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Abstract. LEGO-style cut-and-choose is known for its asymptotic ef-
ficiency in realizing actively-secure computations. The dominant cost of
LEGO protocols is due to wire-soldering — the key technique enabling
to put independently generated garbled gates together in a bucket to
realize a logical gate. Existing wire-soldering constructions rely on ho-
momorphic commitments and their security requires the majority of the
garbled gates in every bucket to be correct.
In this paper, we propose an efficient construction of LEGO protocols
that does not use homomorphic commitments but is able to guarantee
security as long as at least one of the garbled gate in each bucket is cor-
rect. Additionally, the faulty gate detection rate in our protocol doubles
that of the state-of-the-art LEGO constructions. With moderate addi-
tional cost, our approach can even detect faulty gates with probability 1,
which enables us to run cut- and-choose on larger circuit gadgets rather
than individual AND gates. We have implemented our protocol and our
experiments on several benchmark applications show that the perfor-
mance of our approach is highly competitive in comparison with existing
implementations.

1 Introduction

Since 1980s, significant effort has been devoted to making secure computation
protocols practical. This include novel garbling schemes [5,4,46,16], programming
tools [31,19,17,29,30], and their applications [21,44,18,37,33,43]. While these
works are restricted in the passive (honest-but-curious) threat model, which is
fairly weak to model real-world adversaries, security against active adversaries
is often more desirable.

The most practical approach for building actively-secure two-party compu-
tation protocols by far is the cut-and-choose paradigm. With cut-and-choose,
roughly speaking, one party generates κ garbled circuits where κ depends on
the statistical security parameter s; some fraction of those are “checked” by
the other party—who aborts if any misbehavior is detected—and the remaining
fraction are evaluated with the results being used to derive the final output. A
rigorous analysis of the cut-and-choose paradigm was first given by Lindell and
Pinkas [26], which required setting κ to roughly 3s, and was later optimized to
κ = s [25,7] since it suffices to have only one honest circuit used for evaluation
(hence we call them SingleCut protocols).
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For better asymptotic efficiency, Nielsen and Orlandi proposed LEGO [35],
which exploited the circuit evaluator’s randomness to group individual NAND
gates (as opposed to circuits in the batched-execution setting) to thwart active
attacks. This idea evolved to MiniLEGO [11], which is compatible with the free-
XOR technique. Their recent independent work [36] provides an implementation
of their protocol [12], demonstrating the practical efficiency of LEGO approach.
However, they use homomorphic commitments and the security of their protocol
depends on the majority of the gadgets in every bucket being correct. In con-
trast, our work shows a different construction of LEGO protocols with highly
competitive performance.

Researchers have also exploited the idea of batched cut-and-choose (hence
we call BatchedCut) to efficiently execute a batch of N computational instances
of the same function f between the same two parties using possibly differ-
ent inputs [27,20,28]. It was believed that BatchedCut allows to reduce κ to
O(s/ logN). However, we will show in Section 6.4 that this should really be
2+O(s/ logN) and 2 is actually a tight bound on the complexity of any Batched-
Cut protocols.

1.1 Contribution

Contributions of this work include:

New Techniques. We propose two new optimizations for constructing efficient
LEGO protocols:

1. The main bottleneck of LEGO protocols is wire-soldering, which converts,
in a privacy-preserving way, a wire-label of a logical-gate bucket to a wire-
label on a garbled gate to enable combining multiple independently garbled
gates to realize a logical gate. To achieve high performance wire-soldering,
we introduce a new cryptographic primitive called XOR-homomorphic in-
teractive hash (IHash) to replace the XOR-homomorphic commitments used
in prior works. We propose a simple construction of IHash by integrating
Reed-Solomon codes, pseudorandom generators (PRG), and a single invo-
cation of a w-out-of-n oblivious transfer protocol (Section 4.2). We proved
the security of our interactive hash construction (Section 4.3). IHash can be
a primitive of independent interest, e.g., it may also be used to efficiently
solder circuits in other BatchedCut protocols.

2. Using IHash, we are able to improve existing LEGO-based cut-and-choose
mechanism in two more aspects:
(a) Our protocols guarantee security assuming a single correctly garbled

gate exists in every bucket. In contrast, existing LEGO-based proto-
cols [35,11,12,36] require majority correctness in every bucket. This en-
hancement allows us to roughly reduce the number of gadgets in every
bucket by 1/2 when offering 40-bit statistical security.

(b) We can increase the faulty gate detection rate from 1/4 with previous
works [11,12,36] to 1/2. At moderate additional cost, we can even detect
faulty gates with probability 1. This technique allows us to run cut-and-
choose on larger circuit components rather than individual ANDs.
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The above optimizations combined not only simplfiy the construction of LEGO-
protocols but also the analysis for deriving the cut-and-choose parameters. Thanks
to these benefits, our approach is adopted to work with pools for building highly
scalable reactive secure computation services against active attacks [48].

Implementation and Evaluation. We have implemented our protocol and
experimentally evaluated its performance with several representative computa-
tions. In particular, our protocol exhibits very attractive performance in handling
the target function’s input and output wires: 0.57 µs per garbler’s input-wire
and 8.24 µs per evaluator’s input-wire, and 0.02 µs per output-wire, which are
roughly 24x, 2.4x, and 600x faster than WMK [41]’s highly optimized designs
(Fig. 9). Without exploiting parallelism, our protocol is able to execute 105.3M
logical XOR gates per second and (when bucket size is 5) 45.5K logical AND
per second on commodity hardware (two Amazon EC2 c4.2xlarge instances
over LAN). We show, for the first time, that by cut-and-choosing SubBytes, even
small applications such as a single AES could run 2x faster and consume 2x less
bandwidth than cut-and-choosing ANDs.

Finally, we prove an asymptotic tight bound on the duplication factor κ of
BatchedCut protocols (Section 6.4). This bound turns out to be overlooked in
prior works [35,11,27,12].

2 Technical Overview

Notations. We assume P1 and P2, holding x and y respectively, want to securely
compute a function f(x, y). We use the standard definition of actively-secure
two-party computation [15]. Throughout this paper, we assume P1 is the circuit
generator (who is also the IHash sender) and P2 is the circuit evaluator (who is
also the IHash receiver). For simplicity, we assume that only P2 will receive the
final result f(x, y). We assume f can be represented as a circuit C containing N
AND gates while the rest are all XORs.

All vectors in this paper are by default column vectors. We summarize the
list of variables in Fig. 1.

2.1 LEGO Protocols

LEGO protocols belong to the BatchedCut category of cut-and-choose-based
secure computation protocols [49]. For a Boolean circuit C of N logical gates,
the high-level steps of a LEGO protocol to compute C are,

1. Generate. P1 generates a total of T garbled gates.
2. Evaluate. P2 randomly picks B ·N gates and groups them into N buckets.

Each bucket will realize a gate in C. P2 evaluates every bucket by first trans-
lating wire-labels on the bucket’s input-wires to wire-labels on individual
garbled gate’s input-wires, evaluating every garbled gate in the bucket, and
then translating the obtained wire-labels on the garbled gates’ output-wires
back to a wire-label on the bucket’s output-wire. (The wire-label translation,
also called wire-soldering, is explained in more detail below.)
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s The statistical security parameter.

k
The computational security param-
eter.

N
The number of logical AND gates
(i.e., buckets) in the circuit.

T
Total number of garbled AND gates
generated by P1.

B
Bucket size, i.e., the number of gar-
bled AND gates in a bucket.

∆
The global secret delta between a 0-
label and its corresponding 1-label.

〈m〉 The i-hash of a message m.

ρ
The permutation message whose
parity bit, p, is the permutation bit.
Each wire has a freshly sampled ρ.

`w The symbol-length of wire-labels

nw
The symbol-length of wire-label en-
coding.

ww
The number of watched symbols in
a wire-label encoding.

σw
The bit-length of symbols used in
wire-label encoding.

`p
The symbol-length of permutation
messages.

np
The symbol-length of wire-label en-
coding.

wp
The number of watched symbols in
a wire-label encoding.

σp
The bit-length of symbols used in
permutation message encoding.

Fig. 1: Variables and their meanings.

3. Check. P2 checks each of the rest T − BN garbled gates for correctness.
If any of these gates was found faulty, P2 aborts. Though, due to the ran-
domized nature of the checks, P2 will not always be able to detect it when
checking a faulty gate.

4. Output. P1 reveals the secret mapping on the circuit’s final output-wires
so that P2 is able to map the final output-wire labels into their logical bit
values.

The first construction [35] was based on NANDs and require public key oper-
ations for wire-soldering. Fredericksen et al. [11] later proposed a LEGO scheme
that is compatible with the notable free-XOR optimization [24] using XOR-
Homomorphic commitments as a black box. Under this paradigm, it suffices to
assume all the garbled gates are ANDs since all XORs can be securely computed
locally and no extra treatment is needed to ensure correct behavior on processing
XORs. However, due to the use of the global secret ∆ for free-XOR, a garbled
AND can’t be fully opened for check purpose. Instead, a random one of the four
possible pairs of inputs to a binary gate is picked to check correctness.

Wire-soldering. As depicted in Fig. 5, each bucket realizes a logical gate, thus
has input and output wires like the logical gate it realizes. In order to evaluate
an independently generated garbled gate assigned to a bucket, an input-wire
of the bucket (with wire-labels w0

bucket and w1
bucket = w0

bucket ⊕ ∆ denoting 0
and 1) needs to be connected to the corresponding input-wire (with wire-labels
w0

gate and w1
gate = w0

gate ⊕ ∆) of the garbled gate to evaluate. This is done by
requiring P1 to send d = w0

bucket ⊕ w0
gate and P2 to xor d with the wire-label on

the bucket (either w0
bucket or w1

bucket) he obtained from evaluating the previous



JIMU: Faster LEGO-based Secure Computation 5

bucket. To prevent a malicious P1 from sending a forged d, existing protocols
used XOR-Homomorphic commitments to let P1 commit ∆, w0

bucket, and w0
gate

(which allows P2 to derive the commitment of d homomorphically), so that P2

can verify the validity of d from its decommitment without learning any extra
information about w0

bucket and w0
gate.

2.2 Our Optimizations

Below we sketch the intuition behind our optimization ideas of LEGO protocols.

XOR-homomorphic Interactive Hash. XOR-homomorphic Interactive Hash
(IHash) is a cryptographic protocol involving two participants, which we call the
sender and the receiver, respectively. The design of IHash is directly motivated
by the security goals of wire-soldering:

1. Binding. Every i-hash of a secret message uniquely identifies the message
with all but a negligible probability, so that the message holder cannot mod-
ify a secret message once its i-hash is sent.

2. Hiding. The i-hash receiver does not learn any extra information about the
secret message other than the i-hash itself. For a uniform-randomly sampled
message, it is guaranteed that certain entropy remains after its i-hash is sent
because by definition an i-hash needs to be shorter than the original message.

3. XOR-Homomorphism. Given the i-hashes of two messages m1 and m2,
the receiver can locally compute the i-hash of m1 ⊕ m2. This enables the
receiver (circuit evaluator) to solder wire-labels from independently garbled
gates using a verifiable label-difference supplied by the circuit generator.

Unlike a commitment scheme which requires the committer’s cooperation to
match messages with commitments, IHash allows the receiver alone to verify if
any message matches with an i-hash (like with traditional hashes). In addition,
a commitment hides every bit of its message whereas i-hashes allow leaking
arbitrary information about its message through the i-hash itself, up to the
length of the i-hash. Nevertheless, we find that this somewhat weaker primitive
suffices to solder wires in LEGO protocols.

Figure 2 illustrates our construction of the XOR-homomorphic IHash scheme.
The high-level idea is to let the IHash sender encode his/her secret message m
using a [n, `, n− `+ 1]2σ Reed-Solomon code and let the receiver secretly watch
(soon we will detail how to watch secretly) w of the n symbols in Encode(m).
Recall that a [n, `, n−`+1]2σ -code is one that takes in an `-symbol message and
outputs an n-symbol encoding (where symbols are of σ-bit) so that the minimal
distance between the codewords is n − ` + 1 symbols. The w watched symbols
are the i-hash of m. The receiver can verify a particular message matches with
its i-hash by encoding the message and making sure all values at the w watched
positions on the encoding coincide with the i-hash it holds. As a result, with
respect to binding, if the sender forges a message m′, at least n− `+ 1 symbols
in the codewords have to be different, hence, the i-hash receiver can detect the
forgery with all but

(
`−1
w

) /(
n
w

)
probability. With respect to hiding, although the
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Each column pertains
to a message 

seed1

seed2

seedn

seed iw

seed i1

w indices
{i1, . . . , iw}

seed3

seed i2

{
Sender side

{
Receiver side

Fig. 2: Interactive Hash based on OT and Reed-Solomon Code

i-hash reveals wσ bits entropy in m to the receiver, if the original message has `σ
bits entropy, then the rest (`−w)σ bits entropy remains perfectly hidden to the
receiver. Therefore, to guarantee hiding, we can set ` sufficiently large based on
the security parameter. Finally, the additive (i.e., XOR) homomorphic property
of i-hashes is inherent in the linearity of Reed-Solomon codes.

The “secret watch” above can be realized by a w-out-of-n oblivious trans-
fer protocol. Moreover, we only need to invoke this oblivious transfer once.
The key idea is to let the sender pick n random seeds and obliviously trans-
fer w seeds of the receiver’s choice. Later, the sender sends correction messages
Encode(m)i ⊕ PRG(seed i) to the receiver where Encode(m)i is the ith symbol of
m’s encoding and i ∈ {1, . . . , n}. Thus, learning seed i allows the receiver to see
the corresponding symbols in m’s codeword. We also notice that the input-wire
labels of all garbled gates are uniformly random. Therefore, setting the ith sym-
bol of the jth wire-label to be PRG(seed i, j) where i ∈ {1, . . . , `} while using a
systematic code will reduce the work to only send the corrections on the last
n− ` symbols, i.e., mi ⊕ PRG(seed i, j) for i ∈ {`+ 1, . . . , n}.
Fast Wire-Soldering. Wire-soldering is one of the most challenging efficiency
barriers in LEGO protocols. Recall that P1 garbles all the AND gates indepen-
dently. Thus, in the circuit evaluation phase where B random AND gates are
grouped into a bucket to evaluate a logical AND gate, P2 needs to “translate”
an input wire-label of a bucket to its corresponding input wire-label on a garbled
gate in the bucket. To this end, we require, at the garbling stage, that, for every
garbled gate, P1 i-hash one wire-label on every wire of the garbled gate to P2;
and, at the gate evaluation stage, that P1 send the xor-differences between every
pair of the source and target wire-labels. The validity of the xor-differences can
be verified against their i-hashes. Note that even if an i-hash leaks entropy, we
can increase the length of the wire-labels to ensure enough entropy remain in
the labels to guarantee the needed computational security.



JIMU: Faster LEGO-based Secure Computation 7

Moreover, for benefits that will be clear soon, we require P1 also to i-hash
the global ∆ (required by the free-XOR technique) to P2. Recall that all the
wire-labels at the bucket level also need to be i-hashed to P2. To prevent P2

from learning logical values of the intermediate wire-labels, P1 will i-hash either
the 0-label or the 1-label of each wire with equal probability. Without extra
treatment, however, this will allow a malicious P1 to surreptitiously flip a wire-
label’s logical value. We fix this issue by adding a random permutation message
ρ to each wire and use ρ’s parity bit to bind the plaintext bit the i-hashed wire-
label represents. For integrity of ρ, we require P1 to i-hash ρ to P2 so that P2

can verify the ρ values of each wire at the garbled gate checking stage. We stress
that the value of ρ for all intermediate wires will never be revealed.

To achieve fast wire-soldering for practically efficient LEGO protocols, we
found the following two optimizations indispensable.

1. The Reed-Solomon encoding process can be viewed as multiplying the public
encoding matrix An×` = [ai,j ]1≤i≤n,1≤j≤` with the message vector m`×1 =
[m1, . . . ,m`] where mi’s are σ-bit symbols. To ensure security of LEGO pro-
tocols, the (n, `, σ) values would be (nw, `w, σw) = (86, 32, 8) for wire-labels
and (np, `p, σp) = (44, 20, 6) for permutation messages. A näıve implemen-
tation of the encoding process will require more than 2700 Galois Field
(GF) multiplications per wire-label and 900 GF multiplications per permu-
tation message, which amounts to more than 10K multiplications per garbled
gate. Even if field multiplications are realized as table-lookups, 10K memory
accesses per gate is already 40× slower than AESNI-based garbling itself,
making LEGO approach noncompetitive in practice.

Our key idea to speedup encoding process is to pack many symbols into
operands (e.g., __m128, __m256, __m512) of vector instructions and lever-
age Intel Intrinsic instructions [1] to enable efficient message encoding. Be-
low we illustrate the idea with an example where n = 96, ` = 32, σ = 8),
i.e., encoding a 32-symbol message m into a 96-symbol codeword where
symbols are of 8-bit. First, we use a systematic code so that it suffices
to compute the last n − ` = 64 symbols of the codeword since the first
` = 32 symbols are identical to the original message. Thus, we can restrict
our attention to the last 64 rows of the encoding matrix A, call it A′. Let
a·,1 = [a33,1, . . . , a96,1]T be the first column of the matrix A′ and we can
store the 64 symbols of a·,1 in a single __m512 register. Let mi be the ith

symbol of m. The last 64 symbols in the encoding of m can be computed
as c =

∑`
i=1mia·,i =

∑`
i=1[mia33,i, . . . ,mia96,i]

T . Since mi ∈ GF(28) and
all column vectors a·,i are publicly fixed, each mia·,i can thus be efficiently
derived with a single lookup into a table of 256 entries of __m512 values and
the sum can be computed with ` − 1 = 31 __mm512_xor instructions. This
optimization would reduce 32× 96 = 3072 field multiplications per encoding
down to just 32 memory reads, about a hundredth cost of the implementation
based on näıve table-lookups.

2. We observe that, although the hiding of i-hashes for wire-labels is compu-
tational (since an adversary could use the garbled truth table to search the
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“right” label offline), the hiding on the permutation message ρ is perfect be-
cause no additional constraints are provided to allow offline search for the
permutation bit (i.e., the parity of ρ). Thus, it suffices to require only 1-bit
of entropy remain in ρ after i-hashing each ρ for perfectly hiding which wire-
labels on a wire was i-hashed. This observation allows us to select much more
efficient parameters to i-hash ρ, i.e., (np, `p, σp) = (44, 20, 6) as opposed to
(86, 32, 8) for i-hashing wire-labels.

Increasing Faulty Gate Detection Rate. In existing protocols [11,12,36], a
faulty gate selected to be checked will be found faulty with probability 1/4. This
is because the garbled gates are produced with respect to the global secret ∆
(which is the xor-difference between the 0-label and 1-label on a wire) required
by the free-XOR technique [24], hence only one out of the four garbled rows
of a binary gate can be opened for checking. In contrast, our protocol allows a
faulty gate to be detected with probability 1/2. We achieve this by integrating
the Half-Gate garbling technique [46] which requires only two garbled rows per
gate Since each check opens one of the two garbled rows, this allows to detect
a faulty gate with probability 50% without revealing ∆. We formally prove this
result as Lemma 5.3.

To ensure faulty gates are always detected, i.e., with 100% detection rate, the
idea is to allow fully open a garbled gate at gate-checking time. This requires
garbling each gate with respect to a freshly sampled ∆ (the XOR-difference
between a 0-label and its corresponding 1-label) and sending the i-hash of this ∆
with the gate. To solder two wires garbled with different ∆, additional verifiable
XOR messages also need to be transmitted. We detail this special soldering
procedure at the end of Section 5.1.

Dealing with Faulty Gates Used for Evaluation. Our protocol is able
to guarantee security as long as a single correctly garbled gate exists in every
bucket. This improvement is due to a combination of the IHash and the free-
XOR techniques. Denote the i-hash of a message m ∈ {0, 1}∗ by 〈m〉. We let
the circuit evaluator to learn 〈∆〉 where ∆ is the global secret. On each wire,
the evaluator also learns an i-hash 〈w〉 where w defines either the 0-label or the
1-label on that wire (but the evaluator doesn’t know which). Recall that the
evaluator can locally verify the validity of a wire-label using the IHash’s Verify
algorithm. Therefore, if at least one gate in a bucket is good, evaluating all the
garbled gates in the bucket will give one or more valid output wire-labels. When
translating these wire-labels to the bucket output wire-label, one of the following
two cases has to happen:

1. They all match with the same i-hash, either 〈w〉 or 〈w〉 ⊕ 〈∆〉. Since all
valid wire-labels are consistent on the plaintext bit they represent and one
of them is known to be correct, the evaluator can directly proceed with this
valid wire-label to evaluate the subsequent buckets.

2. Some of them translate to 〈w〉 whereas others translate to 〈w〉⊕〈∆〉. In this
case, the evaluator can simply xor the two valid labels to recover ∆. Once ∆
is known, the evaluator can use it to recover the circuit generator’s private
input x and locally computes and outputs f(x, y).
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GenAND(i , ∆, w0
l , w

0
r)

Require: i ∈ N. ∆,w0
l , w

0
r ∈ {0, 1}256.

ql := lsb (w0
l )

qr := lsb (w0
r)

j := 2i

j′ := 2i + 1

TG := H(w0
l , j)⊕H(w0

l ⊕∆, j)⊕ qr∆
w0
g := H(w0

l , j)⊕ qlTG
TE := H(w0

r , j
′)⊕H(w0

r ⊕∆, j′)⊕ w0
l

w0
e := H(w0

r , j
′)⊕ qr(TE ⊕ w0

l )

w0
o := w0

g ⊕ w0
e

return (w0
o, TG, TE)

EvlAND(i , wl, wr, TG, TE)

Require: i ∈ N. wl, wr ∈ {0, 1}256.

sl := lsb (wl); sr := lsb (wr)

j := 2i ; j′ := 2i + 1

wg := H(wl, j)⊕ slTG
we := H(wr, j

′)⊕ sr(TE ⊕ wl)
wo := wg ⊕ we
return wo

H(m, j)

w := Compress(m)

k := 2j; k′ := 2j + 1

w := m⊕ k; w′ := m⊕ k′
return AES(w)⊕w ‖ AES(w′)⊕w′

Fig. 3: Garbling with 256-bit wire-labels. AES(·) denotes calling AES with a
fixed, publicly-known key. Compress(m) essentially computes A′m where A′ is
a rank-16, 16 × 32 matrix over GF(28). A′ is randomly picked by the circuit
generator after the evaluator chose its watch symbols.

Hence, in either case our protocol can be proved secure.

Entropy Extraction for Efficient Garbling. With fixed-key AESNI instruc-
tions, the state-of-the-art garbling technique is able to produce 20 million gar-
bled rows per second, which is about 10× faster than a SHA256-based garbling
scheme [32,46,4]. However, the wire-labels in our protocol need to be longer
than 128 bits to ensure enough entropy (e.g., more than 80 bits) remains even
part of a wire-label is leaked to the evaluator through its i-hash. Although it is
straightforward to use SHA256 to implement garbling to accommodate longer
wire-labels in the random oracle model, a priori, it is unclear how this can be
efficiently realized only assuming fixed-key AES is an ideal cipher.

Our intuition is to compress a longer wire-label down to a 128-bit label while
preserving as much entropy as possible, and then run existing fixed-key AES-
based garbling with the compressed labels. As a concrete example, wire-labels
in our protocol are 256-bit (i.e. 32 8-bit symbols). During i-hashing, a 32-symbol
wire-label will be encoded into an 86-symbol codeword; and the evaluator ran-
domly picks 21 of the 86 symbols in the codewords to watch. Since the “watch”
reveals 8×21 = 168 bits entropy, 88 bits of entropy remains in each wire-label. To
compress a 256-bit wire-label m to a 128-bit m′ while carrying over the entropy,
our strategy is to randomly sample a 16× 32, rank-16 matrix A′ = [a′i,j ] where

a′i,j ∈ GF(28) and compute m′ = A′m (in other words, A′ represents a set of

16 linearly independent row-vectors in the vector space GF(28)32). Note that A′

is sampled only after the evaluator has chosen its watched symbols. Intuitively,
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this compression preserves entropy because the chances are extremely low that
any one of the 16 row-vectors happens to be a linear combination of a set of
21 row-vectors of GF(28)32 that are picked randomly and independently by the
evaluator. We present a formal analysis of the entropy loss in Section 6.2.

Given this Compress algorithm (i.e., essentially a matrix multiplication as
described above), we can formalize our garbling scheme based on that of Half-
Gates [46]. The main difference lies in the function H. Our H, specified in Fig. 3,
maps {0, 1}256 ×N to {0, 1}256 and involves two calls to a fixed-key AES cipher
to produce a 256-bit pseudorandom mask to encrypt a longer output wire-label.

2.3 Related Work

TinyLEGO. As an independent and concurrent work, TinyLEGO [12,36] ex-
plored ways to improve LEGO protocols in the single-execution setting. However,
our approach is different in several aspects:

1. To solder the wires, previous work used additive homomorphic commitment,
whereas we propose the notion of IHash and give a highly efficient construc-
tion of IHash using PRG, Reed-Solomon code and Intel Intrinsics [1]. We
show that, despite IHash being leakier than homomorphic commitments,
it suffices the purpose of constructing efficient LEGO protocols. Our con-
struction of IHash shares some similarity with that of XOR-Homomorphic
commitments in [13]. However, the two schemes differ in the way OTs are
used, the selection of error correcting codes, and the way to pick critical
protocol parameters.

2. TinyLEGO involves cut-and-choosing two types of garbled gadgets (i.e.,
ANDs and wire-authenticators) and requires correct majority in the total
number of garbled gadgets in each bucket, whereas our protocol only uses
garbled ANDs and the security holds as long as a single correctly garbled
AND exists in each bucket. In addition, the faulty gate detection rate in our
protocol is twice of that in TinyLEGO.

3. Because of our optimizations, our protocol can run more than 2x faster in
a LAN and be highly competitive over a WAN. However, their protocols
are about 20–50 more efficient in bandwidth thus would be advantageous in
some bandwidth-stringent network environments. See Section 7 for detailed
performance comparisons.

NNOB [34] and SPDZ [10]. Both NNOB and SPDZ require a linear number
of rounds and expensive pre-processing, our protocol has only a small constant
rounds and lightweight setup. Thus, ours performs better when the network
latency cannot be ignored, or when resources are limited in the preparation
phase.

Lindell-Riva [28] and Rindal-Rosulek [40]. In the offline/online setting,
Lindell-Riva and Rindal-Rosulek provided very efficient prototypes of secure
computation protocols. Although the high-level idea of cut-and-choose resembles
that of LEGO, their results are not applicable if only one (or just very few)
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executions is needed. For example, with [28], one AES can be computed in
about 74 ms amortized time assuming a 75,000 ms offline delay is acceptable
for preparing 1024 executions. Since wire-soldering is much less of an issue,
their technique would be far less efficient when carried out to cut-and-choose
individual-gates.

Wang-Malozemoff-Katz. Wang et al. [41] recently designed and implemented
by far the most efficient SingleCut secure computation protocol. Thanks to a
(mostly) symmetric-key cryptography based garbler’s input consistency enforce-
ment mechanism and their careful use of SSE instructions for preventing selec-
tive failure attacks, a single AES instance can be computed in 65 ms (with in-
put/output wires processed at roughly 20 µs per wire). However, even compared
with their optimized protocol, processing input/output wires in our protocol can
still be much faster, hence will be competitive in computing shallow circuits with
many input/output wires (see Section 7 for detailed performance comparisons).
Moreover, due to the advantages of LEGO protocols in supporting actively se-
cure RAM-based secure computations, it would be interesting future work to
develop better homomorphic hash constructions and plug it into our framework
to obtain improved LEGO protocols.

Wang-Ranellucci-Katz. Wang et al. [42] proposed a secure two-party com-
putation scheme based on collaborative garbling over authenticated multiplica-
tive triples. Their approach would be advantageous in speed when compared to
state-of-the-art LEGO protocols [36]. However, ideas of this work can be ex-
tended to allow fully open a garbled gate at the verification stage and applied at
a circuit-level to produce protocols that are more efficient in bandwidth. Hence,
our framework is still interesting in designing efficient protocols in low-bandwidth
settings.

Parallelism. Noting the embarrassingly parallelizable nature of the protocols
in this domain (including ours), we follow the convention of many existing
works [41,46] to restrict our attention to the single-threaded model and treat
computation as an energy-consuming scarce resource.

3 Preliminaries

3.1 Oblivious Transfer

We use 1-out-of-2 oblivious transfers to send wire labels corresponding to the
evaluator’s input, and two k-out-of-n oblivious transfers for wire soldering. A
k-out-of-n oblivious transfer protocol takes n messages m1, . . . ,mn from the
sender and a set of k indices i1, . . . , ik ∈ [1, n] from the receiver, and outputs
nothing but the k messages mi1 , . . . ,mik to the receiver. Composably secure 1-
out-of-2 OT can be efficiently instantiated from dual-mode cryptosystems [38]
and efficiently extended [23,2] from inexpensive symmetric operations plus a
constant number of base OTs. Camenisch, Neven, and Shelat [8] proposed an
efficient and simulatable k-out-of-n OT in the Random Oracle Model.
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3.2 Garbled Circuits

First proposed by Yao [45], garbled circuits were later formalized as a crypto-
graphic primitive of its own interest [5]. Bellare et al. have carved out three
security notions for garbling: privacy, obliviousness, and authenticity. We refer
readers to their paper for the formal definitions. In the past few years, many opti-
mizations have been proposed to improve various aspects of garbled circuits, such
as bandwidth [39,46], evaluator’s computation [39], memory consumption [19],
and using dedicated hardware [5]. Our protocol leverages Half-Gates garbling
recently proposed by Zahur et al. [46] which offers the simulation-based def-
inition of privacy, obliviousness, and authenticity under a circular correlation
robustness assumption of the hash function H. We summarize their garbling
algorithms GenAND and EvlAND in Fig. 3.

More formally, a garbling scheme G is a 5-tuple (Gb,En,Ev,De, f) of algo-
rithms, where Gb is an efficient randomized garbler that, on input (1k, f), out-
puts (F, e, d); En is an encoder that, on input (e, x), outputs X; Ev is an evaluator
that, on input (F,X), outputs Y ; De is a decoder that, on input (d, Y ), outputs
y. The correctness of G requires that for every (F, e, d)← Gb(1k, f) and every x,

De(d,Ev(F,En(e, x))) = f(x).

Let Φ be a prefixed function modeling the acceptable information leak and “≈”
symbolizes computational indistinguishability. Privacy of G implies that there
exists an efficient simulator S such that for every x,

{
(F,X, d) :

(F, e, d)← Gb(1k, f),
X ← En(e, x).

}
≈ {S(1k, f, Φ(f))}.

Obliviousness of G implies that there exists an efficient simulator S such that for
every x,

{(F, e, d)← Gb(1k, f), X ← En(e, x) : (F,X)} ≈ {S(1k, f)}.

4 Homomorphic Interactive Hash

In this section, we describe XOR-homomorphic interactive hash, a new primitive
that enables multiple enhancements in our LEGO protocol.

4.1 Definition

It involves two parties, known as the sender (P1) and the receiver (P2), to com-
pute an interactive hash (i-hash) while the receiver can locally verify a message
against an i-hash that it holds. The ideal functionality of FXorIHash is described
in Fig. 4, where Hash is an efficient two-party probabilistic algorithm that takes a
message m from P1 and outputs an i-hash of m (denoted as 〈m〉) to P2 without
revealing any additional information to either party; and Verify is an efficient
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algorithm (locally computable by P2) that takes an i-hash 〈m〉 and a message
m′ and outputs a bit b indicating whether m = m′. Like conventional hashes,
we require |〈m〉| < |m| and that for any two distinct messages m1 and m2,
〈m1〉 6= 〈m2〉 except for a negligible probability. Finally, we require the hashes
to be XOR-homomorphic, i.e., 〈m1〉 ⊕ 〈m2〉 = 〈m1 ⊕m2〉.

– Hash. Upon receiving (Hash, m1, . . . ,mν) (ν ≥ 1) from P1: for ev-
ery i, if there is a recorded value (cid ,mi), generate a delayed output
(Receipt,cid i, 〈mi〉) to P2 where 〈mi〉 denotes the hash of mi and
|〈mi〉| < |mi|; otherwise, pick a fresh number cid i, record (cid i,mi) and
generate a delayed output (Receipt, cid i, 〈mi〉) to P2.

– Verify. Upon receiving (Verify, cid1, . . . , cidν, d) from P2: if there are
recorded values (cid1,m1), . . . , (cidν ,mν) (otherwise do nothing), set z =
1 if m1 ⊕ · · · ⊕mν = d, and z = 0, otherwise; generate a delayed output
(VerifyResult, z) to R.

Fig. 4: Ideal XOR-Homomorphic Interactive Hashes. (P1 is the hash sender and P2

the hash receiver. “Send a delayed output x to party P” reflects a standard treatment

of fairness, i.e., “send (x, P ) to the adversary; when receiving ok from the adversary,

output x to P .”)

Note that Fig. 4 actually describes a family of ideal functionalities for FXorIHash,
as it leaves the exact definition of 〈mi〉 unspecified (other than requiring |〈mi〉| <
|mi|). Along with a specific definition of 〈mi〉, the ideal functionality defined in
Fig. 4 will yield a concrete XOR-homomorphic interactive hash scheme. For ex-
ample, our construction given in Section 4.2 realize a concrete version of IHash
in which 〈mi〉 is defined as m′i ∗ v where m′i is the Reed-Solomon encoding of
mi, v is a binary vector supplied by P2 containing exact w 1-bits and ’∗’ denotes
pair-wise multiplication of two equal-length vectors but leaving out all entries
(in the product vector) corresponding to the 0-entries in v.

Interactive hash offers certain “hiding” and “binding” properties. That is,
with all but negligible probability, the receiver of 〈m〉 learns nothing about m
except for what can be efficiently computed from 〈m〉; and the sender of 〈m〉
can’t claim a different message m′ to be the preimage of 〈m〉. However, unlike
cryptographic commitments, with IHash, (1) some entropy in m can be leaked to
the receiver yet the rest remains; (2) the message owner can’t compute the hash
on its own; and (3) the hash receiver can verify on its own whether a message
matches with a hash.

4.2 Construction

Fig. 2 illustrates the high-level idea behind our construction. Let OTwn be an
ideal functionality for a w-out-of-n oblivious transfer. Encode`,n,d(·) denotes the
encoding algorithm of [n, `, n−`+1]2σ Reed-Solomon systematic code, i.e., (over
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σ-bit symbols) `-symbol messages are encoded into n-symbol codewords with
minimal distance of n − ` + 1 symbols. Let PRG be a pseudorandom generator
and s, k are the statistical and computational security parameters.

To allow the receiver to obliviously watch the set of w positions on every
message’s n-symbol codeword without invoking an OT instance per message, we
let the sender generate n secret seeds and call only once a w-out-of-n OT to
allow the receiver learn w of these seeds (Step 1 of IHash.Setup). These seeds
are then used as keys to a PRG to create n rows of pseudorandom symbols, of
which the receiver is able to recover w rows. When a message m is ready to be
i-hashed, the sender simply encodes m and sends the xor-difference between m’s
codeword and the next column of n pseudorandom symbols generated from the
seeds (Step 1b of IHash.Hash) so that the receiver can record the symbols for
which it watched the corresponding keys.

To obtain active-security, our protocol actually generates n+ξ i-hashes when
i-hashing n messages, then uses the extra ξ i-hashes to verify that the sender
followed the protocol honestly (Step 2 of IHash.Hash). In our protocol, we set ξ =⌈
− 1
σ log

(
2−s −

(
`−1
w

) /(
n
w

))⌉
to bound the failure probability of our simulator

S in the security proof of Theorem 4.1 by 2−s.
The detailed construction steps are as follows.

– IHash`,σ.Setup({seed1, . . . , seedn}; {i1, . . . , iw})
Note {seed1, . . . , seedn} is P1’s secret input and {i1, . . . , iw} is P2’s secret inputs.

1. P1 and P2 run OTwn where P1 is the sender with inputs seed1, . . . , seedn, and
P2 is the receiver with inputs i1, . . . , iw. At the end of this step, P2 learns
seed i1 , . . . , seed iw .

– IHash`,σ.Hash(m1, . . . ,mν)

1. For t = 1, . . . , ν + ξ,
(a) For 1 ≤ i ≤ `, P1 computes xi = PRG(seed i, t), where xi ∈ {0, 1}σ, and sets

m′
t := x1‖ . . . ‖x`.

(b) For ` < i ≤ n, P1 sends to P2

x′i := PRG(seed i, t)⊕ Encode(m′
t)[i]

where Encode(m′
t)[i] denotes the ith symbol of m′

t’s systematic codeword.

(c) ∀i ∈ {i1, . . . , iw}, P2 computes

xi :=

{
PRG(seed i, t), if 1 ≤ i ≤ `
PRG(seed i, t)⊕ x′i, if ` < i ≤ n .

Then P2 sets 〈m′
t〉 = (xi1 , . . . , xiw).

2. For t = 1, . . . , ξ,
(a) P2 randomly picks y ← {0, 1}σ·ν and sends it to P1.
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(b) P1 sends m̂′
t :=

∑ν
i=1 yim

′
i + m′

ν+t where yi ∈ {0, 1}σ to P2.

(c) P2 runs IHash`,σ.Verify

(
ν∑

i=1

yi〈m′
i〉+

〈
m′
ν+t

〉
, m̂′

t

)
where yi ∈ {0, 1}σ and

aborts if it fails.

3. For i = 1, . . . , ν, P1 sends xi := mi ⊕m′
i to P2, who then computes

〈mt〉 := iw
i=i1

(〈m′
t〉[i]⊕ Encode(xt)[i])

where n
i=1ai means a1‖ · · · ‖an and Encode(xt)[i] denotes the ith symbol of

xt’s codeword. P1 outputs nothing and P2 outputs 〈m1〉, . . . , 〈mν〉.

– IHash`,σ.Verify (〈m1〉, . . . , 〈mν〉,
⊕ν

i=1 m
′
i)

1. P2 computes 〈m〉 :=
⊕t

i=1 〈mi〉 and let m′ =
⊕ν

i=1 m
′
i.

2. P2 parses 〈m〉 into (xi1 , . . . , xiw) ∈ {0, 1}σ·w and returns 1 if for all i ∈
{i1, . . . , iw}, Encode(m′)[i] = xi; and 0, otherwise.

(Setting t = 1 allows P2 to verify any single messages.)

Optimization. If the goal is only to i-hash random messages as it is used in our
main protocol, it suffices to treat the m′

is (generated by calling PRG in Step 1a)
as the random messages to i-hash, hence no need to send the first ` symbols of
xi in Step 3 (where xi is the xor-differences between an input message mi and
a random message m′

i), saving `σ bits per i-hashed message.

4.3 Proof of Security

Theorem 4.1 Assuming there exists a secure OT, the protocol described in Sec-
tion 4.2 securely realizes an XOR-homomorphic interactive hash.

Due to page limit, we move the proof to Appendix A.1 of the full paper [47].
Our proof uses two lemmas that we state below but prove in Appendix A.2

and A.3 of the full paper [47].

Lemma 4.2 If ∃i ∈ {1, . . . , k} such that m′i 6= mi, then Step 2 of IHash.Hash
has to abort except with 2−s probability.

Lemma 4.3 Let Hmin be the min-entropy function. For Hmin(m) = σ ·` where
m ∈ {0, 1}σ·` and 〈m〉 ∈ {0, 1}σ·w,

1. Hmin(m|〈m〉) = (`− w)σ. I.e., (`− w)σ entropy remains even if P2 learns
〈m〉.

2. For every m1 and m2 where m1 6= m2,

Pr
[
〈m1〉 = 〈m2〉

]
≤
(
`− 1

w

)/(
n

w

)
.
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5 The Main Protocol

5.1 Protocol Description

Assume P1 (the generator) and P2 (the evaluator) wish to compute f over secret
inputs x, y, where f is realized as a boolean circuit C that has only AND and
XOR gates. The protocol proceeds as follows.

0. Setup. The parties decide the public parameters `w, σw, `p, σp from the se-
curity parameters s, k (see Section 6.1 and 6.2 for the detailed discussion).
(a) P1 randomly picks seed1, . . . , seednw ; P2 randomly picks i1, . . . , inw . P1

(as the sender using seed1, . . . , seednw) and P2 (as the receiver using
i1, . . . , inw) run IHash`w,σw .Setup to initialize the IHash scheme for i-
hashing wire-labels.

(b) P1 randomly picks∆ ∈ {0, 1}λw where λw = `wσw and calls IHash`w,σw .Hash
to send 〈∆〉 to P2.

(c) P1 (using seeds H(∆, 1), . . . ,H(∆,np) where H is a random oracle) and
P2 (using freshly sampled indices i′1, . . . , i

′
np) run IHash`p,σp .Setup to ini-

tialize the IHash scheme for wire permutation strings.

(d) P1 sends H(H(∆, 1)), . . . ,H(H(∆,np)) to P2.
Then, P1 randomly select 16 linearly-independent vectors a1, . . . , a16 from

GF(8)`w , which will be row vectors of the matrix to be left multiplied with a
wire-label to realize the Compress function (compressing a 256-bit wire-label
into 128-bit, see Fig. 3). P1 sends a1, . . . , a16 to P2.

1. Circuit Initialization. Let nw be the total number of wires in C. P1 picks
m1, . . . ,mnw ∈ {0, 1}λw where λw = `wσw; then run IHash`w,σw .Hash with
P2 to send 〈m1〉, . . . , 〈mnw〉 to P2. Then, P1 samples ρ1, . . . , ρnw ∈ {0, 1}λp
where λp = `pσp, then run IHash`p,σp .Hash with P2 to send

〈
ρi1
〉
, . . . ,

〈
ρiw
〉

to P2. For all 1 ≤ i ≤ nw, P1 sets pi = ρi1 ⊕ · · · ⊕ ρiλp (where ρij denotes the

j-th bit of ρi) and w0
i := mi ⊕ pi∆. Let w1

i = mi ⊕ p̄i∆, hence mi = wpii .
Then, P1 and P2 process the initial input-wires as follows.
(a) For 1 ≤ i ≤ nP1

I , let (w0
i , w

1
i ) be the pair of wire labels on the wire

associated with xi, P1 sends wxii to P2.

(b) For every input-wire Wi associated with P2’s private input yi:
i. Wi is ⊕-split into s wires Wi,1, . . . ,Wi,s.

ii. P1 picksm1, . . . ,ms and run IHash`w,σw .Hash with P2 to send 〈m1〉, . . . , 〈ms〉
to P2. For 1 ≤ j ≤ s, P1 sets w0

i,j = mj and w1
i,j = w0

i,j ⊕∆.

iii. P2 samples yi,1 ← {0, 1}, . . . , yi,s ← {0, 1} such that yi,1⊕· · ·⊕yi,s = yi.

iv. For 1 ≤ j ≤ s, P2 retrieves w
yi,j
i,j from P1 through oblivious transfer, and

verifies w
yi,j
i,j against

〈
w
yi,j
i,j

〉
(note P2 can compute

〈
w
yi,j
i,j

〉
:=
〈
w0
i,j

〉
⊕

yi,j〈∆〉). Any verification failure will result in P2’s delayed abort at
Step 5.

v. P2 sets wyii := w
yi,1
i,1 ⊕ · · · ⊕ w

yi,s
i,s , 〈wyii 〉 :=

〈
w
yi,1
i,1

〉
⊕ · · · ⊕

〈
w
yi,s
i,s

〉
, and

pi = 0.
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2. Generate. P2 randomly picks J ∈ {0, 1}k and commits it to P1. J will be
used as the randomness for cut-and-choose later.
(a) P1 picks 2T random λw-bit messages (λw = `wσw) and run IHash`w,σw .Hash

with P2 to send the i-hashes of the 2T random messages. Denote the 2T
messages by {mi,l,mi,r}Ti=1, and their i-hashes by {〈mi,l〉, 〈mi,r〉}Ti=1.

(b) P1 picks 3T random λp-bit (λp = `pσp) messages and run IHash`p,σp .Hash
with P2 to send the i-hashes of these 3T random messages. Denote these

messages and i-hashes by
{
ρi,l, ρi,r, ρi,o

}T
i=1

and
{〈
ρi,l
〉
,
〈
ρi,r
〉
,
〈
ρi,o
〉}T
i=1

.

P1 computes pi,l = ρi,l1 ⊕ · · · ⊕ ρi,lλp , where ρi,lj denotes the jth bit of

ρi,l. Similarly, P1 derives pi,r and pi,o from ρi,r and ρi,o, respectively.
(pi,l, pi,r, pi,o will be used as the i-hash permutation bits on the three
wires connected to a garbled AND gate.)

(c) For i = {1, . . . , T}, P1 sets w0
i,l := mi,l ⊕ pi,l∆ and w0

i,r := mi,r ⊕ pi,r∆,
then runs the garbling algorithm GenAND (Fig. 3) to create T garbled
AND gates:

(w0
i,o, Ti,G, Ti,E)← GenAND(i,∆,w0

i,l, w
0
i,r)

where w0
i,l, w

0
i,r, w

0
i,o are the wire labels representing 0’s on the left input-

wire, the right input wire, and the output-wire, respectively; Ti,G is the
single garbled row in the generator half-gate and Ti,E the single row in
the evaluator half-gate.

(d) Let w1
i,o := w0

i,o ⊕ pi,o∆ for all 1 ≤ i ≤ T . P1 and P2 run

IHash`w,σw .Hash
(
w
p1,o
1,o , . . . , w

pT,o
T,o

)

so that P2 learns
〈
w
p1,o
1,o

〉
, . . . ,

〈
w
pT,o
T,o

〉
.

3. Evaluate. P2 opens to P1 the cut-and-choose randomness J , which is used
to select and group B ·N garbled ANDs into N buckets.

Recall that for every logical gate in C, P2 has obtained from step 1 two
wire-labels wal , w

b
r, which correspond to secret values a, b on the input-wires

and i-hashes
〈
ρl
〉
, 〈wpll 〉, 〈ρr〉, 〈wprr 〉, 〈ρo〉, 〈wpoo 〉. P1 and P2 follow an identical

topological order to process the logical gates as follows: For every XOR, P2

sets wo := wal ⊕wbr; For every logical AND (Fig. 5), we denote the B garbled
AND gates by g1, . . . , gB ,
(a) P2 sets O to an empty set and executes the following for 1 ≤ i ≤ B (note

that P2 always continues execution until Step 5 even if any check failed),
i. Let pi,l be the i-hash permutation bit of the left input-wire of gi, i.e.,
pi,l = gi.pl. Let pi,r, pi,o, ρ

i,l, ρi,r, ρi,o be similarly defined. P1 sends
ρl ⊕ ρi,l, ρr ⊕ ρi,r and ρo ⊕ ρi,o to P2, who verifies them against their
i-hashes and computes

pl ⊕ pi,l :=
⊕

1≤j≤λp

(ρlj ⊕ ρi,lj )
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pr ⊕ pi,r :=
⊕

1≤j≤λp

(ρrj ⊕ ρi,rj )

po ⊕ pi,o :=
⊕

1≤j≤λp

(ρoj ⊕ ρi,oj ).

ii. For b ∈ {0, 1}, define wbi,l be the wire-label representing signal b on gate

gi’s left input-wire, and let wbi,r, w
b
i,o be similarly defined with gi’s right

input-wire and output-wire. P1 sends

δl :=wpll ⊕ w
pi,l
i,l ⊕ (pl ⊕ pi,l)∆

δr :=wprr ⊕ w
pi,r
i,r ⊕ (pr ⊕ pi,r)∆

δo :=wpoo ⊕ w
pi,o
i,o ⊕ (po ⊕ pi,o)∆

to P2, who verifies them against their hashes and computes wai,l :=

wal ⊕ δl and wbi,r := wbr ⊕ δr.
iii. Recall that Ti,G = gi.TG, Ti,E = gi.TE . P2 runs wi,o := EvlAND(wal , w

b
r, Ti,G, Ti,E),

and sets wo := wi,o ⊕ δo.
iv. P2 verifies wo against 〈wpoo 〉 and 〈wpoo 〉 ⊕ 〈∆〉. If either verification suc-

ceeds, P2 adds wo to O.

(b) If O contains two different labels, say w and w′. P2 computes ∆∗ :=
w⊕w′, and uses ∆∗ to recover P1’s private inputs x and computes f(x, y).
Otherwise, O = {w} so P2 sets wo = w.

hwpr
r i
h⇢ri

hwpo
o i
h⇢oi

hwpl

l i
h⇢li

AND Bucket

g1

T1,G

T1,E

hwp1,l

1,l i
h⇢1,li

hwp1,r

1,r i
h⇢1,ri

hwp1,o

1,o i
h⇢1,oi

T2,G

T2,E

TB,G

TB,E

. . .
g2 gB

Wire  
Soldering 

Fig. 5: A bucket of B garbled gates. (Wire labels and hashes exist at both the
bucket-level (e.g. wpll ) and gate-level (e.g. w

pi,l
l ).)
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4. Check. P2 verifies the correctness of the rest T − BN garbled AND gates.
For every check-gate parsed into

(〈
ρl
〉
, 〈wpll 〉, 〈ρr〉, 〈wprr 〉, 〈ρo〉, 〈wpoo 〉, TG, TE

)
,

(a) P2 samples a← {0, 1}, b← {0, 1}, sends them to P1.

(b) P1 sends ρl, ρr, ρo to P2. P2 verifies them with
〈
ρl
〉
, 〈ρr〉, and 〈ρo〉. Let

pl = ρl1 ⊕ · · · ⊕ ρlλp , pr = ρr1 ⊕ · · · ⊕ ρrλp , po = ρo1 ⊕ · · · ⊕ ρoλp ,
i. P1 sends wal = wpll ⊕ (a ⊕ pl)∆ to P2, who verifies it against 〈wpll 〉 ⊕

(a⊕ pl)〈∆〉.
ii. P1 sends wbr = wprr ⊕ (b ⊕ pr)∆ to P2, who verifies it against 〈wprr 〉 ⊕

(b⊕ pr)〈∆〉.
iii. Let z = a ∧ b. P1 sends wzo = wpoo ⊕ (z ⊕ po)∆ to P2, who verifies it

against 〈wpoo 〉 ⊕ (z ⊕ po)〈∆〉.
(c) P2 checks wzo = EvlAND(wal , w

b
r, TG, TE).

5. Output determination.
(a) If any check failed in steps 3 and 4, P2 aborts.

(b) P1 proves in zero knowledge that it executes the Step 0b and Step 0c
honestly. Namely, the double-hashes received in Step 0d, the i-hash 〈∆〉
hold by P2, and the watched seeds of IHash`p,σp .Setup are all respect to
the same ∆. P2 aborts if the ZK proof fails.

(c) Otherwise, P2 outputs f(x, y), either from a recovered ∆ or interpreted
final output labels.

Remarks. In practice, Step 5b can be done efficiently with ZK proof tech-
niques [46,14], costing 2np semi-honest garbled circuit executions of SHA256.

Solder Gates Garbled with Different ∆s. The protocol given above assumes
all the gates are garbled with respect to the same ∆ and allows detecting faulty
gates with probability 50%. To further increase the faulty gate detection rate to
100%, we can let P1 to garble each gate with a freshly sampled secret ∆, so that
when a garbled gate is chosen to be checked, P1 can fully open the gate without
leaking the ∆ used in other garbled gates.

The procedure to solder a wire associated with (〈∆1〉, 〈ρ1〉, 〈wp11 〉) (where p1
is the xor-sum of all bits of ρ1) to another wire associated with (〈∆2〉, 〈ρ2〉, 〈wp22 〉)
(where p2 is the xor-sum of all bits of ρ2) is also a bit different from that described
in the main protocol. First, P1 reveals ∆′ := ∆1 ⊕∆2 and ρ′ := ρ1 ⊕ ρ2 to P2,
who validates ∆′ and ρ′ using the corresponding i-hashes. Let p′ be the xor-sum
of all bits of ρ′. If p′ = 0, which implies 〈wp11 〉 and 〈wp22 〉 are hashes of wire-
labels denoting the same plaintext signal, then P1 reveals w′ := wp11 ⊕wp22 to P2;
otherwise, if p′ = 1, then P1 reveals w′ := wp11 ⊕wp22 ⊕∆2 to P2. With a wire-label
w to be translated, P2 will validate w′, then output w ⊕ w′ as the translated
wire-label if 〈w〉 = 〈wp11 〉; and output w ⊕ w′ ⊕∆′ if 〈w〉 = 〈wp11 〉 ⊕ 〈∆1〉.

Fig. 6 shows wire-label conversion for every possible combination of p1, p2, w,
and verifies P2 can always output a label that denotes the same plaintext signal
as w. To see the security of this soldering scheme, we note that to a malicious
P2, (∆′, ρ′, w′) is always indistinguishable from a tuple of random messages.
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p1 p2 Input (w) p′ w′ w
?
=wp11 Output

0 0 w0
1 0 w0

1 ⊕ w0
2 Yes w0

2

0 0 w1
1 0 w0

1 ⊕ w0
2 No w1

2

0 1 w0
1 1 w0

1 ⊕ w1
2 ⊕∆2 Yes w0

2

0 1 w1
1 1 w0

1 ⊕ w1
2 ⊕∆2 No w1

2

1 0 w0
1 1 w1

1 ⊕ w0
2 ⊕∆2 No w0

2

1 0 w1
1 1 w1

1 ⊕ w0
2 ⊕∆2 Yes w1

2

1 1 w0
1 0 w1

1 ⊕ w1
2 No w0

2

1 1 w1
1 0 w1

1 ⊕ w1
2 Yes w1

2

On rows where w = wp11 , Output := w⊕w′. On rows where
w 6= wP1

1 , Output := w ⊕ w′ ⊕∆′ where ∆′ = ∆1 ⊕∆2.

Fig. 6: Soldering Wires associated with Different ∆s.

5.2 Proof of Security

First, we show that for any N and security parameter s, k, it is possible to set
parameters T,B, n, `, w such that our protocol securely computes f(x, y) (except
with probability 2−s). For concrete values of s, k,N , we detail how to optimize
T,B, n, `, w for performance in Section 6.3.

Lemma 5.1 For any N, s, k, there exist T,B such that if P2 does not abort at
Step 5, then with all but 2−s probability every bucket has at least one correctly
garbled gate.

The validity of Lemma 5.1 is implied by our cut-and-choose parameter selection
strategy described in Section 6.3.

Lemma 5.2 If every bucket has at least one correctly garbled gate, P2 will output
f(x, y) at Step 5 except with negligible probability.

Lemma 5.3 Given 〈∆〉, a garbled AND gate (TG, TE), and the i-hashes of its
wire-labels and permutation messages

(〈
ρl
〉
, 〈wpll 〉, 〈ρr〉, 〈wprr 〉, 〈ρo〉, 〈wpoo 〉

)
, where

pl = ρl1⊕ . . .⊕ρlλp , pr = ρr1⊕ . . .⊕ρrλp , po = ρo1⊕ . . .⊕ρoλp . If any of the following

is not satisfied (see Fig. 3 for EvlAND),

EvlAND(w0
l , w

0
r , TG, TE) = w0

o; EvlAND(w0
l , w

1
r , TG, TE) = w0

o;

EvlAND(w1
l , w

0
r , TG, TE) = w0

o; EvlAND(w1
l , w

1
r , TG, TE) = w1

o,

then P2 will detect this with probability at least 1/2 at Step 4.

Due to page limit, we moved the proof of Lemma 5.2 and Lemma 5.3 to Ap-
pendix A.4 and A.5 of the full paper [47].
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Theorem 5.4 Under the assumptions outlined in Section 3, the protocol in Sec-
tion 5.1 securely computes f in the presence of malicious adversaries.

Due to page limit, we moved the proof to Appendix A.6 of the full paper [47].

6 Parameters and Bounds

6.1 IHash-ing Permutation Messages

Here the goal is to decide the best parameters np, `p, wp, σp that are used to
i-hash the wire permutation messages, i.e., the ρ’s used in the main protocol, to
achieve the necessary binding and hiding properties. This can be framed into a
constrained optimization problem:

(np, `p, wp, σp) = arg min cost(n, `, w, σ)
subject to:

(
`−1
w

) /(
n
w

)
≤ 2−s (1)

σ(`− w) ≥ k (2)

2σ ≥ n
n, `, σ, w ∈ Z+

where inequality (1) ensures s-bit statistical binding, inequality (2) ensures k-bit
hiding, and the target cost function can depend on a number of deployment-
specific tradeoffs between bandwidth and computation.

We stress that hiding for the permutation messages is perfect because there
is no additional information revealed to allow a malicious evaluator to verify
its guess on the hidden bits (comparing to the fact that garbled truth table
can be used to verify guesses about the wire-labels). Once the cost function
is fixed, an efficient solver through aggressive pruning can be constructed. In
our experiment, we set np = 44, `p = 20, wp = 19, σp = 6, which provides 40-bit
statistical binding (verify this by plugging them into (1)) and 6-bit perfect hiding
since (`p − wp) · σp = 6 (although only 1-bit perfect hiding is needed).

6.2 IHash-ing and Compress-ing Wire-labels

Here our goal is to determine the best parameters nw, `w, ww, σw to process the
wire-labels so that s-bit statistical security and k-bit computational security can
be guaranteed for the main protocol. Note the entropy hiding on the wire-labels
downgrades to computational because a malicious evaluator could run offline
tests on its guesses of the wire-labels using the garbled rows.

To ensure 40-bit binding and at least 80-bit hiding, `w · σw (the wire-labels’
length) has to be more than 128 bits. This poses a challenge to efficient garbling
using fixed-key AES assembly instructions since AES only works on 128-bit
blocks. We solve this challenge by making (`w −ww)σw slightly larger (i.e., by a
factor of 1 + ε) than k, followed by a linear Compress function to derive 128-bit
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compressed labels that each carries more than 80-bit entropy from the original,
watched wire-labels. Namely, for wire-labels, we replace constraint (2) by

σw(`w − ww) ≥ (1 + ε)k

where ε > 0 compensates the entropy loss during the compression. We choose
nw = 86, `w = 32, ww = 21 and σw = 8.

To compress wire-labels, the generator samples 128/σw = 16 linear-independent
vectors (over GF(28)32) once and left-multiply them to 256-bit wire-labels to ob-
tain 128-bit compressed labels.

Recall that these 16 linear-independent vectors are declared only after the
evaluator chose its 21 watch symbols. The entropy analysis of this Compress
function can be done by considering the following experiment:

1. P1 randomly samples 32 symbols, m1, . . . ,m32 ∈ GF(28).
2. P2 randomly chooses 21 linear-independent vectors W = (W1, . . . ,W21) from

GF(28)32 and thus learns (m1, . . . , m32) ·Wi for all 1 ≤ i ≤ 21.
3. P1 randomly chooses and sends 16 linear-independent vectors T = (T1, . . . , T16) ∈

GF(28)32, then outputs v1, . . . , v16, where vi = (m1 . . . m32) · Ti for all
1 ≤ i ≤ 16 .

The question is: how much entropy in the output v1, . . . , v16 remains hidden to
P2? In other words, for every A, every rank-21 matrix W ∈ GF(28)32×21 and
every rank-16 matrix T ∈ GF(28)32×16, define

Q = Pr
(
m← GF(28)32 : A(W ,T , m ·W ) = m · T

)
.

We want to know the min-entropy of m · T , which is essentially log(1/Q). We
answer this question with Lemma 6.1 and elaborate the analysis in its proof.

Lemma 6.1 Setting nw = 86, `w = 32, ww = 21 and σw = 8 ensures 40-bit
statistical binding and more than 87.999 bits hiding in the compressed wire-labels;
while setting nw = 88, `w = 48, ww = 32 and σw = 8 ensures 40-bit statistical
binding and more than 127 bits hiding in the compressed wire-labels.

Proof. Following Lemma 4.3, 40-bit statistical binding for both settings can

be verified by computing − log
[(
`w−1
ww

)/(
nw
ww

)]
= − log

[(
31
21

) /(
86
21

)]
> 40 and

− log2

[(
`w−1
ww

)/(
nw
ww

)]
= − log2

[(
47
32

) /(
88
32

)]
> 40.

Next, we examine the hiding aspect. Let T = (T1, T2, · · · , T16) be an 32× 16
matrix over GF(28) of rank 16, and W = (W1,W2, · · · ,W21) be an 32 × 21
matrix over GF(28) of rank 21. We want to show that for every adversary A,

− log Pr
(
m← GF(28)32 : A(W ,T ,m ·W ) = m · T

)
> 87.999.

Define D = dim(T ⊕W ) − dim(W ) where “⊕” denotes direct sum and
“dim(·)” denotes the dimension of a given vector space. For every rank-t matrix
T and every rank-w matrix W , we note that

Pr
(
m← GF(28)32 : A(W ,T ,m ·W ) = m · T

)
= 2−8D.
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Thus, our goal is to show that − logE(2−8D) > 87.999. The concept of expec-
tation is introduced because 2−8D itself is a random variable over the random
choices of picking T and W .

Define di,j = dim(Span(Ti+1, Ti+2, · · · , Tt,W ))− dim(W ) under the condi-
tion that dim(Span(T1, T2, · · · , Ti)∩W ) = j. Thus, D = d0,0 and we can derive
di,j from di+1,j+1 and di+1,j using recursion. Vector Ti+1 has to fall into one of
the two cases:

1. Ti+1 ∈W : Thus Span(Ti+1, Ti+2, · · · , Tt,W ) = Span(Ti+2, Ti+3, · · · , Tt,W ).
In addition, because Ti+1 6∈ Span(T1, T2, · · · , Ti) and Span(T1, T2, · · · , Ti+1)∩
W = (Span(T1, T2, · · · , Ti) ∩W )⊕ Span(Ti+1), we know,

dim(Span(T1, T2, · · · , Ti+1) ∩W ) = dim(Span(T1, T2, · · · , Ti) ∩W ) + 1

= j + 1

Note the probability of Ti+1 ∈W , conditioned on Ti+1 6∈ Span(T1, . . . , Ti),
is (28·(21−j)−1)/(28·(32−i)−1). This is because there are 28·(32−i)−1 possible
non-zero Ti+1 that satisfy Ti+1 6∈ Span(T1, . . . , Ti); and 28·(21−j)−1 non-zero
choices of Ti+1 such that Ti+1 ∈W but Ti+1 6∈ Span(T1, . . . , Ti) ∩W , since
dim(Span(T1, . . . , Ti) ∩W ) = j.

2. Ti+1 6∈W : Thus Span(Ti+1, Ti+2, · · · , Tt,W ) = Span(Ti+2, Ti+3, · · · , Tt,W )⊕
Span(Ti+1), and

dim(Span(T1, T2, · · · , Ti+1) ∩W ) = dim(Span(T1, T2, · · · , Ti) ∩W ) = j.

This happens with probability 1− (28·(21−j) − 1)/(28·(32−i) − 1).

Therefore,

di,j =
28·(21−j) − 1

28·(32−i) − 1
di+1,j+1 +

(
1− 28·(21−j) − 1

28·(32−i) − 1

)
(di+1,j + 1)

Moreover,

E(2−8·di,j ) =
28·(21−j) − 1

28·(32−i) − 1
E(2−8·di+1,j+1) +

(
1− 28·(21−j) − 1

28·(32−i) − 1

)
E
(

2−8·(di+1,j+1)
)

=
28·(21−j) − 1

28·(32−i) − 1
E(28·di+1,j+1) +

(
1− 28·(21−j) − 1

28·(32−i) − 1

)
1

28
E(2−8·di+1,j )

Finally, the base cases for bootstrapping the recursive calculation are: (1)
d16,j = 0 for all j; and (2) di,21 = i for all i. It is easy to calculate d0,0 in full
precision with a computer program. Thus,

− log2 E(2−8·D) = log2 E(28·d0,0)

= log2

340282366920938463463374607431768211457

1099511627777

>87.9999999999986 > 88− 10−11.

When setting nw = 88, `w = 48, ww = 32 and σw = 8, we can derive a
similar recurrence as above and solve it for a different d0,0 and verify that
log2 E(28·d0,0) > 127. ut
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Remark. As an alternative, the generic Leftover Hash Lemma [22,3] could be
used to solve the wire-label entropy extraction problem. However, the potentially
large entropy loss (2 log(1/2−80)+O(1) = 160+O(1) bits) makes it unsuitable in
our case. In contrast, less than 10−11 bit of entropy (out of the 8 · (32−21) = 88
bits remaining entropy before Compress-ing) will actually be lost due to our
Compress function (see Lemma 6.1’s proof)!

6.3 LEGO Cut-and-Choose Parameters

While existing analysis of LEGO cut-and-choose rely on empirical point trials in
a likely area of the parameter space, we show that the search can be fully guided
to efficiently identify the best cut-and-choose parameters in practical scenarios.

Recall the goal is to determine the best T,B to ensure s-bit statistical security
for computing a circuit of N gates. Assume out of the total T garbled gates, b of
them are faulty gates. Let Pc be the probability of selecting a particular set of

T−BN gates in which t gates are faulty. Then Pc =
(
b
t

)(
T−b

T−NB−t
)/(

T
T−NB

)
. Let

Pe be the probability that at least one bucket is filled entirely by faulty gates,

then Pe ≤ N
(
b
B

)/(
NB
B

)
where the equality is approached from below when

N � B. Since the overall failure probability Poverall ≤ maxb
∑b
t=1 2−tPcPe, it

suffices to find the smallest T such that maxb
∑b
t=1 2−tPcPe ≤ 2−s. Note that

we only need to consider b values up to a upper bound slightly larger than s
because PcPe < 1 and

∑
2−t converges as t → ∞. In addition, we observe

that the smallest T for any fixed B (we call TB) can be quickly determined since
Poverall strictly decreases when T grows. Thus, T,B can be efficiently determined
through pruning when examining B = 2, 3, ...dTB/Ne.

6.4 A Fallacy and A Tight Bound

Define κ = T/N . Prior works claimed O(κ) = O(T/N) = O((skN/ logN)/N) =
O(sk/ logN), implying κ → 0 when N → +∞ [11,35,12]. However, we found
that this is not the case. More precisely, T should be O(κ ·N + skN/ logN) and
2 is a tight bound of κ. That is, κ ≤ 2 cannot be achieved without compromising
security while any κ > 2 is securely achievable (using our protocol) if N is large
enough. However, the formal proof of this seemingly intuitive result is nontrivial.

Theorem 6.2 Let κ = T/N and Proverall be the overall success rate of P1 at-
tacking LEGO-style cut-and-choose.

1. If κ ≤ 2, there exists a constant c > 0 and an integer N0 such that Proverall >
c for all N > N0.

2. For every statistical security parameter s and computational security param-
eter k, there exists an integer N0 such that the protocol of Section 5.1 with
a κ > 2 securely computes all circuits of size N > N0.

Due to page limit, the proof of Theorem 6.2 is moved to Appendix B of the
full paper [47].
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7 Evaluation

Measurement Methodology. We ran experiments on Amazon EC2 (instance
type: c4.2xlarge) running Ubuntu Linux in both the LAN (2.5 Gbps, < 1 ms
latency) and WAN (200 Mbps, 20 ms latency) network settings. Our IHash pa-
rameters are listed in Fig. 7. As our comparison baseline, we chose WMK [41]
and TinyLEGO [12,36], two implementations of single-execution setting proto-
cols representing the state-of-the-art. All comparisons are aligned on the same
hardware and network environment, based on single-threaded executions. We
include results for both 88- and 127-bit computational security for our proto-
cols, but anticipate the performance numbers for 127-bit computational security
would drop significantly if processors with AVX512 instructions become available.

nw `w σw ww np `p σp wp

s = 40, k = 88 86 32 8 21 44 20 6 19

s = 40, k = 127 88 48 8 32 44 20 6 19

Fig. 7: IHash parameters.

Garble Check Evaluate Solder

CPU BW CPU BW CPU BW CPU BW

k = 88 1.93 327 1.16 127 0.75 106 0.37 159

k = 127 2.37 333 1.40 159 0.79 138 0.48 207

(a) Cost per garbled gate.

Per P1’s Input Per P2’s Input Per Output

CPU BW CPU BW CPU BW

k = 88 0.29 86 4.11 5360 0.028 32

k = 127 0.34 88 4.18 6400 0.031 48

(b) Cost per input-/output-wire.

Fig. 8: Microbenchmarks. (The unites are either microsecond or byte. CPU tim-
ings do not include network time. Timings are averaged over 106 executions.)

Microbenchmarks. We first measured the performance of our protocol over
seven basic tasks (see Fig. 8):
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1. Garble: This is to generate three wires (including the wire permutation
messages and corresponding i-hashes) and a garbled truth table for AND.

2. Check: This includes evaluating a garbled gate and verifying the results with
the three revealed wire permutations bits.

3. Evaluate: This includes evaluating a garbled truth table.
4. Solder: This includes solder three wires of a garbled AND gate.
5. P1’s Input: This includes generating a fresh wire and sending the wire-label

associated to an input bit of P1.
6. P2’s Input: This includes generating 40 fresh wires without the wire permu-

tation messages and running 40 extended OTs.
7. Output: This includes revealing the wire permutation messages of an output

wire if P2 should learn the output (or sending the output wire-label obtained
from evaluation if P1 should learn the output).

We have also compared the performance of the basic procedures between
our approach and WMK’s [41] (Fig. 9). While our speed of processing logical
AND gates is about 2.5–5x slower, we can outperform WMK’s highly optimized
circuit input/output handling mechanism by 2–200x in LAN setting and 3–75
in the WAN setting, which demonstrates a clear advantage of LEGO approach
over traditional cut-and-choose protocols. Note that as the communication cost
becomes the bottleneck in the WAN setting, the performance gap of a task will
approach the bandwidth requirement ratio of the task between the two protocols.

P1’s Input P2’s Input Output Logical AND

WMK Ours WMK Ours WMK Ours WMK Ours

LAN 13.8 0.57 19.7 8.24 12.3 0.02 4.13 21

WAN 158.3 3.8 111.3 36.4 105.1 1.4 51.6 135

Fig. 9: Microbenchmark comparisons with WMK [41]. The units are either
microsecond/wire or microsecond/gate. Timings are wall-clock time. Security
parameters are aligned at s = 40, k = 127, and assuming B = 5 in our protocol.

Applications. Fig. 10 shows how our protocol compares to the baselines over
several end-to-end oblivious applications running with 2−40 statistical security.
These include

1. AES. It encrypts one block using AES. The circuit takes a 128-bit input from
each party and computes N = 6800 AND gates. We set B = 5, T = 39535.

2. DES. It encrypts one block using DES. The circuit takes a 768-bit key from
P1 and a 64-bit message from P2. Since N = 18175, we set B = 5, T = 97593.

3. Comparison. It compares two 10K-bit integers so it takes 10K bits from P1

and 10K bits from P2 and outputs 1 bit to indicate which number is larger.
It involves N = 10K AND gates, so we set B = 5 and T = 55973.
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4. Hamming Distance. This computes the Hamming distance between two
2048-bit strings. The circuit takes a 2048-bit input from each party and com-
putes N = 4087 AND gates, so we set B = 5, T = 25432.

Our approach is more than 2x faster than TinyLEGO [36] in the LAN set-
ting. Our measurements of their AES and DES protocols are in line with the
numbers reported in their paper, though we noticed that theirs run much slower
on applications with longer inputs and outputs such as Compare and Hamming
(whose performance numbers were not included in their paper). We suspect (and
get confirmed by one of the TinyLEGO implementers) that this is probably due
to some implementation issues and the use of input authenticators mechanism
required in TinyLEGO. On the flip side, we note that TinyLEGO uses 20–50%
less bandwidth.

In comparison with WMK, our protocol is about 4–5x slower when running
AES and DES over the LAN. However, for input/output intensive applications
like Compare and Hamming, the overall performance of our protocol is very close,
and can even be 30–80% faster than WMK, especially in the WAN setting.

AES DES Compare Hamming

LAN WAN LAN WAN LAN WAN LAN WAN

WMK [41] 39 580 66 1200 266 3479 70 946

TinyLEGO [36] 241 1055 561 1883 1345 3927 353 1459

Ours (k = 88) 97 827 254 2182 170 1705 61.5 733

Ours (k = 127) 119 1060 300 2589 202 1921 75 858

(a) Time. (Numbers are in millisecond. Timings are end-to-end wall-clock time
excluding that of one-time setup work such as the base OTs.)

AES DES Compare Hamming

WMK [41] 10.2 27.2 78.9 18.8

TinyLEGO [36] 15.3 30.5 65.6 21.4

Ours (k = 88) 22.8 55.6 84.7 25.2

Ours (k = 127) 26.5 64.6 89.8 27.6

(b) Bandwidth. (Numbers are in MB.)

Fig. 10: Applications performance. (Measurements are averaged over 10 execu-
tions. The numbers don’t include the setup cost, i.e., for the base OTs and ZK
proof of Step 5b.)
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Cut-and-Choose Larger Circuit Components. JIMU allows to increase the
basic unit of cut-and-choose from individual AND gates to larger circuit com-
ponents. So we have also done experiments to demonstrate the potential benefit
of cut-and-choosing larger circuit components. Using AES as an example appli-
cation, we adopted the AES circuits used by Huang et al. [19], whose non-XOR
components can all be grouped into SubBytes (each has 34 ANDs if Boyar and
Peralta’s SubByte construction is used [6]). We compared the approach where
SubBytes are the basic unit of cut-and-choose with that of cut-and-choosing indi-
vidual ANDs. Fig. 11 shows the detailed comparison on how the protocol param-
eters and performance are affected by increasing the size of basic cut-and-choose
units. For running the same application (a column of Fig. 11), cut-and-choosing
SubBytes may require using larger B than cut-and-choosing ANDs because N
will be 34x smaller. However, much overhead for enabling wire-soldering can be
saved for all internal wire connections. We observe 45%–60% savings in time and
50%–60% savings in bandwidth when SubBytes are treated as the basic cut-and-
choose units while the savings increase as the number of AES circuits involved
in the application increases.

C&C
Unit

1 AES 32 AES 64 AES 128 AES

Time BW Time BW Time BW Time BW

A
N
D

Params
N = 5440
B = 5
T = 33643

N = 174K
B = 4
T = 763K

N = 348K
B = 4

T = 1470K

N = 696K
B = 4

T = 2871K

LAN 0.12
21.87

3.89
495.88

7.65
956.05

15.28
1869.78

WAN 0.86 20.51 40.27 79.91

S
u
b
B
yt
e Params

N = 160
B = 7
T = 1401

N = 5120
B = 5
T = 28222

N = 10240
B = 5
T = 54200

N = 20480
B = 4

T = 100410

LAN 0.06
11.12

1.66
230.5

3.24
447.1

6.07
802.76

WAN 0.32 9.82 19.07 34.69

Unit of timings is second. Unit of bandwidths is MB.

Fig. 11: Benefits of Cut-and-Choosing Larger Components.
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A Proofs

A.1 Proof of Theorem 4.1

Proof. We examine every interface of IHash in an OT-hybrid world.

1. For a corrupted sender P1, observing that P2 doesn’t have secret inputs to
the IHash functionality, we define

Experiment 0: This is the real world execution between P1 and P2, run-
ning IHash.Hash followed by IHash.Verify.

Experiment 1: The simulator S interacts with P1 like P2, except that it
extracts the seeds seed i that P1 picked (through the ideal OT functionality).
In particular, S proceeds with the steps below to recover m1, . . . ,mν :
(a) S runs the checks of Step 2 as if it is P2 in the real world protocol and

aborts if P2 would.
(b) If S did not abort in the step above but does detect P1 cheating on certain

symbol positions (that happen to be not watched by P2) in the check step,
S marks all these overlooked symbol positions. Let nmark be the total
number of the marked positions.

(c) After the checks of Step 2, S can solve a system of homogeneous linear
equations to recover mi for all 1 ≤ i ≤ ν.

Finally, S sends these recovered messages to the ideal IHash funcationality
and outputs whatever P1 outputs.

To see the two experiments are indistinguishable, we note that nmark will
be less than n − ` except for

(
n−nmark

w

)
/
(
n
w

)
, and

(
n−nmark

w

)
/
(
n
w

)
<
(
`−1
w

)
/
(
n
w

)

and the latter is guaranteed to be smaller than 2−s by the parameter selec-
tion strategy (Section 6.1). Further, note that P1 can’t cheat on any of the
unmarked symbol positions without being caught in the check step except for
2−s probability. Combining the two observations, we know that there has to
be more than ` valid symbols left unmarked to allow S to recover a unique mi

for every i except for a negligible probability. That said, applying Lemma 4.2
by naming the messages i-hashed in Experiment 0 as mi and those in Exper-
iment 1 as m′i, we know if neither experiment aborts, it must be the same
messages that are i-hashed in both experiments, except for a negligible prob-
ability.

2. For a corrupted P2, we note that P1 in the ideal world outputs nothing.
Consider

Experiment 0: This is the real world execution between P1 and P2, run-
ning IHash.Hash followed by IHash.Verify.

Experiment 1: The simulator calls the ideal IHash on the outset to learn
ihashes 〈mi〉, then S interacts with P2 like P1 in experiment 0 but using
m′i as its input messages where 〈m′i〉 = 〈mi〉 (such an m′i is always easy to
find through solving a system of homogeneous linear equations). S outputs
whatever P2 outputs.

It is easy to see the above two experiments are indistinguishable based on
the security of the PRG.

This completes the proof.
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A.2 Proof of Lemma 4.2

Assume there exists a nonempty set I such that

m′
i 6= PRG(seed1, i)‖ . . . ‖PRG(seed`, i), if i ∈ I.

Hence, with y randomly picked from {0, 1}ν and a fixed t, the probability that∑
i∈I yim

′
i = m̂′

t −
∑
i∈[ν]/I yim

′
i −m′

t is 2−σ. That is,

∑

i∈I
yim

′
i +

∑

i∈[ν]/I

yim
′
i + m′

t =
∑

i∈[ν]

yim
′
i + m′

t = m̂′
t

can hold with probability at most 2−σ. By Part 2 of Lemma 4.3,

∑

i∈[ν]

yi〈m′
i〉+ 〈m′

t〉 =
〈
m̂′

t

〉
⇐⇒

∑

i∈[ν]

yim
′
i + m′

t = m̂′
t

except for
(
`−1
w

) /(
n
w

)
probability. Because Step 2c checks

∑
i∈[ν] yi〈m′

i〉+〈m′
t〉 =〈

m̂′
t

〉
, it can pass with probability at most 2−σ+(1−2−σ) ·

(
`−1
w

) /(
n
w

)
. Repeat-

ing step 2c t times renders the probability passing all checks below 2−tσ + (1−
2−tσ) ·

(
`−1
w

) /(
n
w

)
. Since Step 2c repeats

⌈
− 1
σ log

(
2−s −

(
`−1
w

) /(
n
w

))⌉
times, a

bad m′ can be i-hashed without triggering a failure with probability at most
2−s. ut

A.3 Proof of Lemma 4.3

1. Recall Hmin(m) = ` ·σ and 〈m〉 is the product of m and w linearly indepen-
dent vectors. Thus, in P2’s view, for any fixed m0, Pr (m = m0|〈m〉 = 〈m0〉) =
2−(`−w)σ. Therefore,

Hmin(m|〈m〉)
=−

∑

m0

Pr (m = m0|〈m〉 = 〈m0〉) · log Pr (m = m0|〈m〉 = 〈m0〉)

=−
∑

m0

2−(`−w)σ · [−(`− w)σ]

=2−(`−w)σ · [(`− w)σ] · 2(`−w)σ = (`− w)σ.

2. If m1 6= m2, their [n, `, n − ` + 1]2σ Reed-Solomon codewords can have at
most ` − 1 identical symbols. Since a random w (out of n) symbols of the
encoding are watched, with probability at least 1 −

(
`−1
w

) /(
n
w

)
, the ihashes

of the two messages will be different.

ut



JIMU: Faster LEGO-based Secure Computation 33

A.4 Proof of Lemma 5.2

Proof. Evaluating an incorrectly garbled gate will yield an output wire-label
that either matches 〈wpoo 〉, or 〈wpoo 〉 ⊕ 〈∆〉 = 〈wpoo ⊕∆〉, or none of them.

1. If the output label matches with neither i-hashes, the evaluation result will
be ignored (Step 3(a)iv);

2. If the output label matches with an i-hash and represents the same plain-text
value as the output label obtained from evaluating the correctly garbled gate
in the same bucket, the corrupted garbled gate does not affect the evaluation.

3. If the output label matches with an i-hash but represents the opposite plain-
text value as the output label obtained from evaluating the correctly garbled
gate, P2 learns ∆ at step 3b. Then P2 will be able to learn P1’s input x by
examining the buckets that take bits of x as immediate inputs. Note that
P2 can derive all the wire permutation string from ∆, hence, along with
the wire-labels representing P1’s input (whose validity is guaranteed by the
corresponding i-hashes), P2 is able to precisely infer every bits of x.

In all cases, P2 can correctly output f(x, y) with all but negligible probability.
ut

A.5 Proof of Lemma 5.3

Proof. By the definition of EvlAND, the four equations above are essentially

H(w0
l )⊕ lsb (w0

l )TG ⊕H(w0
r)⊕ lsb (w0

r)(TE ⊕ w0
l ) = wpoo

H(w1
l )⊕ lsb (w1

l )TG ⊕H(w0
r)⊕ lsb (w0

r)(TE ⊕ w1
l ) = wpoo

H(w0
l )⊕ lsb (w0

l )TG ⊕H(w1
r)⊕ lsb (w1

r)(TE ⊕ w0
l ) = wpoo

H(w1
l )⊕ lsb (w1

l )TG ⊕H(w1
r)⊕ lsb (w1

r)(TE ⊕ w1
l ) = wpoo ⊕∆.

That is,

lsb (w0
l )TG ⊕ wpoo ⊕ lsb (w0

r)TE = H(w0
l )⊕H(w0

r)⊕ lsb (w0
r)w

0
l

lsb (w1
l )TG ⊕ wpoo ⊕ lsb (w0

r)TE = H(w1
l )⊕H(w0

r)⊕ lsb (w0
r)w

1
l

lsb (w0
l )TG ⊕ wpoo ⊕ lsb (w1

r)TE = H(w0
l )⊕H(w1

r)⊕ lsb (w1
r)w

0
l

lsb (w1
l )TG ⊕ wpoo ⊕ lsb (w1

r)TE = H(w1
l )⊕H(w1

r)⊕ lsb (w1
r)w

1
l ⊕∆,

which can be viewed as a linear system of four equations over three variables
TG, TE , and wpoo . Note that all coefficients on the left-hand side and all constants
on the right-hand side of the equations are fixed by the seven i-hashes known to
P2. Also note that any three out of the four equations are linearly independent
except with negligible probability, because H is modeled as a random oracle and
lsb (w0

l )⊕ lsb (w1
l ) = 1, lsb (w0

r)⊕ lsb (w1
r) = 1, w0

l ⊕w1
l = w0

r ⊕w1
r = ∆. Thus, if

any three of the four equations hold, the fourth one will be automatically satisfied
as it is simply a linear combination of the other three. In addition, we know there
must be one solution to the system of four equations if P1 follows the specification
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of GenAND. Therefore, if TG, TE , w
po
o take some corrupted values such that any

one equation does not hold, there has to be at least one other equation that does
not hold (otherwise, TG, TE , w

po
o have to satisfy all four equations). Therefore,

if the gate is corrupted, at least two of the equations fail to hold, allowing P2 to
detect it with probability at least 1/2 when it randomly checks one equations at
step 4c. ut

A.6 Proof of Theorem 5.4

Proof. We analyze the protocol in a hybrid world where the parties have access
to ideal functionalities for 1-out-of-2 oblivious transfer, commitment, and inter-
active hash. The standard composition theorem [9] implies security when the
sub-routines are instantiated with secure implementations of these functionali-
ties.

If P1 is corrupted. We construct a polynomial-time simulator S that interacts
with the corrupted P1 as P2 with input y = 0 in the protocol of Section 5.1,
except for the following changes:

1. All invocations of interactive hash protocol is replaced with calls to the ideal
interactive hash functionality simulated by S.

2. At Step 1a, on receiving wxii , S learns P1’s input xi for all 1 ≤ i ≤ nP1

I ,
using its knowledge of ρi, pi, w

pi
i extracted from the ideal interactive hash

functionality.
3. At Step 5 of Output determination, if S does not abort, (instead of

outputs f(x, 0)), S sends x to the trusted party and receives in return z =
f(x, y). S rewrites P1’s output f(x, 0) with z.

We can infer REALP1,P2(x, y) ≈ IDEALT ,S,P2(x, y) for every x, y, where
REAL and IDEAL are defined canonically as in [15, Definition 7.2.6], from two
basic observations:

1. If P2 aborts in the real execution, S will also abort in the ideal execution as
the changes in S from P2 does not affect their abort behavior.

2. If P2 does not abort in the real execution, by Lemma 5.1 and Lemma 5.2,
it will output f(x, y) in the ideal execution except for negligible probability.
Over exactly identical inputs and random tapes, S will not abort either and
will send the extracted x to the trusted party in the ideal world to obtain
the same outcomes as the real execution.

If P2 is corrupted. An efficient simulator S can be constructed that interacts
with the corrupted P2 as P1 with input x = 0 using the Section 5.1 protocol,
except for the following changes:

1. At Step 1b, an ideal 1-out-of-2 OT functionality is used for P2 to obtain wire
labels on the split input-wires. This allows S to extract yi,1, . . . , yi,s, thus

learn P2’s effective input yi := yi,1 ⊕ · · · ⊕ yi,s for all 1 ≤ i ≤ nP2

I .
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2. At Step 2, an ideal commitment functionality (simulated by S) is used to
commit J . This allows S to extract the cut-and-choose string J . S sends the
y to the trusted party and receive in return z = f(x, y). Then, S generates
the T garbled AND gates such that all gates to be checked are correct; and
all gates filling the bucket of the ith final output-wire evaluate to constant
zi.

We can infer REALP1,P2(x, y) ≈ IDEALT ,P1,S(x, y) for every x, y from the
following observations:

1. If P1 aborts in the real execution, S will also abort in the ideal execution.
The real model P2 learns (at the best) a transcript of garbled circuits, which,
by the privacy and obliviousness properties of garbling scheme, is computa-
tionally indistinguishable from that generated by S.

2. If P1 does not abort in the real execution, P1 will output f(x, y) in the ideal
execution as well (except with negligible probability). Over exactly identical
inputs and random tapes, S will not abort either and will extract y to obtain
f(x, y) from the trusted party.

B Proof of Theorem 6.2

Here we generalize the bucket size B to decimals, implying buckets can be of
several different integer sizes.

Proof of Theorem 6.2 Part 1: We first show the theorem for the case κ = 2.
The validity of Theorem 1 for κ = 2 can be established based on Lemma B.1
and B.2:

1. According to Lemma B.1, the protocol cannot be secure if the buckets are
of sizes 1 or 2;

2. According to Lemma B.2, fixing κ = 2 and T,N , using buckets of size greater
than 2 will only make it even more vulnerable to attacks.

For the case of κ < 2, we know that, compared to the case when κ = 2, T
has to be reduced (for any fixed N). This implies one of the following three has
to be true:

1. less garbled gates can be used for verification;
2. less garbled gates be used for evaluation;
3. both the above two happen.

Since any of above three facts will make it easier for the cheating P1 to succeed,
Part 1 of Theorem 6.2 holds for κ < 2 too.

Proof of Theorem 6.2 Part 2: The proof is the same as that of Theorem 5.4
except that the use of Lemma 5.1 and Lemma 5.2 are replaced by Lemma B.6.

ut
Remark. The conclusion that “κ ≤ 2 can’t be secure” is meaningful only in
the asymptotic sense. A κ ≤ 2 could still offer certain concrete security, e.g., a
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κ ≤ 2 could provide 3 bits of statistical security. However, our proof shows that
a κ ≤ 2 cannot provide statistical security of more than 5 bits for any realistic
application that needs more than three AND buckets. To see this, simply set
N0 = 3 and plugging in c2 = 0.48, c3 = 0.13, c1 = 0.85 (so c > 0.05, that is,
log 0.05−1 ≈ 4.32 bits of security at best) in the proof of Claim B.5.

Lemma B.1 Assume B ≤ 2. Let Proverall(N, x, b) be the probability that P1,
with b bad gates, succeeds in attacking a protocol computing a circuit of N buck-
ets, of which x fraction is size 2 and (1 − x) fraction is size 1. If κ = 2, there
exists a constant c > 0 and an integer N0 such that Proverall(N, x, b) > c for all
N > N0.

Proof. Assume for simplicity that in the gate verification stage, if a faulty gate
is indeed selected for verification, P2 is able to detect it with probability 1, i.e.,
τ = 1. (If τ < 1, it is easier for P1 to succeed.)

Let Prc(N, x, b) be the probability that P1 survives the gate verification stage;
and Pre(N, x, b) be the probability that P1 succeeds in the evaluation stage given
that it passes the verification stage. Because τ = 1, in a successful attack, no bad
gates are “consumed” in the verification stage. Therefore, there exists a positive
constant c and a constant N0 such that for all N > N0,

Proverall(N, x, b) = Prc(N, x, b) · Pre(N, x, b)

≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

]
· Pre(N, x, b) [Claim B.3]

≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

](
1−

(
2x

1 + x

)b)
[Claim B.4]

>c [Claim B.5]

This completes the proof. ut

Lemma B.2 Fixing T,N and κ = 2, setting B ≤ 2 leads to lower successful
attacks rates than setting B > 2.

Proof. First, we show that, if B > 2, a scheme S1 that used a size-1 bucket and
a size-B bucket performs no better (in terms of preventing attacks to cut-and-
choose) than a scheme S2 that replaces the two buckets by a size-2 bucket and
a size-(B − 1) bucket (note this change preserves the total numbers of garbled
gates and the only difference between S1 and S2 is this pair of buckets). We can
derive this fact from counting the number of arrangements of b′ bad gates over
this pair of buckets that foil attacks to cut-and-choose:

1. If b′ < B − 1, S1 has
(
B
b′

)
foiling arrangements (as long as no bad gates go

to the size-1 bucket) while S2 has
(
B−1
b′

)
+
(
2
1

)(
B−1
b′−1

)
(the bad gates either all

go to the size-(B − 1) bucket, or only b′ − 1 of them go to the size-(B − 1)
bucket and the rest goes to the size-2 bucket). Because

(
B−1
b′

)
+
(
2
1

)(
B−1
b′−1

)
=(

B
b′

)
+
(
B−1
b′−1

)
>
(
B
b′

)
, S2 works better.
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2. If b′ = B−1, the count is B for S1 and 2(B−1) for S2. Because 2(B−1) > B,
S2 works better than S1.

3. If b′ > B−1, the counts are 0 for both S1 and S2. Hence, S2 works no worse
than S1.

Through recursively applying the argument above, we always end up with a
scheme that either uses (1) only buckets of size 2 or above, which implies κ > 2
because at least 1 gate needs to be used for verification, hence contracting the
assumption κ = 2; Or (2) only buckets of size 1 and 2. ut

Claim B.3 Fix κ = 2 and N . Let x fraction of the buckets are of size 2 and the
rest (1− x) are of size 1. Let Prc(N, x, b) be the probability that P1 survives the
gate verification stage with b bad gates. Then

Prc(N, x, b) ≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

]
.

Proof. Since a total of (1 + x)N garbled gates are used in evaluation while the
rest T − (1 + x)N gates are used for checking, we have

Prc(N, x, b) =

(
T − b

T − (1 + x)N

)/(
T

T − (1 + x)N

)

=

(
2N − b

2N − (1 + x)N

)/(
2N

2N − (1 + x)N

)
(3)

=
[(1 + x)N ]

2N
· · · · · [(1 + x)N − b+ 1]

[2N − b+ 1]
≥
[

(1 + x)N − b
2N − b

]b
(4)

=

(
1 + x

2

)b(
1− (1− x)b

(1 + x)(2N − b)

)b
≥
(

1 + x

2

)b(
1− (1− x)b2

(1 + x)(2N − b)

)
(5)

where equality (3) holds because κ = T/N = 2; the inequality (4) holds because
every of the b fractions is larger than or equal to [(1 + x)N − b]/(2N − b);
and (5) can be derived from the binomial inequality (i.e., ∀x ∈ R, x > −1,

and ∀n ∈ N, (1 + x)n ≥ 1 + nx) and the fact that
(1− x)b

(1 + x)(2N − b) < 1 when

0 ≤ b ≤ κN = 2N ,
1

N
≤ x ≤ 1− 1

N
. ut

Claim B.4 Fix N . Let x represents the fraction of the buckets are of size 2, so
the rest (1−x) are of size 1. Let Pre(N, x, b) be the probability of P1 successfully
cheats in the evaluation stage, with b bad evaluation gates. Then Pre(N, x, b) ≥
1−

(
2x
1+x

)b
.

Proof. P1’s attack fails if every bucket has at least one good gate (achievable
using our proposed protocol in Section 5). Throwing (1+x)N gates (b of which is

bad) into N buckets, with probability 2b
(
xN
b

)/(
(1+x)N

b

)
every bucket will contain

at least one good gate as 2b
(
xN
b

)
is the number of ways to place b bad gates into

the xN size-2 buckets subject to at most one bad gate per bucket, and
(
(1+x)N

b

)
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is the total number of ways to group all gates without any restriction. Therefore,

Pre(N, x, b) = 1− 2b
(
xN
b

)
(
(1+x)N

b

) = 1− 2b[xN − (b− 1)][xN − (b− 2)] · · · [xN ]

[(1 + x)N − (b− 1)][(1 + x)N − (b− 2)] · · · [(1 + x)N ]
≥ 1−

(
2x

1 + x

)b

where the inequality holds because every of the b fractions is greater than or
equal to (2x)/(1 + x). ut

Claim B.5 There exists a constant c > 0 and a constant N0 such that for all
integer N > N0,∀x ∈ [ 1

N , 1− 1
N ], there exists a positive integer b such that

(
1 + x

2

)b(
1− (1− x)b2

(1 + x)(2N − b)

)(
1− 2x

1 + x

)b
> c.

Proof. It suffices to show that there exists c1, c2, c3 > 0 and N0 > 0 such that
∀N > N0,∀x ∈ [1/N, 1− 1/N ], there exists a positive integer b that satisfies all
of the three inequality below,

[(1 + x)/2]b > c1 (6)

1− (1− x)b2/[(1 + x)(2N − b)] > c2 (7)

1− [2x/(1 + x)]b > c3 (8)

Because (6) holds as long as b < log c1
/

log 1+x
2 , (7) holds if

b <

√
2N

1 + x

1− x (1− c2) +
1

4

(
1 + x

1− x

)2

(1− c2)2−1

2
·1 + x

1− x ·(1−c2),

(8) holds as long as b > log(1− c3)
/

log 2x
1+x , and b needs to be a positive inte-

ger, it suffices to show that there exist positive c1, c2, c3, and N0 such that the
following two inequalities hold for all N > N0,

log(1− c3)

log 2x
1+x

+ 1 <
log c1

log 1+x
2

(9)

log(1− c3)

log 2x
1+x

+ 1 < −1

2
· 1 + x

1− x · (1− c2) +

√
2N

1 + x

1− x (1− c2) +
1

4
·
(

1 + x

1− x

)2

(1− c2)2 (10)

We note that (9) is equivalent to

1

log c1
log

1 + x

2x
>

1

log(1− c3)
log

2

1 + x
+ log

1 + x

2x
log

2

1 + x
,

which will always hold as long as1

log c1
− 1

log(1− c3)
− log 2 > 0 (11)

because 1+x
2x > 2

1+x and log 2
1+x < log 2 hold for all x ∈ [1/N, 1−1/N ]. Since (11)

doesn’t involve x, it is easy to find a c1 based on the value of c3 such that (11)
is satisfied.
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Next, we note that (10) is equivalent to

2N 1+x
1−x (1− c2)

√
2N 1+x

1−x (1− c2) + 1
4 ( 1+x

1−x )2(1− c2)2 + 1
2 · 1+x1−x · (1− c2)

> 1 +
log 1

1−c3
log 1+x

2x

,

which can be simplified, by defining c′2 = 1 − c2 and y = (1 + x)/(1 − x), to(
2N√

2N
yc′2

+ 1
4+

1
2

− 1

)
log
(

1 + 1
y−1

)
> log 1

1−c3 . Now we analyze this inequality in

two cases:

Case I (y < 3): If y < 3,

 2N√

2N
yc′2

+ 1
4 + 1

2

− 1


 log

(
1 +

1

y − 1

)
≥(

2N√
2N
c′2

+ 1
4 + 1

2

− 1) log(1 +
1

y − 1
)

≥(
2N√
2N
c′2

+ 1
− 1) log(1 +

1

y − 1
)

≥


 2N√

2N
c′2

+ 1
− 1


 log

3

2
.

Because there exists an integer N0 such that for all N > N0,

 2N√

2N
c′2

+ 1
− 1


 log

3

2
> log

1

1− c3
(12)

(10) can also be satisfied when N > N0, regardless of the values of c′2 and c3.
Case II (y ≥ 3): If y ≥ 3, then 0 < 1/(y − 1) < 1/2, and (because y =
log(1 + x) is concave function when x ∈ [0, 1/2]) we have log[1 + 1/(y − 1)] ≥
[2 log(3/2)]

/
(y − 1) > [2 log(3/2)]/y. In addition, for all N > N0 (where N0

is defined as above), we have 2N√
2N
yc′2

+ 1
4+

1
2

− 1 > 2N√
2N
c′2

+1
− 1 > 0. Thus, for all

N > N0, we know

 2N√

2N
yc′2

+ 1
4 + 1

2

− 1


 log

(
1 +

1

y − 1

)
≥ 2 log(3/2)


 2N√

2Ny
c′2

+ 1
4y

2 + 1
2y
− 1

y




≥ 2 log(3/2)


 2N√

4N2

c′2
+N2 +N

− 1

3


 = 2 log(3/2)


 2

1 +
√

4
c′2

+ 1
− 1

3


 ,

where the second inequality holds because 3 ≤ y ≤ 2N . Therefore, we can find
c3 based on (the value of) c′2 to satisfy

2 log(3/2)


 2

1 +
√

4
c′2

+ 1
− 1

3


 > log

1

1− c3
, (13)
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which will guarantee (10) holds.

To sum up, we have shown that if we pick an arbitrary positive number c2
then find c3 based on (13) and c2, find c1 based on (11) and c3, and finally
find N0 based on (12) and c2, c3, then for all N > N0, all three inequalities,
(6), (7), (8) should hold. This completes the proof. ut
Lemma B.6 Fix B = 2. Let Proverall(N, b) be the probability that a malicious
P1 succeeds when generating b bad gates. For any κ > 2 and any ε > 0, there
exists N0 such that

Proverall(N, b) < ε, (∀N > N0)

Proof. Let 0 < τ ≤ 1 be the probability that P2 detects that g is faulty (through
checking) conditioned that g is indeed faulty. We have

Proverall(N, b) =

b∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i)

where (1− τ)i
(
b
i

)(
T−b

T−2N−i
)/(

T
T−2N

)
is the probability that P1, with b bad gates

initially, surviving the checking stage losing i bad gates (due to verification, while
P2 detecting none of them). Because ∃i0 such that (1− τ)i0 < ε/2,

Proverall(N, b)

=

b∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i)

=

i0∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i) +

b∑

i=i0+1

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i)

≤
i0∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i) + (1− τ)i0

b∑

i=i0+1

(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i)

≤
i0∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i) +

ε

2

b∑

i=i0+1

(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
)

≤
i0∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i) +

ε

2

b∑

i=1

(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
)

≤
i0∑

i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)

(
T

T−2N
) Pre(N, b− i) +

ε

2
· 1

≤
i0∑

i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i

)b−i
Pre(N, b− i) +

ε

2
[Claim B.8]

≤
i0∑

i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i

)b−i
Pre(N, b) +

ε

2
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≤
i0∑

i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i0

)b−i
Pre(N, b) +

ε

2

≤
b∑

i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i0

)b−i
Pre(N, b) +

ε

2

=

(
(1− τ)

T − 2N

T
+

2N

T − i0

)b
Pre(N, b) +

ε

2
.

holds for any N > N1 (where N1 is determined according to the proof of
Claim B.7).

Since T = κN , we have

lim
N→∞

(1− τ)(T − 2N)

T
+

2N

T − i0
= lim
N→∞

(1− τ)(κ− 2)

κ
+

2

κ− i0/N
= 1− τ(κ− 2)

κ
< 1.

Therefore, there exists N1 such that for all N > N1, (1 − τ)(T − 2N)/T +
2N/(T − i0) < 1. Hence, for every ε > 0, we can find a b0 such that,

1. for all b > b0,

Proverall(N, b)

≤
[
(1− τ)(T − 2N)/T + 2N/(T − i0)

]b
Pre(N, b) + ε/2

<εPre(N, b)/2 + ε/2 < ε/2 + ε/2 = ε.

2. for all b ≤ b0, Claim B.7 shows how to further find an integer N2 such that
for all N > N2,

Proverall(N, b)

≤
[
(1− τ)(T − 2N)/T + 2N/(T − i0)

]b
Pre(N, b) + ε/2

<
[
1− τ(κ− 2)/κ

]b
ε/2 + ε/2 < ε/2 + ε/2 = ε.

Thus, setting N0 = max(N1, N2) completes the proof. ut

Lemma B.7 Let Pre(N, b) be the probability that a malicious P1 who survives
the gate checking stage succeeds with b bad gates selected for evaluation. Then

1. For any fixed N , Pre(N, b) strictly increases with b.
2. For any b and ε > 0, ∃N0 such that Pre(N, b) < ε.

Proof. Since all buckets are of size 2, the following can be derived similarly to
the proof of Claim B.4 (by setting x = 1),

Pre(N, b) = 1− 2b
(
N
b

)
(
2N
b

)
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= 1− 2N − 2(b− 1)

2N − (b− 1)
· · · · · 2N

2N
(14)

≤ 1−
(

2N − 2b+ 2

2N − b+ 1

)b
= 1−

(
2− 2(b− 1)/N

2− (b− 1)/N

)b

First, note that (14) implies that Pre(N, b) increases strictly with b, because
the greater b is, the more multiplicative fractions (all smaller than 1) are in the
product.

Second, note that for any b, ε,
(

2N−2b+2
2N−b+1

)b
goes arbitrarily close to 1 when N

is sufficiently large. Therefore, ∀b, ε, ∃N1 such that for all N > N1, Pre(N, b) < ε.
ut

Lemma B.8 If T,N, b, i are non-negative integers such that T > 2N , T ≥ b,

and i ≤ b, then
( T−b
T−2N−i)
( T
T−2N)

≤
(
T−2N
T

)i ( 2N
T−i

)b−i
.

Proof.

(
T−b

T−2N−i
)

(
T

T−2N
) =

(T − b)!(T − 2N)!(2N)!

T !(T − 2N − i)!(2N − b+ i)!

=

[
(T − 2N − i+ 1) · · · (T − 2N)

][
(2N − b+ i+ 1) · · · 2N)

]

(T − b+ 1)(T − b+ 2) · · ·T

=
(T − 2N − i+ 1) · · · (T − 2N)

(T − i+ 1) · · ·T · (2N − b+ i+ 1) · · · 2N
(T − b+ 1) · · · (T − i)

≤
(
T − 2N

T

)i(
2N

T − i

)b−i

ut


	JIMU: Faster LEGO-based Secure Computation using Additive Homomorphic Hashes

