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Abstract. In this work, we present two new universally composable, actively
secure, constant round multi-party protocols for generating BMR garbled circuits
with free-XOR and reduced costs.

1. Our first protocol takes a generic approach using any secret-sharing based
MPC protocol for binary circuits, and a correlated oblivious transfer func-
tionality.

2. Our specialized protocol uses secret-sharing based MPC with information-
theoretic MACs. This approach is less general, but requires no additional
correlated OTs to compute the garbled circuit.

In both approaches, the underlying secret-sharing based protocol is only used for
one secure P2 multiplication per AND gate. An interesting consequence of this is
that, with current techniques, constant round MPC for binary circuits is not much
more expensive than practical, non-constant round protocols.

We demonstrate the practicality of our second protocol with an implementation,
and perform experiments with up to 9 parties securely computing the AES and
SHA-256 circuits. Our running times improve upon the best possible performance
with previous BMR-based protocols by 60 times.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties to compute
some function f on the parties’ private inputs, while preserving a number of security
properties such as privacy and correctness. The former property implies data confiden-
tiality, namely, nothing leaks from the protocol execution but the computed output. The
latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties learn the correct output. Modern, practical
MPC protocols typically fall into two main categories: those based on secret-sharing
[18,35,5,13,22,15], and those based on garbled circuits [39,2,26,25,27,28,11,32]. When
it comes to choosing a protocol, many different factors need to be taken into account,
such as the function being evaluated, the latency and bandwidth of the network and the
adversary model.
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Secret-sharing based protocols such as [18,5,15] tend to have lower communication
requirements in terms of bandwidth, but require a large number of rounds of communi-
cation, which increases with the complexity of the function. In this approach the parties
first secret-share their inputs and then evaluate the circuit gate by gate while preserving
privacy and correctness. In low-latency networks, they can have an extremely fast online
evaluation stage, but the round complexity makes them much less suited to high-latency
networks, when the parties may be far apart.

Garbled circuits, introduced in Yao’s protocol [39], are the core behind all practical,
constant round protocols for secure computation. In the two-party setting, one of the
parties “encrypts” the circuit being evaluated, whereas the other party privately evalu-
ates it. Garbled circuit-based protocols have recently become much more efficient, and
currently give the most practical approach for actively secure computation of binary cir-
cuits [37,34]. With more than two parties, the situation is more complex, as the garbled
circuit must be computed by all parties in a distributed manner using another (non-
constant-round) MPC protocol, as in the BMR protocol from [2]. This still leads to a
low depth circuit, hence a constant round protocol overall, because all gates can be gar-
bled in parallel. We note that this paradigm has received very little attention, compared
with two-party protocols. The original BMR construction uses generic zero-knowledge
techniques for proving correct computation of PRG values, so is impractical. A differ-
ent protocol, but only for three parties, was designed by Choi et al. [11] in the dishonest
majority setting. More practical, actively secure protocols for any number of parties are
the recent works of Lindell et al. [29,31], which use somewhat homomorphic encryp-
tion (SHE) or generic MPC to garble a circuit. Ben-Efraim et al. [4] recently presented
and implemented an efficient multi-party garbling protocol based on oblivious transfer,
but with only semi-honest security. Very recently, Katz et al. introduced in [23] proto-
cols based on authenticated garbling, with a preprocessing phase that can be instantiated
based on TinyOT [33].

1.1 Our Contributions

In this work, we present a practical, actively secure, constant round multi-party protocol
for generating BMR garbled circuits with free-XOR in the presence of up to n — 1 out
of n corruptions. As in prior constructions, our approach has two phases: a preprocess-
ing phase where the garbled circuit is mutually generated by all parties, and an online
phase where the parties obtain the output of the computation. While the online phase
is typically efficient and incurs no cost to achieve active security, the focus of recent
works was on optimizing the preprocessing complexity, where the main bottleneck is
with respect to garbling AND gates. In that context, we present two new constant-round
protocols for securely generating the garbled circuit:

1. A generic approach using any secret-sharing based MPC protocol for binary cir-
cuits, and a correlated oblivious transfer functionality.

2. A specialized protocol which uses secret-sharing based MPC with information-
theoretic MACs, such as TinyOT [33,17]. This approach is less general, but requires
no additional correlated OTs to compute the garbled circuit.



In both approaches, the underlying secret-sharing based protocol is only used for
one secure Fo multiplication per AND gate.

In the first, more general method, every pair of parties needs to run one corre-
lated OT per AND gate, which costs O(x) communication for security parameter .
Combining this with the overhead induced by the correlated OTs in our protocol, we
obtain total complexity O(|C|kn?), assuming only symmetric primitives and O(k)
seed OTs between every pair of parties. This gives an overall communication cost of
O(M + |C|kn?) to evaluate a circuit C, where M is the cost of evaluating |C| AND
gates in the secret-sharing based protocol, /1. To realize 11, we can define a functional-
ity with multiplication depth 1 that computes all the AND gates in parallel (these mul-
tiplications can be computed in parallel as they are independent of the parties’ inputs).
Furthermore, the [21] compiler can be instantiated with semi-honest [18] as the inner
protocol and [12] as the outer protocol. By Theorem 2, Section 5 from [21], for some
constant number of parties m > 2, the functionality can be computed with communi-
cation complexity O(|C|) plus low order terms that depend on a statistical parameter
s, the circuit’s depth and log |C||. As in [21], this extends to the case of a non-constant
number of parties n, in which case the communication complexity grows by an addi-
tional factor of |C|poly(n).

Another interesting candidate for instantiating I7 would be to use an MPC protocol
optimized for SIMD binary circuits such as MiniMAC [16]. This is because in our
construction, all the AND gates can be computed in parallel. Currently, the only known
preprocessing methods [17] for MiniMAC are not practical, but this seems to be an
interesting future direction to explore.

TinyOT is currently the most practical approach to secret-sharing based MPC on
binary circuits, so the second method leads to a highly practical protocol for constant-
round secure computation. The complexity is essentially the same as TinyOT, as here
we do not require any additional OTs. However, the protocol is less general and has
worse asymptotic communication complexity, since TinyOT costs either O(|C|Brn?)
(with 2 parties or the recent protocol of [38]), or O(|C|B%kn?) (with [17]), where
B = O(1+ s/1og|C|) (and in practice is between 3-5), and s is the statistical security
parameter.

Our constructions employ several very appealing features. For a start, we embed into
the modeling of the preprocessing functionality, which computes the garbled circuit, an
additive error introduced into the garbling by the adversary. Concretely, we extend the
functionality from [29] so that it obtains a vector of additive errors from the adversary to
be applied to each garbled gate, which captures the fact that the adversary may submit
inconsistent keys and pseudorandom function (PRF) values. We further strengthen this
by allowing the adversary to pick the error adaptively after seeing the garbled circuit
(in prior constructions this error is independent of the garbling) and allowing corrupt
parties to choose their own PRF keys, possibly not at random. This requires a new
analysis and proof of the online phase.

Secondly, we devise a new consistency check to enforce correctness of inputs to
correlated OT, which is based on very efficient linear operations similar to recent ad-
vances in homomorphic commitments [9]. This check, combined with our improved
error analysis for the online phase, allows the garbled circuit to be created without au-



thenticating any of the parties’ keys or PRF values, which removes a significant cost
from previous works (saving a factor of £2(n)).

Implementation. We demonstrate the practicality of our TinyOT-based protocol with
an implementation, and perform experiments with up to 9 parties securely computing
the AES and SHA-256 circuits. In a 1Gbps LAN setting, we can securely compute
the AES circuit with 9 parties in just 620ms. This improves upon the best possible
performance that would be attainable using [29] by around 60 times. The details of our
implementation can be found in Section 6.

Comparison with Other Approaches Table 1 shows how the communication com-
plexity of our work compares with other actively secure, constant-round protocols. As
mentioned earlier, most previous constructions express the garbling function as an arith-
metic circuit over a large finite field. In these protocols, garbling even a single AND gate
requires computing O(n) multiplications over a large field with SHE or MPC. This
means they scale at least cubically in the number of parties. In constrast, our protocol
only requires one F, multiplication per AND gate, so scales with O(n?). Previous SHE-
based protocols also require zero-knowledge proofs of plaintext knowledge of SHE ci-
phertexts, which in practice are very costly. Note that the recent MASCOT protocol [24]
for secure computation of arithmetic circuits could also be used in [29], instead of SHE,
but this still has very high communication costs. We denote by MASCOT-BMR-FX an
optimized variant of [29], modified to use free-XOR as in our protocol, with multipli-
cations in o~ done using MASCOT. Finally, the recent concurrent work by Katz et al.
[23] is based on an optimized variant of TinyOT, with comparable performance to our
approach.

None of these previous works have reported implementations at the time of writing,
but our implementation of the TinyOT-based protocol improves upon the best times
that would be achievable with SPDZ-BMR and MASCOT by up to 60x. This is be-
cause our protocol has lower communication costs than [29] (by at least 2 orders of
magnitude) and the main computational costs are from standard symmetric primitives,
so far cheaper than using SHE.

Overall, our protocols significantly narrow the gap between the cost of constant-
round and many-round MPC protocols for binary circuits. More specifically, this im-
plies that, with current techniques, constant round MPC for binary circuits is not much
more expensive than practical, non-constant round protocols. Additionally, both of our
protocols have potential for future improvement by optimizing existing non-constant
round protocols: a practical implementation of MiniMAC [16] would lead to a very
efficient approach with our generic protocol, whilst any future improvements to multi-
party TinyOT would directly give a similar improvement to our second protocol.

1.2 Technical Overview

Our protocol is based on the recent free-XOR variant of BMR garbling used for semi-
honest MPC in [4]. In that scheme, a garbling of the g-th AND gate with input wires
u, v and output wire w, consists of the 4n values (where n is the number of parties):



Protocol Based on Free XOR Comms. per Garbled Gate

SPDZ-BMR [29] SHE + ZKPoPK X O(n*k)
SHE-BMR [31] SHE (depth 4) + ZKPoPK X O(n®k)
MASCOT-BMR-FX oT v O(n®k?)
This work §3 OT +[21] v O(n’k + poly(n))
This work §4 TinyOT v O(n*B?k)
[23] (concurrent) Optimized TinyOT v O(n*Bk)

Table 1. Comparison of actively secure, constant round MPC protocols. B = O(1 + s/ log |C|)
is a cut-and-choose parameter, which in practice is between 3—5. Our second protocol can also be
based upon optimized TinyOT to obtain the same complexity as [23].

gi,b = (@ Fka?a,ki_’b(guj)) @k, , M
i=1

O (R((Au®a) A ®b)®Ay)), (a,b) €{0,1}?, j € [n]

Here, F is a double-key PRF, R7 € {0,1}* is a fixed correlation string for free-XOR
known to party P;, and the keys kfw, kf) » € {0, 1} are also known to P;. Furthermore,
the wire masks A, Ay, Ay € {0, 1} are random, additively secret-shared bits known by
no single party.

The main idea behind BMR is to compute the garbling, except for the PRF values,
with a general MPC protocol. The analysis of [29] showed that it is not necessary to
prove in zero-knowledge that every party inputs the correct PRF values to the MPC
protocol that computes the garbling. This is because when evaluating the garbled circuit,
each party P; can check that the decryption of the j-th entry in every garbled gate gives
one of the keys kfﬂ »» and this check would overwhelmingly fail if any PRF value was
incorrect. It further implies that the adversary cannot flip the value transmitted through
some wire as that would require from it to guess a key.

Our garbling protocol proceeds by computing a random, unauthenticated, additive
secret sharing of the garbled circuit. This differs from previous works [29,31], which
obtain authenticated (with MACs, or SHE ciphertexts) sharings of the entire garbled
circuit. Our protocol greatly reduces this complexity, since the PRF values and keys
(on the first line of equation (1)) do not need to be authenticated. The main challenge,
therefore, is to compute shares of the products on the second line of (1). Similarly to [4],
a key observation that allows efficiency is the fact that these multiplications are either
between two secret-shared bits, or a secret-shared bit and a fixed, secret string. So, we
do not need the full power of an MPC protocol for arithmetic circuit evaluation over
Fa« or IF,, (for large p), as used in previous works.

To compute the bit product A, - A,,, we can use any actively secure GMW-style MPC
protocol for binary circuits. This protocol is only needed for computing one secure
AND per garbled AND gate, since all bit products in gi’b can be computed as linear



combinations of A, - A,, A, and \,. We then need to multiply the resulting secret-
shared bits by the string R’, known to P;. We give two variants for computing this
product, the first one being more general and the second more concretely efficient. In
more details,

1. The first solution performs the multiplication by running actively secure correlated
OT between P; and every other party, where P; inputs R’ as the fixed OT correla-
tion. The parties then run a consistency check by applying a universal linear hash
function to the outputs and sacrificing a few OTs, ensuring the correct inputs were
provided to the OT. This protocol is presented in Section 3.

2. The second method requires using a “TinyOT’-style protocol [17,6] based on information-
theoretic MACs, and allows us to compute the bit/string products directly from the
MACs, provided each party’s MAC key is chosen to be the same string R’ used in
the garbling. This saves interaction since we do not need any additional OTs. This
protocol is presented in Section 4.

After creating shares of all these products, the parties can compute shares of the
whole garbled circuit. These shares must then be rerandomized, before they can be
broadcast. Opening the garbled circuit in this way allows a corrupt party to introduce
further errors into the garbling by changing their share, even after learning the correct
garbled circuit, since we may have a rushing adversary. Nevertheless, we prove that the
BMR online phase remains secure when this type of error is allowed, as it would only
lead to an abort. This significantly strengthens the result from [29], which only allowed
corrupt parties to provide incorrect PRF values, and is an important factor that allows
our preprocessing protocol to be so efficient.

Concurrent Work Two recent works by Katz, Ranellucci and Wang introduced con-
stant round, two-party [38] and multi-party [23] protocols based on authenticated gar-
bling, with a preprocessing phase that can be instantiated based on TinyOT. At the time
of writing, their two-party paper also reports on an implementation, but the multi-party
version does not. Our work is conceptually quite similar, since both involve generating
a garbled circuit in a distributed manner using TinyOT. The main difference seems to be
that our protocol is symmetric, since all parties evaluate the same garbled circuit. With
authenticated garbling, the garbled circuit is only evaluated by one party. This makes
the garbled circuit slightly smaller, since there are n — 1 sets of keys instead of n, but
the online phase requires at least one more round of interaction (if all parties learn the
output). The works of Katz et al. also contain concrete and asymptotic improvements to
the two-party and multi-party TinyOT protocols, which improves upon the TinyOT pro-
tocol we give in the full version of this paper [20] by a factor of O(s/log |C|), where s
is a statistical parameter. These improvements can be directly plugged into our second
garbling protocol. We remark that the two-party protocol in [38] inspired our use of
TinyOT MAC:s to perform the bit/string multiplications in our protocol from Section 4.
The rest of our work is independent.
Another difference is that our protocol from Section 3 is more generic, since FpijtMpC

can be implemented with any secret-sharing based bit-MPC protocol, rather than just
TinyOT. This can be instantiated with [21] to obtain a constant-round protocol with



complexity O(|C|(kn? + poly(n))) in the OT-hybrid model. The multi-party paper [23]
does not have an analogous generic result.

2 Preliminaries

We denote the security parameter by x. We say that a function x : N — N is neg-
ligible if for every positive polynomial p(-) and all sufficiently large x it holds that
(k) < ﬁ. We use the abbreviation PPT to denote probabilistic polynomial-time.
We further denote by a < A the uniform sampling of a from a set A, and by [d] the set
of elements (1,...,d). We often view bit-strings in {0, 1}* as vectors in F§, depending
on the context, and denote exclusive-or by “®” or “+”. If a,b € Fy then a - b denotes
multiplication (or AND), and if ¢ € F5 then a - ¢ € F5 denotes the product of a with
every component of c.

For vectors © = (z1,...,%,) € Fy and y € FJ, the tensor product (or outer
product) x ® y is defined as the n X m matrix over F5 where the i-th row is x; - y. We
use the following property.

Fact21 Ifx € F},y € FY* and M € F3'*" then
M-(z@y)=M-z)2y.

Universal composability. We prove security of our protocols in the universal compos-
ability (UC) framework [7] (see also [8] for a simplified version of UC).

Communication model. We assume all parties are connected via authenticated commu-
nication channels, as well as secure point-to-point channels and a broadcast channel.
The default method of communication in our protocols is authenticated channels, un-
less otherwise specified. Note that in practice, these can all be implemented with stan-
dard techniques (in particular, for broadcast a simple 2-round protocol suffices, since
we allow abort [19]).

Adversary model. The adversary model we consider is a static, active adversary who
corrupts up to n — 1 out of n parties. This means that the identities of the corrupted
parties are fixed at the beginning of the protocol, and they may deviate arbitrarily from
the protocol.

2.1 Circular 2-Correlation Robust PRF

The BMR garbling technique from [29] is proven secure based on a pseudorandom
function (PRF) with multiple keys. However, since our scheme supports free-XOR, we
need to adapt the definition of correlation robustness with circularity from [10] given
for hash functions to double-key PRFs. This definition captures the related key and
circularity requirements induced by supporting the free-XOR technique. Formally, fix
some function F': {0,1}" x {0,1}" x {0,1}" — {0, 1}*. We define an oracle Circg
as follows:



— Circp(k1, k2, 9, J, b1, b2, bs) outputs Fy, ab, r kb, r(9]]7) © b3 R.

The outcome of oracle Circ is compared with the a random string of the same length
computed by an oracle Rand:

— Rand(k1, k2, g, 4, b1, ba, bs): if this input was queried before then return the answer
given previously. Otherwise choose u < {0, 1}* and return w.

Definition 21 (Circular 2-correlation robust PRF) A PRF F is circular 2-correlation
robust if for any non-uniform polynomial-time distinguisher D making legal queries to
its oracle, there exists a negligible function negl such that:

| Pr[R « {0,1}"; DCrer(0)(1%) = 1] — Pr[DRe"0)(1%) = 1]| < negl(x).

As in [10], some trivial queries must be ruled out. Specifically, the distinguisher is
restricted as follows: (1) it is not allowed to make any query of the form O(ky, k2, g, 5,0, 0, b3)
(since it can compute Fy, x,(g||j) on its own) and (2) it is not allowed to query both tu-
ples O(k1, ko, g,J, b1, b2,0) and O(k1, ko, g, j, b1, ba, 1) for any values k1, ko, g, j, b1, ba
(since that would allow it to trivially recover the global difference). We say that any dis-
tinguisher respecting these restrictions makes legal queries.

2.2 Almost-1-Universal Linear Hashing

We use a family of almost-1-universal linear hash functions over 5, defined by:

Definition 22 (Almost-1-Universal Linear Hashing) We say that a family H of linear
Sunctions T3 — F35 is e-almost 1-universal, if it holds that for every non-zero x € F3'
and for every y € [F5:

Pr [H(zx) =y| <

S H@) =yl <e

where H is chosen uniformly at random from the family H. We will identify functions
H € H with their s x m transformation matrix, and write H(x) = H - x.

This definition is slightly stronger than a family of almost-universal linear hash
functions (where the above need only hold for y = 0, as in [9]). However, this is still
much weaker than 2-universality (or pairwise independence), which a linear family of
hash functions cannot achieve, because H(0) = 0 always. The two main properties
affecting the efficiency of a family of hash functions are the seed size, which refers
to the length of the description of a random function H <— H, and the computational
complexity of evaluating the function. The simplest family of almost-1-universal hash
functions is the set of all s X m matrices; however, this is not efficient as the seed size
and complexity are both O(m - s). Recently, in [9], it was shown how to construct a
family with seed size O(s) and complexity O(m), which is asymptotically optimal. A
more practical construction is a polynomial hash based on GMAC (used also in [34]),
described as follows (here we assume that s divides m, for simplicity):

— Sample a random seed o < s



— Define H,, to be the function:
H,: F;/S — Fos, Ho(21,...,2m/s) = @ 21 +a? o4 +am® T/

Note that by viewing elements of Fy: as vectors in F5, multiplication by a fixed
field element o € [Fos is linear over IF5. Therefore, H,, can be seen as an [Fo-linear
map, represented by a unique matrix in F5*™.

Here, the seed is short, but the computational complexity is O(m - s). However, in
practice when s = 128 the finite field multiplications can be performed very efficiently
in hardware on modern CPUs. Note that this gives a 1-universal family withe = =*-27°,
This can be improved to 27° (i.e. perfect), at the cost of a larger seed, by using m/s
distinct elements «, instead of powers of a.

2.3 Commitment Functionality

We require a UC commitment functionality Fcommit (Figure 1). This can easily be im-
plemented in the random oracle model by defining Commit(x, P;) = H(z,,r), where
H is a random oracle and r <— {0, 1}".

The Functionality Fcommit

Commit: On input (Commit, x, i, 7, ) from P;, store (z, 14, 75 ) and output (7, 7,) to all par-
ties.

Open: On input (Open, 7, 7,,) by P;, output (x, %, 7) to all parties.
If instead (NoOpen, i, 7 ) is given by the adversary, and P; is corrupt, the functionality
outputs (L, %, 7) to all parties.

Fig. 1. Ideal commitments

2.4 Coin-Tossing Functionality

We use a standard coin-tossing functionality, Frand (Figure 2), which can be imple-
mented with UC commitments to random values.

Functionality Frandg

Upon receiving (rand, S) from all parties, where S is any efficiently sampleable set, it
samples r < S and outputs 7 to all parties.

Fig. 2. Coin-tossing functionality



2.5 Correlated Oblivious Transfer

In this work we use an actively secure protocol for oblivious transfer (OT) on correlated
pairs of strings of the form (a;,a; ® A), where A is fixed for every OT. The TinyOT
protocol [33] for secure two-party computation constructs such a protocol, and a sig-
nificantly optimized version of this is given in [34]. The communication cost is roughly
K + s bits per OT. The ideal functionality is shown in Figure 3.

Fixed Correlation OT Functionality - FcoT

Initialize: Upon receiving (init, A), where A € {0,1}" from Ps and (init) from Pg,
store A. Ignore any subsequent (init) commands.
Extend: Upon receiving (extend, z1,. .., Zm ) from Pg, where z; € {0, 1}, and (extend)
from Pg, do the following:
- Sample t; € {0,1}", for ¢ € [m]. If Pr is corrupted then wait for A to input ¢;.
- Compute g; = t; + z; - A, fori € [m)].
— If Pg is corrupted then wait for A to input ¢; € {0,1}" and recompute ¢; =
g + ;- A
— Output ¢; to Pr and ¢; to Ps, fori € [m)].

Fig. 3. Fixed correlation oblivious transfer functionality

2.6 Functionality for Secret-Sharing-Based MPC

We make use of a general, actively secure protocol for secret-sharing-based MPC for
binary circuits, which is modeled by the functionality Fginpc in Figure 4. This func-
tionality allows parties to provide private inputs, which are then stored and can be added
or multiplied internally by Fgitmpc, and revealed if desired. Note that we also need the
Multiply command to output a random additive secret-sharing of the product to all
parties; this essentially assumes that the underlying protocol is based on secret-sharing.

We use the notation (x) to represent a secret-shared value « that is stored internally
by Faitmpc, and define 2° to be party P;’s additive share of x (if it is known). We also
define the + and - operators on two shared values (x), (y) to call the Add and Multiply
commands of Fpitmpc, respectively, and return the identifier associated with the result.

2.7 BMR Garbling

The [2] garbling technique by Beaver, Micali and Rogaway involves garbling each
gate separately using pseudorandom generators while ensuring consistency between
the wires. This method was recently improved in a sequence of works [29,31,4], where
the latter work further supports the free XOR property. The main task of generating the
garbled circuit while supporting this property is to compute, for each AND gate g with
input wires u, v and output wire w, the 4n values:

10



The Bit MPC Functionality - Fgicmpc

The functionality runs with parties P, ..., P, and an adversary .A. The functionality main-
tains a dictionary, Val <+ {}, to keep track of values in Fa.

Input: On receiving (Input,idi,...,ide,21,...,2¢, P;) from party P; and
(Input,idy,. .., idg, P;) from all other parties, where x; € Fa, store Val[id;] < x;
fori € [£].

Add: On input (Add,id, ids, ..., id,) from all parties, where (idi, ..., id,) are keys in

Val, set Val[id] « >.'_, Val[id,].

Multiply: On input (multiply,id, idi, ido) from all parties, where (idi, ids) are keys in
Val, compute 3 < Val[id;]-Val[ida]. Receive shares y* € F from A, for i € I, then
sample random honest parties’ shares y’ € Fa, for j ¢ I, such that > | y* = y. Send
y" to party P, for i € [n], and store the value Val[id] + y.

Open: On input (Open, id) from all parties, where id is a key in Val, send = <— Val[id] to
A. Wait for an input from A. If it inputs OK then output x to all parties, otherwise output
1 and terminate.

Fig. 4. Functionality for GMW-style MPC for binary circuits

Ty = (G} Fka,a,k;,ggllj)) @kl 2)
i=1
S (R (A®a)- MN®b) @A), (a,b)€{0,1}% j € n]

where the wire masks Ay, Ay, Ay € {0, 1} are secret-shared between all parties, while
the PRF keys &, ., k? , and the global difference string R are known only to party P;.

u,a’

3 Generic Protocol for Multi-Party Garbling

We now describe our generic method for creating the garbled circuit using any secret-
sharing based MPC protocol (modeled by Fgi;nmpc) and the correlated OT functionality
Fcor. We first describe the functionality in Section 3.1 and the protocol in Section 3.2,
and then analyse its security in Section 3.4.

3.1 The Preprocessing Functionality

The preprocessing functionality, formalized in Figure 5, captures the generation of the
garbled circuit as well as an error introduced by the adversary. The adversary is allowed
to submit an additive error, chosen adaptively after seeing the garbled circuit, that is
added by the functionality to each entry when the garbled circuit is opened.

3.2 Protocol Overview

The garbling protocol, shown in Figure 6, proceeds in three main stages. Firstly, the
parties locally sample all of their keys and shares of wire masks for the garbled circuit.

11



The Preprocessing Functionality

Let F' be a circular 2-correlation robust PRF. The functionality runs with parties P, ..., P,
and an adversary .4, who corrupts a subset I C [n] of parties.

Garbling: On input (Garbling, C'y) from all parties, where C'y is a boolean circuit, denote
by W its set of wires and by G its set of AND gates. The functionality is defined as
follows:

— Sample a global difference R? < {0,1}*, foreach j ¢ I, and receive corrupt parties’
strings R* € {0,1}" from A, fori € I.
— Passing topologically through all the wires w € W of the circuit:
e If w is an input wire:
1. Sample A\, < {0, 1}. If P;, the party who provides input on that wire in the
online phase, is corrupt, instead receive \,, from A.
2. Sample a key kf;w < {0,1}", for each j ¢ I, and receive corrupt parties’
keys ki, o from A, for i € I. Define ki, , = ki, o @ R’ foralli € [n].
e If w is the output of an AND gate:
1. Sample A, < {0,1}.
2. Sample a key kfu,o + {0,1}", for each j ¢ I, and receive corrupt parties’
keys kfuyo from A, fori € I. Set ki, = k%, o ® R', fori € [n)].
o If w is the output of a XOR gate, and v and v its input wires:
1. Compute and store Ay, = Ay B Ay.
2. Fori € [n], set k;o = ki,o <) k270 and ki, = kfﬂ,o ® R
— For every AND gate g € G, the functionality computes the 4n entries of the garbled
version of g as:

gi,b = (EB Fk;,a,kg,b(gllj)> = ki,o
® (R]’ (P ®a)- Mo ®b) B )\w)) . (a,b) € {0,1)2, j € [n).

Set §ap = Gap ©...0gns (a,b) € {0,1}>. The functionality stores the values
ga,b-

— Wait for an input from A. If it inputs OK then output A, to all parties for each circuit-
output wire w, and output to each P; all the keys {k%, o }wew, and R’. Otherwise,
output | and terminate.

Open Garbling: On receiving (OpenGarbling) from all parties, when the Garbling com-
mand has already run successfully, the functionality sends to .A the values g, for all
g € G and waits for a reply.

— If Areturns L then the functionality aborts.

— Otherwise, the functionality receives 0K and an additive error e =
{€%"}abe0,1},9cc chosen by A. Afterwards, it sends to all parties the garbled
circuit g5 ® €2’ forall g € G and a,b € {0,1}.

Fig. 5. The Preprocessing Functionality Fprepocessing
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Secondly, the parties compute shares of the products of the wire masks and each party’s
global difference string; these are then used by each party to locally obtain a share of
the entire garbled circuit. Finally, the bit masks for the output wires are opened to all
parties. The opening of the garbled circuit is shown in Figure 7.

Concretely, each party P; starts by sampling a global difference string R? < {0, 1}*,
and for each wire w which is an output wire of an AND gate, or an input wire, P; also
samples the keys kfﬂ,o, kfﬂ 1= ka,O @® R’ and an additive share of the wire mask,
/\fu < Fy. As in [4], we let P; input the actual wire mask (instead of a share) for every
input wire associated with P;’s input.

In step 3, the parties compute additive shares of the bit products Ay, = Ay - A, € Fo,
and then, for each j € [n], shares of:

A R, Ny RY, Aypw- R €Y 3)

where Ayypw = Auw @ Ay, and u, v and w are the input and output wires of AND gate
g. We note that (as observed in [4]) only one bit/bit product and 3n bit/string products
are necessary, even though each gate has 4n entries, due to correlations between the
entries, as can be seen below.

We compute the bit multiplications using the Fpiivpc functionality on the bits that
are already stored by Fpitmpc. To compute the bit/string multiplications in (3), we use
correlated OT, followed by a consistency check to verify that the parties provided the
correct shares of )., and correlation R' to each Fcot instance; see Section 3.3 for
details.

Using shares of the bit/string products, the parties can locally compute an unauthen-
ticated additive share of the entire garbled circuit (steps 3d—4). First, for each of the four
values (a, b) € {0,1}2, each party P;,i # j computes the share

i faOu R @b - B ® (Aupw - R ifi # j
Piab =Y a- BRI @b- (AR ® (M - RI) @a-b-RI - ifi = j

These define additive shares of the values

Piab =R (a Xy ®b- Ay ® Apw D a - b)
=R - (A®a): (A ®D) ®\y)

Each party’s share of the garbled circuit is then obtained by adding the appropriate
PRF values and keys to the shares of each p; , ;. To conclude the Garbling stage, the
parties reveal the masks for all output wires using Fgitmpc, SO that the outputs can be
obtained in the online phase.

Before opening the garbled circuit, the parties must rerandomize their shares by
distributing a fresh, random secret-sharing of each share to the other parties, via private
channels. This is needed so that the shares do not leak any information on the PRF
values, so we can prove security. This may seem unnecessary, since the inclusion of
the PRF values in the shares should randomize them sufficiently. However, we cannot
prove this intuition, as the same PRF values are used to compute the garbled circuit that
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The Preprocessing Protocol I/p;cprocessing — Garbling Stage

Given a gate g, we denote by u (resp. v) its left (resp. right) input wire, and by w its output
wire. (-)* denotes the i-th share of an authenticated bit and (-)* the 4-th share of a string.

Let F : {0,1}** x [|G]] x [n] — {0,1}* be a circular 2-correlation robust PRF, and
G:{0,1}* — {0,1}*"*I%! be a PRG.

Garbling:
1. Each party P; samples a random key offset R < F5.
2. Generate wire masks and keys: For each wire w in topological order:
— If w is a circuit-input wire from P;:
(a) P;j calls Input on Feitmpc with a randomly sampled A, € {0,1} to
obtain (). P; defines the share A\, = \,,, every other P; sets A%, = 0.
(b) Every P; samples a key ka’O « {0,1}" and sets szﬂyl = k:fﬂyo @ R'.
— If the wire w is the output of an AND gate:
(a) Each P; calls Input on Fgiovpc with a randomly sampled X!, <«
{0,1}. The parties then compute the secret-shared wire mask as (A,) =
Zie [n] <A:u>
(b) Every P; samples a key kfu,o < {0,1}" and sets ki, ; = kfi,’o & R
— If the wire w is the output of a XOR gate:
(a) The parties compute the mask on the output wire as (Aw) = (Au) + (Av).
(b) Every P; sets kfu’o = kfw P ki,o and kfu’l = kfu,o ® R
3. Secure product computations:
(a) For each AND gate g € G, the parties compute (Ayy) = (Au) - (Av) by calling
Multiply on ]:BitMPC-
(b) Each P; calls Input on Fgitmpc with randomly sampled bits #4,..., &% For
€ € [s], the parties compute secret-shared mask (Z¢) =3¢, (&5).
(c) Forevery j € [n], the parties run the subprotocol ITgit x String, Where P; inputs
R? and everyone inputs the 3|G| + s shared bits:

(Aa)s Aoy Quo) + Q) ) a0 ((E1), -, (Es))-
where the (u, v, w) indices are taken over the input/output wires of each AND
gate g € G.

(d) For each AND gate g, party P; obtains from IIBit xString an additive share of
the 3n values (each defined as one row of the matrix Z; in this subprotocol):

A R, A RY Auww - RY, for j € [n]

where A\yyvw = Auw + Aw. Each P; then uses these to compute a share of

pj,a,b:>\uuw'Rj@a')\v'Rj@b'Au'Rj@a'b'Rj

4. Garble gates: For each AND gate g € G, each j € [n], and the four combinations
of a,b € {0,1}2, the parties compute shares of the j-th entry of the garbled gate
Ja,b as follows:

- Pjsets (gi,b)j = Piap ® Fk{,)a,k{) (9lly) © ki o-

,b
~ Foreveryi # j, P sets (7.,)' = phas © Frs i (9ll5).
5. Reveal masks for output wires: For every circuit-output-wire w, the parties call
Open on Fgitmpc to reveal Ay, to all the parties.

Fig. 6. The preprocessing protocol that realizes FPrepocessing in the

{Fcot, FBitMPC, FRand F Commit }-hybrid model.
14



The Preprocessing Protocol I/p cprocessing — Open Garbling Stage

Open Garbling: Let C' = ((gi’b)i)]"a’byg € {0,1}*"*I¢ be P,’s share of the whole
garbled circuit.
1. Each party P; samples random seeds s;- + {0,1}", j # 4. P; sends s§- to P; over
a private channel.
2. P; computes the shares S} = D, G(s%), and 57 = G(s), forj #i.°
3. Each P, fori =2,...,n,sends C* & @;L:l Sf to Pi.
4. P, reconstructs the garbled circuit, C, and broadcasts this.

4 Steps 1 to 2 are independent of C", so can be merged with previous rounds in the Garbling
stage.

Fig. 7. Open Garbling stage of the preprocessing protocol.

is output by the protocol, so they cannot also be used as a one-time pad.* In steps 1 to
2 of Figure 7, we show how to perform this extra rerandomization step with O(n? - k)
communication.

Finally, to reconstruct the garbled circuit, the parties sum up and broadcast the reran-
domized shares and add them together to get gf% be

3.3 Bit/String Multiplications

Our method for this is in the subrotocol IIgi;xsiring (Figure 8). It proceeds in two
stages: first the Multiply step creates the shared products, and then the Consistency
Check verifies that the correct inputs were used to create the products.

Recall that the task is for the parties to obtain an additive sharing of the products,

for each j € [n] and (a,b) € {0,1}>:
R (Au@®a) - (A ®b) D Ay) “

where the string R7 is known only to P;, and fixed for every gate. Denote by x one of
the additively shared A.) bits used in a single bit/string product and stored by Fgismpc-
We obtain shares of - R7 using actively secure correlated OT (cf. Figure 3), as follows:

1. For each ¢ # j, parties P; and P; run a correlated OT, with choice bit z* and
correlation R?. P; obtains T3 ; and P; obtains @); ; such that:

T;; = Qi,j +at R,

2. Each P, for i # j, defines the share Z* = T} ;, and P; defines Z7 = 3~ Qi j +
xJ - R7. Now we have:

* Furthermore, the environment sees all of the PRF keys of the honest parties, since these are
outputs of the protocol, which seems to rule out any kind of computational reduction in the
security proof.
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Zzi = ZTi,j +ZQi,j +al R = Z(Ti,j + Qi) +al R =x-R
i=1 i i i

as required.

The above method is performed 3|G| times and for each P;, to produce the shared
bit/string products z - R?, for z € { Ay, Ay, Auv }-

3.4 Consistency Check

We now show how the parties verify that the correct shares of = and correlations R’
were used in the correlated OTs, and analyse the security of this check. The parties first
create m + s bit/string products, where m is the number of products needed and s is a
statistical security parameter, and then open random linear combinations (over Fs) of
all the products and check correctness of the opened results. This is possible because
the products are just a linear function of the fixed string R’. In more detail, the parties
first sample a random e-almost 1-universal hash function H < F3'*°, and then open

c;=H-z+2

using Fpismpc. Here, @ is the vector of all m wire masks to be multiplied, whilst
& € Fj are the additional, random masking bits, used as a one-time pad to ensure that
¢, does not leak information on .

To verify that a single shared matrix Z; is equal to & ® R’ (as in Figure 8), each
party P;, for i # j, then commits to H - Z;, whilst P; commits to H - Zé +c, @RI,
The parties then open all commitments and check that these sum to zero, which should
happen if the products were correct.

The intuition behind the check is that any errors present in the original bit/string
products will remain when multiplied by H, except with probability ¢, by the almost-
1-universal property (Definition 22). Furthermore, it turns out that cancelling out any
non-zero errors in the check requires either guessing an honest party’s global difference
R, or guessing the secret masking bits 2.

We formalize this, by first considering the exact deviations that are possible by a
corrupt P; in IIpi;xstring. These are:

1. Provide inconsistent inputs R/ when acting as sender in the Initialize command of
the Fcor instances with two different honest parties.

2. Input an incorrect share 7 when acting as receiver in the Extend command of
Fcor.

Note that in both of these cases, we are only concerned when the other party in the
Fcor execution is honest, as if both parties are corrupt then Fcor does not need to be
simulated in the security proof.

We model these two attacks by defining R7* and 27 to be the actual inputs used
by a corrupt P; in the above two cases, and then define the errors (for j € T and i ¢ I):
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Bit/string multiplication subprotocol — I7g;; x string

Inputs: Each P; inputs the private global difference string R’ ¢ F%, which was gen-
erated in the main protocol. All parties input 3|G| authenticated, additively shared bits,
(x1),...,(r3q), and s additional, random shared bits, (Z1),...,(Zs), to be used as
masking values and discarded.

I: Init: Every ordered pair of parties (F;, P;) calls Initialize on Fcor, where P;, the
sender, inputs the global difference string R7.
II: Multiply: For each j € [n], the parties do as follows:
1. For every i # j, parties P; and P; call Extend on the Fcor instance where P; is

sender, and P; inputs the choice bits &’ = (xi, S ,xélc‘,:f:ﬁ, cey i;)
For each OT between (P;, Pj), P; receives ¢ € {0,1}" and P; receives ¢ €
{0,1}". P; stores their 3|G| + s strings from this instance into the rows of a matrix
T; j, and P; stores the corresponding outputs in Q; ;. These satisfy:

Ti,j — Qi,j +wz ®RJ c ]F(23\G\+s)><n.
2. Each P;, for ¢ # j, defines the matrix Z;- = T, ;, and P; defines Z? =
iy Qig + @ @ R
Now, it should hold that > | Z} =« ® R’, for each j € [n].
III: Consistency Check: The parties check correctness of the above as follows:
1. Each P; removes the last s rows from Z} (for j € [n]) and places these ‘dummy’

masking values in a matrix Z; € F3**. Similarly, redefine =° = (z%,. .. ,:cg‘Gl)
and let &" = (17, ..., 25%).
2. The parties call Frana (Figure 2) to sample a seed for a uniformly random, e-almost

I-universal linear hash function, H € F3**/“!,

3. All parties compute the vector:

(cc) =H- (z) + (&) € F3

and open c; using the Open command of Fgitmpc. If Fritmpc aborts, the parties
abort.
4. Each party P; calls Commit on Fcommis (Figure 1) with input the n matrices:

Ci=H-Z +Z forj#i,and C,=H-Zi+Zi+c,®R"

5. All parties open their commitments and check that, for each j € [n]:

i Cj =o0.
i=1

If the check fails, the parties abort. ' _
6. Each party P; stores the matrices Z7, . .., Zj,.

Fig. 8. Subprotocol for bit/string multiplication and checking consistency
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At — RI L RI
8" =)'+, L€ [3|G].

Note that A7 is fixed in the initialization of Fcor, whilst 521 may be different for
every OT. Whenever P; and P; are both corrupt, or both honest, for convenience we
define A%* = 0 and §7% = 0.

This means that the outputs of Fcor with (P;, P;) then satisfy (omitting ¢ sub-
scripts):

tiJ' =q;; + ' R + 5§43 . RI + AT gl
where 67 = 0 if P; cheated, and A% =£ 0 if P; cheated.

Now, as in step 1 of the first stage of IIpi;xstring, W€ can put the Fcot outputs for
each party into the rows of a matrix, and express the above as:

Ti;=Qi;+a' @R +67 @R + AV @2
where 87" = (677, ..., 5§|2G‘ ), and the tensor product notation is defined in Section 2.
Accounting for these errors in the outputs of the Multiply step in IIg;xString, W€
get:

n
Z;=) Zi=x @R +R-> 87+ z;- A (5)
i=1 i€l il
—
=87

The following lemma shows if a party cheated, then to pass the check they must
either guess all of the shares ' € 5 for some honest P;, or guess P;’s global difference
R (except with negligible probability over the choice of the s-almost 1-universal hash
function, H).

Lemma 31 [fthe check in U Bit x String PSSes, then except with probability max(2~%, e+
271, all of the errors 87 , A are zero.

The proof can be found in the full version of the paper [20].

We now give some intuition behind the security of the whole protocol. In the proof,
the strategy of the simulator is to run an internal copy of the protocol, using dummy,
random values for the honest parties’ keys and wire mask shares. All communication
with the adversary is simulated by computing the correct messages according to the
protocol and the dummy honest shares, until the final output stage. In the output stage,
we switch to fresh, random honest parties’ shares, consistent with the garbled circuit
received from Fprepocessing and the corrupt parties’ shares.

Firstly, by Lemma 31, it holds that in the real execution, if the adversary introduced
any non-zero errors then the consistency check fails with overwhelming probability.
The same is true in the ideal execution; note that the errors are still well-defined in
this case because the simulator can compute them by comparing all inputs received to
Fcor with the inputs the adversary should have used, based on its random tape. This

18



implies that the probability of passing the check is the same in both worlds. Also, if
the check fails then both executions abort, and it is straightforward to see that the two
views are indistinguishable because no outputs are sent to honest parties (hence, also
the environment).

It remains to show that the two views are indistinguishable when the consistency
check passes, and the environment sees the outputs of all honest parties, as well as the
view of the adversary during the protocol. The main point of interest here is the output
stage. We observe that, without the final rerandomization step, the honest parties’ shares
of the garbled circuit would not be uniformly random. Specifically, consider an honest
P;’s share, (g; b)i, where P; is corrupt. This is computed by adding some PRF value, v,
to the Foor ohtputs where P; was receiver and P; was sender (step 2 of II;t x String)-
Since P; knows both strings in each OT, there are only two possibilities for P;’s output
(depending on the choice bit), so this is not uniformly random. It might be tempting to
argue that v is a random PRF output, so serves as a one-time pad, but this proof attempt
fails because v is also used to compute the final garbled circuit. In fact, it seems difficult
to rely on any reduction to the PREF, since all the PRF keys are included in the output
to the environment. To avoid this issue, we need the rerandomization step using a PRG,
and the additional assumption of secure point-to-point channels.

Theorem 31 Protocol IIpeprocessing from Figure 6 UC-securely computes Fprepocessing
from Figure 5 in the presence of a static, active adversary corrupting up to n— 1 parties
in the { Fcor, FBitMPC; FRand, F Commit } -tybrid model.

The proof can be found in the full version of the paper [20].

4 More Efficient Garbling with Multi-Party TinyOT

We now describe a less general, but concretely more efficient, variant of the protocol in
the previous section. We replace the generic Fgitnvpc functionality with a more special-
ized one based on ‘TinyOT’-style information-theoretic MACs. This is asymptotically
worse, but more practical, than using [21] for Fg;ismpc. It also allows us to completely
remove the bit/string multiplications and consistency checks in ITgj¢xString, SiNce we
show that these can be obtained directly from the TinyOT MACs. This means the only
cost in the protocol, apart from opening and evaluating the garbled circuit, is the single
bit multiplication per AND gate in the underlying TinyOT-based protocol.

In the full version of this paper [20], we present a complete description of a suitable
TinyOT-based protocol. This is done by combining the multiplication triple generation
protocol (over Fy) from [17] with a consistency check to enforce correct shared random
bits, which is similar to the more general check from the previous section.

4.1 Secret-Shared MAC Representation

For z € {0, 1} held by P;, define the following two-party MAC representation, as used
in 2-party TinyOT [33]:

[z];; = (z, M}, K}), M!=K!+az R
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where P; holds x and a MAC M ;, and P; holds a local MAC key K ZJ , as well as the
fixed, global MAC key R’.

Similarly, we define the n-party representation of an additively shared value x =
I B U

where each party P; holds the n — 1 MACs M} on z*, as well as the keys K} on each
xJ, for j # 4, and a global key R’. Note that this is equivalent to every pair (P;, P;)
holding a representation [z%]; ;.

The key observation for this section, is that a sharing [z] can be used to directly
compute shares of all the products z - R, as in the following claim.

Claim 41 Given a representation [x], the parties can locally compute additive shares
of © - RY, for each j € [n).

Proof. Write [x] = (', {M}, K!};i)ic[n)- Bach party P; defines the n shares:

Zf:xi~Ri+ZK; and Z]’: :M;, for each j # i
J#i

We then have, for each j € [n]:

n

i=1 i#] i#£j i#]
=) R+ (Mi+K)=a R +Y (&' R)=z-R.
i#j i#]

We define addition of two shared values [z], [y], to be straightforward addition of
the components. We define addition of [x] with a public constant ¢ € F5 by:

- Py stores: (2! + ¢, {M}, K} };21)
- Pl stores: (Ii7 (M{a Ki +c- Rl)a {Mjlv Kjl:}jE[n]\{l,i}))7 for 4 7é 1

This results in a correct sharing of [z + ¢].
We can create a sharing of the product of two shared values using a random multi-
plication triple ([z], [y], [2]) such that z = z - y with Beaver’s technique [1].

4.2 MAC-Based MPC Functionality

The functionality F,_TinyoT, Which we use in place of Fpitmpc for the optimized
preprocessing, is shown in the full version [20]. It produces authenticated sharings of
random bits and multiplication triples. For both of these, F_TinyoT first receives cor-
rupted parties’ shares, MAC values and keys from the adversary, and then randomly
samples consistent sharings and MACs for the honest parties.
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Another important aspect of the functionality is the Key Queries command, which
allows the adversary to try to guess the MAC key R’ of any party, and will be informed
if the guess is correct. This is needed to allow the security proof to go through; we
explain this in more detail in the full version. In that section we also present a com-
plete description of a variant on the multi-party TinyOT protocol, which can be used to
implement this functionality.

4.3 Garbling with F,,_TinyoT

Following from the observation in Claim 41, if each party P; chooses the global differ-
ence string in ITpreprocessing tO be the same R as in the MAC representation, then given
[A], additive shares of the products \- R’ can be obtained at no extra cost. Moreover, the
shares are guaranteed to be correct, and the honest party’s shares will be random (sub-
ject to the constraint that they sum to the correct value), since they come directly from
the Fo-TinyoT functionality. This means there is no need to perform the consistency
check, which greatly simplifies the protocol.

The rest of the protocol is mostly the same as IIpreprocessing in Figure 6, using
Fu-TinyoT With [-]-sharings instead of Fgismpc With (-)-sharings. One other small dif-
ference is that because J,_TinyoT does not have a private input command, we instead
sample [\,,] shares for input wires using random bits, and later use a private output pro-
tocol to open the relevant input wire masks to P;. This change is not strictly necessary,
but simplifies the protocol for implementing F,,_1inyor — if Fi-TinyoT also had an
Input command for sharing private inputs based on n-Bracket, it would be much more
complex to implement with the correct distribution of shares and MACs.

In more detail, the Garbling phase proceeds as follows.

1. Each party obtains a random key offset R’ by calling the Initialize command of
F n-TinyOT-

2. For every wire w which is an input wire, or the output wire of an AND gate, the
parties obtain a shared mask [A,,] using the Bit command of F,_Tinyor-

3. All the wire keys ky, o, ky, 1 = ki, o © R' are defined by P; the same way as in

w,0 Mw,1
HPrcproccssing-

4. For XOR gates, the output wire mask is computed as [Ay,] = [Au] + [Ay]-

. For each AND gate, the parties compute [Ay,,] = [Ay - Ay)-

6. The parties then obtain shares of the garbled circuit as follows:

— For each AND gate g € G with wires (u, v, w), the parties use Claim 41 with

the shared values [A,], [Ay], [Auo + Aw), to define, for each j € [n], shares of
the bit/string products:

9,1

MR, XN R, (Mg + Aw) - R
— These are then used to define shares of p; ., and the garbled circuit, as in the
original protocol.
7. For every circuit-output-wire w, the parties run I1gpen to reveal Ay, to all the par-
ties.
8. For every circuit input wire w corresponding to party P;’s input, the parties run
11,6, to Open Ay, to P;.
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The only interaction introduced in the new protocol is in the multiply and opening
protocols, which were abstracted away by Fgicvpc in the previous protocol. Simulat-
ing and proving security of these techniques is straightforward, due to the correctness
and randomness of the multiplication triples and MACs produced by Fy,_TinyoT. One
important detail is the Key Queries command of the F,_TinyoT functionality, which al-
lows the adversary to try to guess an honest party’s global MAC key share, R?, and learn
if the guess is correct. To allow the proof to go through, we modify Fp epocessing t0 also
have a Key Queries command, so that the simulator can use this to respond to any key
queries from the adversary. We denote this modified functionality by fg,(gpocessing.

The following theorem can be proven, similarly to the proof of Theorem 31 where
we modify the preprocessing functionality to support key queries, and adjust the simu-
lation as described above.

Theorem 41 The modified protocol described above UC-securely computes f;{r?p ocessing

from Figure 5 in the presence of a static, active adversary corrupting up to n— 1 parties
in the F\_TinyoT-hybrid model.

5 The Online Phase

Our final protocol, presented in Figure 9, implements the online phase where the par-
ties reveal the garbled circuit’s shares and evaluate it. Our protocol is presented in the
FPrepocessing-hybrid model. Upon reconstructing the garbled circuit and obtaining all
input keys, the process of evaluation is similar to that of [39], except here all parties
run the evaluation algorithm, which involves each party computing n? PRF values per
gate. During evaluation, the parties only see the randomly masked wire values and can-
not determine the actual wire values. Upon completion, the parties compute the actual
output using the output wire masks revealed from Fprepocessing. We conclude with the
following theorem.

Theorem 51 Let f be an n-party functionality {0, 1} — {0, 1}* and assume that F'
is a PRF. Then Protocol II\ipc from Figure 9, UC-securely computes f in the presence
of a static, active adversary corrupting up to n — 1 parties in the Fprepocessing-hybrid.

Proof overview. Our proof follows by first demonstrating that the adversary’s view is
computationally indistinguishable in both real and simulated executions. To be con-
crete, we consider an event for which the adversary successfully causes the bit trans-
ferred through some wire to be flipped and prove that this event can only occur with neg-
ligible probability (our proof is different to the proof in [29] as in our case the adversary
may choose its additive error as a function of the garbled circuit). Then, conditioned on
the event flip not occurring, we prove that the two executions are computationally in-
distinguishable via a reduction to the correlation robust PRF, inducing a garbled circuit
that is indistinguishable. The complete proof can be found in the full version of the
paper [20].
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The MPC Protocol - Ilyipc

On input a circuit Cy representing the function f and p = (p1, ..., pn) Where p; is party’s
P; input, the parties execute the following commands in sequence.

Preprocessing: This sub-task is performed as follows.

- Call Garbling on Fprepocessing With input Cy.

— Each party P; obtains the \,, wire masks for every output wire and every wire associated
with their input, and all the keys {kfu,o}wew and R'.

Online Computation: This sub-task is performed as follows.

— For all input wires w with input from P;, party P; computes A, = pw D A, Where py,
is P;’s input to C'y, and A,, was obtained in the preprocessing stage. Then, P; broadcasts
the public value A, to all parties.

— For all input wires w, each party P; broadcasts the key &, associated to /..

— The parties call Open Garbling on Fp epocessing t0 reconstruct §Z’ , for every gate g and
values a, b.

— Passing through the circuit topologically, the parties can now locally compute the fol-
lowing operations for each gate g. Let the gates input wires be labelled v and v, and the
output wire be labelled w. Let a and b be the respective public values on the input wires.

1. If g is a XOR gate, set the public value on the output wire to be ¢ = a + b. In
addition, for every j € [n], each party computes kf@c = ki,a @ kf} b
2. If g is an AND gate , then each party computes, for all j € [n]:

A ) . ;
kw,c - ga,b @ <@ Fkh,a’k%,b (g|])>

3. If ko & {Kbo, ki1 = kiyo @ R'}, then P; outputs abort. Otherwise, it pro-
ceeds. If P; aborts it notifies all other parties with that information. If P; is notified
that another party has aborted it aborts as well.

4. If kfu,c = kfﬂyo then P; sets ¢ = 0; if kfﬂyc = kfu,l then P; sets ¢ = 1.

5. The output of the gate is defined to be (k}v’c, ..., kuw,.) and the public value c.

— Assuming no party aborts, everyone will obtain a public value c,, for every circuit-output
wire w. The party can then recover the actual output value from p,, = ¢ @ A, Where

Aw Was obtained in the preprocessing stage.

Fig. 9. The MPC Protocol - Ilvpc
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6 Performance

In this section we present implementation results for our protocol from Section 4 for up
to 9 parties. We also analyse the concrete communication complexity of the protocol
and compare this with previous, state-of-the-art protocols in a similar setting.

We have made a couple of tweaks to our protocol to simplify the implementation.
We moved the Open Garbling stage to the preprocessing phase, instead of the online
phase. This optimizes the online phase so that the amount of communication is inde-
pendent of the size of the circuit. This change means that our standard model security
proof would no longer apply, but we could prove it secure using a random oracle instead
of the circular-correlation robust PRF, similarly to [3,30]. Secondly, when not working
in a modular fashion with a separate preprocessing functionality, the share rerandom-
ization step in the output stage is not necessary to prove security of the entire protocol,
so we omit this.

6.1 Implementation

We implemented our variant of the multi-party TinyOT protocol (given in the full ver-
sion) using the 11bOTe library [36] for the fixed-correlation OTs. and tested it for
between 3 and 9 parties. We benchmarked the protocol over a 1Gbps LAN on 5 servers
with 2.3GHz Intel Xeon CPUs with 20 cores. For the experiments with more than 5
parties, we had to run more than one party per machine; this should not make much dif-
ference in a LAN, as the number of threads being used was still fewer than the number
of cores. As benchmarks, we measured the time for securely computing the circuits for
AES (6800 AND gates) and SHA-256 (90825 AND gates).

For the TinyOT bit and triple generation, every pair of parties needs two correlated
OT instances running between them (one in each direction). We ran each OT instance in
a separate thread with 11bOTe, so that each party uses 2(n — 1) OT threads. This gave
a small improvement (= 6%) compared with running n — 1 threads. We also considered
a multiple execution setting, where many (possibly different) secure computations are
evaluated. Provided the total number of AND gates in the circuits being evaluated is at
least 229, this allows us to generate the TinyOT triples for all executions at once using
a bucket size of B = 3, compared with B = 5 for one execution of AES or B = 4
for one execution of SHA-256. Since the protocol scales with B2, this has a big impact
on performance. The results for 9 parties, for the different choices of B, are shown in
Table 2.

AES AES SHA-256 SHA-256

(B =5) (B =3) (B =5) (B =3)
Prep. 1329 586.9 10443 6652
Online 35.34 33.30 260.58 252.8

Table 2. Runtimes in ms for AES and SHA-256 evalution with 9 parties
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Figures 10—11 show how the performance of AES and SHA-256 scales with differ-
ent numbers of parties, in the amortized setting. Although the asymptotic complexity is
quadratic, the runtimes grow relatively slowly as the number of parties increases. This is
because in the preprocessing phase, the amount of data sent per party is actually linear.
However, the super-linear trend is probably due to the limitations of the total network
capacity, and the computational costs.

Comparison with other works. We calculated the cost of computing the SPDZ-BMR
protocol [29] using [24] to derive estimates for creating the SPDZ triples (the main
cost). Using MASCOT over Fo~ with free-XOR, SPDZ-BMR requires 3n + 1 multi-
plications per garbled AND gate. This gives an estimated cost of at least 14 seconds to
evaluate AES, which is over 20x slower than our protocol.

The only other implementation of actively secure, constant-round, dishonest major-
ity MPC is the concurrent work of [23], which presents implementation figures for up to
256 parties running on Amazon servers. Their runtimes with 9 parties in a LAN setting
are around 200ms for AES and 2200ms for SHA-256, which is around 3 times faster
than our results. However, their LAN setup has 10Gbps bandwidth, whereas we only
tested on machines with 1Gbps bandwidth. Since the bottleneck in our implementation
is mostly communication, it seems that our implementation could perform similar to
or even faster than theirs in the same environment, despite our higher communication
costs. However, it is not possible to make an accurate comparison without testing both
implementations in the same environment.

Compared with protocols based solely on secret-sharing, such as SPDZ and TinyOT,
the advantage of our protocol is the low round complexity. We have not yet managed to
benchmark our protocol in a WAN setting, but since our total round complexity is less
than 20, it should perform reasonably fast. With secret-sharing, using e.g. TinyOT, eval-
uating the AES circuit requires at least 40 rounds in just the online phase (it can be done
with 10 rounds [14], but this uses a special representation of the AES function, rather
than a general circuit), whilst computing the SHA-256 circuit requires 4000 rounds. In
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Protocol # Executions Function-indep. Function-dep. Online

prep. prep.
32 - 3.75 MB 25.76 kB
[37] 128 - 2.5MB 2131 kB
1024 - 1.56 MB 16.95 kB
1 14.94 MB 227 kB 16.13 kB
41 32 8.74 MB 227 kB 16.13 kB
128 7.22 MB 227 kB 16.13 kB
1024 6.42 MB 227 kB 16.13 kB
1 2.86 MB 570 kB 4.86 kB
. 32 2.64 MB 570 kB 4.86 kB
128 2.0 MB 570 kB 4.86 kB
1024 2.0 MB 570 kB 4.86 kB
1 2.86 MB 872 kB 422 kB
Ours + [38] 32 2.64 MB 872 kB 422 kB
urs 128 2.0 MB 872 kB 422 kB
1024 2.0 MB 872 kB 422 kB

Table 3. Communication estimates for secure AES evaluation with our protocol and previous
works in the two-party setting. Cost is the maximum amount of data sent by any one party, per
execution.

a network with 100ms delay between parties, the AES online time alone would be at
least 4 seconds, whilst SHA-256 would take over /0 minutes to securely compute in
that setting. If our protocol is run in this setting, we should be able to compute both
AES and SHA-256 in just a few seconds (assuming that latency rather than bandwidth
is the bottleneck).

6.2 Communication Complexity Analysis

We now focus on analysing the concrete communication complexity of the optimized
variant of our protocol and compare it with the state of the art in constant-round two-
party and multi-party computation protocols. We have not implemented our protocol,
but since the underlying computational primitives are very simple, the communication
cost will be the overall bottleneck. As a benchmark, we estimate the cost of securely
computing the AES circuit (6800 AND gates, 25124 XOR gates), where we assume
that one party provides a 128-bit plaintext or ciphertext and the rest of them have an
XOR sharing of a 128-bit AES key. This implies we have 128 - n input wires and an
additional layer of XOR gates in the circuit to add the key shares together. We consider
a single set of 128 output wires, containing the final encrypted or decrypted message.

Two Parties In Table 3 we compare the cost of our protocol in the two-party case, with
state-of-the-art secure two-party computation protocols. We instantiate our TinyOT-
based preprocessing method with the optimized, two-party TinyOT protocol from [38],
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Protocol Security Function-indep. prep. Function-dep. prep.

n=23 n =10 n=3 n =10
SPDZ-BMR active 25.77 GB 328.94 GB 61.57 MB 846.73 MB
SPDZ-BMR  covert, pr. é 7.91 GB 100.98 GB 61.57 MB 846.73 MB
MASCOT- active 3.83 GB 54.37 GB 12.19 MB 178.25 MB
BMR-FX
[23] active 4.8 MB 20.4 MB 1.3 MB 4.4 MB
Ours active 14.01 MB 63.22 MB 1.31 MB 4.37 MB

Table 4. Comparison of the cost of our protocol with previous constant-round MPC protocols in
arange of security models, for secure AES evaluation. Costs are the amount of data sent over the
network per party.

lowering the previous costs further. For consistency with the other two-party proto-
cols, we divide the protocol costs into three phases: function-independent preprocess-
ing, which only depends on the size of the circuit; function-dependent preprocessing,
which depends on the exact structure of the circuit; and the online phase, which depends
on the parties’ inputs. As with the implementation, we move the garbled circuit opening
to the function-dependent preprocessing, to simplify the online phase.

The online phase of the modified protocol is just two rounds of interaction, and
has the lowest online cost of any actively secure two-party protocol.’ The main cost
of the function-dependent preprocessing is opening the garbled circuit, which requires
each party to send 8« bits per AND gate. This is slightly larger than the best Yao-based
protocols, due to the need for a set of keys for every party in BMR.

In the batch setting, where many executions of the same circuit are needed, proto-
cols such as [37] clearly still perform the best. However, if many circuits are required,
but they may be different, or not known in advance, then our multi-party protocol is
highly competitive with two-party protocols.

Comparison with Multi-Party Protocols In Table 4 we compare our work with pre-
vious constant-round protocols suitable for any number of parties, again for evaluating
the AES circuit. We do not present the communication complexity of the online phase
as we expect it to be very similar in all of the protocols. We denote by MASCOT-BMR-
FX an optimized variant of [29], modified to use free-XOR as in our protocol, with
multiplications done using the OT-based MASCOT protocol [24].

As in the previous section, we move the cost of opening the garbled circuit to the
preprocessing phase for all of the presented protocols (again relying on random oracles).
By applying this technique the online phase of our work is just two rounds, and has
exactly the same complexity as the current most efficient semi-honest constant-round
MPC protocol for any number of parties [4], except we achieve active security. We see

5 If counting the fotal amount of data sent, in both directions, our online cost would be larger
than [38], which is highly asymmetric. In practice, however, the latency depends on the largest
amount of communication from any one party, which is why we measure in this way.
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that with respect to other actively secure protocols, we improve the communication cost
of the preprocessing by around 2—4 orders of magnitude. Moreover, our protocol scales
much better with n, since the complexity is O(n?) instead of O(n?). The concurrent
work of Katz et al. [23] requires around 3 times less communication than our protocol,
which is due to their optimized version of the multi-party TinyOT protocol.
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