the match∗ of a ∈ D1 and b ∈ D2 as the minimum cost of
a circuit DAG D0 such that there exists a mapping f1 that embeds D1[a] into
D0 and a mapping f2 that embeds D2[b] into D0 such that f1(a) = f2(b) and
there exists a spanning in-arborescence subgraph T of D0 such that (A) and (B)
hold.

Definition 7. Let r be the root of circuit DAG D with gate nodes G. Further
assume T is an in-arborescence subgraph of D containing r. Define the cost of
D on vertices of T as costT(D) :=

∑
v∈V(T)∩G 2ffi−(v).

Definition 8. Let T1 and T2 be circuit DAGs with roots a and b, respectively.
Define:

(i) cost2(D1|T1
,D2|T2

) := mint∈T2
(costT2

(D2)
− costT2[t](D2[t]) + match∗(a, t)).
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(ii) cost1(D1|T1
,D2|T2

) := mint∈T1
(costT1

(D1)
− costT1[t](D1[t]) + match∗(t,b)).

Lemma 5. Let D1 and D2 be circuit DAGs. For a ∈ D1 let T1 be an in-
arborescence subgraph of D1[a] containing a and for b ∈ D2 let T2 be a in-
arborescence of D2[b] containing b. Then,

cost(D1[a]|T1[a], D2[b]|T2[b])

= min{cost1(D1|T1 ,D2|T2), cost2(D1|T1 ,D2|T2)}.

From Lemma 5, in order to determine cost(D1[a]|T1[a],D2[b]|T2[b]), it remains
to show how to determine match∗(a,b). As before, if either T1[a] or T2[b] is a
singleton then match∗(a,b) is as follows.

Observation 5 If T1[a] is a singleton, then for all b ∈ T2, match∗(a,b) =
costT2[b](D2[b]). If T2[b] is a singleton, then for all a ∈ T1, match∗(a,b) =
costT1[a](D1[a]).

When neither T1[a] nor T2[b] is a singleton then whenever δ−(a) = δ−(b) = 2
we determine match∗(a,b) as follows. For a ∈ T1 with in-neighbors a0, a1 and
b ∈ T2 with in-neighbors b0, b1 we have match∗(a,b) is equal to:

22+ min
i∈{0,1}

min
j∈{0,1}

(cost(D1[ai]|T1[ai],D2[bj]|T2[bj])

+ cost(D1[a1−i]|T1[a1−i],D2[b1−j]|T2[b1−j])).

The case when the degrees do not match up is more complicated. Indeed, either
the node a is incident to an edge which goes between two subtrees of F1 or the
node b is incident to an edge which goes between two subtrees of F2. In this case
the match∗ is undefined. To get beyond this, we consider two cases separately.
First, if a is a leaf node in T1 and b is a leaf node in T2 then we need to create
a dummy gate node which takes as input f1(a) and f2(b). Such a construction
has match∗ = 12 since we suffer cost 4 for each of f1(a), f2(b) and the dummy
gate. Second, assume a is not a leaf node in T1, the case when b is not a leaf in
T2 is symmetric. Our heuristic then sets match∗ equal to the minimum cost of
a tree such that f1(a) to be the in-neighbor of f2(b).

We now can determine D0 using the following variant of Algorithm 1.

Circuit DAG Embedding Algorithm

1. Chose a spanning in-arborescence forest F1 of D1 such that one in-
arborescence of F1 contains each output node of D1. Similarly, choose F2 of
D2. In our implementation, we will focus on choosing such forests uniformly
at random. Such forests can be found by choosing a single edge from each of
the out-edges for each node of D1 and D2; we omit further details.

2. For each T1 ∈ F1 and T2 ∈ F2 compute cost(D′1|T1
,D′2|T2

), where D′1, re-
spectively D′2, is DAG found by taking the union of all edges of D1, respecti-
vely D2, with at least one end-point in T1, respectively T2. Here we can apply
Algorithm 2 directly.
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1 Input: D1, D2, T1 and T2

2 Output: cost(D1|T1 ,D2|T2)

3 let a1, ..., an1 be a BFS-ordering of V (T1)
4 let b1, ..., bn2 be a BFS-ordering of V (T2)
5 for i = n1 down to 1:
6 ... for j = n2 down to 1:
7 ...... determine M [ai, bj ] = match∗(ai, bj).
8 ...... determine C[ai, bj ] = cost(D1[ai]|T1[ai],D2[bj]|T2[bj]).

9 return C(T1[a1], T2[b1])

Algorithm 2: Determining cost(D1|T1
,D2|T2

)

3. Using the costs computed in Step 2, we compute an optimal pair of in-
arborescences as follows. Let G be the weighted bipartite graph with bipar-
tition (A,B) defined as follows. Let m := max{|F1|, |F2|}. The set A contains
a node labeled by each in-arborescences of F1 plus m − |F1| ‘dummy’ no-
des. Similarly, the set B contains a node labeled by each in-arborescences
of F2 plus m− |F2| ‘dummy’ nodes. G is a complete bipartite graph, where
an edge between a node of A labeled by T1 and node B labeled by T2 has
weight cost(D′1|T1

,D′2|T2
), and an edge between a dummy node and node of

A labeled by T1 has weight costT1
(D′1), respectively node of B labeled by T2

has weight costT2(D′2).
Since G is complete, it has a perfect matching. Moreover, any perfect mat-
ching corresponds to a pairing of output nodes in D1 with output nodes in
D2, where nodes matched to ‘dummy’ nodes have no partner and are embed-
ded as a copy of themselves. Hence, it follows that a minimum cost matching
in B corresponds to a minimum cost pairing of output nodes. We remark,
that computing such a minimum cost perfect matching in time polynomial
in |A|+|B| is a classical result (see for e.g. [9]).

4. We now determine the final circuit DAG. For each T i1 − T j2 pairing from
the minimum cost perfect matching, we construct a tree circuit T i−j and
embeddings f i−j1 : T i1 → T i−j and f i−j2 : T j2 → T i−j , where ‘dummy’
pairings are the identity embedding.
Let T =

⋃
i,j T

i−j . An embedding f1 of F1 into T is found by taking the

union of the f i−j1 over all T i1 − T
j
2 pairings (including ‘dummy’ nodes). An

embedding f2 of F2 into T is found in a similar way. Let D0 be the DAG
found by taking a copy of T . First, we add an edge from the source of f1(x)
to the source of f1(y) of weight w′xy for each edge xy ∈ E1 − E(F1). For
each edge xy ∈ E2−E(F2) we do the same though adding these edges might
cause cycles. Before adding xy, we test if there exists a directed path from
y to x in D0. If such a path P exists, then there must exists an edge of P
only used by the circuit D1. By splitting the path up to this edge, we can
insure that D0 plus xy is acyclic. We then update f1 and f2 to include these
additional edge mappings.

We complete the proof by showing that D0 is a feasible solution.
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Theorem 4. The Circuit DAG Embedding Algorithm finds a feasible ci-
rcuit DAG.

Proof. Without loss of generality, it is enough to show that f1 is a valid em-
bedding of D1 into D0. By construction f1 is a mapping from nodes of D1 to
out-arborescences of D0 and from edges of D1 to edges of D0. We need only
verify that Conditions 1, 2 and 3 of Definition 1 hold. Since Condition 1 holds
for f i1 and the perfect matching ensures that every vertex of D1 is in exactly
one paired embedding, Condition 1 holds for f1. Conditions 2 and 3 hold, since
either an edge is mapped by some f i1, satisfying Conditions 2 and 3, or the edge
goes between trees of F1, where Step 4 adds these edges between sources of
out-arborescences of weight satisfying Condition 3. It now follows that D0 is a
feasible solution. ut

7 Optimally embedding graphs is NP-complete

Here we consider the complexity of the problem of finding a minimum sized
container digraph D0 embedding two digraphs D1 and D2. The problem is seen
to be NP-complete via a reduction from 3-sat. The full details of the proof are
deferred to the full version.

Theorem 5. The problem of finding a digraph D0 such that embedding two
digraphs D1 and D2 into D0 has cost at most k is NP-complete even when the
in-degree and out-degree of each node in D1 and D2 is bounded by 2 and at most
one of D1 or D2 is a tree.

8 Experimental Evaluation and Validation

Here we report on our experimental evaluation of the heuristic given in Section
6, as well as on the resulting efficiency of Protocol 1 in comparison with standard
GC and Protocol 2 in comparison with standard GMW.

Evaluation methodology. The main metric we use to compare our appro-
ach to GC is the total bandwidth required, consumed by all OT instances and
garbled gates transfers. We do not penalize ourselves for the potential increase
in latency due to additional round per switch, associated with our approach.
As discussed in the Introduction, this is because in large circuit/batch execu-
tion round trip delays may overlap with data transmission, and, if so, latency
will not impact performance. Of course, in some scenarios (e.g. large network
latency, small circuit/single execution) latency may dominate. We leave full im-
plementation and parameters tuning as important future work to address these
settings.

We stress that for the SPF-SFE and GMW case, where we report significant
concrete improvement in our experiments, we do not require additional rounds
as compared to standard GC.
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We validate our approach with the experiments on a set of circuits which
we built using circuit compiler CBMC-GC [8], summarized in Table 1. We con-
structed these 32 circuits by exploiting variations and combinations of a num-
ber of available arithmetic and bit-operation circuits. Because of this, there are
commonalities among the input circuits/DAGs (which is typical in practice),
and which may be affecting performance. We stress that our algorithms are not
aware of the commonalities in the circuits and apply generically. We further
note that these circuits are not hand-optimized for the functions they compute.
Indeed, our goal is not to find the best circuit for a specific function, but to
validate our heuristic and to understand its behavior. We do this by running it
on a set of simple circuits of varying sizes and similarity for our experiments. In
many applications (e.g., private DB policies) the clauses would be more similar,
and we expect even better performance.

Results. Firstly, we stress that our heuristics are still highly unoptimized.
Even with this, we are able to determine container circuit C0 containing all
32 input circuits C1, ..., C32 whose size is 0.1637 times the size of all circuits
taken together. To explain further, we note that the size of C0 is trivially at
least maxi=1..32{|Ci|} and at most

∑32
i=1|Ci|. Here |Ci| denotes the cost of a

circuit including free-XOR6. As we will explain, the size of C0 compared to
these bounds yields an important metric for the performance of the algorithm.

Formally, we define the expansion metric, or EM as m = |C0|−maxi=1..32{|Ci|}∑32
i=1|Ci|

7.

Clearly, m ∈ [0, 1] where values closer to 0 indicate better performance of the
algorithm.

Starting with the 32 input circuits, we first heuristically determine over 100
random trials the smallest circuit containing each of the

(
32
2

)
pairs. For a parti-

cular pair of circuits Ci, Cj , we define the round EM to be the minimum over all

random trials of
|C0|−max{|Ci|,|Cj |}

|Ci|+|Cj | . Given all these container circuits, we choose

the pairing of circuits of minimum total size. We use these 16 resultant circuits
as the input circuits for the next round and repeat the process.

Table 2 compares the total number of non-free gates for a S-Universal Circuit,
S = {C1, ..., C32}, using existing approaches and our work. In Figure 4, we report
the total size of circuits in each of the five rounds, resulting in total size reduction
of 6.1×.

In the full version, we include additional discussion on the experiment results
and anticipated behavior.

6 We remark that in all our experiments we use circuits that have fan in at most
2. A standard reduction allows us to eliminate gates of fan in exactly 1. In our
experiments we use cost and size interchangeably, since they are closely related.

7 It would be more general to include the size of Valiant’s universal circuit in the
expansion metric definition. For s defined as the size of a universal circuit for all
circuits of size up to max{|Ci|}, set EM m = |C0|−max{|C1|,..,|C32|}

min{s,|C1|+..+|C32|}
. However, in our

experiments and clause numbers, s is much larger than |C1|+.. + |C32|, so we omit
this complication in this writeup.
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Circuit Test # Function Total # of Gates # XOR Gates

C1 A + B (32bit) 154 123

C17 A + B (16bit) 74 59

C16 A − B (16bit) 103 74

C32 A − B (32bit) 215 154

C18 A < B (32bit) 191 127

C19 A < B (16bit) 74 63

C2 A ≤ B (32bit) 191 127

C3 A ≤ B (16bit) 95 63

C4 Hamming (32 bit) 1610 1223

C20 Hamming (16bit) 775 587

C5 Integer Division (32bit) 3283 1925

C21 Integer Division (16bit) 3225 1830

C7 A ∗ B (32bit) 3283 1925

C22 counting loop (16bit) 1490 494

C25 A + B < 230 and A − B > 20 (32bit) 487 333

C9 A + B < 230 and A − B > 20 (16bit) 231 157

C27 A ∗ B > 200 (32bit) 3368 1982

C11 A ∗ B > 200 (16 bit) 904 478

C23 A ∗ B (16bit) 867 453

C24 A + B < 100 (32bit) 183 122

C8 A + B < 100 (16bit) 87 58

C26 B > 1020 and A ∗ B > 10 (32bit) 3458 2037

C10 B > 1020 and A ∗ B > 10 (16bit) 946 501

C28 A ∗ B > B + 10 ∗ A (32bit) 3881 2311

C12 A ∗ B > B + 10 ∗ A (16bit) 1145 631

C29 B ∗ A + 555 (32bit) 3343 1956

C13 B ∗ A + 555 (16bit) 895 468

C30 B2 + A2 > 1 (32bit) 5613 3881

C14 B2 + A2 > 1 (16bit) 1373 905

C31 B2 + A ∗ B + A2 (32bit) 8660 5809

C15 B2 + A ∗ B + A2 (16bit) 2132 1361

C6 leading bit (16bit) 221 74

Table 1. Circuits used for heuristic evaluation.

Table 2. Total non-free gate counts for a S-Universal Circuit, S = {C1, ..., C32}.

Combined Circuit Valiant Universal Circuit Our construction

20,543 562,900 3,363
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