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Abstract. Oblivious RAM (ORAM) is a powerful cryptographic build-
ing block that allows a program to provably hide its access patterns to
sensitive data. Since the original proposal of ORAM by Goldreich and
Ostrovsky, numerous improvements have been made. To date, the best
asymptotic overhead achievable for general block sizes isO(log2N/ log logN),
due to an elegant scheme by Kushilevitz et al., which in turn relies on
the oblivious Cuckoo hashing scheme by Goodrich and Mitzenmacher.
In this paper, we make the following contributions: we first revisit the
prior O(log2N/ log logN)-overhead ORAM result. We demonstrate the
somewhat incompleteness of this prior result, due to the subtle incom-
pleteness of a core building block, namely, Goodrich and Mitzenmacher’s
oblivious Cuckoo hashing scheme.
Even though we do show how to patch the prior result such that we can
fully realize Goodrich and Mitzenmacher’s elegant blueprint for oblivi-
ous Cuckoo hashing, it is clear that the extreme complexity of oblivious
Cuckoo hashing has made understanding, implementation, and proofs
difficult. We show that there is a conceptually simpleO(log2N/ log logN)-
overhead ORAM that dispenses with oblivious Cuckoo hashing entirely.
We show that such a conceptually simple scheme lends to further exten-
sions. Specifically, we obtain the first O(log2N/ log logN) Oblivious Par-
allel RAM (OPRAM) scheme, thus not only matching the performance of
the best known sequential ORAM, but also achieving super-logarithmic
improvements in comparison with known OPRAM schemes.
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1 Introduction

Oblivious RAM [19, 20, 37], originally proposed in the seminal work by Gol-
dreich and Ostrovsky [19, 20], is a powerful cryptographic primitive that prov-
ably obfuscates a program’s access patterns to sensitive data. Since Goldreich
and Ostrovsky’s original work [19, 20], numerous subsequent works have pro-
posed improved constructions, and demonstrated a variety of ORAM applica-
tions in both theoretical contexts (e.g., multiparty computation [23,27], Garbled

? The full version of this paper is available on Cryptology ePrint Archive [7].



RAMs [18, 28]) as well as in secure hardware and software systems (e.g., secure
processors [15, 16, 29, 36], and cloud outsourcing [22, 35, 38, 39, 43]). To hide ac-
cess patterns, an ORAM scheme typically involves reading, writing, or shuffling
multiple blocks for every data request. Suppose that on average, for each data
request, an ORAM scheme must read/write X blocks. In this paper, we refer to
X as the overhead (or the total work blowup) of the ORAM scheme.

Goldreich and Ostrovsky [19, 20] showed that, roughly speaking, any “natu-
ral” ORAM scheme that treats each block as an “opaque ball” must necessarily
suffer from at least logarithmic overhead. The recent Circuit ORAM [41] work
demonstrated an almost matching upper bound for large enough blocks. Let N
denote the total memory size. Circuit ORAM showed the existence of a statisti-
cally secure ORAM scheme that achieves O(α logN) overhead for N ε-bit blocks
for any constant ε > 0 and any super-constant function α = ω(1). To date,
the existence of an almost logarithmic ORAM scheme is only known for large
blocks. For general block sizes, the state of affairs is different: the best known
construction (asymptotically speaking) is a computationally secure scheme by

Kushilevitz et al. [26], which achieves O( log2N
log logN ) overhead assuming block sizes

of Ω(logN)3. We note that all known ORAM schemes assume that a memory
block is at least large enough to store its own address, i.e., at least Ω(logN) bits
long. Therefore, henceforth in this paper, we use the term “general block size”
to refer to a block size of Ω(logN).

Although most practical ORAM implementations (in the contexts of secure
multi-party computation, secure processors, and storage outsourcing) opted for
tree-based ORAM constructions [37, 40, 41] due to tighter practical constants,
we note that hierarchical ORAMs are nonetheless of much theoretical interest:
for example, when the CPU has O(

√
N) private cache, hierarchical ORAMs can

achieve O(logN) simulation overhead while a comparable result is not known in
the tree-based framework. Recent works [3, 8] have also shown how hierarchical
ORAMs can achieve asymptotically better locality and IO performance than
known tree-based approaches.

Our contributions. In this paper, we make the following contributions:

– Revisit O(log2N/ log logN) ORAMs. We revisit how to construct a com-

putationally secure ORAM with O( log2N
log logN ) overhead for general block sizes.

First, we show why earlier results along this front [22, 26] are somewhat in-
complete due to the incompleteness of a core building block, oblivious Cuckoo
hashing, that is proposed and described by Goodrich and Mitzenmacher [22].
Next, besides fixing and restating the earlier results regarding the existence
of an O(log2N/ log logN) ORAM, perhaps more compellingly, we show how
to obtain an ORAM with the same asymptotic overhead, but in a conceptu-
ally much simpler manner, completely obviating the need to perform oblivious
Cuckoo hashing [22] which is the center of complexity in the earlier result [26].

3 This O( log2 N
log logN

) result for computational security was later matched in the tree-
based ORAM framework [9, 14] although tree-based ORAMs were initially investi-
gated for the case of statistical security.



– New results on efficient OPRAMs. Building on our new ORAM scheme,
we next present the first Oblivious Parallel RAM (OPRAM) construction

that achieves O( log2N
log logN ) simulation overhead. To the best of our knowledge,

our OPRAM scheme is the first one to asymptotically match the best known
sequential ORAM scheme for general block sizes. Moreover, we achieve a
super-logarithmic factor improvement over earlier works [5, 10] and over the
concurrent work by Nayak et al. [31] (see further clarifications in Section 1.3).

We stress that our conceptual simplicity and modular approach can open
the door for possible improvements. For example, our OPRAM results clearly
demonstrate the benefits of having a conceptually clean hierarchical ORAM
framework: had we tried to make (a corrected variant of) Kushilevitz et al. [26]
into an OPRAM, it is not clear whether we could have obtained the same perfor-
mance. In particular, achieving O(log2N/ log logN) worst-case simulation over-
head requires deamortizing a parallel version of their oblivious cuckoo hash re-
building algorithm, and moreover, work and depth have to be deamortized at
the same time — and we are not aware of a way to do this especially due to the
complexity of their algorithm.

1.1 Background on Oblivious Hashing and Hierarchical ORAMs

In this paper, we consider the hierarchical framework, originally proposed by
Goldreich and Ostrovsky [19, 20], for constructing ORAM schemes. At a high
level, this framework constructs an ORAM scheme by having exponentially grow-
ing levels of capacity 1, 2, 4, . . . , N respectively, where each smaller level can be
regarded as a “stash” for larger levels. Each level in the hierarchy is realized
through a core abstraction henceforth called oblivious hashing in the remainder
of this paper. Since oblivious hashing is the core abstraction we care about, we
begin by explicitly formulating oblivious hashing as the following problem:

– Functional abstraction. Given an array containing n possibly dummy ele-
ments where each non-dummy element is a (key, value) pair, design an effi-
cient algorithm that builds a hash table data structure, such that after the
building phase, each element can be looked up by its key consuming a small
amount of time and work. In this paper, we will assume that all non-dummy
elements in the input array have distinct keys.

– Obliviousness. The memory access patterns of both the building and lookup
phases do not leak any information (to a computationally bounded adversary)
about the initial array or the sequence of lookup queries Q — as long as all
non-dummy queries in Q are distinct. In particular, obliviousness must hold
even when Q may contain queries for elements not contained in the array in
which case the query should return the result ⊥. The correct answer to a
dummy query is also ⊥ by convention.

Not surprisingly, the performance of a hierarchical ORAM crucially depends
on the core building block, oblivious hashing. Here is the extent of our knowledge
about oblivious hashing so far:



– Goldreich and Ostrovsky [19, 20] show an oblivious variant of normal balls-
and-bins hashing that randomly throws n elements into n bins. They show
that obliviously building a hash table containing n elements costsO(αn log n log λ)
work, and each query costs O(α log λ) work. If α is any super-constant func-
tion, we can attain a failure probability negl(λ). This leads to an O(α log3N)-
overhead ORAM scheme, where N is the total memory size4.

– Subsequently, Goodrich and Mitzenmacher [22] show that the Cuckoo hashing
algorithm can be made oblivious, incurring O(n log n) total work for building
a hash table containing n elements, and only O(1) query cost (later we will
argue why their oblivious hashing scheme is somewhat incomplete). This
leads to an ORAM scheme with O(log2N)-overhead.

– Kushilevitz et al. [26] in turn showed an elegant reparametrization trick
atop the Goodrich and Mitzenmacher ORAM, thus improving the over-

head to O( log2N
log logN ). Since Kushilevitz et al. [26] crucially rely on Goodrich

and Mitzenmacher’s oblivious Cuckoo hashing scheme, incompleteness of the

hashing result in some sense carries over to their O( log2N
log logN ) overhead ORAM

construction.

1.2 Technical Roadmap

Revisit oblivious Cuckoo hashing. Goodrich and Mitzenmacher [22]’s blueprint
for obliviously building a Cuckoo hash table is insightful and elegant. They ex-
press the task of Cuckoo hash table rebuilding as a MapReduce task (with cer-
tain nice properties), and they show that any such MapReduce algorithm has
an efficient oblivious instantiation.

Fundamentally, their construction boils down using a sequence of oblivious
sorts over arrays of (roughly) exponentially decreasing lengths. To achieve full
privacy, it is necessary to hide the true lengths of these arrays during the course
of the algorithm. Here, Goodrich and Mitzenmacher’s scheme description and
their proof appear inconsistent: their scheme seems to suggest padding each
array to the maximum possible length for security — however, this would make
their scheme O(log3N) overhead rather than the claimed O(log2N). On the
other hand, their proof appears only to be applicable, if the algorithm reveals
the true lengths of the arrays — however, as we argue in detail in the online full
version [7], the array lengths in the cuckoo hash rebuilding algorithm contain
information about the size of each connected component in the cuckoo graph.
Thus leaking array lengths can lead to an explicit attack that succeeds with non-
negligible probability: at a high level, this attack tries to distinguish two request
sequences, one repeatedly requesting the same block whereas the other requests
disctinct blocks. The latter request sequence will cause the cuckoo graph in the
access phase to resemble the cuckoo graph in the rebuild phase, whereas the

4 Henceforth in this paper, we use n to denote the size of a hash table and λ to denote
its security parameter. For our ORAM construction, we use N to denote both the
logical memory size as well as the ORAM’s security parameter. This distinction is
necessary since the ORAM will employ hash tables of varying n.



former request sequence results in a fresh random cuckoo hash graph for the
access phase (whose connected component sizes are different than the rebuild
phase with relatively high probability).

As metioned earlier, the incompleteness of oblivious Cuckoo hashing also
makes the existence proof of an O(log2N/ log logN)-overhead ORAM somewhat
incomplete.

Is oblivious Cuckoo hashing necessary for efficient hierarchical ORAM?
Goodrich and Mitzenmacher’s oblivious Cuckoo hashing scheme is extremely
complicated. Although we do show in our online full version [7] that the in-
completeness of Goodrich and Mitzemacher’s construction and proofs can be
patched, thus correctly and fully realizing the elegant blueprint they had in
mind — the resulting scheme nonetheless suffers from large constant factors,
and is unsuitable for practical implementation. Therefore, a natural question is,
can we build efficient hierarchical ORAMs without oblivious Cuckoo hashing?

Our first insight is that perhaps oblivious Cuckoo hashing scheme is an
overkill for constructing efficient hierarchical ORAMs after all. As initial evi-
dence, we now present an almost trivial modification of the original Goldreich
and Ostrovsky oblivious balls-and-bins hashing scheme such that we can achieve
an O(αlog2N)-overhead ORAM for any super-constant function α.

Recall that Goldreich and Ostrovsky [19, 20] perform hashing by hashing
n elements into n bins, each of O(α log λ) capacity, where λ is the security
parameter. A simple observation is the following: instead of having n bins, we
can have n

α log λ bins — it is not hard to show that each bin’s occupancy will still

be upper bounded by O(α log λ) except with negl(λ) probability. In this way, we
reduce the size of the hash table by a log λ factor, and thus the hash table can be
obliviously rebuilt in logarithmically less time. Plugging in this new hash table
into Goldreich and Ostrovsky’s ORAM construction [19, 20], we immediately
obtain an ORAM scheme with O(α log2N) overhead.

This shows that through a very simple construction we can almost match
Goodrich and Mitzenmacher’s ORAM result [22]. This simple scheme does not
quite get us to where we aimed to be, but we will next show that oblivious Cuckoo

hashing is likewise an overkill for constructing ( log2N
log logN )-overhead ORAMs.

Conceptually simple ( log2N
log logN )-overhead ORAM. Recall that a hierarchi-

cal ORAM’s overhead is impacted by two cost metrics of the underlying obliv-
ious hashing scheme, i.e., the cost of building the hash-table, and the cost of
each lookup query. Goodrich and Mitzenmacher’s oblivious Cuckoo hashing
scheme [22] minimizes the lookup cost to O(1), but this complicates the building
of the hash-table.

Our key insight is that in all known hashing-based hierarchical ORAM con-
structions [19, 20, 22, 26], the resulting ORAM’s cost is dominated by the hash-
table rebuilding phase, and thus it may be okay if the underlying hashing scheme

is more expensive in lookup. More specifically, to obtain an O( log2N
log logN ) ORAM,

we would like to apply Kushilevitz et al. [26]’s reparametrized version of the
hierarchical ORAM. Kushilevitz et al. [26] showed that their reparametrization



technique works when applied over an oblivious Cuckoo hashing scheme. We
observe that in fact, Kushilevitz et al. [26]’s reparametrization technique is ap-
plicable for a much broader parameter range, and concretely for any oblivious
hashing scheme with the following characteristics:

– It takes O(n log n) total work to build a hash table of n elements — in other
words, the per-element building cost is O(log n).

– The lookup cost is asymptotically smaller than the per-element building cost
— specifically, O(logε λ) lookup cost suffices where ε ∈ (0.5, 1) is a suitable
constant.

This key observation allows us to relax the lookup time on the underlying
oblivious hashing scheme. We thus propose a suitable oblivious hashing scheme
that is conceptually simple. More specifically, our starting point is a (variant
of a) two-tier hashing scheme first described in the elegant work by Adler et
al. [1]. In a two-tier hashing scheme, there are two hash tables denoted H1 and
H2 respectively, each with n

logε λ bins of O(logε λ) capacity, where ε ∈ (0.5, 1) is

a suitable constant. To hash n elements (non-obliviously), we first throw each
element into a random bin in H1. For all the elements that overflow its bin ca-
pacity, we throw them again into the second hash table H2. Stochastic bounds
show that the second hash table H2 does not overflow except with negl(λ) proba-
bility. Clearly, the lookup cost is O(logε λ); and we will show that the hash table
building algorithm can be made oblivious through O(1) number of oblivious
sorts.

New results on oblivious parallel RAM. The conceptual simplicity of our
ORAM scheme not only makes it easier to understand and implement, but also
lends to further extensions. In particular, we construct a computationally se-
cure OPRAM scheme that has O(log2N/ log logN) overhead — to the best of
our knowledge, this is the first OPRAM scheme that matches the best known
sequential ORAM in performance for general block sizes. Concretely, the hier-
archical lookup phase can be parallelized using the standard conflict resolution
(proposed by Boyle et al. [5]) as this phase is read-only. In the rebuild phase,
our two-tier oblivious hashing takes only O(1) number of oblivious sort and
linear scan that marks excess elements, which can be parallelized with known
algorithms, i.e. range prefix sum.

As mentioned earlier, our modular approach and conceptual simplicity turned
out to be a crucial reason why we could turn our ORAM scheme into an OPRAM
— it is not clear whether (a corrected version of) Kushilevitz et al. [26] is
amenable to the same kind of transformation achieving the same overhead due
to complications in deamortizing their cuckoo hash rebuilding algorithm. Thus
we argue that our conceptually simple framework can potentially lend to other
possible applications and improvements.

1.3 Related Work

ORAMs. ORAM was first proposed in a seminal work by Goldreich and Ostro-
vsky [19,20] who showed a computationally secure scheme with O(α log3N) over-



head for general block sizes and for any super-constant function α = ω(1). Sub-

sequent works improve the hierarchical ORAM [22,26] and show that O( log2N
log logN )

overhead can be attained under computational security — our paper points out
several subtleties and the incompleteness of the prior results; additionally, we

show that it is possible to obtain such an O( log2N
log logN ) overhead in a conceptually

much simpler manner.

Besides the hierarchical framework, Shi et al. [37] propose a tree-based paradigm
for constructing ORAMs. Numerous subsequent works [11,40,41] improved tree-
based constructions. With the exception of a few works [14], the tree-based
framework was primarily considered for the construction of statistically secure
ORAMs. The performance of tree-based ORAMs depend on the block size, since
with a larger block size we can reduce the number of recursion levels in these
constructions. The recent Circuit ORAM work [41] shows that under block sizes
as large as N ε for any arbitrarily small constant ε, we can achieve α logN band-
width overhead for an arbitrary super-constant function α = ω(1) — this also
shows the (near) tightness of the Goldreich-Ostrovsky lower bound [19,20] show-
ing that any ORAM scheme must necessarily incur logarithmic overhead. Note
that under block sizes of at least log1+εN for an arbitrarily small constant ε, Cir-

cuit ORAM [41] can also attain O( log2N
log logN ) overhead and it additionally achieves

statistical security rather than computational.

OPRAMs. Since modern computing architectures such as cloud platforms and
multi-core architectures exhibit a high degree of parallelism, it makes sense to
consider the parallel counterpart of ORAM. Oblivious Parallel ORAM (OPRAM)
was first proposed by Boyle et al. [5], who showed a construction withO(α log4N)
overhead for any super-constant function α. Boyle et al.’s result was later im-
proved by Chen et al. [10], who showed how to achieve O(α log3N) overhead
with poly-logarithmic CPU private cache — their result also easily implies an
O(α log3N log logN) overhead OPRAM with O(1) CPU private cache, the set-
ting that we focus on in this paper for generality.

A concurrent and independent manuscript by Nayak et al. [31] further im-
proves the CPU-memory communication by extending Chen et al.’s OPRAM [10].
However, their scheme still requires O(α log3N log logN) CPU-CPU communi-
cation which was the dominant part of the overhead in Chen et al. [10]. Therefore,
under a general notion of overhead that includes both CPU-CPU communica-
tion and CPU-memory communication, Nayak et al.’s scheme still has the same
asymptotic overhead5 as Chen et al. [10] which is more than a logarithmic factor
more expensive in comparison with our new OPRAM construction.

In a companion paper, Chan et al. [9] showed how to obtain statistically se-
cure and computationally secure OPRAMs in the tree-based ORAM framework.
Specifically, they showed that for general block sizes, we can achieve statistically
secure OPRAM with O(log2N) simulation overhead and computationally secure
OPRAM with O(log2N/ log logN) simulation overhead. For the computation-

5 The title of their paper [31] suggests O(log2N) overhead, since they did not account
for the cost of CPU-CPU communication when describing the overhead.



ally secure setting, Chan et al. [9] achieves the same asymptotical overhead as
this paper, but the two constructions follow different paradigms so we believe
that they are both of value. In another recent work, Chan et al. [6] proposed a
new notion of depth for OPRAMs where the OPRAM is allowed to have more
CPUs than the original PRAM to further parallelize the computation. In this
paper, an OPRAM’s simulation overhead is defined as its runtime blowup as-
suming that the OPRAM consumes the same number of CPUs as the PRAM.

Non-oblivious techniques for hashing. Many hashing schemes [4, 12, 17,
25, 30] were considered in the (parallel) algorithms literature. Unfortunately,
most of them are not good candidates for constructing efficient ORAM and
OPRAM schemes since there is no known efficient and oblivious counterpart for
the algorithm. We defer detailed discussions of these related works to our online
full version [7].

2 Definitions and Building Blocks

2.1 Parallel Random Access Machines

We define a Parallel Random Access Machine (PRAM) and an Oblivious Parallel
Random Access Machine (OPRAM) in a similar fashion as Boyle et al. [5] as
well as Chan and Shi [9]. Some of the definitions in this section are borrowed
verbatim from Boyle et al. [5]. or Chan and Shi [9].

Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a
special-case PRAM.

Parallel Random Access Machine (PRAM). A parallel random-access ma-
chine (PRAM) consists of a set of CPUs and a shared memory denoted mem
indexed by the address space [N ] := {1, 2, . . . , N}. In this paper, we refer to
each memory word also as a block, and we use D to denote the bit-length of each
block.

We support a more general PRAM model where the number of CPUs in
each time step may vary. Specifically, in each step t ∈ [T ], we use mt to de-
note the number of CPUs. In each step, each CPU executes a next instruc-
tion circuit denoted Π, updates its CPU state; and further, CPUs interact

with memory through request instructions I(t) := (I
(t)
i : i ∈ [mt]). Specifi-

cally, at time step t, CPU i’s instruction is of the form I
(t)
i := (read, addr),

or I
(t)
i := (write, addr, data) where the operation is performed on the memory

block with address addr and the block content data ∈ {0, 1}D ∪ {⊥}.
If I

(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr]

at the beginning of time step t. Else if I
(t)
i = (write, addr, data), CPU i should

still receive the contents of mem[addr] at the beginning of time step t; further,
at the end of step t, the contents of mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be ex-
ecuted concurrently with other operations even if they visit the same address.



However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes (CRCW)
with an arbitary, parametrizable rule for write conflict resolution. In other
words, there exists some priority rule to determine which write operation
takes effect if there are multiple concurrent writes in some time step t.

– Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, our OPRAM algorithm must
ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the our compiled OPRAM uses a weaker PRAM model. For
a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [24].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM al-
gorithm to be oblivious, the inter-CPU communication pattern must be oblivious
too. We stress that such inter-CPU communication can be emulated using shared
memory reads and writes. Therefore, when we express our performance metrics,
we assume that all inter-CPU communication is implemented with shared mem-
ory reads and writes. In this sense, our performance metrics already account for
any inter-CPU communication, and there is no need to have separate metrics
that characterize inter-CPU communication. In contrast, some earlier works [10]
adopt separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each
CPU can only store O(1) memory blocks. Further, we assume for simplicity that
the runtime of the PRAM, the number of CPUs activited in each time step and
which CPUs are activited in each time step are fixed a priori and publicly known
parameters. Therefore, we can consider a PRAM to be a tuple

PRAM := (Π,N, T, (Pt : t ∈ [T ])),

whereΠ denotes the next instruction circuit,N denotes the total memory size (in
terms of number of blocks), T denotes the PRAM’s total runtime, and Pt denotes
the set of CPUs to be activated in each time step t ∈ [T ], where mt := |Pt|.

Finally, in this paper, we consider PRAMs that are stateful and can evaluate
a sequence of inputs, carrying state across in between. Without loss of generality,
we assume each input can be stored in a single memory block.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the
CPUs are allowed to generate private random numbers. For simplicity, we assume



that a randomized PRAM has a priori known, deterministic runtime, and that
the CPU activation pattern in each time step is also fixed a priori and publicly
known.

Memory access patterns. Given a PRAM program denoted PRAM and a se-
quence of inputs (inp1, . . . , inpd), we define the notation Addresses[PRAM](inp1, . . . , inpd)
as follows:

– Let T be the total number of parallel steps that PRAM takes to evaluate
inputs (inp1, . . . , inpd).

– Let At :=
{

(cput1, addrt1), (cput2, addrt2) . . . , (cputmt , addrtmt)
}

be the list of

(CPU id, address) pairs such that cputi accessed memory address addrti in
time step t.

– We define Addresses[PRAM](inp1, . . . , inpd) to be the random variable [At]t∈[T ].

Oblivious PRAM (OPRAM). A randomized PRAM is said to be computa-
tionally oblivious, iff there exists a p.p.t. simulator Sim, and a negligible function
ε(·) such that for any input sequence (inp1, . . . , inpd) where inpi ∈ {0, 1}D for
i ∈ [d],

Addresses[PRAM](inp1, . . . , inpd)
ε(N)
≈ Sim(1N , d, T, (Pt : t ∈ [T ]))

where
ε(N)
≈ means that no p.p.t. adversary can distinguish the two probability

ensembles except with ε(N) probability.
In other words, obliviousness requires that there is a polynomial-time simula-

tor Sim that can simulate the memory access patterns knowing only the memory
size N , the number of inputs d, the parallel runtime T for evaluating the inputs,
as well as the a-priori fixed CPU activation pattern (Pt : t ∈ [T ]). In particular,
the simulator Sim does not know anything about the sequence of inputs.

Oblivious simulation and simulation overhead. We say that a oblivious
PRAM, denoted as OPRAM, simulates a PRAM if for every input sequence
(inp1, . . . , inpd), OPRAM(inp1, . . . , inpd) = PRAM(inp1, . . . , inpd), i.e., OPRAM
and PRAM output the same outcomes on any input sequence. In addition, an
OPRAM scheme is a randomized PRAM algorithm such that, given any PRAM,
the scheme compiles PRAM into an oblivious PRAM, OPRAM, that simulates
PRAM.

For convenience, we often adopt two intermediate metrics in our descriptions,
namely, total work blowup and parallel runtime blowup. We say that an OPRAM
scheme has a total work blowup of x and a parallel runtime blowup of y, iff for
every PRAM step t in which the PRAM consumes mt CPUs, the OPRAM can
complete this step with x ·mt total work and in y parallel steps — if the OPRAM
is allowed to consume any number of CPUs (possibly greater than mt).

Fact 1 If there exists an OPRAM with x total work blowup and y parallel run-
time blowup such that x ≥ y, then there exists an OPRAM that has O(x) simula-
tion overhead when consuming the same number of CPUs as the orginal PRAM
for simulating at PRAM step.



In the interest of space, we defer the proof of this simple fact to the online
full version [7].

2.3 Oblivious Hashing Scheme

Without loss of generality, we define only the parallel version, since the sequential
version can be thought of the parallel version subject to executing on a single
CPU.

A parallel oblivious hashing scheme contains the following two parallel, pos-
sibly randomized algorithms to be executed on a Concurrent Read, Exclusive
Write PRAM:

– T ← Build(1λ, {(ki, vi) | dummy}i∈[n]): given a security parameter 1λ, and a
set of n elements, where each element is either a dummy denoted dummy or
a (key, value) pair denoted (ki, vi), the Build algorithm outputs a memory
data structure denoted T that will later facilitate query. For an input array
S := {(ki, vi) | dummy}i∈[n] to be valid, we require that any two non-dummy
elements in S must have distinct keys.

– v ← Lookup(T, k): takes in the data structure T and a (possibly dummy)
query k, outputs a value v.

Correctness. Correctness is defined in a natural manner: given a valid initial
set S := {(ki, vi) | dummy}i∈[n] and a query k, we say that v is the correct answer
for k with respect to S, iff

– If k = dummy (i.e., if k is a dummy query) or if k /∈ S, then v = ⊥.
– Else, it must hold that (k, v) ∈ S.

More informally, the answer to any dummy query must be ⊥; if a query searches
for an element non-existent in S, then the answer must be ⊥. Otherwise, the
answer returned must be consistent with the initial set S.

We say that a parallel oblivious hashing scheme is correct, if for any valid
initial set S, for any query k, and for all λ, it holds that

Pr
[
T← Build(1λ, S), v ← Lookup(T, k) : v is correct for k w.r.t. S

]
= 1

where the probability space is taken over the random coins chosen by the Build
and Lookup algorithms.

Obliviousness. A query sequence k = (k1, . . . , kj) is said to be non-recurrent,
if all non-dummy queries in k are distinct.

A parallel hashing scheme denoted (Build, Lookup) is said to be oblivious,
if there exists a polynomial-time simulator Sim, such that for any security pa-
rameter λ, for any valid initial set S, for any non-recurrent query sequence
k := (k1, . . . , kj) of polynomial length, it holds that

Addresses[Build, Lookup](1λ, S,k)
c≡ Sim(1λ, |S|, |k|)



where
c≡ denotes computationally indistinguishability, i.e., a computationally

bounded adversary can distinguish between the two distributions with an ad-
vantage at most negl(λ). Intuitively, this security definition says that a simulator,
knowing only the length of the input set and the number of queries, can simulate
the memory access patterns.

Definition 1 ( (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing
scheme). Let Wbuild(·, ·), Wlookup(·, ·), Tbuild(·, ·), and Tlookup(·, ·) be functions
in n and λ. We say that (Build, Lookup) is a (Wbuild, Tbuild,Wlookup, Tlookup)-
parallel oblivious hashing scheme, iff (Build, Lookup) satisfies correctness and
obliviousness as defined above; and moreover, the scheme achieves the following
performance:

– Building a hash table with n elements takes n ·Wbuild(n, λ) total work and
Tbuild(n, λ) time with all but negl(λ) probability. Note that Wbuild(n, λ) is the
per-element amount of work required for preprocessing.

– A lookup query takes Wlookup(n, λ) total work and Tlookup(n, λ) time.

As a special case, we say that (Build, Lookup) is a (Wbuild,Wlookup)-oblivious
hashing scheme, if it is a (Wbuild, ,Wlookup, )-parallel oblivious hashing scheme
for any choice of the wildcard field “ ” — in other words, in the sequential case,
we do not care about the scheme’s parallel runtime, and the scheme’s total work
is equivalent to the runtime when running on a single CPU.

[Read-only lookup assumption.] When used in ORAM, observe that ele-
ments are inserted in a hash table in a batch only in the Build algorithm. More-
over, we will assume that the Lookup algorithm is read-only, i.e., it does not
update the hash table data structure T, and no state is carried across between
multiple invocations of Lookup.

A note on the security parameter. Since later in our application, we will
need to apply oblivious hashing to different choices of n (including possibly
small choices of n), throughout the description of the oblivious hashing scheme,
we distinguish the security parameter denoted λ and the size of the set to be
hashed denoted n.

2.4 Building Blocks

Duplicate suppression. Informally, duplicate suppression is the following build-
ing block: given an input array X of length n consisting of (key, value) pairs and
possibly dummy elements where each key can have multiple occurrences, and
additionally, given an upper bound n′ on the number of distinct keys in X, the
algorithm outputs a duplicate-suppressed array of length n′ where only one oc-
currence of each key is preserved, and a preference function priority is used to
choose which one.

Earlier works have [5, 19, 20] proposed an algorithm that relies on oblivious
sorting to achieve duplicate suppression in O(n log n) work and O(log n) parallel
runtime where n := |X|.



Oblivious select. Select(X, k, priority) takes in an array X where each element
is either of the form (k, v) or a dummy denoted ⊥, a query k, and a priority
function priority which defines a total ordering on all elements with the same
key; and outputs a value v such that (k, v) ∈ X and moreover there exists no
(k, v′) ∈ X such that v′ is preferred over v for the key k by the priority function
priority.

Oblivious select can be accomplished using a simple tree-based algorithm [9]
in O(log n) parallel runtime and O(n) total work where n = |X|.
Oblivious multicast. Oblivious multicast is the following building block. Given
the following inputs:

– a source array X := {(ki, vi) | dummy}i∈[n] where each element is either of
the form (k, v) or a dummy denoted dummy, and further all real elements
must have a distinct k; and

– a destination array Y := {k′i}i∈[n] where each element is a query k′ (possibly
having duplicates).

the oblivious multicast algorithm outputs an array ans := {vi}i∈[n] such that if
k′i /∈ X then vi := ⊥; else it must hold that (k′i, vi) ∈ X.

Boyle et al. [5] propose an algorithm based on O(1) oblivious sorts that
achieves oblivious multicast in O(log n) parallel runtime and O(n log n) total
work.

Range prefix sum. We will rely on a parallel range prefix sum algorithm
which offers the following abstraction: given an input array X = (x1, . . . , xn) of
length n where each element of X is of the form xi := (ki, vi), output an array
Y = (y1, . . . , yn) where each yi is defined as follows:

– Let i′ ≤ i be the smallest index such that ki′ = ki′+1 = . . . = ki;
– yi :=

∑i
j=i′ vj .

In the GraphSC work, Nayak et al. [32] provide an oblivious algorithm that
computes the range prefix sum in O(log n) parallel runtime and O(n log n) total
work — in particular, their paper [32] defines a building block called “longest
prefix sum” which is a slight variation of the range prefix sum abstraction we
need. It is easy to see that Nayak et al.’s algorithm for longest prefix sum can
be modified in a straightforward manner to compute our notion of range prefix
sum.

3 Oblivious Two-Tier Hashing Scheme

In this section, we present a simple oblivious two-tier hashing scheme. Before
we describe our scheme, we make a couple important remarks that the reader
should keep in mind:

– Note that our security definition implies that the adversary can only observe
the memory access patterns, and we require simulatability of the memory



access patterns. Therefore our scheme description does not explicitly encrypt
data. When actually deploying an ORAM scheme, all data must be encrypted
if the adversary can also observe the contents of memory.

– In our oblivious hashing scheme, we use λ to denote the security parameter,
and use n to denote the hash table’s size. Our ORAM application will employ
hash tables of varying sizes, so n can be small. Observe that an instance of
hash table building can fail with negl(λ) probability; when this happens in
the context of ORAM, the hash table building is restarted. This ensures that
the ORAM is always correct, and the security parameter is related to the
running time of the ORAM.

– For small values of n, we need special treatment to obtain negl(λ) security
failure probability — specifically, we simply employ normal balls-and-bins
hashing for small values of n. Instead of having the ORAM algorithm deal
with this issue, we wrap this part inside the oblivious hashing scheme, i.e.,
the oblivious hashing scheme will automatically decide whether to employ
normal hashing or two-tier hashing depending on n and λ.
This modular approach makes our ORAM and OPRAM algorithms concep-
tually simple and crystallizes the security argument as well.

The goal of this section is to give an oblivious hashing scheme with the
following guarantee.

Theorem 1 (Parallel oblivious hashing). For any constant ε > 0.5, for any
α(λ) := ω(1), there exists a (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious
hashing scheme where

Wbuild = O(log n), Tbuild = O(log n),

Wlookup =

{
O(α log λ) if n < e3 logε λ

O(logε λ) if n ≥ e3 logε λ
, Tlookup = O(log log λ)

3.1 Construction: Non-Oblivious and Sequential Version

For simplicity, we first present a non-oblivious and sequential version of the
hashing algorithm, and we can use this version of the algorithm for the purpose
of our stochastic analysis. Later in Section 3.2, we will show how to make the
algorithm both oblivious and parallel. Henceforth, we fix some ε ∈ (0.5, 1).

Case 1: n < e3 logε λ. When n is sufficiently small relative to the security pa-
rameter λ, we simply apply normal hashing (i.e., balls and bins) in the following
manner. Let each bin’s capacity Z(λ) = α log λ, for any α = ω(1) superconstant
function in λ.

For building a hash table, first, generate a secret PRF key denoted sk
$←{0, 1}λ.

Then, store the n elements in B := d5n/Ze bins each of capacity Z, where each
element (k, ) is assigned to a pseudorandom bin computed as follows:

bin number := PRFsk(k).



Due to a simple application of the Chernoff bound, the probability that any bin
overflows is negligible in λ as long as Z is superlogarithmic in λ.

To look up an element with the key k, compute the bin number as above and
read the entire bin.

Case 2: n ≥ e3 logε λ. This is the more interesting case, and we describe our
two-tier hashing algorithm below.

– Parameters and data structure. Suppose that our memory is organized
into two hash tables named H1 and H2 respectively, where each hash table
has B := d n

logε λe bins, and each bin can store at most Z := 5 logε λ blocks.

– Build(1λ, {(ki, vi) | dummy}i∈[n]):

a) Generate a PRF key sk
$←{0, 1}λ.

b) For each element (ki, vi) ∈ S, try to place the element into the bin num-
bered PRFsk(1||ki) in the first-tier hash table H1. In case the bin is full,
instead place the element in the overflow pile henceforth denoted Buf.

c) For each element (k, v) in the overflow pile Buf, place the element into
the bin numbered PRFsk(2||k) in the second-tier hash table H2.

d) Output T := (H1,H2, sk).

– Lookup(T, k): Parse T := (H1,H2, sk) and perform the following.

a) If k = ⊥, i.e., this is a dummy query, return ⊥.

b) Let i1 := PRFsk(1||k). If an element of the form (k, v) is found in H1[i1],
return v. Else, let i2 := PRFsk(2||k), look for an element of the form (k, v)
in H2[i2] and return v if found.

c) If still not found, return ⊥.

Overflow event. If in the above algorithm, an element happens to choose a
bin in the second-tier hash table H2 that is full, we say that a bad event called
overflow has happened. When a hash building is called in the execution of an
ORAM, recall that if an overflow occurs, we simply discard all work thus far and
restart the build algorithm from the beginning.

In Section 3.4, we will prove that indeed, overflow events occur with negligible
probability. Therefore, henceforth in our ORAM presentation, we will simply
pretend that overflow events never happen during hash table building.

Remark 1. Since the oblivious hashing scheme is assumed to retry from scratch
upon overflows, we guarantee perfect correctness and computational security
failure (due to the use of a PRF). Similarly, our resulting ORAM and OPRAM
schemes will also have perfect correctness and computational security. Obviously,
the algorithms may execute longer if overflows and retries take place — hence-
forth in the paper, whenever we say that an algorithm’s total work or runtime is
bounded by x, we mean that it is bounded by x except with negligible probability
over the randomized execution.



3.2 Construction: Making it Oblivious

Oblivious Building. To make the building phase oblivious, it suffices to have
the following Placement building block.

Let B denote the number of bins, let Z denote each bin’s capacity, and let
R denote the maximum capacity of the overflow pile. Placement is the following
building block. Given an array Arr = {(elemi, posi) | dummy}i∈[n] containing n
possibly dummy elements, where each non-dummy element elemi is tagged with
a pseudo-random bin number posi ∈ [B], output B arrays {Bini}i∈[B] each of size
exactly Z and an overflow pile denoted Buf of size exactly R. The placement
algorithm must output a valid assignment if one exists. Otherwise if no valid
assignment exists, the algorithm should abort outputting hash-failure.

We say that an assignment is valid if the following constraints are respected:

i) Every non-dummy (elemi, posi) ∈ Arr exists either in some bin or in the
overflow pile Buf.

ii) For every Bini, every non-dummy element in Bini is of the form ( , i). In
other words, non-dummy elements can only reside in their targeted bin or
the overflow pile Buf.

iii) For every Bini, if there exists a dummy element in Bini, then no element of
the form ( , i) appears in Buf. In other words, no elements from each bin
should overflow to Buf unless the bin is full.

[Special case]. A special case of the placement algorithm is when the overflow
pile’s targeted capacity R = 0. This special case will be used when we create the
second-tier hash table.

Below, we show that using standard oblivious sorting techniques [2], Placement
can be achieved in O(n log n) total work:

1. For each i ∈ [B], add Z copies of filler elements (�, i) where � denotes that
this is a filler element. These filler elements are there to make sure that each
bin is assigned at least Z elements. Note that filler elements and dummy
elements are treated differently.

2. Oblivious sort all elements by their bin number. For elements with the same
bin number, break ties by placing real elements to the left of filler elements.

3. In a single linear scan, for each element that is not among the first Z elements
of its bin, tag the element with the label “excess”.

4. Oblivious sort all elements by the following ordering function:
– All dummy elements must appear at the very end;
– All non-excess elements appear before excess elements;
– For two non-excess elements, the one with the smaller bin number appears

first (breaking ties arbitrarily).
– For excess elements, place real elements to the left of filler elements.

Oblivious lookups. It remains to show how to make lookup queries oblivious.
To achieve this, we can adopt the following simple algorithm:



– If the query k 6= ⊥: compute the first-tier bin number as i1 := PRFsk(1||k).
Read the entire bin numbered i1 in the first-tier hash table H1. If found, read
an entire random bin in H2; else compute i2 := PRFsk(2||k) and read the
entire bin numbered i2 in the second-tier hash table H2. Finally, return the
element found or ⊥ if not found.

– If the query k = ⊥, read an entire random bin in H1, and an entire random bin
in H2. Both bin numbers are selected freshly and independently at random.
Finally, return ⊥.

3.3 Construction: Making it Parallel

To make the aforementioned algorithm parallel, it suffices to make the following
observations:

i) Oblivious sorting of n elements can be accomplished using a sorting circuit [2]
that involves O(n log n) total work and O(log n) parallel runtime.

ii) Step 3 of the oblivious building algorithm involves a linear scan of the array
marking each excessive element that exceeds its bin’s capacity.

This linear scan can be implemented in parallel using the oblivious “range
prefix sum” algorithm in O(n log n) total work and O(log n) parallel runtime.
We refer the reader to Section 2.4 for a definition of the range prefix sum
algorithm.

iii) Finally, observe that the oblivious lookup algorithm involves searching in
entire bin for the desired block. This can be accomplished obliviously and in
parallel through our “oblivious select” building block defined in Section 2.4.
Since each bin’s capacity is O(logε n), the oblivious select algorithm can be
completed in O(log log n) parallel runtime and tight total work.

Remark 2 (The case of small n). So far, we have focused our attention on the
(more interesting) case when n ≥ e3 logε λ. When n < e3 logε λ, we rely on normal
hashing, i.e., balls and bins. In this case, hash table building can be achieved
through a similar parallel oblivious algorithm that completes in O(n log n) to-
tal work and O(log n) parallel runtime; further, each lookup query completes
obliviously in O(α log λ) total work and O(log log λ) parallel runtime.

Performance of our oblivious hashing scheme. In summary, the resulting
algorithm achieves the following performance:

– Building a hash table with n elements takesO(n log n) total work andO(log n)
parallel runtime with all but negl(λ) probability, regardless of how large n is.

– Each lookup query takesO(logε λ) total work when n ≥ e3 logε λ andO(α log λ)
total work when n < e3 logε λ where α(λ) = ω(1) can be any super-constant
function. Further, regardless of how large n is, each lookup query can be
accomplished in O(log log λ) parallel runtime.



3.4 Overflow Analysis

We give the overflow analysis of the two-tier construction in Section 3.1. We use
the following variant of Chernoff Bound.

Fact 2 (Chernoff Bound for Binomial Distribution) Let X be a random
variable sampled from a binomial distribution (with any parameters). Then, for

any k ≥ 2E[X], Pr[X ≥ k] ≤ e− k6 .

Utilization of first-tier hash. Recall that the number of bins is B :=
⌈

n
logε λ

⌉
.

For i ∈ [B], let Xi denote the number of items that are sent to bin i in the
first-tier hash. Observe that the expectation E[Xi] = n

B ≥ logε λ.

Overflow from first-tier hash. For i ∈ [B], let X̂i be the number of items
that are sent to bin i in the first-tier but have to be sent to the overflow pile
because bin i is full. Recall that the capacity of a bin is Z := 5 logε λ. Then, it
follows that X̂i equals Xi − Z if Xi > Z, and 0 otherwise.
Tail bound for overflow pile. We next use the standard technique of moment
generating function to give a tail inequality for the number

∑
i X̂i of items in

the overflow pile. For sufficiently small t > 0, we have

E[etX̂i ] ≤ 1 +
∑
k≥1 Pr[Xi = Z + k] · etk ≤ 1 +

∑
k≥1 Pr[Xi ≥ Z + k] · etk ≤

1 +
exp(−Z6 )

e
1
6
−t−1

,

where the last inequality follows from Fact 2 and a standard computation of a

geometric series. For the special case t = 1
12 , we have E[e

X̂i
12 ] ≤ 1 + 12 exp(−Z6 ).

Lemma 1 (Tail Inequality for Overflow Pile). For k ≥ 288Be−
Z
6 , Pr[

∑
i∈[B] X̂i ≥

k] ≤ e− k
24 .

Proof. Fix t := 1
12 . Then, we have Pr[

∑
i∈[B] X̂i ≥ k] = Pr[t

∑
i∈[B] X̂i ≥ tk] ≤

e−tk ·E[et
∑
i∈[B] X̂i ], where the last inequality follows from the Markov’s inequal-

ity.
As argued in [13], when n balls are thrown independently into n bins uni-

formly at random, then the numbers Xi’s of balls received in the bins are
negatively associated. Since X̂i is a monotone function of Xi, it follows that

the X̂i’s are also negatively associated. Hence, it follows that E[et
∑
i∈[B] X̂i ] ≤∏

i∈[B]E[etX̂i ] ≤ exp(12Be−
Z
6 ).

Finally, observing that k ≥ 288Be−
Z
6 , we have Pr[

∑
i∈[B] X̂i ≥ k] ≤ exp(12Be−

Z
6 −

k
12 ) ≤ e− k

24 , as required.

In view of Lemma 1, we consider N := 288Be−
Z
6 as an upper bound on the

number of items in the overflow pile. The following lemma gives an upper bound
on the probability that a particular bin overflows in the second-tier hash.

Lemma 2 (Overflow Probability in the Second-Tier Hash). Suppose the

number of items in the overflow pile is at most N := 288Be−
Z
6 , and we fix some



bin in the second-tier hash. Then, the probability that this bin receives more than

Z items in the second tier hash is at most e−
Z2

6 .

Proof. Observe that the number of items that a particular bin receives is stochas-
tically dominated by a binomial distribution with N items and probability 1

B .

Hence, the probability that it is at least Z is at most
(
N
Z

)
·( 1
B )Z ≤ (NeZ )Z ·( 1

B )Z ≤
e−

Z2

6 , as required.

Corollary 1 (Negligible Overflow Probability). Suppose the number n of

items is chosen such that both Be−
Z
6 and Z2 are ω(log λ), where B :=

⌈
n

logε λ

⌉
and Z := d5 logε λe. Then, the probability that the overflow event happens in the
second-tier hash is negligible in λ.

Proof. Recall that B = d n
logε λe, where n ≥ e3 logε λ in Theorem 1. By choosing

N = 288Be−
Z
6 , from Lemma 1, the probability that there are more than N

items in the overflow pile is exp(−Θ(N)), which is negligible in λ.
Given that the number of items in the overflow pile is at most N , according

to Lemma 2, the probability that there exists some bin that overflows in the

second-tier hash is at most Be−
Z2

6 by union bound, which is also negligible in
λ, because we assume B ≤ poly(λ).

3.5 Obliviousness

If there is no overflow, for any valid input, Build accesses fixed addresses. Also,
Lookup fetches a fresh pseudorandom bin for each dummy or non-dummy re-
quest. Hence, the simulator is just running Build and Lookup with all dummy
requests. See the online full version [7] for the formal proof.

4 Modular Framework for Hierarchical ORAM

4.1 Preliminary: Hierarchical ORAM from Oblivious Hashing

Goldreich and Ostrovsky [19,20] were the first to define Oblivious RAM (ORAM)
and they provide an elegant solution to the problem which was since referred to
as the “hierarchical ORAM”. Goldreich and Ostrovsky [19,20] describe a special-
case instantiation of a hierarchical ORAM where they adopt an oblivious variant
of näıve hashing. Their scheme was later extended and improved by several
subsequent works [22,26,42].

In this section, we will present a generalized version of Goldreich and Ostro-
vsky’s hierarchical ORAM framework. Specifically, we will show that Goldreich
and Ostrovsky’s core idea can be interpreted as the following: take any obliv-
ious hashing scheme satisfying the abstraction defined in Section 2.3, we can
construct a corresponding ORAM scheme that makes blackbox usage of the
oblivious hashing scheme.



From our exposition, it will be clear why such a modular approach is com-
pelling: it makes both the construction and the security proof simple. In compar-
ison, earlier hierarchical ORAM works do not adopt this modular approach, and
their conceptual complexity could sometimes confound the security proof [34].

Data structure. There are logN + 1 levels numbered 0, 1, . . . , L respectively,
where L := dlog2Ne is the maximum level. Each level is a hash table denoted
T0,T1, . . . ,TL where Ti has capacity 2i. At any time, each table Ti can be in
two possible states, available or full. Available means that this level is currently
empty and does not contain any blocks, and thus one can rebuild into this level.
Full means that this level currently contains blocks, and therefore an attempt
to rebuild into this level will effectively cause a cascading merge.

ORAM operations. Upon any memory access request (read, addr) or (write, addr, data),
perform the following procedure. For simplicity, we omit writing the security pa-
rameter of the algorithms, i.e., let Build(·) := Build(1N , ·), and let Lookup(·) :=
Lookup(1N , ·).

1. found := false.
2. For each ` = 0, 1, . . . L in increasing order,

– If not found, fetched := Lookup(T`, addr): if fetched 6= ⊥, let found := true,
data∗ := fetched.

– Else Lookup(T`,⊥).
3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ := {(addr, data)}.

Now perform the following hash table rebuilding:

– Let ` be the smallest level index such that T` is marked available. If all
levels are marked full, then ` := L. In other words, ` is the target level to
be rebuilt.

– Let S := T∅ ∪ T0 ∪ T1 ∪ . . . ∪ T`−1; if all levels are marked full, then
additionally let S := S ∪ TL. Further, tag each non-dummy element in S
with its level number, i.e., if a non-dummy element in S comes from Ti,
tag it with the level number i.

– T` := Build(SuppressDuplicate(S, 2`, pref)), and mark T` as full. Further, let
T0 = T1 = . . . = T`−1 := ∅ and their status bits set to available. Here we
adopt the following priority function pref:

When two or more real blocks with the same address (i.e., key) exist,
the one with the smaller level number is preferred (and the algorithm
maintains the invariant that no two blocks with the same address and
the same level number should exist).

4. Return data∗.

Deamortization. In the context of hierarchical ORAM, a hash table of capac-
ity n is rebuilt every n memory requests, and we typically describe the ORAM’s
overhead in terms of the amortized cost per memory request. As one may ob-
serve, every now and then, the algorithm needs to rebuild a hash table of size
N , and thus a small number of memory requests may incur super-linear cost to
complete.



A standard deamortization technique was described by Ostrovsky and Shoup [33]
to evenly spread the cost of hash table rebuilding over time, and this deamorti-
zation framework only blows up the total work of the ORAM scheme by a small
constant factor; the details are in the online full version [7]. In the rest of the
paper, we assume that every instance of hash table used in an ORAM scheme
is rebuilt in the background using this deamortization technique without explic-
itly mentioning so. Further, the stated costs in the theorems are applicable to
worst-case performance (not just amortized).

Obliviousness. To show obliviousness of the above construction, we make the
following observations.

Fact 3 (Non-recurrent queries imply obliviousness) In the aforementioned
ORAM construction, as long as lookup queries to every instance of hash table
satisfies the non-recurrent condition specified in Section 2.3, the resulting ORAM
scheme satisfies obliviousness.

The proof of this fact is deferred to our online full version [7].

Fact 4 (Non-recurrence condition is preserved) In the above ORAM con-
struction, it holds that for every hash table instance, all lookup queries it receives
satisfy the non-recurrence condition.

Proof. Due to our ORAM algorithm, every 2` operations, the old instance of
hash table T` is destroyed and a new hash table instance is created for T`. It
suffices to prove the non-recurrence condition in between every two rebuilds for
T`. Suppose that after T` is rebuilt in some step, now we focus on the time
steps going forward until the next rebuild. Consider when a block block∗ is first
found in T` where ` ∈ [L], block∗ is entered into T∅. Due to the definition of the
ORAM algorithm, until the next time T` is rebuilt, block∗ exists in some T`′
where `′ < `. Due to the way the ORAM performs lookups — in particular, we
would look up a dummy element in T` if block∗ is found in a smaller level — we
conclude that until T` is rebuilt, no lookup query will ever be issued again for
block∗ to T`.

Lemma 3 (Obliviousness). Suppose that the underlying hashing scheme sat-
isfies correctness and obliviousness as defined in Section 2.3, then it holds that
the above ORAM scheme satisfies obliviousness as defined in Section 2.2.

Proof. Straightforward from Facts 3 and 4.

Theorem 2 (Hierarchical ORAM from oblivious hashing). Assume the
existence of one-way functions and a (Wbuild,Wlookup)-oblivious hashing scheme.
Then, there exists an ORAM scheme that achieves the following blowup for block
sizes of Ω(logN) bits:

ORAM’s blowup := max

(
logN∑
`=0

Wbuild(2`, N),

logN∑
`=0

Wlookup(2`, N)

)
+O(log2N)



This theorem is essentially proved by Goldreich and Ostrovsky [19, 20] — how-
ever, they proved it only for a special case. We generalize their hierarchical
ORAM construction and express it modularly to work with any oblivious hash-
ing scheme as defined in Section 2.3.

Remark 3. We point out that due to the way we define our oblivious hashing
abstraction, each instance of oblivious hash table will independently generate a
fresh PRF key during Build, and this PRF key is stored alongside the resulting
hash table data structure in memory. Throughout this paper, we assume that
each PRF operation can be evaluated in O(1) runtime on top of our RAM.
We stress that this implicit assumption (or equivalent) was made by all earlier
ORAM works [19, 20, 22, 26] that rely on a PRF for security.

4.2 Preliminary: Improving Hierarchical ORAM by Balancing
Reads and Writes

Subsequent to Goldreich and Ostrovsky’s ground-breaking result [19,20], Kushile-
vitz et al. [26] propose an elegant optimization for the hierarchical ORAM frame-
work such that under some special conditions to be specified later, they can shave
a (multiplicative) log logN factor off the total work for a hierarchical ORAM
scheme. Similarly, Kushilevitz et al. [26] describe a special-case instantiation of
an ORAM scheme based on oblivious Cuckoo hashing which was proposed by
Goodrich and Mitzenmacher [22].

In this section, we observe that the Kushilevitz et al.’s idea can be generalized.
For the sake of exposition, we will first ignore the smaller ORAM levels that
employ normal hashing in the following discussion, i.e., we assume that the
smaller levels that employ normal hashing will not be a dominating factor in
the cost. Now, imagine that there is an oblivious hashing scheme such that for
sufficiently large n, the per-element cost for preprocessing is more expensive than
the cost of a lookup by a logδ n factor for some constant δ > 0. In other words,
imagine that there exists a constant δ > 0 such that the following condition is
met for sufficiently large n:

Wbuild(n, λ)

Wlookup(n, λ)
≥ logδ n.

If the underlying oblivious hashing scheme satisfies the above condition,
then Kushilevitz et al. [26] observes that Goldreich and Ostrovsky’s hierarchical
ORAM construction is suboptimal in the sense that the cost of fetch phase is
asymptotically smaller than the cost of the rebuild phase. Hence, the resulting
ORAM’s total work will be dominated by the rebuild phase, which is then deter-
mined by the building cost of the underlying hashing scheme, i.e., Wbuild(n, λ).

Having observed this, Kushilevitz et al. [26] propose the following modifica-
tion to Goldreich and Ostrovsky’s hierarchical ORAM [19,20]. In Goldreich and
Ostrovsky’s ORAM, each level is a factor of 2 larger than the previous level —
henceforth the parameter 2 is referred to the branching factor. Kushilevitz et



al. [26] proposes to adopt a branching factor of µ := logN instead of 2, and this
would reduce the number of levels to O(logN/ log logN) — in this paper, we
will adopt a more general choice of µ := logφN for a suitable positive constant
φ. To make this idea work, they allow up to µ − 1 simultaneous hash table in-
stances for any ORAM level. If for all levels below `, all instances of hash tables
are full, then all levels below ` will be merged into a new hash table residing at
level ` + 1. The core idea here is to balance the cost of the fetch phase and the
rebuild phase by having a larger branching factor; and as an end result, we could
shave a log logN factor from the ORAM’s total work.

We now elaborate on this idea more formally.

Data structure. Let µ := logφN for a suitable positive constant φ to be
determined later. There are O(logN/ log logN) levels numbered 0, 1, . . . , L re-
spectively, where L = dlogµNe denotes the maximum level. Except for level L,
for every other ` ∈ {0, 1, . . . , L − 1}: the `-th level contains up to µ − 1 hash
tables each of capacity µ`. Henceforth we use the notation T` to denote level `,
and Ti` to denote the i-th hash table within level `. The largest level L contains a
single hash table of capacity N denoted T0

L. Finally, every level ` ∈ {0, 1, . . . , L}
has a counter c` initialized to 0. Effectively, for every level ` 6= L, if c` = µ− 1,
then the level is considered full; else the level is considered available.

ORAM operations. Upon any memory access query (read, addr) or (write, addr, data),
perform the following procedure.

1. found := false.

2. For each ` = 0, 1, . . . L in increasing order, for τ = c` − 1, c` − 2 . . . 0 in
decreasing order:

If not found: fetched := Lookup(Tτ` , addr); if fetched 6= ⊥, let found := true,
data∗ := fetched. Else Lookup(Tτ` ,⊥).

3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ := {(addr, data)}.
Now, perform the following hash table rebuilding.

– Let ` be the smallest level index such that its counter c` < µ − 1. If no
such level index exists, then let ` := L. In other words, we plan to rebuild
a hash table in level `.

– Let S := T∅∪T0∪T1∪. . . ,∪T`−1; and if ` = L, additionally, let S := S∪T0
L

and let cL = 0. Further, in the process, tag each non-dummy element in
S with its level number and its hash table number within the level. For
example, if a non-dummy element in S comes from Tτi , i.e., the τ -th table
in the i-th level, tag it with (i, τ).

– Let Tc`` := Build(SuppressDuplicate(S, µ`, pref)), and let c` := c` + 1.

Here we adopt the following priority function pref: when two or more blocks
with the same address (i.e., key) exist, the one with the smaller level number
is preferred; if there is a tie in level number, the one with the larger hash
table number is preferred.

– Let T0 = T1 = . . . = T`−1 := ∅ and set c0 = c1 = . . . = c`−1 := 0.

4. Return data∗.



Goldreich and Ostrovsky’s ORAM scheme [19, 20] is a special case of the
above for µ = 2.

Deamortization. The deamortization technique of Ostrovsky and Shoup [33]
(described in the online full version [7]) applies in general to hierarchical ORAM
schemes for which each level is some data structure that is rebuilt regularly.
Therefore, it can be applied to our scheme as well, and thus the work of rebuilding
hash tables is spread evenly across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented
in Section 4.1, since the only change here from Section 4.1 is that the parameters
are chosen differently due to Kushilevitz et al.’s elegant idea [26].

Theorem 3 (Hierarchical ORAM variant.). Assume the existence of one-
way functions and a (Wbuild,Wlookup)-oblivious hashing scheme. Then, there
exists an ORAM scheme that achieves the following blowup for block sizes of
Ω(logN) bits where L = O(logN/ log logN):

ORAM’s blowup := max

(
L∑
`=0

Wbuild(µ`, N), logφN ·
L∑
`=0

Wlookup(µ`, N)

)
+O(L logN)

We note that Kushilevitz et al. [26] proved a special case of the above the-
orem, we now generalize their technique and describe it in the most general
form.

4.3 Conceptually Simpler ORAM for Small Blocks

In the previous section, we presented a hierarchical ORAM scheme, reparametrized
using Kushilevitz et al. [26]’s technique, consuming any oblivious hashing scheme
with suitable performance characteristics as a blackbox.

To obtain a conceptually simple ORAM scheme with O(log2N/ log logN)
overhead, it suffices to plug in the oblivious two-tier hashing scheme described
earlier in Section 3.

Corollary 2 (Conceptually simpler ORAM for small blocks). There ex-
ists an ORAM scheme with O(log2N/ log logN) runtime blowup for block sizes
of Ω(logN) bits.

Proof. Using the simple oblivious two-tier hashing scheme in Section 3 with
ε = 3

4 , we can set φ = 1
4 in Theorem 3 to obtain the result.

4.4 IO Efficiency and the Case of Large CPU Cache

Besides the ORAM’s runtime, we often care about its IO performance as well,
where IO-cost is defined as the number of cache misses as in the standard
external-memory algorithms literature. When the CPU has a large amount of
private cache, e.g., N ε blocks where ε > 0 is an arbitrarily small constant, several
works have shown that oblivious sorting n ≤ N elements can be accomplished



with O(n) IO operations [8, 21, 22]. Thus, a direct corollary is that for the case
of N ε CPU cache, we can construct a computationally secure ORAM scheme
with O(logN) IO-cost (by using the basic hierarchical ORAM construction with
O(logN) levels with an IO-efficient oblivious sort).

5 Asymptotically Efficient OPRAM

In this section, we show how to construct an O( log2N
log logN ) OPRAM scheme. To

do this, we will show how to parallelize our new O( log2N
log logN )-overhead ORAM

scheme. Here we benefit tremendously from the conceptual simplicity of our new
ORAM scheme. In particular, as mentioned earlier, our oblivious two-tier hash-
ing (Build, Lookup) algorithms have efficient parallel realizations. We will now
present our OPRAM scheme. For simplicity, we first present a scheme assuming
that the number of CPUs in each step of the computation is fixed and does not
change over time. In this case, we show that parallelizing our earlier ORAM
construction boils down to parallelizing the (Build and Lookup) algorithms of
the oblivious hashing scheme. We then extend our construction to support the
case when the number of CPUs varies over time.

5.1 Intuition

Warmup: uniform number of CPUs. We first describe the easier case of
uniform m, i.e., the number of CPUs in the PRAM does not vary over time.
Further, we will consider the simpler case when the branching factor µ := 2.

– Data structure. Recall that our earlier ORAM scheme builds an exponentially
growing hierarchy of oblivious hash tables, of capacities 1, 2, 4, . . . , N each.
Here, we can do the same, but we can start the level of hierarchy at capacity
m = 2i (i.e., skip the smaller levels).

– OPRAM operations. Given a batch of m simultaneous memory requests, sup-
pose that all addresses requested are distinct — if not, we can run a standard
conflict resolution procedure as described by Boyle et al. [5] incurring only
O(logm) parallel steps consuming m CPUs. We now need to serve these re-
quests in parallel. In our earlier ORAM scheme, each request has two stages:
1) reading one block from each level of the exponentially growing hierarchy;
and 2) perform necessary rebuilding of the levels. It is not hard to see that
the fetch phase can be parallelized easily — particularly, observe that the
fetch phase is read-only, and thus having m CPUs performing the reads in
parallel will not lead to any write conflicts.
It remains to show how to parallelize the rebuild phase. Recall that in our
earlier ORAM scheme, each level has a status bit whose value is either avail-
able or full. Whenever we access a single block, we find the available (i.e.,
empty) level ` and merge all smaller levels as well as the updated block into
level `. If no such level ` exists, we simply merge all levels as well as the
updated block into the largest level.



Here in our OPRAM construction, since the smallest level is of size m, we
can do something similar. We find the smallest available (i.e., empty) level `,
and merge all smaller levels as well as the possibly updated values of the m
fetched blocks into level `. If no such level ` exists, we simply merge all levels
as well as possibly updated values of the m fetched blocks into the largest
level. Rebuilding a level in parallel effectively boils down to rebuilding a hash
table in parallel (which boils down to performing O(1) number of oblivious
sorts in parallel) — which we have shown to be possible earlier in Section 3.

Varying number of CPUs. Our definitions of PRAM and OPRAMs allow the
number of CPUs to vary over time. In this case, oblivious simulation of a PRAM
is more sophisticated. First, instead of truncating the smaller levels whose size
are less than m, here we have to preserve all levels — henceforth we assume
that we have an exponentially growing hierarchy with capacities 1, 2, 4, . . . , N
respectively. The fetch phase is simple to parallelize as before, since the fetch
phase does not make modifications to the data structure. We now describe a
modified rebuild phase when serving a batch of m = 2γ requests: note that in
the following, γ is a level that matches the current batch size, i.e., the number
of CPUs in the present PRAM step of interest:

(a) Suppose level γ is marked available. Then, find the first available (i.e., empty)
level ` greater than γ. Merge all levels below γ and the updated values of
the newly fetched m blocks into level `.

If no such level ` exists, then merge all blocks and the updated values of the
newly fetched m blocks into the largest level L.

(b) Suppose level γ is marked as full. Then, find the first available (i.e., empty)
level ` greater than γ. Merge all levels below or equal to γ (but not the
updated values of the m fetched blocks) into level `; rebuild level γ to contain
the updated values of the m fetched blocks.

Similarly, if no such level ` exists, then merge all blocks and the updated
values of the newly fetched m blocks into the largest level L.

One way to view the above algorithm is as follows: let us view the concate-
nation of all levels’ status bits as a binary counter (where full denotes 1 and
available denotes 0). If a single block is accessed like in the ORAM case, the
counter is incremented, and if a level flips from 0 to 1, this level will be rebuilt.
Further, if there would be a carry-over to the (L + 1)-st level, then the largest
level L is rebuilt. However, now m blocks may be requested in a single batch —
in this case, the above procedure for rebuilding effectively can be regarded as
incrementing the counter by some value v where v ≤ 2m — in particular, the
value v is chosen such that only O(1) levels must be rebuilt by the above rule.

We now embark on describing the full algorithm — specifically, we will de-
scribe for a general choice of the branching factor µ that is not necessarily 2.
Further, our description supports the case of varying number of CPUs.



5.2 Detailed Algorithm

Data structure. Same as in Section 4.2. Specifically, there areO(logN/ log logN)
levels numbered 0, 1, . . . , L respectively, where L = dlogµNe denotes the max-
imum level. Except for level L, for every other ` ∈ {0, 1, . . . , L − 1}: the `-th
level contains up to µ − 1 hash tables each of capacity µ`. Henceforth, we use
the notation T` to denote level `. Moreover, for 0 ≤ i < µ − 1, we use Ti` to
denote the i-th hash table within level `. The largest level L contains a single
hash table of capacity N denoted T0

L. Finally, every level ` ∈ {0, 1, . . . , L} has a
counter c` initialized to 0.

We say that a level ` < L is available if its counter c` < µ − 1; otherwise,
c` = µ− 1, and we say that the level ` < L is full. For the largest level L, we say
that it is available if cL = 0; else we say that it is full. Note that for the case of
general µ > 2, available does not necessarily mean that the level’s empty.

OPRAM operations. Upon a batch ofmmemory access requestsQ := {opp}p∈[m]

where each opp is of the form (read, addrp) or (write, addrp, datap), perform the
following procedure. Henceforth we assume that m = 2γ where γ denotes the
level whose capacity matches the present batch size.

1. Conflict resolution.Q′ := SuppressDuplicate(Q,m,PRAM.priority), i.e., per-
form conflict resolution on the batch of memory requests Q, and obtain a
batch Q′ of the same size but where each distinct address appears only once
— suppressing duplicates using the PRAM’s priority function priority, and
padding the resulting set with dummies to length m.

2. Fetch phase. For each opi ∈ Q′ in parallel where i ∈ [m], parse opi = ⊥ or
opi = (read, addri) or opi = (write, addri, datai):

(a) If opi = ⊥, let found := true; else let found := false.
(b) For each ` = 0, 1, . . . L in increasing order, for τ = c` − 1, c` − 2 . . . 0 in

decreasing order:
– If not found: fetched := Lookup(Tτ` , addri); if fetched 6= ⊥, let found :=

true, data∗i := fetched.
– Else, Lookup(Tτ` ,⊥).

3. Rebuild phase. For each opi ∈ Q′ in parallel where i ∈ [m]: if opi is a
read operation add (addri, data∗i ) to T∅; else if opi is a write operation, add
(addri, datai) to T∅; else add ⊥ to T∅.
Perform the following hash table rebuilding — recall that γ is the level whose
capacity matches the present batch size:

(a) If level γ is full, then skip this step; else, perform the following:
Let S := T0∪T1∪. . .∪Tγ−1, and T

cγ
γ := Build(SuppressDuplicate(S, µγ , pref))

where pref prefers a block from a smaller level (i.e., the fresher copy) if mul-
tiple blocks of the same address exists. Let cγ := cγ+1, and for every j < γ,
let cj := 0.

(b) – At this moment, if level γ is still available, then let T
cγ
γ := Build(T∅), and

cγ := cγ + 1.
– Else, if level γ is full, perform the following:

Find the first available level ` > γ greater than γ that is available; if no
such level ` exists, let ` := L and let cL := 0.



Let S := T∅ ∪T0 ∪ . . .∪T`−1; if ` = L, additionally include S := S ∪TL.
Let Tc`` := Build(SuppressDuplicate(S, µ`, pref)), and let c` := c` + 1. For
every j < `, reset cj := 0.

Deamortization. The deamortization technique (described in the online full
version [7]) of Ostrovsky and Shoup [33] applies here as well, and thus the work
of rebuilding hash tables are spread evenly across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented
in Section 4.1. Since we explicitly resolve conflict before serving a batch of m re-
quests, we preserve the non-recurrence condition. The only remaining differences
here in comparison with Section 4.1 is that 1) here we use a general branching
factor of µ rather than 2 (as in Section 4.1); and 2) here we consider the parallel
setting. It is clear that neither of these matter to the obliviousness proof.

Theorem 4 (OPRAM from oblivious parallel hashing). Assume the exis-
tence of one-way functions and a (Wbuild, Tbuild,Wlookup, Tlookup)-oblivious hash-
ing scheme. Then, there exists an ORAM scheme that achieves the following
performance for block sizes of Ω(logN) bits where L = O( logN

log logN ):

total work blowup := max

(
L∑
`=0

Wbuild(µ`, N), logφN ·
L∑
`=0

Wlookup(µ`, N)

)
+O(L logN),

and para. runtime blowup := max

(
{Tbuild(µ`, N)}`∈[L], logφN ·

L∑
`=0

Tlookup(µ`, N)

)
+O(L).

Proof. Basically, the proof is our explicit OPRAM construction from any parallel
oblivious hashing scheme described earlier in this section. For total work and
parallel runtime blowup, we basically take the maximum of the ORAM’s fetch
phase and rebuild phase. The additive term O(L logN) in the total work stems
from additional building blocks such as parallel duplicate suppression and other
steps in our OPRAM scheme; and same for the additive term O(L) in the parallel
runtime blowup.

Using the simple oblivious hashing scheme in Section 3 with ε = 3
4 , we can

set φ = 1
4 to obtain the following corollary.

Corollary 3 (Asympototically efficient OPRAM for small blocks). As-
sume that one-way functions exist. Then, there exists a computationally secure
OPRAM scheme that achieves O(log2N/ log logN) simulation overhead when
the block size is at least Ω(logN) bits.
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