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Abstract Adaptive oblivious transfer (OT) is a protocol where a sender
initially commits to a database {Mi}Ni=1. Then, a receiver can query the
sender up to k times with private indexes ρ1, . . . , ρk so as to obtain
Mρ1 , . . . ,Mρk and nothing else. Moreover, for each i ∈ [k], the receiver’s
choice ρi may depend on previously obtained messages {Mρj}j<i. Ob-
livious transfer with access control (OT-AC) is a flavor of adaptive OT
where database records are protected by distinct access control policies
that specify which credentials a receiver should obtain in order to access
each Mi. So far, all known OT-AC protocols only support access policies
made of conjunctions or rely on ad hoc assumptions in pairing-friendly
groups (or both). In this paper, we provide an OT-AC protocol where ac-
cess policies may consist of any branching program of polynomial length,
which is sufficient to realize any access policy in NC1. The security of
our protocol is proved under the Learning-with-Errors (LWE) and Short-
Integer-Solution (SIS) assumptions. As a result of independent interest,
we provide protocols for proving the correct evaluation of a committed
branching program on a committed input.

Keywords. Lattice assumptions, standard assumptions, zero-knowledge
arguments, adaptive oblivious transfer.

1 Introduction

Oblivious transfer (OT) is a central cryptographic primitive coined by Rabin [49]
and extended by Even et al. [21]. It involves a sender S with a database of mes-
sages M1, . . . ,MN and a receiver R with an index ρ ∈ {1, . . . , N}. The protocol
allows R to retrieve the ρ-th entry Mρ from S without letting S infer anything
on R’s choice ρ. Moreover, R only obtains Mρ learns nothing about {Mi}i6=ρ.

In its adaptive flavor [44], OT allows the receiver to interact k times with
S to retrieve Mρ1 , . . . ,Mρk in such a way that, for each i ∈ {2, . . . , k}, the i-th
index ρi may depend on the messages Mρ1 , . . . ,Mρi−1

previously obtained by R.
OT is known to be a complete building block for cryptography (see, e.g., [25])

in that, if it can be realized, then any secure multiparty computation can be.
In its adaptive variant, OT is motivated by applications in privacy-preserving



access to sensitive databases (e.g., medical records or financial data) stored in
encrypted form on remote servers, oblivious searches or location-based services.

As far as efficiency goes, adaptive OT protocols should be designed in such
a way that, after an inevitable initialization phase with linear communication
complexity in N and the security parameter λ, the complexity of each transfer
is at most poly-logarithmic in N . At the same time, this asymptotic efficiency
should not come at the expense of sacrificing ideal security properties. The most
efficient adaptive OT protocols that satisfy the latter criterion stem from the
work of Camenisch, Neven and shelat [14] and its follow-ups [28,29,30].

In its basic form, (adaptive) OT does not restrict in any way the population
of users who can obtain specific records. In many sensitive databases (e.g., DNA
databases or patients’ medical history), however, not all users should be able to
download all records: it is vital access to certain entries be conditioned on the
receiver holding suitable credentials delivered by authorities. At the same time,
privacy protection mandates that authorized users be able to query database
records while leaking as little as possible about their interests or activities. In
medical datasets, for example, the specific entries retrieved by a given doctor
could reveal which disease his patients are suffering from. In financial or patent
datasets, the access pattern of a company could betray its investment strategy or
the invention it is developing. In order to combine user-privacy and fine-grained
database security, it is thus desirable to enrich adaptive OT protocols with re-
fined access control mechanisms in many of their natural use cases.

This motivated Camenisch, Dubovitskaya and Neven [12] to introduce a vari-
ant named oblivious transfer with access control (OT-AC), where each database
record is protected by a different access control policy P : {0, 1}∗ → {0, 1}. Based
on their attributes, users can obtain credentials generated by pre-determined au-
thorities, which entitle them to anonymously retrieve database records of which
the access policy accepts their certified attributes: in other words, the user can
only download the records for which he has a valid credential Credx for an at-
tribute string x ∈ {0, 1}∗ such that P (x) = 1. During the transfer phase, the
user demonstrates possession of a pair (Credx, x) and simultaneously convinces
the sender that he is querying some record Mρ associated with a policy P such
that P (x) = 1. The only information that the database holder eventually learns
is that some user retrieved some record which he was authorized to obtain.

Camenisch et al. formalized the OT-AC primitive and provided a construc-
tion in groups with a bilinear map [12]. While efficient, their solution “only”
supports access policies consisting of conjunctions: each policy P is specified by
a list of attributes that a given user should obtain a credential for in order to
complete the transfer. Several subsequent works [54,13,11] considered more ex-
pressive access policies while even hiding the access policies in some cases [13,11].
Unfortunately, all of them rely on non-standard assumptions (known as “q-type
assumptions”) in groups with a bilinear maps. For the sake of not putting all
one’s eggs in the same basket, a primitive as powerful as OT-AC ought to have
alternative realizations based on firmer foundations.

In this paper, we propose a solution based on lattice assumptions where ac-
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cess policies consist of any branching program of width 5, which is known [6] to
suffice for the realization of any access policy in NC1. As a result of independent
interest, we provide protocols for proving the correct evaluation of a commit-
ted branching program. More precisely, we give zero-knowledge arguments for
demonstrating possession of a secret input x ∈ {0, 1}κ and a secret (and possibly
certified) branching program BP such that BP(x) = 1.

Related Work. Oblivious transfer with adaptive queries dates back to the
work of Naor and Pinkas [44], which requires O(logN) interaction rounds per
transfer. Naor and Pinkas [46] also gave generic constructions of (adaptive)
k-out-of-N OT from private information retrieval (PIR) [17]. The construc-
tions of [44,46], however, are only secure in the half-simulation model, where
simulation-based security is only considered for one of the two parties (receiver
security being formalized in terms of a game-based definition). Moreover, the
constructions of Adaptive OT from PIR [46] require a complexity O(N1/2) at
each transfer where Adaptive OT allows for O(logN) cost. Before 2007, many
OT protocols (e.g., [45,3,53]) were analyzed in terms of half-simulation.

While several efficient fully simulatable protocols appeared the last 15 years
(e.g., [40,48] and references therein), full simulatability remained elusive in the
adaptive k-out-of-N setting [44] until the work [14] of Camenisch, Neven and
shelat, who introduced the “assisted decryption” paradigm. The latter consists
in having the sender obliviously decrypt a re-randomized version of one of the
original ciphertexts contained in the database. This technique served as a blue-
print for many subsequent protocols [28,29,30,34], including those with access
control [12,13,11,1] and those presented in this paper. In the adaptive k-out-of-N
setting (which we denote as OT Nk×1), the difficulty is to achieve full simulatabil-
ity without having to transmit a O(N) bits at each transfer. To our knowledge,
except the oblivious-PRF-based approach of Jarecki and Liu [34], all known fully
simulatable OT Nk×1 protocols rely on bilinear maps. 4

A number of works introduced various forms of access control in OT. Priced
OT [3] assigns variable prices to all database records. In conditional OT [19], ac-
cess to a record is made contingent on the user’s secret satisfying some predicate.
Restricted OT [31] explicitly protects each record with an independent access
policy. Still, none of these OT flavors aims at protecting the anonymity of users.
The model of Coull, Green and Hohenberger [18] does consider user anonymity
via stateful credentials. For the applications of OT-AC, it would nevertheless
require re-issuing user credentials at each transfer.

While efficient, the initial OT-AC protocol of Camenisch et al. [12] relies on
non-standard assumptions in groups with a bilinear map and only realizes access
policies made of conjunctions. Abe et al. [1] gave a different protocol which they
proved secure under more standard assumptions in the universal composability
framework [15]. Their policies, however, remain limited to conjunctions. It was
mentioned in [12,1] that disjunctions and DNF formulas can be handled by du-

4 Several pairing-free candidates were suggested in [36] but, as pointed out in [30],
they cannot achieve full simulatability in the sense of [14]. In particular, the sender
can detect if the receiver fetches the same record in two distinct transfers.
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plicating database entries. Unfortunately, this approach rapidly becomes prohib-
itively expensive in the case of (t, n)-threshold policies with t ≈ n/2. Moreover,
securing the protocol against malicious senders requires them to prove that all
duplicates encrypt the same message. More expressive policies were considered
by Zhang et al. [54] who gave a construction based on attribute-based encryption
[51] that extends to access policies expressed by any Boolean formulas (and thus
NC1 circuits). Camenisch, Dubovitskaya, Neven and Zaverucha [13] generalized
the OT-AC functionality so as to hide the access policies. In [11], Camenisch et
al. gave a more efficient construction with hidden policies based on the attribute-
based encryption scheme of [47]. At the expense of a proof in the generic group
model, [11] improves upon the expressiveness of [13] in that its policies extend
into CNF formulas. While the solutions of [13,11] both hide the access policies to
users (and the successful termination of transfers to the database), their policies
can only live in a proper subset of NC1. As of now, threshold policies can only
be efficiently handled by the ABE-based construction of Zhang et al. [54], which
requires ad hoc assumptions in groups with a bilinear map.

Our Results and Techniques. We describe the first OT-AC protocol based
on lattice assumptions. Our construction supports access policies consisting of
any branching program of width 5 and polynomial length – which suffices to
realize any NC1 circuit – and prove it secure under the SIS and LWE assump-
tions. We thus achieve the same level of expressiveness as [54] with the benefit of
relying on well-studied assumptions. In its initial version, our protocol requires
the database holder to communicate Θ(N) bits to each receiver so as to prove
that the database is properly encrypted. In the random oracle model, we can
eliminate this burden via the Fiat-Shamir heuristic and make the initialization
cost linear in the database size N , regardless of the number of users.

As a first step, we build an ordinary OT Nk×1 protocol (i.e., without access con-
trol) via the “assisted decryption” approach of [14]. In short, the sender encrypts
all database entries using a semantically secure cryptosystem. At each transfer,
the receiver gets the sender to obliviously decrypt one of the initial ciphertexts
without learning which one. Security against malicious adversaries is achieved by
adding zero-knowledge (ZK) or witness indistinguishable (WI) arguments that
the protocol is being followed. The desired ZK or WI arguments are obtained
using the techniques of [37] and we prove that this basic protocol satisfies the
full simulatability definitions of [14] under the SIS and LWE assumptions. To
our knowledge, this protocol is also the first OT Nk×1 realization to achieve the
standard simulation-based security requirements under lattice assumptions.

So far, all known “beyond-conjunctions” OT-AC protocols [54,11] rely on
ciphertext-policy attribute-based encryption (CP-ABE) and proceed by attach-
ing each database record to a CP-ABE ciphertext. Our construction departs
from the latter approach for two reasons. First, the only known LWE-based CP-
ABE schemes are obtained by applying a universal circuit to a key-policy system,
making them very inefficient. Second, the ABE-based approach requires a fully
secure ABE (i.e., selective security and semi-adaptive security are insufficient)
since the access policies are dictated by the environment after the generation of
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the issuer’s public key, which contains the public parameters of the underlying
ABE in [54,11]. Even with the best known LWE-based ABE candidates [26], a
direct adaptation of the techniques in [54,11] would incur to rely on a complex-
ity leveraging argument [8] and a universal circuit. Instead, we take a different
approach and directly prove in a zero-knowledge manner the correct evaluation
of a committed branching program for a hidden input.

At a high level, our OT-AC protocol works as follows. For each i ∈ [N ], the
database entry Mi ∈ {0, 1}t is associated with branching program BPi. In the ini-
tialization step, the database holder generates a Regev ciphertext (ai,bi) of Mi,
and issues a certificate for the pair

(
(ai,bi),BPi

)
, using the signature scheme

from [37]. At each transfer, the user U who wishes to get a record ρ ∈ [N ]
must obtain a credential Credx for an attribute string x ∈ {0, 1}κ such that
BPρ(x) = 1. Then, U modifies (aρ,bρ) into an encryption of Mρ ⊕ µ ∈ {0, 1}t,
for some random string µ ∈ {0, 1}t, and re-randomizes the resulting ciphertext
into a fresh encryption (c0, c1) of Mρ ⊕ µ. At this point, U proves that (c0, c1)
was obtained by transforming one of the original ciphertexts {(ai,bi)}Ni=1 by
arguing possession of a valid certificate for

(
(aρ,bρ),BPρ

)
and knowledge of all

randomness used in the transformation that yields (c0, c1). At the same time,
U proves possession of Credx for a string x which is accepted by the commit-
ted BPρ. To demonstrate these statements in zero-knowledge, we develop recent
techniques [42,39,37] for lattice-based analogues [35,41] of Stern’s protocol [52].

As a crucial component of our OT-AC protocol, we need to prove knowledge
of an input x = (x0, . . . , xκ−1)> ∈ {0, 1}κ satisfying a hidden BP of length L,
where L and κ are polynomials in the security parameter. For each θ ∈ [L], we
need to prove that the computation of the θ-th state

ηθ = πθ,0(ηθ−1) · (1− xvar(θ)) + πθ,1(ηθ−1) · xvar(θ), (1)

is done correctly, for permutations πθ,0, πθ,1 : [0, 4] → [0, 4] and for integer
var(θ) ∈ [0, κ − 1] specified by BP. To date, equations of the form (1) have
not been addressed in the context of zero-knowledge proofs for lattice-based
cryptography. In this work, we are not only able to handle L such equations, but
also manage to do so with a reasonable asymptotic cost.

In order to compute ηθ as in (1), we have to fetch the value xvar(θ) in the input

(x0, . . . , xκ−1)> and provide evidence that the searching process is conducted
honestly. If we perform a naive left-to-right search in the array x0, . . . , xκ−1, the
expected complexity is O(κ) for each step, and the total complexity amounts to
O(L · κ). If we instead perform a dichotomic search over x0, . . . , xκ−1, we can
decrease the complexity at each step down to O(log κ). However, in this case, we
need to prove in zero-knowledge a statement “I obtained xvar(θ) by conducting
a correct dichotomic search in my secret array.”

We solve this problem as follows. For each i ∈ [0, κ−1], we employ a SIS-based
commitment scheme [35] to commit to xi as comi, and prove that the committed
bits are consistent with the ones involved in the credential Credx mentioned
above. Then we build a SIS-based Merkle hash tree [39] of depth δκ = dlog κe on
top of the commitments com0, . . . , comκ−1. Now, for each θ ∈ [L], we consider
the binary representation dθ,1, . . . , dθ,δκ of var(θ). We then prove knowledge of
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a bit yθ such that these conditions hold: “If one starts at the root of the tree
and follows the path determined by the bits dθ,1, . . . , dθ,δκ , then one will reach
the leaf associated with the commitment opened to yθ.” The idea is that, if
the Merkle tree and the commitment scheme are both secure, then it should be
true that yθ = xvar(θ). In other words, this enables us to provably perform a
“binary search” for xvar(θ) = yθ. Furthermore, this process can be done in zero-
knowledge, by adapting the recent techniques from [39]. As a result, we obtain
a protocol with communication cost just O(L · log κ+ κ).

2 Background and Definitions

Vectors are denoted in bold lower-case letters and bold upper-case letters will
denote matrices. The Euclidean and infinity norm of any vector b ∈ Rn will
be denoted by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm of matrix B ∈
Rm×n with columns (bi)i≤n is ‖B‖ = maxi≤n ‖bi‖. When B has full column-

rank, we let B̃ denote its Gram-Schmidt orthogonalization.

When S is a finite set, we denote by U(S) the uniform distribution over S,
and by x←↩ U(S) the action of sampling x according to this distribution. Finally
for any integers A,B,N , we let [N ] and [A,B] denote the sets {1, . . . , N} and
{A,A+ 1, . . . , B}, respectively.

2.1 Lattices

A lattice L is the set of integer linear combinations of linearly independent basis
vectors (bi)i≤n living in Rm. We work with q-ary lattices, for some prime q.

Definition 1. Let m ≥ n ≥ 1, a prime q ≥ 2 and A ∈ Zn×mq and u ∈ Znq ,

define Λq(A) := {e ∈ Zm | ∃s ∈ Znq s.t. AT · s = e mod q} as well as

Λ⊥q (A) := {e ∈ Zm | A · e = 0n mod q}, Λu
q (A) := {e ∈ Zm | A · e = u mod q}.

For a lattice L, let ρσ,c(x) = exp(−π‖x − c‖2/σ2) for a vector c ∈ Rm and a
real σ > 0. The discrete Gaussian of support L, center c and parameter σ is
DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L, where ρσ,c(L) =

∑
x∈L ρσ,c(x). The

distribution centered in c = 0 is denoted by DL,σ(y).

It is well known that one can efficiently sample from a Gaussian distribution
with lattice support given a sufficiently short basis of the lattice.

Lemma 1 ([10, Le. 2.3]). There exists a PPT algorithm GPVSample that takes

as inputs a basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(
√

log n), and
outputs vectors b ∈ L with distribution DL,σ.

We also rely on the trapdoor generation algorithm of Alwen and Peikert [4],
which refines the technique of Gentry et al. [23].
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Lemma 2 ([4, Th. 3.2]). There is a PPT algorithm TrapGen that takes as
inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a mat-
rix A ∈ Zn×mq and a basis TA of Λ⊥q (A) such that A is within statistical dis-

tance 2−Ω(n) to U(Zn×mq ), and ‖T̃A‖ ≤ O(
√
n log q).

We use the basis delegation algorithm [16] that inputs a trapdoor for A ∈ Zn×mq

and produces a trapdoor for any B ∈ Zn×m′q containing A as a submatrix. A
technique from Agrawal et al. [2] is sometimes used in our proofs.

Lemma 3 ([16, Le. 3.2]). There is a PPT algorithm ExtBasis that inputs B ∈
Zn×m′q whose first m columns span Znq , and a basis TA of Λ⊥q (A) where A ∈
Zn×mq is a submatrix of B, and outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

Lemma 4 ([2, Th. 19]). There is a PPT algorithm SampleRight that inputs
A,C ∈ Zn×mq , a small-norm R ∈ Zm×m, a short basis TC ∈ Zm×m of Λ⊥q (C), a

vector u ∈ Znq and a rational σ such that σ ≥ ‖T̃C‖·Ω(
√

log n), and outputs b ∈
Z2m such that

[
A A ·R + C

]
·b = u mod q and with distribution statistically

close to DL,σ where L = {x ∈ Z2m :
[
A A ·R + C

]
· x = u mod q}.

2.2 Hardness Assumptions

Definition 2. Let n,m, q, β be functions of λ ∈ N. The Short Integer Solution
problem SISn,m,q,β is, given A←↩ U(Zn×mq ), find x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with

approximation factors γ = Õ(β
√
n) reduce to SISn,m,q,β (see, e.g., [23, Se. 9]).

Definition 3. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z.
For s ∈ Znq , let As,χ be the distribution obtained by sampling a ←↩ U(Znq ) and

e ←↩ χ, and outputting (a,aT · s + e) ∈ Znq × Zq. The Learning With Errors
problem LWEn,q,χ asks to distinguish m samples chosen according to As,χ (for
s←↩ U(Znq )) and m samples chosen according to U(Znq × Zq).

If q is a prime power, B ≥
√
nω(log n), γ = Õ(nq/B), then there exists

an efficient sampleable B-bounded distribution χ (i.e., χ outputs samples with
norm at most B with overwhelming probability) such that LWEn,q,χ is as least
as hard as SIVPγ (see, e.g., [50,10]).

2.3 Adaptive Oblivious Transfer

In the syntax of [14], an adaptive k-out-of-N OT scheme OT Nk is a tuple of
stateful PPT algorithms (SI,RI,ST,RT). The sender S = (SI,ST) consists of two
interactive algorithms SI and ST and the receiver has a similar representation as
algorithms RI and RT. In the initialization phase, the sender and the receiver run
interactive algorithms SI and RI, respectively, where SI takes as input messages
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M1, . . . ,MN while RI has no input. This phase ends with the two algorithms SI
and RI outputting their state information S0 and R0 respectively.

During the i-th transfer, 1 ≤ i ≤ k, both parties run an interactive protocol
via the RT and ST algorithms. The sender starts runs ST(Si−1) to obtain its
updated state information Si while the receiver runs RT(Ri−1, ρi) on input of its
previous state Ri−1 and the index ρi ∈ {1, . . . , N} of the message it wishes to
retrieve. At the end, RT outputs an updated state Ri and a message M ′ρi .

Correctness mandates that, for all M1, . . . ,MN , for all ρ1, . . . , ρk ∈ [N ] and
all coin tosses $ of the (honestly run) algorithms, we have M ′ρi = Mρi for all i.

We consider protocols that are secure (against static corruptions) in the
sense of simulation-based definitions. The security properties against a cheating
sender and a cheating receiver are formalized via the “real-world/ideal-world”
paradigm. The security definitions of [14] are recalled in the full paper.

2.4 Adaptive Oblivious Transfer with Access Control

Camenisch et al. [12] define oblivious transfer with access control (OT-AC) as a
tuple of PPT algorithms/protocols (ISetup, Issue,DBSetup,Transfer) such that:

ISetup: takes as inputs public parameters pp specifying a set P of access policies
and generates a key pair (PKI , SKI) for the issuer.

Issue: is an interactive protocol between the issuer I and a stateful user U under
common input (pp, x), where x is an attribute string. The issuer I takes as
inputs its key pair (PKI , SKI) and a user pseudonym PU. The user takes as
inputs its state information stU. The user U outputs either an error symbol
⊥ or a credential CredU, and an updated state st′U.

DBSetup: is an algorithm that takes as input the issuer’s public key PKI , a
database DB = (Mi,APi)

N
i=1 containing records Mi whose access is restric-

ted by an access policy APi and outputs a database public key PKDB, an
encryption of the records (ERi)

N
i=1 and a database secret key SKDB.

Transfer: is a protocol between the database DB and a user U with common in-
puts (PKI , PKDB). DB inputs SKDB and U inputs (ρ, stU, ERρ,APρ), where
ρ ∈ [N ] is a record index to which U is requesting access. The interaction
ends with U outputting ⊥ or a string Mρ′ and an updated state st′U.

We assume private communication links, so that communications between a
user and the issuer are authenticated, and those between a user and the database
are anonymized: otherwise, anonymizing the Transfer protocol is impossible.

The security definitions formalize two properties called user anonymity and
database security. The former captures that the database should be unable to tell
which honest user is making a query and neither can tell which records are being
accessed. This should remain true even if the database colludes with corrupted
users and the issuer. As for database security, the intuition is that a cheating
user cannot access a record for which it does not have the required credentials,
even when colluding with other dishonest users. In case the issuer is colluding
with these cheating users, they cannot obtain more records from the database
than they retrieve. Precise security definitions [12] are recalled in the full version
of the paper.
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2.5 Vector Decompositions

We will employ the decomposition technique from [41,37], which allows trans-
forming vectors with infinity norm larger than 1 into vectors with infinity norm 1.

For any B ∈ Z+, define the number δB := blog2Bc + 1 = dlog2(B + 1)e
and the sequence B1, . . . , BδB , where Bj = bB+2j−1

2j c, ∀j ∈ [1, δB ]. This se-

quence satisfies
∑δB
j=1Bj = B and any integer v ∈ [0, B] can be decomposed to

idecB(v) = (v(1), . . . , v(δB))> ∈ {0, 1}δB such that
∑δB
j=1Bj · vj = v. We describe

this decomposition procedure in a deterministic manner as follows:

1. Set v′ := v; For j = 1 to δB do:
If v′ ≥ Bj then v(j) := 1, else v(j) := 0; v′ := v′ −Bj · v(j).

2. Output idecB(v) = (v(1), . . . , v(δB))>.

For any positive integers m, B, we define Hm,B := Im ⊗ [B1| . . . |BδB ] ∈ Zm×mδB

and the following injective functions:

(i) vdecm,B : [0, B]m → {0, 1}mδB that maps vector v = (v1, . . . , vm) to vector(
idecB(v1)>‖ . . . ‖idecB(vm)>

)>
. Note that Hm,B · vdecm,B(v) = v.

(ii) vdec′m,B : [−B,B]m → {−1, 0, 1}mδB that maps vector w = (w1, . . . , wm) to

vector
(
σ(w1) · idecB(|w1|)>‖ . . . ‖σ(wm) · idecB(|wm|)>

)>
, where for each

i = 1, . . . ,m: σ(wi) = 0 if wi = 0; σ(wi) = −1 if wi < 0; σ(wi) = 1 if
wi > 0. Note that Hm,B · vdec′m,B(w) = w.

3 Building Blocks

We will use two distinct signature schemes because one of them only needs to
be secure in the sense of a weaker security notion and can be more efficient.
This weaker notion is sufficient to sign the database entries and allows a better
efficiency in the scheme of Section 4.

3.1 Signatures Supporting Efficient Zero-Knowledge Proofs

We use a signature scheme proposed by Libert et al. [37] who extended the Böhl
et al. signature [7] in order to sign messages comprised of multiple blocks while
keeping the scheme compatible with zero-knowledge proofs.

Keygen(1λ, 1Nb): Given a security parameter λ > 0 and the number of blocks

Nb = poly(λ), choose n = O(λ), a prime modulus q = Õ(N · n4), a di-
mension m = 2ndlog qe; an integer ` = poly(n) and Gaussian parameters
σ = Ω(

√
n log q log n). Define the message space as M = ({0, 1}mI )Nb .

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A).

This basis allows computing short vectors in Λ⊥q (A) with a Gaussian
parameter σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).
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2. Choose random matrices D ←↩ U(Zn×m/2q ), D0 ←↩ U(Zn×mq ),Dj ←↩
U(Zn×mIq ) for j = 1, . . . , Nb, as well as a random vector u←↩ U(Znq ).

The private signing key consists of SK := TA while the public key is com-
prised of PK :=

(
A, {Aj}`j=0,D, {Dk}Nbk=0,u

)
.

Sign
(
SK,Msg

)
: To sign an Nb-block Msg = (m1, . . . ,mNb) ∈ ({0, 1}mI )Nb ,

1. Choose τ ←↩ U({0, 1}`). Using SK := TA, compute a short basis Tτ ∈
Z2m×2m for Λ⊥q (Aτ ), where Aτ = [A | A0 +

∑`
j=1 τ [j]Aj ] ∈ Zn×2m

q .
2. Sample r←↩ DZm,σ. Compute the vector cM ∈ Znq as a chameleon hash

of (m1, . . . ,mNb). Namely, compute cM = D0 · r +
∑Nb
k=1 Dk · mk ∈ Znq ,

which is used to define uM = u + D · vdecn,q−1(cM ) ∈ Znq . Using the
delegated basis Tτ ∈ Z2m×2m, sample a vector v ∈ Z2m in DΛ

uM
q (Aτ ),σ.

Output the signature sig = (τ,v, r) ∈ {0, 1}` × Z2m × Zm.

Verify
(
PK,Msg, sig

)
: Given Msg = (m1, . . . ,mNb) ∈ ({0, 1}mI )Nb and sig =

(τ,v, r) ∈ {0, 1}` × Z2m × Zm, return 1 if ‖v‖ < σ
√

2m, ‖r‖ < σ
√
m and

Aτ · v = u + D · vdecn,q−1(D0 · r +

Nb∑
k=1

Dk ·mk) mod q. (2)

3.2 A Simpler Variant with Bounded-Message Security and
Security Against Non-Adaptive Chosen-Message Attacks

We consider a stateful variant of the scheme in Section 3.1 where a bound Q ∈
poly(n) on the number of signed messages is fixed at key generation time. In the
context of OT Nk×1, this is sufficient and leads to efficiency improvements. In the
modified scheme hereunder, the string τ ∈ {0, 1}` is an `-bit counter maintained
by the signer to keep track of the number of previously signed messages. This
simplified variant resembles the SIS-based signature scheme of Böhl et al. [7].

In this version, the message space is {0, 1}ndlog qe so that vectors of Znq can
be signed by first decomposing them using vdecn,q−1(.).

Keygen(1λ, 1Q): Given λ > 0 and the maximal number Q ∈ poly(λ) of signa-

tures, choose n = O(λ), a prime q = Õ(Q · n4), m = 2ndlog qe, an integer
` = dlogQe and Gaussian parameters σ = Ω(

√
n log q log n). The message

space is {0, 1}md , for some md ∈ poly(λ) with md ≥ m.

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A),

which allows sampling short vectors in Λ⊥q (A) with a Gaussian parameter
σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose D←↩ U(Zn×mdq ) as well as a random vector u←↩ U(Znq ).

The counter τ is initialized to τ = 0. The private key consists of SK := TA

and the public key is PK :=
(
A, {Aj}`j=0, D, u

)
.

Sign
(
SK, τ,m

)
: To sign a message m ∈ {0, 1}md ,
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1. Increment the counter by setting τ := τ + 1 and interpret it as a string
τ ∈ {0, 1}`. Then, using SK := TA, compute a short delegated basis

Tτ ∈ Z2m×2m for the matrix Aτ = [A | A0 +
∑`
j=1 τ [j]Aj ] ∈ Zn×2m

q .
2. Compute the vector uM = u + D · m ∈ Znq . Then, using the delegated

basis Tτ ∈ Z2m×2m, sample a short vector v ∈ Z2m in DΛ
uM
q (Aτ ),σ.

Output the signature sig = (τ,v) ∈ {0, 1}` × Z2m.

Verify
(
PK,m, sig

)
: Given PK, m ∈ {0, 1}md and a signature sig = (τ,v) ∈

{0, 1}` × Z2m, return 1 if ‖v‖ < σ
√

2m and Aτ · v = u + D ·m mod q.

For our purposes, the scheme only needs to satisfy a notion of bounded-
message security under non-adaptive chosen-message attack.

Theorem 1. The scheme is bounded message secure under non-adaptive chosen-
message attacks if the SIS assumption holds. (The proof is given in the full version
of the paper.)

4 A Fully Simulatable Adaptive OT Protocol

Our basic OT Nk×1 protocol builds on the “assisted decryption” technique [14].
The databases holder encrypts all entries using a multi-bit variant [48] of Regev’s
cryptosystem [50] and proves the well-formedness of its public key and all cipher-
texts. In addition, all ciphertexts are signed using a signature scheme. At each
transfer, the receiver statistically re-randomizes a blinded version of the desired
ciphertext, where the blinding is done via the additive homomorphism of Regev.
Then, the receiver provides a witness indistinguishable (WI) argument that the
modified ciphertext (which is submitted for oblivious decryption) is a transform-
ation of one of the original ciphertexts by arguing knowledge of a signature on
this hidden ciphertext. In response, the sender obliviously decrypts the modified
ciphertext and argues in zero-knowledge that the response is correct.

Adapting the technique of [14] to the lattice setting requires the following
building blocks: (i) A signature scheme allowing to sign ciphertexts while remain-
ing compatible with ZK proofs; (ii) A ZK protocol allowing to prove knowledge
of a signature on some hidden ciphertext which belongs to a public set and
was transformed into a given ciphertext; (iii) A protocol for proving the cor-
rect decryption of a ciphertext; (iv) A method of statistically re-randomizing an
LWE-encrypted ciphertext in a way that enables oblivious decryption. The first
three ingredients can be obtained from [37]. Since component (i) only needs to
be secure against random-message attacks as long as the adversary obtains at
most N signatures, we use the simplified SIS-based signature scheme of Section
3.2. The statistical re-randomization of Regev ciphertexts is handled via the
noise flooding technique [5], which consists in drowning the initial noise with
a super-polynomially larger noise. While recent results [20] provide potentially
more efficient alternatives, we chose the flooding technique for simplicity because
it does not require the use of FHE (and also because the known multi-bit version
[32] of the GSW FHE [24] incurs an ad hoc circular security assumption).
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Our scheme works with security parameter λ, modulus q, lattice dimensions
n = O(λ) and m = 2ndlog qe. Let Bχ = Õ(

√
n), and let χ be a Bχ-bounded

distribution. We also define an integer B as a randomization parameter such
that B = nω(1) · (m + 1)Bχ and B + (m + 1)Bχ ≤ q/5 (to ensure decryption

correctness). Our basic OT Nk×1 protocol goes as follows.

Initialization
(
SI(1

λ,DB),RI(1
λ)
)
: In this protocol, the sender SI has a database

DB = (M1, . . . ,MN ) of N messages, where Mi ∈ {0, 1}t for each i ∈ [N ], for
some t ∈ poly(λ). It interacts with the receiver RI as follows.

1. Generate a key pair for the signature scheme of Section 3.2 in order to
sign Q = N messages of length md = (n+ t) · dlog qe each. This key pair
consists of SKsig = TA ∈ Zm×m and PKsig :=

(
A, {Aj}`j=0,D,u

)
,

where ` = logN and A,A0, . . . ,A` ∈ U(Zn×mq ), D ∈ U(Zn×mdq ). The
counter is initialized to τ = 0.

2. Choose S ←↩ χn×t that will serve as a secret key for an LWE-based en-
cryption scheme. Then, sample F←↩ U(Zn×mq ), E←↩ χm×t and compute

P = [p1| . . . |pt] = F> · S + E ∈ Zm×tq , (3)

so that (F,P) ∈ Zn×mq × Zm×tq forms a public key for a t-bit variant of
Regev’s encryption scheme [50].

3. Sample vectors a1, . . . ,aN ←↩ U(Znq ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, S> · ai + xi +Mi · bq/2c

)
∈ Znq × Ztq ∀i ∈ [N ]. (4)

4. For each i ∈ [N ], generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on
the decomposition mi = vdecn+t,q−1(a>i |b>i )> ∈ {0, 1}md .

5. SI sends R0 =
(
PKsig, (F,P), {(ai,bi), (τi,vi)}Ni=1

)
to RI and interact-

ively proves knowledge of small-norm S ∈ Zn×t, E ∈ Zm×t, short vectors
{xi}Ni=1 and t-bit messages {Mi}Ni=1, for which (3) and (4) hold. To this
end, SI plays the role of the prover in the ZK argument system described
in Section 6.3. If the argument of knowledge does not verify or if there
exists i ∈ [N ] such that (τi,vi) is an invalid signature on the message
mi = vdecn+t,q−1(a>i |b>i )> w.r.t. PKsig, then RI aborts.

6. Finally SI defines S0 =
(
(S,E), (F,P), PKsig

)
, which it keeps to itself.

Transfer
(
ST(Si−1),RT(Ri−1, ρi)

)
: At the i-th transfer, the receiver RT has state

Ri−1 and an index ρi ∈ [1, N ]. It interacts as follows with the sender ST that
has state Si−1 in order to obtain Mρi from DB.

1. RT samples vectors e ←↩ U({−1, 0, 1}m), µ ←↩ U({0, 1}t) and a random
ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρi + F · e, bρi + P> · e + µ · bq/2c+ ν

)
∈ Znq × Ztq, (5)

which is a re-randomization of (aρi ,bρi+µ·bq/2c). The ciphertext (c0, c1)
is sent to ST. In addition, RT provides an interactive WI argument that
(c0, c1) is indeed a transformation of (aρi ,bρi) for some ρi ∈ [N ], and
RT knows a signature on m = vdecn+1,q−1(a>ρi |b

>
ρi)
> ∈ {0, 1}md . To this

end, RT runs the prover in the ZK argument system in Section 6.5.
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2. If the argument of step 1 verifies, ST uses S to decrypt (c0, c1) ∈ Znq ×Ztq
and obtain M ′ = b(c1 − S> · c0)/(q/2)e ∈ {0, 1}t, which is sent back to
RT. In addition, ST provides a zero-knowledge argument of knowledge
of vector y = c1 − S> · c0 −M ′ · bq/2c ∈ Zt of norm ‖y‖∞ ≤ q/5 and
small-norm matrices E ∈ Zm×t, S ∈ Zn×t satisfying (modulo q)

P = F> · S + E , c>0 · S + y> = c>1 −M ′
> · bq/2c. (6)

To this end, ST runs the prover in the ZK argument system in Section 6.4.
3. If the ZK argument produced by ST does not properly verify at step 2, RT

halts and outputs ⊥. Otherwise, RT recalls the random string µ ∈ {0, 1}t
that was chosen at step 1 and computes Mρi = M ′ ⊕ µ. The transfer
ends with ST and RT outputting Si = Si−1 and Ri = Ri−1, respectively.

In the initialization phase, the sender has to repeat step 5 with each receiver
to prove that {(ai,bi)}Ni=1 are well-formed. Using the Fiat-Shamir heuristic [22],
we can decrease this initialization cost from O(N · U) to O(N) (regardless of
the number of users U) by making the proof non-interactive. This modification
also reduces each transfer to 5 communication rounds since, even in the transfer
phase, the sender’s ZK arguments can be non-interactive and the receiver’s argu-
ments only need to be WI, which is preserved when the basic ZK protocol (which
has a ternary challenge space) is repeated ω(log n) times in parallel. Details are
given in the full version of the paper.

The security of the aboveOT Nk×1 protocol against static corruptions is proved
in the full version of the paper under the SIS and LWE assumptions.

5 OT with Access Control for Branching Programs

In this section, we extend our protocol of Section 4 into a protocol where data-
base entries can be protected by access control policies consisting of branching
programs. In a nutshell, the construction goes as follows.

When the database is set up, the sender signs (a binary representation of)
each database entry (ai,bi) together with a hash value hBP,i ∈ Znq of the corres-
ponding branching program. For each possessed attribute x ∈ {0, 1}κ, the user
U obtains a credential CredU,x from the issuer.

If U has a credential CredU,x for an attribute x satisfying the ρ-th branch-
ing program, U can re-randomize (aρ,bρ) into (c0, c1), which is given to the
sender, while proving that: (i) He knows a signature (τ,v) on some message
(aρ,bρ,hBP,ρ) such that (c0, c1) is a re-randomization of (aρ,bρ); (ii) The cor-
responding hBP,ρ is the hash value of (the binary representation of) a branching
program BPρ that accepts an attribute x ∈ {0, 1}κ for which he has a valid
credential CredU,x (i.e., BPρ(x) = 1).

While statement (i) can be proved as in Section 4, handling (ii) requires
a method of proving the possession of a (committed) branching program BP
and a (committed) input x ∈ {0, 1}κ such that BP(x) = 1 while demonstrating
possession of a credential for x.
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Recall that a branching program BP of length L, input space {0, 1}κ and
width 5 is specified by L tuples of the form (var(θ), πθ,0, πθ,1) where

- var : [L] → [0, κ − 1] is a function that associates the θ-th tuple with the
coordinate xvar(θ) ∈ {0, 1} of the input x = (x0, . . . , xκ−1)>.

- πθ,0, πθ,1 : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} are permutations that determine the
θ-th step of the evaluation.

On input x = (x0, . . . , xκ−1)>, BP computes its output as follows. For each bit
b ∈ {0, 1}, let b̄ denote the bit 1− b. Let ηθ denote the state of computation at
step θ. The initial state is η0 = 0 and, for θ ∈ [1, L], the state ηθ is computed as

ηθ = πθ,xvar(θ)
(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ).

Finally, the output of evaluation is BP(x) = 1 if ηL = 0, otherwise BP(x) = 0.
We now let δκ = dlog2 κe and note that each integer in [0, κ − 1] can be

determined by δκ bits. In particular, for each θ ∈ [L], let dθ,1, . . . , dθ,δκ be the
bits representing var(θ). Then, we consider the following representation of BP:

zBP =
(
d1,1, . . . , d1,δκ , . . . , dL,1, . . . , dL,δκ , π1,0(0), . . . , π1,0(4), π1,1(0), . . . ,

π1,1(4), . . . , πL,0(0), . . . , πL,0(4), πL,1(0), . . . , πL,1(4)
)> ∈ [0, 4]ζ , (7)

where ζ = L(δκ + 10).

5.1 The OT-AC Protocol

We assume public parameters pp consisting of a modulus q, integers n, m such
that m = 2ndlog qe, a public matrix Ā ∈ Zn×mq , the maximal length L ∈ poly(n)
of branching programs and their desired input length κ ∈ poly(n).

ISetup
(
pp
)
: Given public parameters pp = {q, n,m, Ā, L, κ}, generate a key

pair (PKI , SKI)← Keygen(pp, 1) for the signature scheme in Section 3.1 in
order to sign single-block messages (i.e., Nb = 1) of length mI = n·dlog qe+κ.
Letting `I = O(n), this key pair contains SKI = TAI

∈ Zm×m and

PKI :=
(
AI , {AI,j}`Ij=0, DI , {DI,0,DI,1}, uI

)
.

Issue
(
I(pp, SKI , PKI , PU,x)↔ U(pp,x, stU)

)
: On common input x ∈ {0, 1}κ,

the issuer I and the user U interact in the following way:

1. If stU = ∅, U creates a pseudonym PU = Ā · eU ∈ Znq , for a randomly
chosen eU ←↩ U({0, 1}m), which is sent to I. It sets stU = (eU, PU, 0, ∅, ∅).
Otherwise, U parses its state stU as (eU, PU, fDB , CU,CredU).

2. The issuer I defines the message mU,x = (vdecn,q−1(PU)>|x>)> ∈ {0, 1}mI .
Then, it runs the signing algorithm of Section 3.1 to obtain and return
certU,x =

(
τU,vU, rU

)
← Sign(SKI ,mU,x) ∈ {0, 1}`I × Z2m × Zm, which

binds U’s pseudonym PU to the attribute string x ∈ {0, 1}κ.
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3. U checks that certU,x satisfies (2) and that ‖vU‖ ≤ σ
√

2m, rU ≤ σ
√
m.

If so, U sets CU := CU ∪ {x}, CredU := CredU ∪ {certU,x} and updates its
state stU = (eU, PU, fDB , CU,CredU). If certU,x does not properly verify,
U aborts the interaction and leaves stU unchanged.

DBSetup
(
PKI ,DB = {(Mi,BPi)}Ni=1

)
: The sender DB has DB = {(Mi,BPi)}Ni=1

which is a database of N pairs made of a message Mi ∈ {0, 1}t and a policy
realized by a length-L branching program BPi = {vari(θ), πi,θ,0, πi,θ,1}Lθ=1.

1. Choose a random matrix AHBP ←↩ U
(
Zn×ζq

)
which will be used to hash

the description of branching programs.
2. Generate a key pair for the signature scheme of Section 3.2 in order to

sign Q = N messages of length md = (2n+ t) · dlog qe each. This key pair
consists of SKsig = TA ∈ Zm×m and PKsig :=

(
A, {Aj}`j=0,D,u

)
,

where ` = dlogNe and A,A0, . . . ,A` ∈ U(Zn×mq ), D ∈ U(Zn×mdq ) with
m = 2ndlog qe, md = (2n+ t)dlog qe. The counter is initialized to τ = 0.

3. Sample S ←↩ χn×t which will serve as a secret key for an LWE-based
encryption scheme. Then, sample F←↩ U(Zn×mq ), E←↩ χm×t to compute

P = [p1| . . . |pt] = F> · S + E ∈ Zm×tq (8)

so that (F,P) forms a public key for a t-bit variant of Regev’s system.
4. Sample vectors a1, . . . ,aN ←↩ U(Znq ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, a>i · S + xi +Mi · bq/2c

)
∈ Znq × Ztq ∀i ∈ [N ] (9)

5. For each i = 1 to N , (ai,bi) is bound to BPi as follows.

a. Let zBP,i ∈ [0, 4]ζ be the binary representation of the branching
program. Compute its digest hBP,i = AHBP · zBP,i ∈ Znq .

b. Using SKsig, generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on
the message mi = vdec2n+t,q−1(ai|bi|hBP,i) ∈ {0, 1}md obtained by
decomposing (a>i |b>i |h>BP,i)> ∈ Z2n+t

q .

6. The database’s public key is defined as PKDB =
(
PKsig, (F,P), AHBP

)
while the encrypted database is {ERi =

(
ai,bi, (τi,vi)

)
,BPi}Ni=1. The

sender DB outputs
(
PKDB, {ERi,BPi}Ni=1

)
and keeps SKDB =

(
SKsig,S

)
.

Transfer
(
DB(SKDB, PKDB, PKI),U(ρ, stU, PKI , PKDB, ERρ,BPρ)

)
: Given an

index ρ ∈ [N ], a record ERρ =
(
aρ,bρ, (τρ,vρ)

)
and a policy BPρ, the user U

parses stU as (eU, PU, fDB , CU,CredU). If CU does not contain any x ∈ {0, 1}κ
s.t. BPρ(x) = 1 and CredU contains the corresponding certU,x, U outputs ⊥.
Otherwise, he selects such a pair (x, certU,x) and interacts with DB:

1. If fDB = 0, U interacts with DB for the first time and requires DB
to prove knowledge of small-norm S ∈ Zn×t, E ∈ Zm×t, {xi}Ni=1 and
t-bit messages {Mi}Ni=1 satisfying (8)-(9). To do this, DB uses the ZK
argument in Section 6.3. If there exists i ∈ [N ] such that (τi,vi) is an
invalid signature on vdec2n+t,q−1(a>i |b>i |h>BP,i)> or if the ZK argument
does not verify, U aborts. Otherwise, U updates stU and sets fDB = 1.
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2. U re-randomizes the pair (aρ,bρ) contained in ERρ. It samples vectors
e←↩ U({−1, 0, 1}m), µ←↩ U({0, 1}t) and ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρ + F · e, bρ + P> · e + µ · bq/2c+ ν

)
∈ Znq × Ztq, (10)

which is sent to DB as a re-randomization of (aρ,bρ+µ ·bq/2c). Then, U
provides an interactive WI argument that (c0, c1) is a re-randomization
of some (aρ,bρ) associated with a policy BPρ for which U has a cre-
dential certU,x for some x ∈ {0, 1}κ such that BPρ(x) = 1. In ad-
dition, U demonstrates possession of: (i) a preimage zBP,ρ ∈ [0, 4]ζ of
hBP,ρ = AHBP · zBP,ρ ∈ Znq ; (ii) a credential CredU,x for the correspond-
ing x ∈ {0, 1}κ and the private key eU ∈ {0, 1}m for the pseudonym PU

to which x is bound; (iii) the coins leading to the randomization of some
(aρ,bρ). Then entire step is conducted by arguing knowledge of

eU ∈ {0, 1}m,mU,x ∈ {0, 1}mI , x ∈ {0, 1}κ, m̂U,x ∈ {0, 1}m/2
τU ∈ {0, 1}`I , vU = (v>U,1|v>U,2)> ∈ [−β, β]2m, rU ∈ [−β, β]m

// signature on mU,x = (vdecn,q−1(PU)>|x>)>

zBP,ρ ∈ [0, 4]ζ // representation of BPρ

m ∈ {0, 1}md , τ ∈ {0, 1}`, v = (v>1 |v>2 )> ∈ Z2m

// signature on m = vdec2n+t,q−1(a>i |b
>
i |h
>
BP,ρ)>

e ∈ {−1, 0, 1}t, µ ∈ {0, 1}t, ν ∈ [−B,B]t,
// coins allowing the re-randomization of (aρ,bρ)

satisfying the relations (modulo q)

H2n+t,q−1 ·m +

 F

P> It · bq/2c It

−AHBP

 ·


e

µ

ν

zBP,ρ

 =

c0

c1

0n


// (recall that (a>ρ |b

>
ρ |h
>
BP,ρ)> = H2n+t,q−1 ·m)

A · v1 + A0 · v2 +
∑`
j=1 Aj · (τ [j] · v2)−D ·m = u

AI · vU,1 + AI,0 · vU,2 +
∑`I
j=1 AI,j · (τU[j] · vU,2)−DI · m̂U,x = uI

DI,0 · rU + DI,1 ·mU,x −Hn,q−1 · m̂U,x = 0[
Hn,q−1 0

0 Iκ

]
·mU,x +

[
−Ā

0

]
· eU +

[
0

−Iκ

]
· x = 0

(11)

and such that zBP,ρ ∈ [0, 4]ζ encodes BPρ such that BPρ(x) = 1. This is
done by running the argument system described in Section 6.6.

3. If the ZK argument of step 2 verifies, DB decrypts (c0, c1) ∈ Znq × Ztq
to obtain M ′ = b(c1 − S> · c0)/(q/2)e ∈ {0, 1}t, which is returned to U.
Then, DB argues knowledge of y = c1−S> ·c0−M ′ · bq/2c ∈ Zt of norm
‖y‖∞ ≤ q/5 and small-norm E ∈ Zm×t, S ∈ Zn×t satisfying (modulo q)

P = F> · S + E , c>0 · S + y> = c>1 −M ′
> · bq/2c.
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To this end, DB uses the ZK argument system of Section 6.4.
4. If the ZK argument produced by DB does not verify, U outputs ⊥. Oth-

erwise, U recalls the string µ ∈ {0, 1}t and outputs Mρi = M ′ ⊕ µ.

Like our construction of Section 4, the above protocol requires the DB to re-
peat a ZK proof of communication complexity Ω(N) with each user U during the
initialization phase. By applying the Fiat-Shamir heuristic as shown in the full
version of the paper, the cost of the initialization phase can be made independent
of the number of users: the sender can publicize

(
PKDB, {ERi,BPi}Ni=1

)
along

with a with a universally verifiable non-interactive proof of well-formedness.
The security of the above protocol against static corruptions is proved in the

full version of the paper, under the SIS and LWE assumptions.

6 Our Zero-Knowledge Arguments of Knowledge

This section provides all the zero-knowledge arguments of knowledge (ZKAoK)
used as building blocks in our two adaptive OT schemes. Our argument systems
operate in the framework of Stern’s protocol [52], which was originally introduced
in the context of code-based cryptography but has been developed [41,42,39,37,38].

In Section 6.1, we first recall Stern’s protocol in a generalized, abstract man-
ner suggested in [37]. Then, using various transformations, we will demonstrate
that all the required ZKAoKs can be obtained from this abstract protocol. Our
basic strategy and techniques are summarized in Section 6.2, while the details of
the protocols are given in the next subsections. In particular, our treatment of
hidden branching programs in Section 6.6 is rather sophisticated as it requires to
handle a number of secret objects nested together via branching programs, com-
mitments, encryptions, signatures and Merkle trees. This protocol introduces
new techniques and insights of which we provide the intuition hereafter.

6.1 Abstracting Stern’s Protocol

LetK,D, q be positive integers withD ≥ K and q ≥ 2, and let VALID be a subset
of ZD. Suppose that S is a finite set such that every φ ∈ S can be associated
with a permutation Γφ of D elements satisfying the following conditions:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(12)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{(

(M,v),w
)
∈ ZK×Dq × ZDq × VALID : M ·w = v mod q.

}
Stern’s original protocol corresponds to the case VALID = {w ∈ {0, 1}D :
wt(w) = k}, where wt(·) denotes the Hamming weight and k < D is a given
integer, S = SD is the set of all permutations of D elements and Γφ(w) = φ(w).
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The conditions in (12) play a crucial role in proving in ZK that w ∈ VALID.
To this end, the prover samples a random φ←↩ U(S) and lets the verifier check
that Γφ(w) ∈ VALID without learning any additional information about w due to
the randomness of φ. Furthermore, to prove in a zero-knowledge manner that the
linear equation is satisfied, the prover samples a masking vector rw ←↩ U(ZDq ),
and convinces the verifier instead that M · (w + rw) = M · rw + v mod q.

The interaction between prover P and verifier V is described in Figure 1. The
protocol uses a statistically hiding and computationally binding string commit-
ment scheme COM (e.g., the SIS-based scheme from [35]).

1. Commitment: Prover samples rw ← U(ZDq ), φ← U(S) and randomness ρ1, ρ2, ρ3

for COM. Then he sends CMT =
(
C1, C2, C3

)
to the verifier, where

C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2),

C3 = COM(Γφ(w + rw mod q); ρ3).

2. Challenge: The verifier sends a challenge Ch← U({1, 2, 3}) to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

– Ch = 2: Let φ2 = φ, w2 = w + rw mod q, and RSP = (φ2,w2, ρ1, ρ3).

– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw+tr mod q; ρ3).
– Ch = 2: Check that C1 = COM(φ2,M·w2−v mod q; ρ1), C3 = COM(Γφ2(w2); ρ3).
– Ch = 3: Check that C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Figure 1: Stern-like ZKAoK for the relation Rabstract.

Theorem 2. The protocol in Figure 1 is a statistical ZKAoK with perfect com-
pleteness, soundness error 2/3, and communication cost O(D log q). Namely:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a com-
mitment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible
values of the challenge Ch, outputs w′ ∈ VALID such that M ·w′ = v mod q.

The proof of the theorem relies on standard simulation and extraction techniques
for Stern-like protocols [35,41,37]. It is given in the full version of the paper.

6.2 Our Strategy and Basic Techniques, In a Nutshell

Before going into the details of our protocols, we first summarize our governing
strategy and the techniques that will be used in the next subsections.
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In each protocol, we prove knowledge of (possibly one-dimensional) integer
vectors {wi}i that have various constraints (e.g., smallness, special arrangements
of coordinates, or correlation with one another) and satisfy a system{∑

i

Mi,j ·wi = vj

}
j
, (13)

where {Mi,j}i,j , {vj}j are public matrices (which are possibly zero or identity
matrices) and vectors. Our strategy consists in transforming this entire system
into one equivalent equation M·w = v, where matrix M and vector v are public,
while the constraints of the secret vector w capture those of witnesses {wi}i and
they are provable in zero-knowledge via random permutations. For this purpose,
the Stern-like protocol from Section 6.1 comes in handy.

A typical transformation step is of the form wi → w̄i, where there exists
public matrix Pi,j such that Pi,j · w̄i = wi. This subsumes the decomposition
and extension mechanisms which first appeared in [41].

– Decomposition: Used when wi has infinity norm bound larger than 1 and
we want to work more conveniently with w̄i whose norm bound is exactly 1.
In this case, Pi,j is a decomposition matrix (see Section 2.5).

– Extension: Used when we insert “dummy” coordinates to wi to obtain
w̄i whose coordinates are somewhat balanced. In this case, Pi,j is a {0, 1}-
matrix with zero-columns corresponding to positions of insertions.

Such a step transforms the term Mi,j ·wi into Mi,j ·w̄i, where Mi,j = Mi,j ·Pi,j

is a public matrix. Also, using the commutativity property of addition, we often
group together secret vectors having the same constraints.

After a number of transformations, we will reach a system equivalent to (13):
M′

1,1 ·w′1 + M′
1,2 ·w′2 + · · ·+ M′

1,k ·w′k = v1,
...

M′
t,1 ·w′1 + M′

t,2 ·w′2 + · · ·+ M′
t,k ·w′k = vt,

(14)

where integers t, k and matrices M′
i,j are public. Defining

M =


M′

1,1 M′
1,2 · · · M′

1,k

...
...

. . .
...

M′
t,1 M′

t,2 · · · M′
t,k

 ; w =


w′1
...

w′k

 ; v =


v1

...

vt

 ,

we obtain the unified equation M · w = v mod q. At this stage, we will use a
properly defined composition of random permutations to prove the constraints
of w. We remark that the crucial aspect of the above process is in fact the manip-
ulation of witness vectors, while the transformations of public matrices/vectors
just follow accordingly. To ease the presentation of the next subsections, we will
thus only focus on the secret vectors.
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In the process, we will employ various extending and permuting techniques
which require introducing some notations. The most frequently used ones are
given in Table 1. Some of these techniques appeared (in slightly different forms)
in previous works [41,42,39,37,38]. The last three parts of the table summar-
izes newly-introduced techniques that will enable the treatment of secret-and-
correlated objects involved in the evaluation of hidden branching programs.

In particular, the technique of the last row will be used for proving knowledge
of an integer z = x · y for some (x, y) ∈ [0, 4]× {0, 1} satisfying other relations.

6.3 Protocol 1

Let n,m, q,N, t, Bχ be the parameters defined in Section 4. The protocol al-
lows the prover to prove knowledge of LWE secrets and the well-formedness of
ciphertexts. It is summarized as follows.

Common input: F ∈ Zn×mq , P ∈ Zm×tq ; {ai ∈ Znq , bi ∈ Ztq}Ni=1.

Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t,
{xi ∈ [−Bχ, Bχ]t,Mi ∈ {0, 1}t}Ni=1 such that the following equations hold:{

F> · S + E = P mod q

∀i ∈ [N ] : S> · ai + xi + bq/2c ·Mi = bi mod q.
(15)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively.
For each (i, j) ∈ [N ] × [t], let bi[j],xi[j],Mi[j] denote the j-th coordinate of
vectors bi,xi,Mi, respectively. Then, observe that (15) can be rewritten as:{

∀j ∈ [t] : F> · sj + Im · ej = pj mod q

∀(i, j) ∈ [N ]× [t] : a>i · sj + 1 · xi[j] + bq/2c ·Mi[j] = bi[j] mod q.
(16)

Then, we form the following vectors:

w1 =
(
s>1 | . . . | s>t | e>1 | . . . | e>t | (x1[1], . . . ,xN [t])

)> ∈ [−Bχ, Bχ](n+m+N)t;

w2 = (M1[1], . . . ,MN [t])> ∈ {0, 1}Nt.

Next, we run vdec′(n+m+N)t,Bχ to decompose w1 into w̄1 and then extend

w̄1 to w∗1 ∈ B3
(n+m+N)tδBχ

. We also extend w2 into w∗2 ∈ B2
Nt and we then form

w = ((w∗1)> | (w∗2)>)> ∈ {−1, 0, 1}D, where D = 3(n+m+N)tδBχ + 2Nt.
Observe that relations (16) can be transformed into one equivalent equation

of the form M ·w = v mod q, where M and v are built from the common input.
Having performed the above unification, we now define VALID as the set of all

vectors t = (t>1 | t>2 )> ∈ {−1, 0, 1}D, where t1 ∈ B3
(n+m+N)tδBχ

and t2 ∈ B2
Nt.

Clearly, our vector w belongs to the set VALID.
Next, we specify the set S and permutations of D elements {Γφ : φ ∈ S}, for

which the conditions in (12) hold.

– S := S3(n+m+N)tδBχ
× S2Nt.
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Notation Meaning/Property/Usage/Technique

B2
m – The set of vectors in {0, 1}2m with Hamming weight m.

– ∀φ ∈ S2m,x
′ ∈ Z2m : x′ ∈ B2

m ⇔ φ(x′) ∈ B2
m.

– To prove x ∈ {0, 1}m: Extend x to x′ ∈ B2
m, then permute x′.

B3
m – The set of vectors in {−1, 0, 1}3m that have exactly m coordinates equal

to j, for every j ∈ {−1, 0, 1}.

– ∀φ ∈ S3m,x
′ ∈ Z3m : x′ ∈ B3

m ⇔ φ(x′) ∈ B3
m.

– To prove x ∈ {−1, 0, 1}m: Extend x to x′ ∈ B3
m, then permute x′.

ext2(·)
and

T2[·](·)

– For c ∈ {0, 1} : ext2(c) = (c̄, c)> ∈ {0, 1}2.

– For b ∈ {0, 1} and x = (x0, x1)> ∈ Z2: T2[b](x) = (xb, xb̄)
>.

– Property: x = ext2(c)⇔ T2[b](x) = ext2(c⊕ b).

– To prove c ∈ {0, 1} simultaneously satisfies many relations: Extend it
to x = ext2(c), then permute and use the same b at all appearances.

expand(·,·)
and
Texp[·,·](·)

– For c ∈ {0, 1} and x ∈ Zm: expand(c,x) = (c̄ · x> | c · x>)> ∈ Z2m.

– For b ∈ {0, 1}, φ ∈ Sm, v =

(
v0

v1

)
∈ Z2m: Texp[b, φ](v) =

(
φ(vb)
φ(vb̄)

)
.

– Property: v = expand(c,x)⇔ Texp[b, φ](v) = expand(c⊕ b, φ(x)).

[·]5 For k ∈ Z: [k]5 denotes the integer t ∈ {0, 1, 2, 3, 4}, s.t. t = k mod 5.

ext5(·)
and

T5[·](·)

– For x ∈ [0, 4] : ext5(x) = ([x+4]5, [x+3]5, [x+2]5, [x+1]5, x)> ∈ [0, 4]5.
– For c ∈ [0, 4] and v = (v0, v1, v2, v3, v4)> ∈ Z5:

T5[c](v) =
(
v[−c]5 , v[−c+1]5 , v[−c+2]5 , v[−c+3]5 , v[−c+4]5

)>
.

– Property: v = ext5(x)⇔ T5[c](v) = ext5(x+ c mod 5).

– To prove x ∈ [0, 4] simultaneously satisfies many relations: Extend it
to v = ext5(x), then permute and use the same c at all appearances.

unitx – ∀x ∈ [0, 4]: unitx is the 5-dim unit vector (v0, . . . , v4)> with vx = 1.

– For c ∈ [0, 4],v ∈ Z5: v = unitx ⇔ T5[c](v) = unitx+c mod 5.

→ Allow proving v = unitx for some x ∈ [0, 4] satisfying other relations.

ext5×2(·,·)
and

T5×2[·,·](·)

– For x ∈ [0, 4] and y ∈ {0, 1}:
ext5×2(x, y) = ([x+ 4]5 · ȳ, [x+ 4]5 ·y, [x+ 3]5 · ȳ, [x+ 3]5 ·y, [x+ 2]5 · ȳ,

[x+ 2]5 ·y, [x+ 1]5 · ȳ, [x+ 1]5 ·y, x · ȳ, x ·y)> ∈ [0, 4]10

– For (c, b) ∈ [0, 4]× {0, 1} and v = (v0,0, v0,1, . . . , v4,0, v4,1)> ∈ Z10:

T5×2[c, b](v) =
(
v[−c]5,b, v[−c]5,b, v[−c+1]5,b, v[−c+1]5,b

, v[−c+2]5,b,

v[−c+2]5,b
, v[−c+3]5,b, v[−c+3]5,b

, v[−c+4]5,b, v[−c+4]5,b

)>
.

– Property: v = ext5×2(x, y)⇔ T5×2[c, b](v) = ext5×2(x+c mod 5, y⊕b).
→ Allow proving z = x · y for some (x, y) ∈ [0, 4] × {0, 1} satisfying
other relations: Extend z to v = ext5×2(x, y), then permute and use
the same c, b at all appearances of x, y, respectively.

Table 1. Basic notations and extending/permuting techniques used in our protocols.
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– For φ = (φ1, φ2) ∈ S and for t = (t>1 | t>2 )> ∈ ZD, where t1 ∈ Z3(n+m+N)tδBχ

and t2 ∈ Z2Nt, we define Γφ(t) = (φ1(t1)> | φ2(t2)>)>.

By inspection, it can be seen that the desired properties in (12) are satisfied.
As a result, we can obtain the required ZKAoK by running the protocol from
Section 6.1 with common input (M,v) and prover’s input w. The protocol has

communication cost O(D log q) = Õ(λ) · O(Nt) bits.
While this protocol has linear complexity in N , it is only used in the initial-

ization phase, where Ω(N) bits inevitably have to be transmitted anyway.

6.4 Protocol 2

Let n,m, q,N, t, B be system parameters. The protocol allows the prover to prove
knowledge of LWE secrets and the correctness of decryption.

Common input: F ∈ Zn×mq , P ∈ Zm×tq ; c0 ∈ Znq , c1 ∈ Ztq, M ′ ∈ {0, 1}t.
Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t

and y ∈ [−q/5, q/5]t such that the following equations hold:

F> · S + E = P mod q; c>0 · S + y> = c>1 −M ′> · bq/2c mod q. (17)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively;
and let y[j], c1[j],M ′[j] be the j-th entry of vectors y, c1,M

′, respectively. Then,
observe that (17) can be re-written as:

∀j ∈ [t] :

{
F> · sj + Im · ej = pj mod q

c>0 · sj + 1 · y[j] = c1[j]−M ′[j] · bq/2c mod q.
(18)

Next, we form vector w1 = (s>1 | . . . | s>t | e>1 | . . . | e>t )> ∈ [−Bχ, Bχ](n+m)t,

then decompose it to w̄1 ∈ {−1, 0, 1}(n+m)tδBχ , and extend w̄1 to w∗1 ∈ B3
(n+m)tδBχ

.

At the same time, we decompose vector y = (y[1], . . . ,y[t])> ∈ [−q/5, q/5]t

to ȳ ∈ {−1, 0, 1}tδq/5 , and then extend ȳ to y∗ ∈ B3
tδq/5

.

Defining the ternary vector w = ((w∗1)> | (y∗)>)> ∈ {−1, 0, 1}D of dimen-
sion D = 3(n+m)tδBχ +3tδq/5, we finally obtain the equation M ·w = v mod q,
for public matrix M and public vector v. Using similar arguments as in Sec-
tion 6.3, we can obtain the desired zero-knowledge argument system. The pro-
tocol has communication cost O(D log q) = Õ(λ) · O(t) bits.

6.5 Protocol 3

Let n,m,md, q, t, `, B be the parameters defined in Section 4. The protocol allows
the prover to argue that a given ciphertext is a correct randomization of some
hidden ciphertext and that he knows a valid signature on that ciphertext. Let β
be the infinity norm bound of these valid signatures.

Common input: It consists of matrices F ∈ Zn×mq , P ∈ Zm×tq , A, A0, A1,
. . . ,A` ∈ Zn×mq , D ∈ Zn×mdq and vectors c0 ∈ Znq , c1 ∈ Ztq, u ∈ Znq .
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Prover’s goal is to prove knowledge of m ∈ {0, 1}md , µ ∈ {0, 1}t, e ∈ {−1, 0, 1}t,
ν ∈ [−B,B]t, τ = (τ [1], . . . , τ [`])> ∈ {0, 1}`, v1,v2 ∈ [−β, β]m such that the
following equations hold:

A · v1 + A0 · v2 +
∑`
j=1 Aj · (τ [j] · v2)−D ·m = u mod q;

Hn+t,q−1·m +

(
F

P>

)
·e +

(
0n×t

b q2c·It

)
·µ+

(
0n×t

It

)
·ν =

(
c0

c1

)
mod q.

(19)

For this purpose, we perform the following transformations on the witnesses.

Decompositions. Decompose vectors v1,v2, ν to vectors v̄1 ∈ {−1, 0, 1}mδβ ,
v̄2 ∈ {−1, 0, 1}mδβ , ν̄ ∈ {−1, 0, 1}tδB , respectively.

Extensions/Combinations.

– Let w1 = (m> | µ>)> ∈ {0, 1}md+t and extend it into w∗1 ∈ B2
md+t.

– Let w2 = (v̄>1 | ν̄> | e>)> ∈ {−1, 0, 1}mδβ+tδB+t and extend it into the
vector w∗2 ∈ B3

mδβ+tδB+t.

– Extend v̄2 into s0 ∈ B3
mδβ

. Then, for each j ∈ [`], define sj = expand(τ [j], s0).

(We refer to Table 1 for details about expand(·, ·).)

Now, we form vector w =
(
w∗1
> | w∗2

> | s>0 | s>1 | . . . | s>`
)> ∈ {−1, 0, 1}D,

where D = (2`+ 2)3mδβ + 3tδB + 3t+ 2(md + t). At this point, we observe that
the equations in (19) can be equivalently transformed into M · w = v mod q,
where the matrix M and the vector v are built from the public input.

Having performed the above transformations, we now define VALID as the
set of all vectors t = (t>1 | t>2 | t>3,0 | t>3,1 | . . . | t>3,`)

> ∈ {−1, 0, 1}D for which

there exists τ = (τ [1], . . . , τ [`])> ∈ {0, 1}` such that:

t1 ∈ B2
md+t; t2 ∈ B3

mδβ+tδB+t; t3,0 ∈ B3
mδβ

; ∀j ∈ [`] : t3,j = expand(τ [j], t3,0).

It can be seen that w belongs to this tailored set. Now, let us specify the set S
and permutations of D elements {Γφ : φ ∈ S} satisfying the conditions in (12).

– S := S2(md+t) × S3(mδβ+tδB+t) × S3mδβ × {0, 1}`.
– For φ =

(
φ1, φ2, φ3, (b[1], . . . , b[`])>

)
∈ S, we define the permutation Γφ that

transforms vector t = (t>1 | t>2 | t>3,0 | tT3,1 | . . . | t>3,`)
> ∈ ZD as follows:

Γφ(t) =
(
φ1(t1)> | φ2(t2)> | φ3(t3,0)> |

Texp[b[1], φ3](t3,1)> | . . . | Texp[b[`], φ3](t3,`)
>)>.

By inspection, it can be seen that the properties in (12) are indeed satisfied.
As a result, we can obtain the required argument of knowledge by running the
protocol from Section 6.1 with common input (M,v) and prover’s input w. The

protocol has communication cost O(D log q) = Õ(λ) · O(logN + t) bits.
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6.6 Protocol 4: A Treatment of Hidden Branching Programs

We now present the proof system run by the user in the OT-AC system of
Section 5. It allows arguing knowledge of an input x = (x0, . . . , xκ−1)> ∈ {0, 1}κ
satisfying a hidden branching program BP = {(var(θ), πθ,0, πθ,1)}Lθ=1 of length
for L ∈ poly(λ). The prover should additionally demonstrate that: (i) He has a
valid credential for x; (ii) The hashed encoding of BP is associated with some
hidden ciphertext of the database (and he knows a signature guaranteeing this
link); (iii) A given ciphertext is a re-randomization of that hidden ciphertext.

Recall that, at each step θ ∈ [L] of the evaluation of BP(x), we have to look
up the value xvar(θ) in x = (x0, . . . , xκ−1)> to compute the θ-th state ηθ as per

ηθ = πθ,xvar(θ)
(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ). (20)

To prove that each step is done correctly, it is necessary to provide evidence
that the corresponding search is honestly carried out without revealing xvar(θ),
var(θ) nor {πθ,b}1b=0. To this end, a first idea is to perform a simple left-to-
right search on (x0, . . . , xκ−1): namely, (20) is expressed in terms of a matrix-
vector relation where ηθ is encoded as a unit vector of dimension 5; {πθ,b}1b=0

are represented as permutation matrices; and xvar(θ) = Mvar(θ) · x is computed
using a matrix Mvar(θ) ∈ {0, 1}κ×κ containing exactly one 1 per row. While
this approach can be handled using proofs for matrix-vector relations using the
techniques of [38], the expected complexity isO(κ) for each step, so that the total
complexity becomes O(Lκ). Fortunately, a better complexity can be achieved.

If we instead perform a dichotomic search on x = (x0, . . . , xκ−1)>, we can
reduce the complexity of each step to O(log κ). To this end, we need to prove a
statement “I performed a correct dichotomic search on my secret array x”.

In order to solve this problem, we will employ two existing lattice-based tools:

(i) A variant of the SIS-based computationally binding and statistically hiding
commitment scheme from [35], which allows to commit to one-bit messages;

(ii) The SIS-based Merkle hash tree proposed in [39].

Let Ā ←↩ U(Zn×mq ) and acom ←↩ U(Znq ). For each i ∈ [0, κ − 1], we let the

receiver commit to xi ∈ {0, 1} as comi = acom · xi + Ā · rcom,i, with rcom,i ←↩
U({0, 1}m), and reveal com1, . . . , comκ−1 to the sender. We build a Merkle tree
of depth δκ = dlog κe on top of the leaves com0, . . . , comκ−1 using the SIS-based
hash function hĀ : {0, 1}ndlog qe × {0, 1}ndlog qe → {0, 1}ndlog qe of [39]. Our use
of Merkle trees is reminiscent of [39] in that the content of the leaves is public.
The Merkle tree will actually serve as a “bridge” ensuring that: (i) The same
string x is used in all steps while enabling dichotomic searches; (ii) At each step,
the prover indeed uses some coordinate of x (without revealing which one), the
choice of which is dictated by a path in the tree determined by var(θ).

Since {comi}κ−1
i=0 are public, both parties can deterministically compute the

root utree of the Merkle tree. For each θ ∈ [L], we consider the binary repres-
entation dθ,1, . . . , dθ,δκ of var(θ), which is part of the encoding of BP defined
in (7). We then prove knowledge of a bit yθ satisfying the statement “From
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the root utree ∈ {0, 1}ndlog qe of the tree, the path determined by the bits
dθ,1, . . . , dθ,δκ leads to the leaf associated with the commitment opened to yθ.” If
the Merkle tree and the commitment scheme are both secure, it should hold that
yθ = xvar(θ). Said otherwise, we can provably perform a “dichotomic search” for
xvar(θ) = yθ. Moreover, the techniques from [39] can be adapted to do this in
zero-knowledge manner, i.e., without revealing the path nor the reached leaf.

Now, our task can be divided into 3 steps: (i) Proving that the searches on
Merkle tree yield y1, . . . , yL; (ii) Proving that the branching program evaluates
to BP(x) = 1 if y1, . . . , yL are used in the evaluation; (iii) Proving all the other
relations mentioned above, as well as the consistency of {comi}κ−1

i=0 and the fact
that they open to a certified x ∈ {0, 1}κ.

Thanks to dichotomic searches, the communication cost drops to O(Lδκ+κ).
These steps can be treated as explained below.

The Merkle Tree Step. At each step θ ∈ [L], the prover proves know-
ledge of a path made of δκ nodes gθ,1, . . . ,gθ,δκ ∈ {0, 1}ndlog qe determined by
dθ,1, . . . , dθ,δκ , as well as their siblings tθ,1, . . . , tθ,δκ ∈ {0, 1}ndlog qe. Also, the
prover argues knowledge of an opening (yθ, rθ) ∈ {0, 1} × {0, 1}m for the com-
mitment of which gθ,δκ is a binary decomposition. As shown in [39] (and recalled
in the full paper), it suffices to prove the following relations (mod q):

∀θ ∈ [L]



Ā · expand(dθ,1,gθ,1) + Ā · expand(d̄θ,1, tθ,1) = Hn,q−1·utree,

Ā · expand(dθ,2,gθ,2) + Ā · expand(d̄θ,2, tθ,2)

−Hn,q−1 · gθ,1 = 0,
...

Ā · expand(dθ,δκ ,gθ,δκ) + Ā · expand(d̄θ,κ, tθ,κ)

−Hn,q−1 · gθ,δκ−1 = 0,

acom · yθ + Ā · rθ −Hn,q−1 · gθ,δκ = 0,

(21)

where expand(·, ·) is defined in Table 1.

Extending.

– For each (θ, i) ∈ [L]× [δκ]: Extend gθ,i, tθ,i ∈ {0, 1}m/2 to g̃θ,i, t̃θ,i ∈ B2
m/2,

respectively. Then, let ĝθ,i = expand(dθ,i, g̃θ,i) and t̂θ,i = expand(d̄θ,i, t̃θ,i).

– For each θ ∈ [L], extend the bit yθ into the vector yθ = ext2(yθ) ∈ {0, 1}2.

– Let r̃ = (r>1 | . . . | r>L )> ∈ {0, 1}mL, then extend it into the vector r̂ ∈ B2
mL.

Combining. Next, we let Dtree = 5mLδκ + 2L+ 2mL and define

wtree =
(
g̃>1,1 | ĝ>1,1 | t̂>1,1 | . . . | g̃>1,δκ | ĝ>1,δκ | t̂>1,δκ | . . . | g̃>L,1 | ĝ>L,1 | t̂>L,1

| . . . | g̃>L,δκ | ĝ>L,δκ | t̂>L,δκ | y>1 | . . . | y>L | r̂>
)> ∈ {0, 1}Dtree . (22)

Then, observe that, the above L(δκ + 1) equations can be combined into one:

Mtree ·wtree = vtree mod q, (23)

where matrix Mtree and vector vtree are built from the public input.
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The Branching Program Step. The last three parts of Table 1 describe the
vector transformations that will be used to handle the secret vectors appearing in
the evaluation of BP. The following equations emulate the evaluation process. In
particular, for each θ ∈ [2, L], we introduce an extra vector eθ = (cθ,0, . . . , cθ,4) ∈
{0, 1}5 to enable the extraction of the values πθ,0(ηθ−1), and πθ,1(ηθ−1).

π1,0(0) · ȳ1 + π1,1(0) · y1 − η1 = 0, // computing η1 with η0 = 0

e2 −
∑4
i=0 uniti · c2,i = (0, 0, 0, 0, 0)>, // we will also prove e2 = unitη1

f2,0 −
∑4
i=0 π2,0(i) · c2,i = 0, // meaning: f2,0 = π2,0(η1)

f2,1 −
∑4
i=0 π2,1(i) · c2,i = 0, // meaning: f2,1 = π2,1(η1)

f2,0 · ȳ2 + f2,1 · y2 − η2 = 0, // computing η2

...

eL −
∑4
i=0 uniti · cL,i = (0, 0, 0, 0, 0)>, // we will also prove eL = unitηL−1

fL,0 −
∑4
i=0 πL,0(i) · cL,i = 0, // meaning: fL,0 = πL,0(ηL−1)

fL,1 −
∑4
i=0 πL,1(i) · cL,i = 0, // meaning: fL,1 = πL,1(ηL−1)

fL,0 · ȳL + fL,1 · yL = 0. // final state ηL = 0

(24)

Extending.

– For each θ ∈ [L−1], extend ηθ ∈ [0, 4] to 5-dimensional vector sθ = ext5(ηθ).
– For each (θ, j) ∈ [2, L]× {0, 1}, extend fθ,j ∈ [0, 4] to fθ,j = ext5(fθ,j).

– For each (θ, i) ∈ [2, L]× [0, 4], extend cθ,i ∈ {0, 1} to cθ,i = ext2(cθ,i).

– Extend the products π1,0(0) · ȳ1 and π1,1(0) · y1 into 10-dimensional vectors
h1,0 = ext5×2(π1,0(0), ȳ1) and h1,1 = ext5×2(π1,1(0), y1), respectively.

– For each θ ∈ [2, L], extend the products fθ,0 · ȳθ and fθ,1 · yθ into 10-
dimensional vectors hθ,0 = ext5×2(fθ,0, ȳθ) and hθ,1 = ext5×2(fθ,1, yθ).

– For (θ, i) ∈ [2, L]× [0, 4], extend the products πθ,0(i) ·cθ,i and πθ,1(i) ·cθ,i into
zθ,0,i = ext5×2(πθ,0(i), cθ,i) and zθ,1,i = ext5×2(πθ,1(i), cθ,i), respectively.

Combining. Let DBP = 150L− 130, and form wBP ∈ [0, 4]DBP of the form:(
s>1 | . . . | s>L−1 | e>2 | . . . | e>L | c>2,0 | . . . | c>L,4 | z>2,0,0 | . . . | z>L,1,4 |

f>2,0 | . . . | f>L,1 | h>1,0 | h>1,1 | h>2,0 | h>2,1 | . . . | h>L,0 | h>L,1
)>
. (25)

Then, observe that the vector wBP of (25) satisfies one equation of the form:

MBP ·wBP = vBP, (26)

where matrix MBP and vector vBP are obtained from the common input. Note
that we work with integers in [0, 4], which are much smaller than q. As a result,

MBP ·wBP = vBP mod q. (27)

Conversely, if we can prove that (27) holds for a well-formed vector wBP, then
that vector should also satisfy (26).
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The Third Step. In the third layer, we have to prove knowledge of:
d1,1, . . . , dL,δκ ∈ {0, 1}, π1,0(0), . . . , πL,1(4) ∈ [0, 4], m ∈ {0, 1}md ,
x = (x0, . . . , xκ−1)> ∈ {0, 1}κ, mU,x ∈ {0, 1}

m
2 +κ, m̂U,x ∈ {0, 1}

m
2 ,

eU ∈ {0, 1}m, rcom,0, . . . , rcom,κ−1 ∈ {0, 1}m, µ ∈ {0, 1}t, τ ∈ {0, 1}`,
τU ∈ {0, 1}`I ,v1,v2,vU,1,vU,2,rU ∈ [−β, β]m,e∈ {−1, 0, 1}t,ν ∈ [−B,B]t,

(28)

which satisfy the equations of (11) for zBP,ρ = (d1,1, . . . , dL,δκ , π1,0(0), . . . , πL,1(4))>

and, ∀i ∈ [0, κ− 1], the bit xi is committed in comi with randomness rcom,i:acom

. . .

acom

 · x +

 Ā
. . .

Ā

 ·
 rcom,0

...
rcom,κ−1

 =

 com0

...
comκ−1

 mod q.

Decomposing. We use vdec′m,β(·) to decompose v1,v2,vU,1,vU,2, rU ∈ [−β, β]m

into v̄1, v̄2, v̄U,1, v̄U,2, r̄U ∈ {−1, 0, 1}mδβ , respectively. Similarly, we decompose
vector ν ∈ [−B,B]t into vector ν̄ = vdec′t,B(ν) ∈ {−1, 0, 1}tδB .

Extending and Combining. Next, we perform the following steps:

– For each (θ, i) ∈ [L]× [δκ], extend dθ,i to dθ,i = ext2(dθ,i).
– For each (θ, j, i) ∈ [L]×{0, 1}× [0, 4], extend πθ,j(i) to Πθ,j,i = ext5(πθ,j(i)).

– Let w3,1 =
(
x>|r>com,0| . . . |r>com,κ−1|m>U,x|m̂>U,x|m> | e>U |µ>

)> ∈ {0, 1}D3,1 ,

where D3,1 = κ(m+ 2) + 2m+md + t. Then extend w3,1 to w3,1 ∈ B2
D3,1

.

– Define the vector w3,2 = (v̄>1 |v̄>U,1|r̄>U |ν̄>|e>)> ∈ {−1, 0, 1}D3,2 of dimension

D3,2 = 3mδβ + t(δB + 1) and extend it into w3,2 ∈ B3
D3,2

.

– Extend v̄2 to s0 ∈ B3
mδβ

. Then for j ∈ [`], form vector sj = expand
(
τ [j], s0

)
.

– Extend v̄U,2 to sU,0 ∈ B3
mδβ

. Then for j ∈ [`I ], form sU,j = expand
(
τU[j], sU,0

)
.

Given the above transformations, let D3 = 2L(δκ + 25) + 2D3,1 + 3D3,2 +
3mδβ(2`+ 1) + 3mδβ(2`I + 1) and construct vector w3 ∈ [−1, 4]D3 of the form:(

d>1,1 | . . . | d>L,δκ | Π
>
1,0,0 | . . . | Π>L,1,4 | w>3,1 | w>3,2 |

s>0 | s>1 | . . . | s>` | s>U,0 | s>U,1 | . . . | s>U,`I |
)>
. (29)

Observe that the given five equations can be combined into one of the form:

M3 ·w3 = v3 mod q, (30)

where matrix M3 and vector v3 can be built from the public input.

Putting Pieces Altogether. At the final stage of the process, we connect
the three aforementioned steps. Indeed, all the equations involved in our process
are captured by (23), (27), and (30) - which in turn can be combined into:

M ·w = v mod q, (31)
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where w = (w>tree | w>BP | w>3 )> ∈ [−1, 4]D, for

D = Dtree +DBP +D3 = Õ(λ) · (L · log κ+ κ) + Õ(λ) · (logN + λ) + Õ(1) · t.

The components of w all have constraints listed in Table 1. By construction,
these blocks either belong to the special sets B2

m, B3
m or they have the special

forms expand(·, ·), ext2(·), ext5(·), ext5×2(·, ·), which are invariant under the per-
mutations defined in Table 1. As a result, we can specify suitable sets VALID, S
and permutations of D elements {Γφ : φ ∈ S}, for which the conditions of (12)
are satisfied. The description of VALID, S and Γφ is detailed in the full paper.

Our desired argument system then works as follows. At the beginning of
the interaction, the prover computes commitments com0, . . . , comκ−1 ∈ Znq and
send them once to the verifier. Both parties construct matrix M and vector v
based on the public input as well as com0, . . . , comκ−1, while the prover prepares
vector w, as described. Finally, they run the protocol of Section 6.1, which has
communication cost O(D log q) = O(L · log κ+ κ).
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20. L. Ducas and D. Stehlé. Sanitization of FHE ciphertexts. Eurocrypt 2016, 2016.
21. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Communications of the ACM, 28(6):637–647, 1985.
22. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. Crypto’86. Springer, 1987.
23. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and

new cryptographic constructions. STOC, 2008.
24. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. Crypto, 2013.
25. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a

completeness theorem for protocols with honest majority. STOC, 1987.
26. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient abe for

branching programs. Asiacrypt 2015, 2015.
27. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from

lattice assumptions. Asiacrypt 2010, 2010.
28. M. Green and S. Hohenberger. Blind identity-based encryption and simulatable

oblivious transfer. Asiacrypt 2007, 2007.
29. M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer.

Asiacrypt 2008, 2008.
30. M. Green and S. Hohenberger. Practical adaptive oblivious transfer from simple

assumptions. TCC 2011, 2011.
31. J. Herranz. Restricted adaptive oblivious transfer. Theoretical Computer Science,

412(46):6498–6506, 2011.
32. R. Hiromasa, M. Abe, and T. Okamoto. Packing messages and optimizing boot-

strapping in GSW-FHE. PKC 2015, 2015.
33. S. Hohenberger and B. Waters. Short and stateless signatures from the RSA

assumption. Crypto, 2009.
34. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications

to adaptive OT and secure computation of set intersection. TCC 2009, 2009.
35. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification schemes

based on the worst-case hardness of lattice problems. Asiacrypt’08, 2008.
36. K. Kurosawa, L. Phong, and R. Nojima. Generic fully simulatable adaptive obli-

vious transfer. ACNS 2011, 2011.

29



37. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
Asiacrypt 2016, 2016.

38. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-knowledge ar-
guments for matrix-vector relations and lattice-based group encryption. Asiacrypt
2016, 2016.

39. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. Eurocrypt 2016, 2016.

40. A. Y. Lindell. Efficient fully-simulatable oblivious transfer. CT-RSA, 2008.
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