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Abstract. We introduce an algorithm called Cycle Slicer that gives new
solutions to two important problems in format-preserving encryption: do-
main targeting and domain completion. In domain targeting, where we
wish to use a cipher on domain X to construct a cipher on a smaller
domain S ⊆ X , using Cycle Slicer leads to a significantly more efficient
solution than Miracle and Yilek’s Reverse Cycle Walking (ASIACRYPT
2016) in the common setting where the size of S is large relative to
the size of X . In domain completion, a problem recently studied by
Grubbs, Ristenpart, and Yarom (EUROCRYPT 2017) in which we wish
to construct a cipher on domain X while staying consistent with existing
mappings in a lazily-sampled table, Cycle Slicer provides an alterna-
tive construction with better worst-case running time than the Zig-Zag
construction of Grubbs et al. Our analysis of Cycle Slicer uses a refine-
ment of the Markov chain techniques for analyzing matching exchange
processes, which were originally developed by Czumaj and Kutylowski
(Rand. Struct. & Alg. 2000).
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1 Introduction

Block Cipher designers have traditionally been concerned with constructing ci-
phers that encrypt bitstrings of a particular, fixed length. The canonical example
of such a cipher is AES, which encrypts 128 bit plaintexts into 128 bit cipher-
texts. Recently, the practical interest in format-preserving encryption (FPE)
schemes [2, 6, 23] for use on data like credit card numbers and US Social Secu-
rity Numbers (SSNs) has led to the need for ciphers that do not just work on
bitstrings of some length, but have more customized domains.

An FPE scheme should have ciphertexts with the exact same format as plain-
texts. For example, social security numbers are 9 decimal digit numbers with
many additional restrictions, so an FPE scheme for SSNs should result in ci-
phertexts that are also valid SSNs. Since any 9 digit number can be represented
with 30 bits, using a block cipher with block size 30 bits1 would be an obvious

1 Even constructing a block cipher with such a small block size and with strong security
guarantees is an interesting problem. See [4, 12,19,21] for more details.



first approach. However, encrypting 30 bits that represent a valid SSN could
result in a 30 bit ciphertext that does not correspond to a valid SSN, or even a
9 digit number at all!

FPE is important in practice since practitioners often want to introduce en-
cryption into an existing system while working within constraints like avoiding
conflicts with legacy software or existing databases. The first FPE scheme is due
to Brightwell and Smith [6], while the term format-preserving encryption was
later coined by Spies [23]. Practical interest in this problem has led to a number
of recent papers on FPE [2,4,11,15–17] and related papers on constructing new,
provably-secure small-domain ciphers [12, 18, 19, 21] that can be used for FPE.
The National Institute of Standards and Technology (NIST) has also published
a standard for FPE [9] with schemes FF1 [3] and FF3 [5] based on Feistel net-
works, though recent papers [1,8] have introduced attacks on these standardized
schemes.2

While many of the recent papers mentioned above focus on the practical is-
sues surrounding FPE, they also raise a number of interesting, more theoretical
problems. In this paper, we focus on the theory underlying two important prob-
lems in FPE, domain targeting and domain completion, and also describe how
our results could be extended to a number of related problems.

Domain Targeting. Consider again the example above in which we would like
an FPE scheme for valid social security numbers. One strategy would be to try to
construct a specialized cipher that works on the exact domain we are interested
in. The problem with this strategy is that this specialized cipher is specific to
one domain and we would likely need to develop a new one if we later needed to
encrypt valid credit card numbers, or valid email addresses of some length, or
some other uniquely-formatted plaintexts.

If the desired domain has an efficient way to rank and unrank elements, then
another solution is to use the rank-encipher-unrank approach of [2]. Specifically,
to encipher a point in S, this approach first applies a rank algorithm that maps
elements in the target domain S to points in {0, . . . , |S| − 1}, then applies a
cipher with domain {0, . . . , |S| − 1}, and finally applies an unrank algorithm
to map the result back to S. Efficient ranking and unranking algorithms are
known for a number of domains that are important in practice [2,10,15,16], for
example, regular languages that can be described by DFAs. Nevertheless, there
are domains without efficient rankings [2], and even domains specified by complex
regular expressions can prove problematic with this approach. Additionally, the
ranking and unranking algorithms cited above can also potentially leak timing
information which, looking ahead, is something we would like to avoid with our
results. Thus, it is useful to have alternative solutions that only assume the
ability to efficiently test membership in S and do not rely on ranking.

A different strategy that does not rely on efficient ranking is to come up with a
general method of transforming a cipher on a larger domain into a cipher on only
a subset of the domain points. For example, in the case of social security numbers

2 Bellare, Hoang, and Tessaro [1] give message recovery attacks on both FF1 and FF3,
while Durak and Vaudenay [8] detail a more damaging attack on FF3.



such a method could transform a cipher on 30 bit strings into a cipher on 30 bit
strings that encode valid SSNs. We call this problem of transforming a cipher on
domain X into a cipher on domain S ⊆ X domain targeting. This problem is well-
known and good solutions exist. A common solution is to use Cycle Walking, a
folklore technique first formally analyzed by Black and Rogaway [4]. With Cycle
Walking, given a permutation P on X , we can map a point x ∈ S ⊆ X by
repeatedly applying P until we hit another point in the target set S. In other
words, we first check if P (x) ∈ S, then check P (P (x)) ∈ S, and so on. Because
permutations are made up of cycles, the procedure will eventually either find
another point in S or traverse an entire cycle and return back to x.

Unlike the ranking solutions discussed above, Cycle Walking only requires
the ability to test membership in the target domain S. It can also be a good
option in practice, since the expected time to encipher a point is small. For
example, if the size of the target set S is at least half the size of the larger set
X , then the expected number of applications of the permutation P is at most
2. The worst-case running time of Cycle Walking, however, is much worse, since
we might need to walk through a long cycle of points in X − S before finding
another point in S. The fact that the running time also depends on the specific
point being enciphered could also potentially cause headaches for practitioners,
due to unpredictable running times or subtle leakage of timing information.

To address these issues, Miracle and Yilek recently introduced an alternative
to Cycle Walking called Reverse Cycle Walking (RCW) [17]. RCW has lower
worst-case running time than traditional Cycle Walking, and the running time
does not vary depending on the input. The basic idea underlying RCW is to use
permutations on X to form matchings on X . If, when applying a permutation
P on X , two points x and x′ from S appear consecutively in a cycle and the
preceding and following points are not in S, then x and x′ are matched, and
potentially swapped depending on a separate bit flip. Thus, in each round of
RCW, many points from S swap positions. Miracle and Yilek apply a result
of Czumaj and Kutylowski [7] to show that repeating this process for enough
rounds leads to a random mixing of the points in S.

One disadvantage of RCW is that the number of rounds needed quickly in-
creases as the size of S gets closer to the size of X . In the same social security
number example discussed above, |S|/|X | = 109/230 ≈ .93, which is well above
1/2, so RCW performs poorly, requiring millions of rounds to mix S sufficiently.
The reason for the slowdown is that RCW only swaps points in S when they ap-
pear in a cycle sandwiched between points from outside of S. Specifically, RCW
will only potentially swap x, x′ ∈ S if they are part of a cycle (. . . y x x′ z . . .)
with y, z 6∈ S. However, if the size of S is close to the size of X , then we are
likely to have cycles that instead have many consecutive points from S and few
points from X − S, making swaps unlikely with RCW.

Looking forward, our main result will be a new algorithm we call Cycle Slicer
that will allow us to take long cycles of points from S and form many matchings.
This will allow us to substantially improve upon RCW for the important cases
where |S| is close to the size of |X |. In particular, in the SSN example, Cycle



Slicer will only need around 12,000 rounds, which is significantly less than needed
by RCW.

Domain Completion. The second problem we study is domain completion,
which has its roots in ad-hoc solutions practitioners used in place of FPE,
and which was recently given a formal treatment by Grubbs, Ristenpart, and
Yarom [11]. Before practical FPE schemes were available, practitioners would
solve their ciphertext formatting issues using tokenization systems. Essentially,
they would construct a permutation on their desired domain by populating a
table with input-output pairs. For example, to encipher an SSN without a good
FPE scheme, one can instead add the SSN to a table and randomly sample an-
other social security number to map it to. In other words, in the absence of a
good FPE scheme on their desired domain, practitioners would instead construct
their own permutation on the domain by using what is typically known as lazy
sampling.

If a system contains such a table of input-output pairs, but then at a later
point in time a good FPE scheme becomes available for the desired domain,
it makes sense to stop adding entries to the table and to start using the new
scheme. Yet, to maintain backwards compatibility, the new FPE scheme should
only be used on new points, and the table (which can now be made read-only)
should still be used on old values. This practical problem leads to an interesting
theoretical question: how can we construct a permutation on some domain while
staying consistent with a table of existing mappings?

More formally, assuming it is easy to construct permutations on some do-
main X , we wish to construct a new permutation on X that preserves an existing
set of mappings for points in a preservation set T ⊆ X . Let U be the set of points
that the table maps T to (i.e., the range of the table mappings). One of the chal-
lenges with domain completion is that T is unlikely to be the same as U , yet the
two sets might have some overlap. Thus, the problem is not as easy as just map-
ping points in X − T to other points in X − T . Some points in X − T will need
to be mapped to points in T , while some points in U will need to be mapped to
points in X − T .

Grubbs, Ristenpart, and Yarom (GRY) first describe a solution (attributed to
an anonymous reviewer) for this problem when X can be efficiently ranked. The
solution uses the rank-encipher-unrank algorithm discussed earlier in the context
of domain targeting, but with the ranking and unranking algorithms additionally
performing a binary search through precomputed tables (which increase the
space requirements) with the same size as the preservation set T .

As explained above when discussing domain targeting, not all domains can be
efficiently ranked, and it may otherwise be desirable to have solutions that avoid
ranking. Additionally, GRY point out that the ranking solution could be more
susceptible to timing attacks because of both the binary search and the ranking.
Their main result is thus an algorithm called Zig-Zag that does not require X to
be efficiently ranked, and only requires the ability to efficiently test membership
in the preservation set T . Much like Cycle Walking in the domain targeting
setting, Zig-Zag has small expected running time but significantly higher worst-



case running time. Thus, Zig-Zag can be a good choice in practice, but has
some of the same drawbacks as Cycle Walking. An interesting question, both for
theory and for practice, is whether it is possible to do domain completion while
avoiding an expected-time process and achieving a lower worst-case running
time, while also avoiding ranking. Looking forward, our Cycle Slicer algorithm,
when combined with some preprocessing on the table of mappings, will give a
new algorithm for domain completion that avoids expected time and has better
worst-case running time than Zig-Zag.

Our Main Result: The Cycle Slicer Algorithm. We now introduce our
main result, an algorithm we call Cycle Slicer which gives new solutions to
the problems introduced above. At a high level, one round of the Cycle Slicer
algorithm transforms a permutation P on X into a matching on some subset of
the points of X , where by matching we mean a permutation made up of only
transpositions (cycles of length 2). By carefully specifying which points should be
included in the matching, formalized by an inclusion function I, we will be able
to use Cycle Slicer to perform both domain targeting and domain completion.

To understand Cycle Slicer, consider the problem of transforming an arbi-
trary permutation P on X into another permutation on X that only consists of
length 2 cycles, called transpositions or swaps. If we look at the cycle structure
of P , we will likely find many cycles longer than length 2, some substantially
longer. The main idea underlying Cycle Slicer is to “slice” up long cycles into
a number of smaller, length 2 cycles. To do this, Cycle Slicer uses a direction
function, Dir , which will simply be a function that gives a random bit for each
point in X . If the direction bit for a point x is 1 (i.e., Dir(x) = 1), then we say
that x is forward-looking. If the direction bit is instead a 0, we call the point
backward-looking. If a point x is forward-looking and the next point in the cy-
cle, P (x), is backward-looking, then those points are paired together. Similarly,
if x is backward-looking and P−1(x) is forward-looking, then those points are
paired up. It is easy to see that the use of the direction function pairs up some
of the points in X , while other points whose direction bits were not consistent
with the direction bits of the points preceding and following them in their cycles
are not paired up. Swapping any number of the paired points now results in a
permutation on X made up of only transpositions.

As an example, suppose permutation P has a cycle (w x y z). This means
that P (w) = x, P (x) = y, P (y) = z, and P (z) = w. Now suppose our direction
function gives bits 0, 1, 0, 0 for these points. This means that x is a forward-
looking point, and the three others are all backward-looking. Based on this, x
and y will be paired up which, if they are eventually swapped, will lead to a
permutation with cycles (w)(x y)(z).

The direction function determines which points are paired, but whether a
pair is actually swapped also depends on another function we call the inclusion
function. An inclusion function I takes two points as input and either outputs
1 or 0, with 0 meaning the points are not swapped. Looking forward, we will
be able to apply Cycle Slicer to a number of different problems by specifying
different inclusion functions.



One round of Cycle Slicer will result in many points swapping positions, but
this alone will not sufficiently mix the points. Thus, for all of our applications
we will need many rounds of Cycle Slicer. Since Cycle Slicer, like the Reverse
Cycle Walking algorithm described above, mixes points through repeated ran-
dom matchings, we follow the same approach as Miracle and Yilek for analyzing
the number of rounds needed to yield a random permutation on the desired
domain. They use techniques introduced by Czumaj and Kutylowski [7] to ana-
lyze a matching exchange process. At each step of a matching exchange process,
a number k is chosen according to some distribution and then a matching of
size is k is chosen uniformly. Both Reverse Cycle Walking and Cycle Slicer can
be viewed as a matching exchange process. The analysis given by Czumaj and
Kutylowski does not give explicit constants for their bounds, so in order to pro-
vide explicit constants for their Reverse Cycle Walking algorithm, Miracle and
Yilek reprove several key lemmas from the Czumaj and Kutylowski result. We
extend their work to also give explicit constants for general matching exchange
processes based on two new parameters which we introduce. The first param-
eter is the probability that a specific pair of points (x, y) is in the matching
and the second parameter is the probability that a second pair (z, w) is also in
the matching conditioned on a first pair being in the matching. This analysis
allows us to bound the variation distance in each of our applications, and we
believe the parameters are general enough that our result is of interest beyond
the application to the Cycle Slicer algorithm.

Now that we have described the basic Cycle Slicer algorithm, we will explain
how it can be applied to domain targeting and completion.

Cycle Slicer and Domain Targeting. To use Cycle Slicer for domain tar-
geting, constructing a permutation on S ⊆ X out of permutations on X , we
simply define an inclusion function It that outputs 1 when given two points in
the target set S, and outputs 0 otherwise. This means that only points from
S will be swapped. Repeating this process for a number of rounds results in a
random permutation on the target set.

The resulting process is similar to Reverse Cycle Walking, but the important
difference is that when the size of S is close to the size of X , Cycle Slicer is
still able to pair many points from S while Reverse Cycle Walking will strug-
gle to pair points. This means substantially fewer rounds of Cycle Slicer are
needed. In our running example with social security numbers where |S| = 109

and |X | = 230, Cycle Slicer will need about 1/2600 as many rounds as Reverse
Cycle Walking. We could improve the performance of RCW by instead letting X
be a larger supserset of S; if for RCW we let X be the set of 32-bit values, then
its performance significantly increases and we have arguably a fairer comparison.
But even with this enhancement for RCW, Cycle Slicer will still need only about
1/4 as many rounds. We give a more detailed explanation of this in Sect. 5.

Cycle Slicer and Domain Completion. Using Cycle Slicer for domain com-
pletion is less straightforward, since the table of mappings already imposes con-
straints on the ultimate cycle structure of any permutation on the entire domain.
In particular, the table of mappings can lead to a number of cycles and lines (se-



quences of points that do not form a cycle). The permutation we wish to build on
the entire domain X needs to have a cycle structure that stays consistent with
these. At a high level, our solution is to collapse the lines into a single point
and use Cycle Slicer on the resulting induced domain. The “fake” points that
represent entire lines from the table will be part of matchings with other points
in the domain. After a number of rounds of Cycle Slicer, we can then substitute
the entire line back in for the point that represented it. While this is the intuitive
idea of what is happening, writing down an algorithm that allows for evaluation
of a single point is non-trivial, and we consider this algorithm (found in Sect. 6)
one of our main contributions.

This algorithm requires, for each point in a line, the ability to determine the
first and last points in the line. This information can be precomputed and also
made read-only along with the table. Given this precomputation, our algorithm
has lower worst-case running time than the Zig-Zag construction, which could
require |T | loop iterations in the worst case to encipher a single point. Our
algorithm is also not expected-time, as enciphering any point outside of T simply
uses the same r-round Cycle Slicer algorithm, and the number of rounds does
not vary across different points. This could be of practical significance if reliable
execution times are needed, or if there is concern about the potential for timing
attacks.

Further Uses of Cycle Slicer. In addition to the applications of Cycle
Slicer discussed above, we can imagine a number of other uses for the new
algorithm. In particular, Cycle Slicer would seem to be useful in any situation
where we want to use a permutation on some general domain to build a more
specialized permutation on a related domain or that is consistent with some
additional restrictions. Framed this way, our results are somewhat similar to the
work of Naor and Reingold on constructing permutations with particular cycle
structure [20]. In Sect. 7 we discuss three settings where we think Cycle Slicer
could be useful.

2 Preliminaries

Notation. We denote by x← y the assignment of the value of y to x. If F is a
function, then y ← F (x) means evaluating the function on input x and assigning
the output to y. When talking about a permutation P and its cycle structure,
we use the notation (. . . x y . . .) to indicate there is a cycle that contains x
immediately followed by y, i.e., P (x) = y and P−1(y) = x. For any function F
(which may or may not be a permutation), we say points x1, . . . , xj form a line
if for all 1 ≤ i ≤ j − 1 it is true that F (xi) = xi+1.

Total Variation Distance. In order to generate a random permutation using
the Cycle Slicer algorithm it is necessary to have many rounds of Cycle Slicer. To
bound the number of rounds needed we will analyze the total variation distance.
Let x, y ∈ Ω, P r(x, y) be the probability of going from x to y in r steps and
µ be a distribution on the state space Ω. Then the total variation distance is



defined as ||P r−µ|| = maxx∈Ω
1
2

∑
y∈Ω |P r(x, y)−µ(y)|. In Sect. 4 we will bound

the total variation distance between the distribution after r rounds of the Cycle
Slicer algorithm and the uniform distribution.

3 The Cycle Slicer Construction

In this section we introduce our main contribution, the Cycle Slicer algorithm.
As described in the introduction, at a high level, the Cycle Slicer algorithm
allows us to transform any permutation on a set X into another permutation on
X that may have additional desirable properties.

Formal Description. We now formally describe the Cycle Slicer algorithm.
Let P : X → X be a permutation and P−1 : X → X be its inverse. Let
Dir : X → {0, 1} be a function called the direction function, I : X ×X → {0, 1}
be a function called the inclusion function, and B : X → {0, 1} be a function
called the swap function. Given these, we give pseudocode for one round of Cycle
Slicer in Algorithm 1. This round of Cycle Slicer results in a permutation on X ,
and is in fact an involution, serving as its own inverse algorithm. We will

Algorithm 1 Cycle Slicer (one round)

1: procedure CSP,P−1,I,Dir ,B(x)
2: if Dir(x) = 1 then
3: x′ ← P (x)
4: if Dir(x′) = 0 and I(x, x′) = 1 and B(x) = 1 then
5: x← x′

6: end if
7: else
8: x′ ← P−1(x)
9: if Dir(x′) = 1 and I(x′, x) = 1 and B(x′) = 1 then

10: x← x′

11: end if
12: end if
13: return x
14: end procedure

In words, to map a point x ∈ X , Cycle Slicer first applies the direction
function Dir to x to see if it should look forward (Dir(x) = 1) or backwards. If
forward, then it applies the permutation P to x to get a point x′ to potentially
swap with. If backwards, then it instead applies the inverse permutation P−1

to get a point x′. Now, to decide whether or not to swap the positions of x and
x′, Cycle Slicer applies an inclusion function I and a swap function B. If both
output 1, then x and x′ are swapped. Note that our algorithm always lets the
first input to I be the “forward-looking” point (i.e., the point x with Dir(x) = 1)



and, similarly, always applies B to the forward-looking point. This ensures we
get consistent decision bits for both x and x′.

Algorithm 1 gives code for just one round of Cycle Slicer. In the applications
later in the paper, we will need many rounds of Cycle Slicer to ensure points
are sufficiently mixed. Towards this, for brevity we let CSr denote r independent
rounds of CS, each with an independent P , P−1, Dir , and B. Each round of CSr

will use the same inclusion function I, however3. We then let CSinvr denote the
inverse of CSr which, since CS is an involution, will just be the r rounds of CSr

applied in reverse order.

Looking forward to the applications of Cycle Slicer discussed in later sections,
parameterizing Cycle Slicer with different decision functions I will lead to new
solutions to those problems.

Discussion. Intuitively, Cycle Slicer gives us a way to “slice” up the cycles of
the underlying permutation P and form a matching. More specifically, consider
any point x in our domain X . Suppose the permutation P puts x into a cycle
(. . . w x y . . .). We wish to construct a matching on X , which is a permutation
on X made up of only transpositions (2-cycles). To do this, we apply a direction
function Dir to the points in X . If Dir(x) = 1, we say x is forward-looking, which
means it will potentially pair with P (x) = y. If Dir(x) = 0, we say it is backward-
looking, which means it will potentially pair with P−1(x) = w. Of course, the
direction function is also being applied to w and y, so they will also be forward-
looking or backward-looking. If x is forward-looking and y is backward-looking,
they become a pair to potentially swap in a matching; similarly, if x is backward-
looking and w is forward-looking, then x and w are a pair to potentially swap
in a matching. Whether the points are actually swapped is determined by two
other functions, the inclusion function I and the swap function B. The inclusion
function allows us to restrict which points will be swapped based on properties
like whether or not the two points are part of a particular subset of X . The swap
function will simply be a bit flip to determine if the swap should occur or not,
and is needed for technical reasons.

Note that at a high-level our analysis of the Cycle Slicer algorithm relies on
viewing the algorithm as a Markov chain on the set of permutations of some
set V ⊂ X where at each step an independent matching on V is applied. The
independence requirements for P, P−1, B and Dir at each round ensure that
an independent matching is applied at each step which is needed to apply the
techniques from Czumaj and Kutylowski’s analysis which we do in Sect. 4 and
Sect. A. The inclusion function I will be used to determine which pairs in the
matching are allowed to ensure we generate a matching on the correct set.

Practical Considerations. There are a number of ways to instantiate the
different components of Cycle Slicer in practice, and the specific algorithms
used would obviously depend on the application. The most obvious instantiation

3 It is possible there will be other interesting uses of Cycle Slicer that use different
inclusion functions in different rounds. However, our applications do not need this,
so to keep things simpler we just use a single inclusion function across all rounds.



would use a block cipher E : K × X → X for the round permutation P (and
the inverse block cipher E−1 for P−1), with each round requiring a different
block cipher key. Yet, we will soon see that for typical applications we will need
thousands of rounds of Cycle Slicer, so a separate key for each round is not
ideal. Instead, it would make sense to use a tweakable block cipher [14] with a
single key and the round number used as a tweak. Specifically, to evaluate the
ith round permutation Pi on a point x ∈ X , we would compute E(K, i, x), where
K is the randomly chosen block cipher key. Since our proposed applications are
all in the area of format-preserving encryption, E might be instantiated with
one of the standardized Feistel-based modes [3, 5, 9] (though, based on recent
attacks [1, 8], care should be taken) or, if stronger provable-security guarantees
are desired, perhaps the Swap-or-Not cipher [12] or one of the fully-secure ciphers
from [18,21]. All of these options support tweaks.

The direction functions and swap functions could then be instantiated with a
pseudorandom function (PRF); a single key could be used for each if the round
number is included as an input to the PRFs. Specifically, if we are performing r
rounds of Cycle Slicer and have a PRF F : K′×{1, . . . , r}×X → {0, 1}, we first
choose a random key K1 for the direction functions and a random key K2 for the
swap functions. Then, to evaluate the direction function (resp. swap function)
in round j on a point x, we would compute F (K1, j, x) (resp. F (K2, j, x)).

Looking Forward: Analysis of Cycle Slicer. In the next section, we
give an analysis of Cycle Slicer, proving an information theoretic, mixing-time
result. More specifically, we give a bound on total variation distance after many
rounds of Cycle Slicer, with each round’s permutation, direction function, and
swap function chosen randomly from the appropriate sets of such functions. We
emphasize that this makes our results very modular and applicable to a number
of different problems, since typical security proofs in our target application areas
first swap out computationally secure components like block ciphers and PRFs
with randomly chosen permutations and functions, respectively.

4 Analyzing Cycle Slicer

In order to bound the number of rounds of the Cycle Slicer algorithm that are
needed, we will analyze a more general process that generates a permutation on
a set of points by applying a matching at each step. Specifically we will analyze
a type of matching exchange process first defined and analyzed by Czumaj and
Kutylowski [7]. A matching exchange process is a Markov chain for generating a
permutation on a set of n elements. At every step a number κ ≤ n/2 is selected
according to some distribution and a matching of size κ is chosen uniformly at
random. Independently, for each pair (x, y) of the matching, with probability
1/2 the elements x and y are exchanged. Czumaj and Kutylowski [7] prove
that as long as the expected value of κ is constant then after Θ(log(n)) steps,
the variation distance is O(1/n). We can view the Cycle Slicer algorithm as
a matching exchange process and it can be shown that the expected size of a
matching is constant. However, the result of [7] does not give explicit bounds



on the constants. Miracle and Yilek [17] extend the result of [7] by reproving
several key lemmas to give explicit constants for a particular algorithm. Here
we extend their work to a more general setting. Given a matching exchange
process where the matchings are selected according to the following parameters,
we provide explicit bounds, including constants, on the mixing time and variation
distance of the matching exchange process. In Sects. 5, 6 and 7 we will show how
our analysis can be applied to the Cycle Slicer algorithm in our three different
applications. We begin by defining the parameters we will need.

1. For any points x, y the probability that a pair (x, y) is part of a matching is
at least p1.

2. For any points x, y, z, and w conditioned on (x, y) being a pair in the match-
ing, the probability that (z, w) is also in the matching is at least p2.

Note that p1 and p2 refer to the probability these pairs are included in the
generated matching (i.e., the matching generated by Cycle Slicer) regardless of
the result of the bit flip (or swap function) that determines whether the points
are actually flipped. Assuming p1 and p2 are Ω(1/n), we will show the process
mixes in time O(log n). Formally, the mixing time of a Markov chain M with
state space Ω is defined as τM(ε) = min{t : ||Pt′ − µ|| ≤ ε,∀t′ ≥ t} where
||Pt′ − µ|| = maxx∈Ω

1
2

∑
y∈Ω |Pt

′
(x, y) − µ(y)|, Pt′(x, y) is the probability of

going from x to y in t steps and µ is the stationary distribution ofM. We prove
the following result on the mixing time of the matching exchange process with
parameters p1 and p2 as defined above.

Theorem 1. For T ≥ max
(

40 ln(2n2), 10 ln(n/9)
ln(1+p1p2(7/36)((7/9)n2−n))

)
+ 72 ln(2n2)

p1n

the mixing time τ of a matching exchange process with parameters p1 and p2 as
defined above satisfies

τ(ε) ≤ T ·
⌈

ln(n/ε)

lnn2

⌉
.

When ε = 1/n and p1, p2 = Ω(1/n), the bound simplifies to τ(1/n) = Θ(ln(n)).

The proof of Theorem 1 can be found in Appendix A. In order to analyze our Cy-
cle Slicer algorithm a bound on the variation distance will be more useful. This is
obtained by a straightforward manipulation of the mixing time bound above. As
long as p1, p2 = Ω(1/n) and the number of rounds is at least T = Θ(ln(n)), the
variation distance is less than 1/n. Let MEr represent r rounds of the match-
ing exchange (ME) process and νMEr be the distribution on permutations of
n elements after r rounds of the matching exchange process. More specifically,
νMEr (x, y) is the probability of starting from permutation x and ending in per-
mutation y after r rounds of the matching exchange process. Applying the defi-
nition from Sect. 2 gives us ||νMEr − µs|| = 1

2

∑
y∈Ω |νMEr (x, y) − µs(y)| where

Ω is the set of all permutations on n elements and µs is the uniform distribution
Ω. Using this definition and Theorem 1 we have the following.



Corollary 1. Let T = max
(

40 ln(2n2), 10 ln(n/9)
ln(1+p1p2(7/36)((7/9)n2−n))

)
+ 72 ln(2n2)

p1n
,

then
||νMEr − µs|| ≤ n1−2r/T ,

where νMEr is the distribution after r rounds of the matching exchange process
and µs is the uniform distribution on permutations of the n elements.

Cycle Slicer. Next, we use Corollary 1 to bound the total variation distance
for the Cycle Slicer algorithm. In the following sections we will look at the
Cycle Slicer algorithm in several different applications. In each of these we are
effectively generating a permutation on a set V which is a subset of a larger set
X . At each step of Cycle Slicer we use a permutation P on the points in X to
generate a matching on the points in V. Here we prove a general result for this
setting. Let V ⊂ X and the inclusion function I be defined as I(x, y) = 1 if and
only if x ∈ V and y ∈ V. Note that the permutation P chosen at each round is
a uniformly random permutation on X and B and Dir are as defined in Sect. 3
(i.e. independent random bits). In this setting, we prove the following theorem.

Theorem 2. Let T = max
(

40 ln(2|V|2), 10 ln(|V|/9)
ln(1+(7/144)((7/9)|V|2−|V|)/|X |2)

)
+ 144|X | ln(2|V|2)

|V| , then

||νCSr − µs|| ≤ |V|1−2r/T ,

where νCSr is the distribution after r rounds of CS and µs is the uniform distri-
bution on permutations on V.

Note that if |V| is a constant fraction of |X | then as long as the number of rounds
is at least Θ(ln(|V|)) then the variation distance will be less than 1/|V|.

Proof. In order to apply Corollary 1 to the Cycle Slicer algorithm, we need to
bound the parameters p1 and p2. Recall that for any pair of points (x, y), p1 is
the probability that the pair (x, y) is part of a potential matching. At any step
of Cycle Slicer, for any points x, y ∈ V, (x, y) is part of the matching if one of
two things happen, either Dir(x) = 1, Dir(y) = 0 and P (x) = y or Dir(x) = 1,
Dir(y) = 0, and P−1(x) = y. Each of these events happens with probability
(1/2)(1/2)(1/|X |), implying that p1 = (2|X |)−1. Note that it is also required
that I(x, y) = 1. However, this is always true since x, y ∈ V and I(x, y) = 1 if
and only if x, y ∈ V.

For any points x, y, z, w ∈ V conditioned on (x, y) being a pair in the match-
ing, p2 is the probability that (z, w) is also in the matching. Again, there are two
situation where this can happen. Without loss of generality we will assume that
Dir(x) = 1,Dir(y) = 0 and P (x) = y. The other case (Dir(x) = 0,Dir(y) = 1
and P−1(x) = y) is almost identical. The pair (z, w) will be in a matching if
Dir(z) = 1, Dir(w) = 0 and P (z) = w. There are a total of |X | − 1 points that
z could get mapped too (we already know z is not mapped to y since (x, y) is
in the matching) so this case happens with probability (1/2)(1/2)(1/(|X | − 1)).
Similarly, the pair (z, w) will be in the matching if Gi(z) = 0, Gi(w) = 1 and



P−1i (z) = w and this occurs with probability (1/2)(1/2)(1/(|X |−1)). Combining
these shows p2 = (2(|X | − 1))−1 ≥ (2|X |)−1. Using these bounds on p1 and p2
we can now directly apply Corollary 1 to obtain the above theorem.

ut

5 Domain Targeting

Background. Our first application of the Cycle Slicer algorithm is in what
we are calling domain targeting. In domain targeting, we wish to construct an
efficiently-computable permutation on a target set S. Yet, this target set might
have “strange” structure, and it might not be clear how to directly build a
permutation on such a set.

As described in the introduction, this problem can arise in format-preserving
encryption, and a well-known strategy for solving it is to take a permutation P on
a larger, “less strange” set X for which S ⊆ X , and then transform a permutation
on X into a permutation on the target set S. One such transformation is known
as Cycle Walking, in which the permutation P on the larger set X is repeatedly
applied to a point x ∈ S until the output of the permutation finally lands back in
the target set S. This leads to a small expected running time, but the worst-case
running time is high and, additionally, enciphering different points may take
different amounts of time.

More recently, Miracle and Yilek [17] introduced an alternative to Cycle
Walking called Reverse Cycle Walking (RCW). RCW uses permutations on the
larger set X to construct matchings on the target set S. In a round of RCW
using permutation P on X , if two consecutive points x, x′ in a cycle are both in
S and are immediately preceded and followed by points not in S, then x and
x′ are paired and, depending on a bit flip, either swapped or not. Said another
way, x, x′ ∈ S are only potentially swapped in a round of RCW if they are part
of a cycle (. . . y x x′ z . . .) and y, z 6∈ S.

As a result, in every round of RCW some fraction of the points in the target
set S are paired and swapped. Repeating this process for many rounds eventually
mixes the points in S sufficiently. RCW has lower worst-case running time than
regular Cycle Walking, and the time to encipher a point does not vary depending
on the input. As we will see, Cycle Slicer, like RCW, will give us a way to form
a matching on the points in S and, with enough rounds, sufficiently mix the
points.

The main result in this section is that the Cycle Slicer algorithm can be used
to improve upon Reverse Cycle Walking in the important scenario when the size
of the target set is a large constant fraction of the size of the larger set X . A
simple example of such a situation would be if S is the set of bitstrings that
give valid 9 digit decimal numbers and X is the set of 30 bit strings. In this
case, |S| = 109, |X | = 230, and the ratio 109/230 ≈ .93. In such scenarios, which
are important in practice, Cycle Slicer will require significantly less rounds than
RCW.



To understand why this will be the case, consider a scenario in which the size
of the target set S is a large fraction of the size of X . A random permutation
P on X will likely yield many cycles with points mostly from S and very few
points from X − S. For example, we could have a cycle (x x′ y x′′ x′′′) in which
only y is not in the target set and all of the x’s are in S. With Reverse Cycle
Walking, none of the x’s would be swapped, while with Cycle Slicer there will be
a reasonable probability some or even all of the x’s will be swapped, contributing
to the mixing.

Details. More formally, suppose we wish to construct a permutation on a set S
which is a subset of a larger set X for which we already know how to construct
efficient permutations. Then we can use Cycle Slicer with the following inclusion
function It:

It(x, y) =

{
1 If x ∈ S and y ∈ S
0 Otherwise

In words, we only include two points in a potential swap with the Cycle Slicer
algorithm if both points are in the target set S.

Finally, we will use our result from Sect. 4 to bound the number of steps of
the Cycle Slicer algorithm needed for domain targeting. We will use Theorem 2
which bounds the variation distance of the Cycle Slicer algorithm in terms of
the size of the domain X and the number of points in the set we are generating
a permutation on V. In domain targeting we are generating a permutation on S
with size |S|. This directly gives the following corollary to Theorem 2.

Corollary 2. Let T = max
(

40 ln(2|S|2), 10 ln(|S|/9)
ln(1+(7/144)((7/9)|S|2−|S|)/|X |2)

)
+ 144|X | ln(2|S|2)

|S| , then

||νCSr − µs|| ≤ n1−2r/T ,

where νCSr is the distribution after r rounds of CS and µs is the uniform distri-
bution on permutations on S.

Comparison with RCW. It is difficult to see from the theorem above but our
algorithm gives a significant advantage over RCW in the very typical case where
the size of the target set is at least half the size of the domain (i.e. |S| ≥ |X |/2).
For example, consider the setting of encrypting social security numbers using
an existing cipher for 30 bit strings. Here the size of the target set (i.e., the
number of 9 digit numbers) is 109 and the domain has size 230. In this setting
our algorithm requires 12,257 rounds until the variation distance is less than
1/109 while RCW requires over 32 million. While these numbers make RCW
look completely impractical, it is important to note that since RCW works best
when the size of the target set is between 1/4 and 1/2 the size of X , in some
settings it may be possible to find a larger superset of the target set to use with
RCW. If using RCW in our social security number example, it would actually
make more sense to choose X to be the set of 32 bit values instead of 30 bit
values. In this case, RCW requires just over 44,000 rounds. Nevertheless, Cycle
Slicer is still significantly faster, requiring around 1/4 the number of rounds.
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Fig. 1. Cycle Decomposition for T = {2, 3, 4, 7, 8}, U = {1, 2, 4, 7, 8} with mappings
3→ 2, 2→ 1, 4→ 8, 8→ 7 and 7→ 4

6 Domain Completion

Background. Our second application of Cycle Slicer is in domain completion.
This problem, recently studied by Grubbs, Ristenpart, and Yarom [11], arises
when we wish to construct a permutation on some set X , but we need the
permutation to maintain some mappings we might already have stored in a
table. More formally, let X be the set we wish to construct a permutation on.
Let T ⊆ X be called the preservation set, which will be the set of domain
points for which we already have a mapping. This mapping is given by a 1-1
and onto function G : T → U with T ,U ⊆ X . The domain completion problem
is then to construct an efficiently computable permutation F : X → X (with
a corresponding efficiently computable inverse function F−1) such that F (x) =
G(x) for all x ∈ T .

To understand our algorithm, note that the cycle decomposition (or cycle
structure) of the partial permutation on X given by the mapping G consists of
a set of cycles, lines and single points (see Fig. 1). The cycles and lines come
from the mapping G while the single points are the points in X − T − U . At a
high-level our algorithm ignores any cycles, collapses any lines to a single point
and generates a matching on the remaining set of points using the Cycle Slicer
algorithm. When the previously collapsed lines are expanded and the cycles are
added back in, this gives a permutation on X that preserves the mappings given
by G. Figure 1 gives an example of this process. Figure 1(b) gives a permuta-
tion on the collapsed line 3 → 2 → 1 and single points 5 and 6. Figure 1(b)
shows how to expand the line and create a permutation on the whole set. To
implement this idea we will use procedure CSDC in Algorithm 2 which performs
some preprocessing before using Cycle Slicer as a subroutine. We also describe
the inverse of this procedure CSDCinv in Algorithm 2.

Details. We will use the Cycle Slicer algorithm as defined in Sect. 3 (Algo-
rithm 1) with the following inclusion function Ic:

Ic(x, y) =

{
1 If x /∈ U and y /∈ U
0 Otherwise



Algorithm 2 Domain Completion Using Cycle Slicer

1: procedure CSDC(x)
2: if x ∈ T then
3: x← G(x)
4: else
5: if x ∈ U then
6: x← frst(x)
7: end if
8: x← CSr(x)
9: end if

10: return x
11: end procedure
12: procedure CSDCinv(x)
13: if x ∈ U then
14: x← G−1(x)
15: else
16: x← CSinvr(x)
17: if x ∈ T then
18: x← lst(x)
19: end if
20: end if
21: return x
22: end procedure

Next, we will describe the procedures frst and lst used by CSDC and CSDCinv
respectively. These are again easiest to understand by considering the cycle de-
composition of the mapping G. Notice that the function frst is only applied to
points x such that x ∈ U − T which implies that in the cycle decomposition x
is the last point in a line. We will define frst(x) to be the first point in the line
containing x. Note that frst(x) ∈ T − U . For example, in Fig. 1 frst(1) = 3.
Similarly, the function lst is only applied to points at the beginning of a line
(i.e., a point x ∈ T − U ). We will define lst(x) to be the last point in the line
containing x (again in Fig. 1 lst(3) = 1). If the functions frst and lst are not
available they can either be precomputed or computed on the fly. Algorithm 3
gives the detailed procedures for computing frst and lst . Note that in the worst
case they each take time O(|T |). However, frst only needs to be computed for
points x ∈ U − T and lst only needs to be computed for points y ∈ T − U . This
implies that if only the necessary values of frst and lst are precomputed then
the overall running time will be O(|T |) because the algorithm will only traverse
each line in the cycle decomposition twice (once for frst of the endpoint and
once for lst of the start point).

Correctness of CSDC. Next, we will prove that the CSDC algorithm generates
a valid permutation F on X consistent with the mappings given by G. Notice
that if we did not use the preprocessing algorithm given by CSDC but instead



Algorithm 3 Computing frst and lst

1: procedure frst(x)
2: while x ∈ U do
3: x← G−1(x)
4: end while
5: return x
6: end procedure
7: procedure lst(x)
8: while x ∈ T do
9: x← G(x)

10: end while
11: return x
12: end procedure

simply applied the Cycle Slicer algorithm using the inclusion function Ic to the
points in X −U , after enough steps we would generate a random permutation on
the set X −U . This is almost a valid permutation except that it does not give us
a mapping for the last point in every line (i.e. points in U −T ) and it does give a
mapping for the first point in every line (i.e. points in T −U) which are already
mapped by G. Again, consider the cycle decomposition of G. Each line in this
partial cycle decomposition contains exactly one point in T −U namely the first
point in the line and one point in U − T namely the last point in the line. The
preprocessing done by CSDC fixes this by first mapping a point x ∈ U − T to
the first point in the line containing x (i.e. frst(x)) which is in T − U and by
using the existing mapping in G for points in T − U . For the remaining points
(i.e., x ∈ X − T −U) no preprocessing is done and the Cycle Slicer algorithm is
applied directly. It is straightforward to see from the cycle decomposition view
of G that frst and lst give a bijection between the points in T −U and the points
in U − T . Thus if Cycle Slicer gives a random permutation on X − U than the
addition of our preprocessing algorithm CSDC gives a mapping that is uniformly
random over all possible ways to extend the mapping G to a permutation F
on X .

Finally, we will use our result from Sect. 4 to bound the number of steps
of the Cycle Slicer algorithm needed in our domain completion algorithm. We
have shown above that our algorithm can be viewed as first using Cycle Slicer
to generate a permutation on the set X − U which is then mapped bijectively
to a permutation on the set X which is consistent with the mapping G. For
simplicity, in the analysis of the Cycle Slicer portion of the algorithm, we view
the algorithm in this context as generating a permutation on the set X − U .
Through the bijection the analysis then applies directly to permutations on the
set X consistent with the mapping G. Here however the variation distance is the
distance between the distribution after r rounds and the uniform distribution
on all permutations consistent with G (instead of uniform on all permutations
of X − U).



Theorem 2 from Sect. 4 bounds the variation distance of the Cycle Slicer
algorithm and applies directly to the domain completion setting. In this applica-
tion, the set V that we are generating a permutation on has size |X − U|, which
gives the following corollary to Theorem 2.

Corollary 3. Let T = max
(

40 ln(2|Y|2), 10 ln(|Y|/9)
ln(1+(7/144)((7/9)|Y|2−|Y|)/|X |2)

)
+ 144|X | ln(2|Y|2)

|Y| , then

||νCSr − µs|| ≤ n1−2r/T ,

where Y = X − U , νCSr is the distribution after r rounds of CS and µs is the
uniform distribution on permutations on X consistent with G.

Comparison to Zig-Zag. As we stated in the introduction, one of our goals
with Cycle Slicer in domain completion is to improve on the worst-case running
time of the Zig-Zag construction from [11], which has a loop that repeats |T |
times in the worst-case. (In each loop iteration, Zig-Zag additionally needs to
check membership in T , evaluate the underlying permutation, and do a table
look-up.) Additionally, we want to avoid an expected-time procedure to minimize
leaked timing information.4

At first glance, since CSDC and CSDCinv rely on the frst and lst functions,
it would appear that we also have an expected-time procedure. But, the crucial
difference is that we can precompute frst and lst for each point in the table.
This precomputation can either be done (inefficiently) using the procedures in
Algorithm 3, or more efficiently as described earlier in this section.

The new table with this precomputed information for each point can still
be made read-only, and then evaluating frst and lst in our CSDC and CSDCinv
algorithms will become a simple table look-up. This means the worst-case run-
ning time will simply be tied to the number of rounds needed for Cycle Slicer,
which will be on the order of log |X |. Using our running example with social
security numbers, if the preservation set has size 1 million (meaning that before
we started using a FPE scheme, we manually encrypted 1 million customer’s
SSNs through lazy sampling and put them in the table), then in the worst-case
Zig-Zag needs 1 million loop iterations, while the bounds in our Cycle Slicer re-
sults tell us we would need around 11,000 rounds to get a strong level of security.
Further, after the precomputation, our algorithms CSDC and CSDCinv will need
this many rounds for any point outside of the preservation set, so the running
time will not vary widely based on which point is being enciphered.

4 GRY argue that Zig-Zag does not leak damaging timing information, even though
enciphering different points may result in very different execution times. We believe
there could still be timing attacks in certain applications. For example, if an adver-
sary measures execution time and then learns the corresponding plaintext, and then
later observes a different execution time, then the adversary knows the same point
was not enciphered this second time, which may or may not be useful and depends
on the application.



Comparison to Ranking Solution. The ranking-based construction described
by GRY, like our Cycle Slicer construction, requires extra storage in addition
to the preservation set table. In particular, it requires computing the rank of
each element of T and U . These two lists of ranks then need to be sorted. Enci-
phering a point involves applying rank-encipher-unrank, but with the addition
of performing a binary search on the sorted lists of ranks. However, this log |T |
factor is still less than the 11,000 rounds we need with Cycle Slicer in the above
example.

Nevertheless, our construction does potentially have some advantages over
the ranking-based construction. First, as we have already stated, our results
do not rely on the ability to efficiently rank the desired domain, which can be
important for non-regular languages or even regular languages described by a
particularly complicated regular expression. Second, our construction could be
more resistant to timing attacks. Specifically, GRY explain that implementations
of both the binary search and the ranking/unranking5 could leak important
timing information. Our construction, on the other hand, always applies the
same number of rounds of Cycle Slicer to points outside of the preservation set,
which should be easier to implement without leaking timing information.

7 More Applications of Cycle Slicer

As we mentioned in the introduction, we believe Cycle Slicer will prove useful
for any problem requiring the construction of permutations on domains with
additional restrictions or constraints. Towards this, in this section we briefly
discuss three problems where Cycle Slicer could be applied. We leave further
investigation to future work.

Domain Extension. In Sect. 6 we saw that Cycle Slicer is useful for solving
the problem of domain completion. Here we argue it would also work well for the
closely-related domain extension problem, also recently investigated by Grubbs,
Ristenpart, and Yarom [11].

Formally, let D be a set for which we already have some mappings. This
means there is a preservation set T ⊆ D and a 1-1 and onto function G : T → U
with T ,U ⊆ D. The domain extension problem is then to construct an efficiently
computable permutation P : X → X on a larger set X ⊇ D while maintaining
the property that P (x) = G(x) for all x ∈ T . Contrast this with the domain
completion problem, in which we would only be interested in constructing a
permutation on D. As GRY observe, we cannot hope to construct a random
permutation on the larger domain X , since points in the table are all randomly
mapped into the smaller domain D, which would be very unlikely in a random
permutation on X . Nevertheless, the same algorithm we presented in Sect. 6
would work for this new problem, and multiple rounds would mix the points
outside of the table as well as possible.

5 For example, many ranking algorithms use a procedure similar to cycle walking.



Partitioned Domains. Another application of Cycle Slicer would be in a situ-
ation where we need a permutation on a domain X that can be partitioned into
k smaller domains X1, . . . ,Xk, and we want the permutation to map points in
Xi to Xi for all i. For example, we might want a permutation on n bit strings
that maps each point to another point with the same first three bits. To apply
Cycle Slicer to this problem, we would let the inclusion function allow the swap
of two points only if they come from the same domain Xi.

Programmed Identity Mappings. One last application we will mention is
in constructing permutations with some identity mappings that we may want
“programmed”. For example, we may want points x, y, z ∈ X to all be mapped to
themselves, while all other points should be randomly mixed by the permutation.
This is essentially a special case of domain completion, so our techniques in
Sect. 6 would apply.

Acknowledgements. We thank the anonymous ASIACRYPT reviewers for
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A Proof of Mixing Time Theorem

Here we provide the details of the proof of Theorem 1 which bounds the mixing
time of a matching exchange process with parameters p1 and p2. Recall that
p1 is the probability a particular pair (x, y) is in the matching and p2 is the
probability that conditioned on one pair being in the matching, a second pair
is also in the matching (this is formally defined in Sect. 4). Our proof relies
heavily on the techniques used by Czumaj and Kutylowski [7] and the work by
Miracle and Yilek [17] in the context of the Reverse Cycle Walking algorithm.
We use the same techniques and thus our main contribution is the definition of
the parameters p1 and p2 and the determination of explicit constants in terms
of p1 and p2 which apply to more general matching exchanges processes rather
than the specific Reverse Cycle Walking algorithm given in [17]. The proof of
Czumaj and Kutylowski [7] gives a result on the mixing time of matching ex-
change processes that we can directly apply to our settings however their result
is an asymptotic result and they do not provide explicit constant. Similar to
Miracle and Yilek [17], we provide explicit constants in terms of p1 and p2 by
reproving several key lemmas. For completeness we give a brief overview of the
entire proof here and describe in details the two lemmas we have modified. The
complete details of the proof can be found in [17].

As in [17] we will use the delayed path coupling theorem introduced by Czu-
maj and Kutylowski which builds on the techniques of coupling and path cou-
pling both of which are commonly used techniques in the Markov chain commu-
nity (see e.g., [13], [22]). A coupling of a Markov chain with state space Ω is a
joint Markov process on Ω ×Ω where Ω is the state space. A coupling requires
that the marginal probabilities agree with the Markov chain probabilities and



that once the processes collide they move together. The expected time until the
two processes collide gives a bound on the mixing time. We will let the distance d
between two configurations be defined as the minimum number of transpositions
(or exchanges of two elements) needed to transition from one configuration to
the other. Using delayed path coupling, like with path coupling, we can restrict
our attention to pairs of configurations that initially differ by a single transpo-
sition (pairs at distance one) and show that with sufficiently high probability
after a logarithmic number of steps of a matching exchanges processes, the two
processes will have collided.

Theorem 3. Let d be a distance metric defined on Ω×Ω which takes values in
{0, . . . , D}, let U = {(x, y) ∈ Ω×Ω : d(x, y) = 1} and let δ be a positive integer.
Let (xt, yt)t∈N be a coupling for M, such that for every (xtδ, ytδ) ∈ U it holds
that E

[
d(x(t+1)δ, y(t+1)δ)

]
≤ β for some real β < 1. Then,

τM(ε) ≤ δ ·
⌈

ln(D ∗ ε−1)

lnβ−1

⌉
.

As in the result of Miracle and Yilek we will use the same exact coupling
introduced by Czumaj and Kutylowski. We provide a very brief description here
but a more thorough one can be found in [7] and [17]. For one process we will
matchings m1,m2, . . . that are selected completely randomly according to our
matching exchange process probabilities. However for the second process we will
use matchings n1, n2, . . . that are very closely related to the first set of matchings
m1,m2, . . .. Consider a pair of configurations that differ by a single inversion
(x, y). If the exact same inversion is selected as a pair in the first matching m1

then it is possible to couple the processes in one step by using the same matching
for both processes but different bit flips for the pair (x, y). However this happens
with probability p1 which in our applications is only Θ(1/n) and does not give a
tight enough bound. Czumaj and Kutylowski observed that it is likely that both
x and y will be paired with different elements (x, z) and (y, w). If (x, y) are paired
in the next matching m2 they will choose n1 = m1−(x, z)−(y, w)+(y, z)+(x,w)
and then different bit flips for (x, y) in m2 and n2. If (z, w) are paired in the next
matching m2 then they will choose m1 = n1 and then different bit flips for (x, y)
in m2 and n2. In either case the two processes will have coupled (or collided)
after 2 steps. Czumaj and Kutylowski refer to these pairs (x, y) and (y, z) as
good pairs and they show that at each step the set of good pairs doubles and
after Ω(log(n)) steps there are a linear number of these and thus it is very likely
that a good pair will be an edge in one of the next few matchings. This implies
that the matchings n1, n2, . . . can be selected strategically so the processes will
collide. More formally a the set of good pairs is defined below.

Definition 1 (Czumaj, Kutylowski). Without loss of generality, assume X0

and Y0 differ by a (x, y) transposition and let GP0 = {(x, y)}. For each (x, y) ∈
GPt−1:

1. If neither x or y is part of the matching Mt then (x, y) ∈ GPt.



2. If (x,w) ∈Mt and y is not part of Mt then (w, y) ∈ GPt.
3. If (y, w) ∈Mt and x is not part of Mt then (w, x) ∈ GPt.
4. If (x,w), (y, z) ∈ Mt then if neither w or z are part of pairs in GPt then

(w, z) ∈ GPt and (x, y) ∈ GPt.
5. Otherwise, (w, z) ∈ GPt.

In order to prove our theorem we need to show first that the after t1 steps
of the matching exchange process, there are a linear number of good pairs and
then that after a t2 additional steps we will select one of the good pairs as an
edge in our matching. These two requirements are formalized in the two lemmas
which we prove below. Although we provide more general bounds in terms of p1
and p2, the proof of our lemmas below relies heavily on techniques introduced by
Miracle and Yilek [17]. Again for completeness we include the full analysis with
our new parameters but the techniques remain the same as in [17]. Combining
the lemmas with Czumaj and Kutylowski’s coupling [7] and using the delayed
path coupling theorem (Theorem 3) proves Theorem 1. More details can be
found in [7] and [17].

Lemma 1. Let |GPt| be the number of good pairs at step t, and
t1 = max(40 ln(2n2), 10 ln(n/9)/ ln(1 + p1p2(7/36)((7/9)n2 − n))) then

Pr [ |GPt1 | < n/9 ] ≤ .5n−2.

Proof. Initially (at step t = 1) there is one good pair namely, (x, y). At any
step t, an existing good pair (x, y) contributes two good pairs to GPt+1 if both
x and y are mapped to points that are not currently good pairs (see part 4 of
Definition 1). We will start by bounding the probability that an existing good
pair creates two good pairs at any step in a matching exchange process (i.e.,
part 4 is selected) in terms of p1 and p2. We begin by assuming that there are
less than n/9 good pairs. If at any step t in the process there are more (i.e.,
|GPt| ≥ n/9) than we are done. Since each good pair contains two points, this
implies there are at most 2n/9 points in good pairs and at least 7n/9 points
not in good pairs. Recall that p1 is the probability that a particular pair (x, y)
is in the matching. Here we require not only that (x, y) is in the matching but
that the associated bit-flip is true and the points are exchanged. Since there are
least 7n/9 points not in good pairs, the probability of a point x being match
to a point not already in a good pair is (p1/2) ∗ (7n/9)). Note that the Recall
that p2 is the probability that conditioned on a first pair (x, y) being part of a
matching, a second pair (w, z) is also in the matching. Given that x is matched
to a point that is not a good pair there are at least 7n/9 − 1 points remaining
that are not in good pairs (i.e., not in GPt) and thus the probability of y also
being matched to a point that is not a good pair is at least (p2/2)(7n/9−1). Let
p4 be the probability that a particular good pair causes part 4 of the good pair
definition to be selected (i.e., it results in two good pairs after the next step),
then we have:

p4 ≥ (p1 ∗ p2/4)(7n/9)(7n/9− 1) = p1p2(7/36)((7/9)n2 − n).



As shown in [17] if we let growth rate Gt = (|GPt+1| − |GPt|)/|GPt| then by
linearity of expectations, E [Gt ] = p4. Define an indicator random variable Zt
for when Gt exceeds one half it’s expectation or Gt ≥ p4/2. Each time Zt is one
the number of good pairs increases at least by a factor of 1 + p4/2. This implies

that if
∑t1
t=0 Zt ≥

lnn/9
ln(1+p4/2)

then the number of good pairs (i.e., |GPt1 |) is at

least (1 + p4/2)(lnn/9)/ ln(1+p4/2) = n/9, as desired. It is straightforward to show
using Markov’s inequality that Pr [Zt = 0 ] ≤ 4/5 (see [17]). It is important to
note that the Zi’s are not independent since the growth rate is more likely to be
higher when there are fewer good pairs. In our analysis so far we are assuming
there are always at most n/9 good pairs which holds throughout and thus this
process is lower bounded by a process with independent variables W1, . . .Wt1

where each variable Wi is 1 with probability 1/5 and 0 with probability 4/5
which will allow us to apply a Chernoff bound. We will use the following well-
known bound Pr [W < E [W ]/2 ] < exp(−E [W ]/8) with W =

∑t1
t=0Wt and

t1 = max(40 ln(2n2), 10 ln(n/9)
ln(1+p4/2)

). The selection of t1 implies that E [W ] ≥
(1/5)40 ln(2n2) = 8 ln(2n2). Therefore,

Pr [W < E [W ]/2 ] < exp(−E [W ]/8) <= exp(−8 ln(2n2)/8) = .5n−2.

And similarly, E [W ] ≥ (1/5)10 lnn/9
ln(1+p4/2)

= 2 lnn/9
ln(1+p4/2)

. Together these prove

Lemma 1,

Pr

[
W <

lnn/9

ln(1 + p4/2)

]
< Pr [W < E [W ]/2 ] < .5n−2.

ut

The final component of our proof is to show that the matchings over the next
t2 steps will contain a good pair with probability at least 1− .5n−2. As in [7,17],
we say that a pair (x, y) is part of a potential matching if the process maps x to
y regardless of the value of the bit-flip. Here, we are interested in the probability
that a potential matching contains a good pair.

Lemma 2. Let t2 = 72 ln(2n2)/(p1n) then conditioned on |GPt1 | ≥ n/9, the
probability that the next t2 potential matchings contain no edges from GPt1 is at
most .5n−2.

Proof. First, consider a particular good pair (x, y). The probability that x is
mapped to y at any step is p1. There are at last n/9 good pairs and thus, by
linearity of expectations, the expected number of good pairs in any potential
matching is at least p1n/9. The potential matchings at each step in a matching
exchange process are independent and thus we can apply same Chernoff bound
above. Define the random variable Et be the number of edges in the potential
matching at time t that correspond to a good pair. Then using Chernoff, we
have

Pr

[
t1+t2∑
t=t1

Et < 4 ln(2n2)

]
< exp(−8 ln(2n2)/8) = .5n−2



which directly implies that Pr
[∑t1+t2

t=t1
Et < 1

]
< .5n−2. ut
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