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Abstract. Conditional cube attack is an efficient key-recovery attack on

Keccak keyed modes proposed by Huang et al. at EUROCRYPT 2017.

By assigning bit conditions, the diffusion of a conditional cube variable

is reduced. Then, using a greedy algorithm (Algorithm 4 in Huang et

al.’s paper), Huang et al. find some ordinary cube variables, that do

not multiply together in the 1st round and do not multiply with the

conditional cube variable in the 2nd round. Then the key-recovery attack

is launched. The key part of conditional cube attack is to find enough

ordinary cube variables. Note that, the greedy algorithm given by Huang

et al. adds ordinary cube variable without considering its bad effect, i.e.

the new ordinary cube variable may result in that many other variables

could not be selected as ordinary cube variable (they multiply with the

new ordinary cube variable in the first round).

In this paper, we bring out a new MILP model to solve the above prob-

lem. We show how to model the CP-like-kernel and model the way that

the ordinary cube variables do not multiply together in the 1st round

as well as do not multiply with the conditional cube variable in the 2nd

round. Based on these modeling strategies, a series of linear inequalities

are given to restrict the way to add an ordinary cube variable. Then,

by choosing the objective function of the maximal number of ordinary

cube variables, we convert Huang et al.’s greedy algorithm into an MILP

problem and the maximal ordinary cube variables are found.

Using this new MILP tool, we improve Huang et al.’s key-recovery attacks

on reduced-round Keccak-MAC-384 and Keccak-MAC-512 by 1 round,

get the first 7-round and 6-round key-recovery attacks, respectively. For

Ketje Major, we conclude that when the nonce is no less than 11 lanes,

a 7-round key-recovery attack could be achieved. In addition, for Ketje
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Minor, we use conditional cube variable with 6-6-6 pattern to launch

7-round key-recovery attack.

1 Introduction

Nowadays, the cryptanalysis progress of symmetric-key ciphers heavily depends

on automated evaluation tools. Providing a reliable security evaluation is the key

point for a cipher to be accepted by industry. Recently, cryptographic communi-

ties found that many classical cryptanalysis methods could be converted to math-

ematical optimization problems which aim to achieve the minimal or maximal

value of an objective function under certain constraints. Mixed-integer Linear

Programming (MILP) is the most widely studied technique to solve these opti-

mization problems. One of the most successful applications of MILP is to search

differential and linear trails. Mouha et al. [26] and Wu et al. [31] first applied

MILP method to count active Sboxes of word-based block ciphers. Then, at Asi-

acrypt 2014, by deriving some linear inequalities through the H-Representation

of the convex hull of all differential patterns of Sbox, Sun et al. [30] extended

this technique to search differential and linear trails. Another two important

applications are to search integral distinguisher [32] and impossible differentials

[28,8].

Keccak [3], designed by Bertoni et al., has been selected as the new cryp-

tographic hash function standard SHA-3. As one of the most important cryp-

tographic standards, Keccak attracts lots of attention from the world wide re-

searchers and engineers. Till now, many cryptanalysis results [7,10,11,18,19,21,24]

and evaluation tools [9,14,23] have been proposed, including the recent impres-

sive collision attacks [27,29]. Since the robust design of Keccak, the cryptanalysis

progress of Keccak is still limited. It must be pointed out that the automatic

evaluation tools for Keccak are still needed to be enriched urgently.

At Eurocrypt 2015, Dinur et al. [12] for the first time considered the security

of the Keccak keyed modes aganist cube-attack-like cryptanalysis and give some

key recovery attacks on reduced-round Keccak-MAC and Keyak [5]. At CT-RSA

2015, Dobraunig et al. [15] evaluate the security of Ascon [16] against the cube-

like cryptanalysis. Later, Dong et al. [17] applied the cube-like method to Ketje Sr

[4] which adopts smaller state size of Keccak-p permuation. At Eurocrypt 2017,

Huang et al. [20] introduced a new type of cube-like attack, called conditional

cube attack, which takes advantage of the large state freedom of Keccak to find

a so-called conditional cube variable that do not multiply with all the other

cube variables (called ordinary cube variables) in the first round and second

round of Keccak, meanwhile, all ordinary cube variables do not multiply with

each other in the first round. Thus, the degree of output polynomial of reduced-

round Keccak over the cube variables is reduced by 1 and a conditional cube
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tester is constructed. Then Li et al.[22] applied the conditional cube attack to

reduced-round Ascon.

1.1 Our Contributions

For conditional cube attack, when the conditional cube variable is determined,

the most important work is to find enough ordinary cube variables to launch

the key recovery attack. In [20], Huang et al. gives the Algorithm 4 to search

the ordinary cube variables. It is a greedy algorithm, it randomly selects a cube

variable and adds to ordinary cube variable set, when the variable does not

multiply with other ordinary cube variables in the set in the first round and does

not multiply with conditional cube variable either in both the first and second

round. The drawback is that it can hardly get the maximum number (optimal)

of ordinary cube variables. Because, when a cube variable is added to ordinary

cube variable set, many more variables which multiply with the new added cube

variable in the first round will be discarded, which means that we add just one

cube variable with the price that many variables lost the chance to be an ordinary

cube variable. Actually, the search problem is an optimization problem. When

the capacity of Keccak is large, the greedy algorithm is enough to find a proper

ordinary cube variable set. However, when the capacity or the state size is small,

the algorithm could hardly find enough ordinary cube variables and invalidate

the conditional cube attack. In fact, for Keccak-MAC-512 and Keccak-MAC-384,

only 5 round and 6 round attacks are achieved by Huang et al.’s algorithm. When

the capacity is large or the internal state of Keccak sponge function is smaller

than 1600-bit, e.g. 800-bit Ketje Minor, the number of ordinary cube variables

is reduced significantly.

In this paper, we present a novel technique to search ordinary cube vari-

ables by using MILP method3. By modeling the relations between ordinary cube

variables and conditional cube variables in the first and second round, modeling

the so-called CP-like-kernel and ordinary cube variables chosen conditions, we

construct a linear inequality system. The target object is the maximum number

of ordinary cube variables. Based on this MILP tool, we improve Huang et al.’s

attacks on Keccak-MAC and give some interesting results on Ketje Major and

Minor, which are summarized in Table 1. In addition, we list our source code of

the new MILP tool4 in a public domain to enrich the automatic evaluation tools

on Keccak and help the academic communities study Keccak much easier. The

following are the main application results of the MILP tool.

1. It should be noted that, when the capacity reaches 768 or 1024, the crypt-

analysis of Keccak becomes very hard. In fact, collision results on round-

3 Note that, in Huang et al.’s paper, a small MILP model is also introduced, however,

it could only find some distinguisher attacks on Keccak hash function.
4 https://github.com/lizhengcn/MILP_conditional_cube_attack
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reduced Keccak-384 or Keccak-512 that are better than the birthday bound

could respectively reach 4/3-round, while the preimage attacks [25,19] on the

two versions could reach only 4 rounds. Based on our MILP tool, for Keccak-

MAC-384, we find more than 63 ordinary cube variables and improve Huang

et al.’s attack by 1 round, and get the very first 7-round key-recovery attack.

For Keccak-MAC-512, we find more than 31 ordinary cube variables and im-

prove Huang et al.’s attack by 1 round, and get the first 6-round key-recovery

attack. These are the longest attacks that the cryptanalysis of Keccak with

big capacity (768 or 1024) could reach.
2. For Ketje Major, we conclude that when the nonce is no less than 11 lanes,

a 7-round conditional cube attack could work. In addition, we get the bor-

derline length of the nonce for the 6-round key-recovery attack is 8 lanes.
3. For Ketje Minor, we use a new conditional cube variable and find 124 or-

dinary cube variables. Then a new 7-round key-recovery attack is proposed,

which improved the previous best result by a factor of 215.

Table 1. Summary of Key Recovery Attacks on Keccak Keyed Modes

Variant Capacity Attacked Rounds Time Source

Keccak-MAC

768
6 240 [20]

7 275 Section 5.1

1024
5 224 [20]

6 258.3 Section 5.2

Variant Nonce Attacked Rounds Time Source

Ketje Major

Full 6 264 [17]

Full 7 296 [17]

≥ 512 6 241 Section 6.1

≥ 704 7 283 Section 6.1

Ketje Minor

Full 6 264 [17]

Full 7 296 [17]

Full 6 249 Section 6.2

Full 7 281 Section 6.2

Full: the attacks use maximum length of nonce.

1.2 Organization of the Paper

Section 2 gives some notations, and brief description on Keccak-permutations,

Keccak-MAC, Ketje. Some related works are introduced in Section 3. Section

4 describes the MILP search model for conditional cube attack. Round-reduced

key-recovery attacks on Keccak-MAC-384/512 are introduced in Section 5. Sec-

tion 6 gives the applications to Ketje. Section 7 concludes this paper.
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Fig. 1. (a) The Keccak State [3], (b) State A In 2-dimension

2 Preliminaries

2.1 Notations

Si the intermediate state after i-round of Keccak-p,

for example S0.5 means the intermediate state before χ in 1st round

of Keccak-p,

A used in tables: for Keccak-MAC, the initial state,

for Ketje, the state after π−1 of Keccak-p∗

A[i][j] the 32/64-bit word indexed by [i, j, ∗] of state A, 0 6 i 6 4, 0 6 j 6 4

A[i][j][k] the bit indexed by [i, j, k] of state A

vi the ith cube variable

K 128-bit key, for Keccak-MAC, K = k0||k1, both k0 and k1 are 64-bit,

for Ketje Major, K = k0||k1||k2, k0 is 56-bit, k1 is 64-bit, k2 is 8-bit,

for Ketje Minor, K = k0||k1||k2||k3||k4, k0 is 24-bit, k1,k2 and k3
are 32-bit, k4 is 8-bit

ki[j] the jth bit of ki
capacity in Keccak-MAC, it is the all zero padding bits; in Ketje, it is the

padding of nonce

2.2 The Keccak-p permutations

The Keccak-p permutations are derived from the Keccak-f permutations [3] and

have a tunable number of rounds. A Keccak-p permutation is defined by its width

b = 25× 2l, with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds

nr, denoted as Keccak-p[b]. The round function R consists of five operations:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Keccak-p[b] works on a state A of size b, which can be represented as 5 × 5
b
25 -bit lanes, as depicted in Figure 1, A[i][j] with i for the index of column and

j for the index of row. In what follows, indexes of i and j are in set {0, 1, 2, 3, 4}
and they are working in modulo 5 without other specification.
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Fig. 2. π−1
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bitrate

capacity

Keccak internal 

permutation

128-bit tag

128-bit key||message

1600-2n bits

2n bits

Fig. 2. Construction of Keccak-MAC-n

two-block message. Both key and nonce are 128 bits. The capacity is 256 bits
long and the bitrate is 1344 bits long.

According to the specification of Keyak [11], when confidentiality of data is
not required, a nonce can be reused. In this paper, we shall restrict our discussion
to the two-block Keyak.

Keccak internal 

permutation

128-bit key||128-bit nonce

tag

Keccak internal 

permutation

pad

C1

P1

pad

C2

P2

Keccak internal 

permutation

X0

k

1344 bits

256 bits

Fig. 3. Construction of Keyak on two blocks

2.3 Cube Tester.

Cube tester introduced in [20] is a distinguisher to detect some algebraic property
of cryptographic primitives. The idea is to reveal non-random behaviour of a
Boolean function with algebraic degree d by summing its values when cube
variables of size k (k ≤ d) run over all of their 2k inputs. This cube sum can be
taken as higher order derivative [21] of the output polynomial with respect to
cube variables. More precisely, we have

Theorem 1. ([10]) Given a polynomial f : {0, 1}n → {0, 1} of degree d. Sup-

pose that 0 < k ≤ d and t is the monomial
∏k−1

i=0 xi. Write f as:

f(X) = t · Pt(xk, . . . , xn−1) +Qt(X),

Fig. 3. Construction of Keccak-MAC-n

θ : A[x][y] = A[x][y]⊕∑4
j=0 (A[x− 1][j]⊕ (A[x+ 1][j] ≪ 1)).

ρ : A[x][y] = A[x][y] ≪ r[x, y].

π : A[y][2x+ 3y] = A[x][y].

χ : A[x][y] = A[x][y]⊕ ((¬A[x+ 1][y]) ∧A[x+ 2][y].

ι : A[0][0] = A[0][0]⊕RC.
In Ketje v2, the twisted permutations, Keccak-p∗[b]=π◦ Keccak-p[b]◦π−1, are

introduced to effectively re-order the bits in the state. π−1 is the inverse of π,

shown in Figure 2.

π−1 : A[x+ 3y][x] = A[x][y].

2.3 Keccak-MAC

A MAC form of Keccak can be obtained by adding key as the prefix of mes-

sage/nonce. As depicted in Figure 3, the input of Keccak-MAC-n is concatena-

tion of key and message and n is half of the capacity length.

2.4 Ketje

Ketje [4] is a submission by Keccak team. It is a sponge-like construction. In

Ketje v1, two instances are proposed, Ketje Sr and Jr with 400-bit and 200-

bit state sizes, respectively. In the latest Ketje v2, another two instances Ketje
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Fig. 4. Wrapping a Header and a Body with MonkeyWrap [4]

Minor and Major are added to the family, with 800-bit and 1600-bit state sizes,

respectively. Ketje Sr is the primary recommendation. In the following, we give

a brief overview about the Ketje v2. For a complete description, we refer to the

design document [4].

The structure of Ketje is an authenticated encryption mode MonkeyWrap,

shown Figure 4, which is based on MonkeyDuplex [6]. It consists of four parts

as follows:

1. The initialization phase: The initialization takes the secret key K, the

public nonce N and some paddings as the initial state. Then nstart = 12

rounds Keccak-p∗ is applied.

2. Processing associated data: ρ-bit blocks associated data are padded to

(ρ+ 4)-bit and absorbed by xoring them to the state, then nstep = 1 round

Keccak-p∗ is applied. If associated data is empty, this procedure is still need-

ed to be applied which means an empty block is padded to (ρ + 4)-bit and

then processed similarly.

3. Processing the plaintext: Plaintext is processed in ρ-bit blocks in a similar

manner, with ciphertext blocks extracted from the state right after adding

the plaintext.

4. Finalization: The finalization with nstride = 6 rounds Keccak-p∗ and a

series of nstep = 1 round Keccak-p∗s are performed to get the required

length of tag T .

In Ketje v2, four concrete instances are proposed, shown in Table 2. nstart =

12,nstep = 1 and nstride = 6. For Ketje Minor and Major, the recommended

key length is 128-bit, so the maximal length of nonce is (800-128-18=)654 and

(1600-128-18=)1454 bits. This paper discusses the shortest length of nonce that

a conditional cube attack could be applied.
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Table 2. Four Instances in Ketje v2

Name f ρ Main use case

Ketje Jr Keccak-p∗[200] 16 lightweight

Ketje Sr Keccak-p∗[400] 32 lightweight

Ketje Minor Keccak-p∗[800] 128 lightweight

Ketje Major Keccak-p∗[1600] 256 high performance

3 Related Work

3.1 Cube Attack

At EUROCRYPT 2009, Dinur and Shamir introduced the cube attack [13], in

which the output bit of a symmetric cryptographic scheme can be regarded as

a polynomial f(k0, ..., kn−1, v0, ..., vm−1) over GF (2), k0, ..., kn−1 are the secret

variables (the key bits), v0, ..., vm−1 are the public variables (e.g. IV or nonce

bits).

Theorem 1. ([13] )

f(k0, ..., kn−1, v0, ..., vm−1) = t · P +Q(k0, ..., kn−1, v0, ..., vm−1) (1)

t is called maxterm and is a product of certain public variables, for example

(v0, ..., vs−1), 1 ≤ s ≤ m, denoted as cube Ct. None of the monomials in Q is

divisible by t. P is called superpoly, which does not contain any variables of Ct.

Then the sum of f over all values of the cube Ct (cube sum) is
∑

v′=(v0,...,vs−1)∈Ct

f(k0, ..., kn−1, v
′, vs, ..., vm−1) = P (2)

where Ct contains all binary vectors of the length s, vs, ..., vm−1 are fixed to

constant.

The basic idea is to find enough t whose P is linear and not a constant. This

enables the key recovery through solving a system of linear equations.

3.2 Huang et al.’s Conditional Cube Attack

Conditional cube attack [20] was proposed by Huang et al. to attack Keccak

keyed mode, including Keccak-MAC and Keyak. We quote some definitions and

a theorem here.

Definition 1. ([20]) Cube variables that have propagation controlled in the first

round and are not multiplied with each other after the second round of Keccak

are called conditional cube variables. Cube variables that are not multiplied

with each other after the first round and are not multiplied with any conditional

cube variable after the second round are called ordinary cube variables.
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Theorem 2. ([20]) For (n+ 2)-round Keccak sponge function (n > 0), if there

are p(0 ≤ p < 2n+1) conditional cube variables v0, ..., vp−1, and q = 2n+1−2p+1

ordinary cube variables, u0, ..., uq−1 (If q = 0, we set p = 2n + 1), the term

v0v1...vp−1u0...uq−1 will not appear in the output polynomials of (n + 2)-round

Keccak sponge function.

Actually, we use the special case of the above theorem when p = 1. We

describe it as a corollary for clearness.

Corollary 1. For (n + 2)-round Keccak sponge function (n > 0), if there is

one conditional cube variable v0, and q = 2n+1 − 1 ordinary cube variables,

u0, ..., uq−1, the term v0u0...uq−1 will not appear in the output polynomials of

(n+ 2)-round Keccak sponge function.

4 Modeling Search Strategy

Define A[x][y][z] = 1 when it is an ordinary cube variable or conditional cube

variable, else A[x][y][z] = 0.

4.1 Modeling CP-like-kernel

In the Keccak submission document [3], the original concept is illustrated as

following: if all columns in a state have even parity, θ is the identity, which

is illustrated. The conditional cube variable used in this is set in CP-kernel to

reach a reduced diffusion. At ASIACRYPT 2016, Guo et al. [19] assign A[1][y],

y = 0, 1, 2, 3, to be variables and A[1][4] =
⊕3

i=0A[1][y] so that variables in

each column sum to 0. Then θ is the identity. In fact, when the parity of a

column remains constant, the variables in the column do not propagate through

θ operation. We denoted this property as a CP-like-kernel. In order to reduce

the diffusion of ordinary cube variables, we set them as CP-like-kernel.

In CP-like-kernel, if certain column contain ordinary cube variables, then the

number of the variables must be no less than two. If n(n = 2, 3, 4, 5) bits in a

column contain cube variables, we set the n− 1 bits to be independent ordinary

cube variables and 1 bit variable to be the sum of the n−1 bits. So the constraints

in modeling CP-like-kernel have the following two purposes:

1. Avoid the number of bits containing cube variable in each column from being

one;

2. Record which column contains cube variables.

Given x, z, suppose A[x][y][z], y = 0, 1, 2, 3, 4 possibly contain ordinary cube

variables. If there exists an ordinary cube variable in A[x][y][z] for some y, then

the dummy variable d = 1. Else d = 0. Then we get the following inequalities
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



4∑

y=0

A[x][y][z] ≥ 2d

d ≥ A[x][0][z]

d ≥ A[x][1][z]

d ≥ A[x][2][z]

d ≥ A[x][3][z]

d ≥ A[x][4][z]

(3)

For any x, z (x = 0, 1, ..., 4, z = 0, 1, ..., 63), denote the corresponding dummy

variable as d[x][z]. d[x][z] records whether the column [x][z] contain cube vari-

ables as illustrated above. The [x][z] column can provide
4∑

y=0
A[x][y][z]− d[x][z]

independent cube variables. The number of independent cube variables that the

whole state can provide is to sum up the ones of all columns with x = 0, 1...4, z =

0, 1...63. Correspondingly, the objective function of the MILP model is set as

∑

x,y,z

A[x][y][z]−
∑

x,z

d[x][z],

i.e. the number of cube variables in the whole state.

4.2 Modeling The First Round

We omit the θ operation in the first round, as it does not influence the distribu-

tion of cube variables according to the property of CP-like-kernel. With the help

of SAGE [1], the Keccak round function can be operated in the form of alge-

braic symbols. So the internal the bits of state S1 are describe as algebraic form

functions about the bits of the initial state S0. Using a easy search program, we

know which two bits in state S0 will be multiplied in S1. Constraints are added

according to the following two conditions:

1. (a) Condition: Any of the ordinary cube variables do not multiply with

each other in the first round.

(b) Constraint: If two bits S0[x1][y1][z1] and S0[x2][y2][z2] multiply, the

constraint

A[x1][y1][z1] +A[x2][y2][z2] ≤ 1

will be added to avoid their simultaneous selection as ordinary cube vari-

ables.

2. (a) Condition: The conditional cube variable does not multiply with any

of the ordinary cube variables in the first round.
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(b) Constraint: If one bit S0[x][y][z] multiplies with the conditional cube

variable, the constraint

A[x][y][z] = 0

will be added to avoid it from being selected as ordinary cube variables.

4.3 Modeling The Second Round

We list Property 1 for the conditions added to control the diffusion of the con-

ditional cube variable v0.

Property 1. In χ operation, denote the input and output state as X and Y

respectively, one bit X[x][y][z] only multiplies with two bits X[x − 1][y][z] + 1

and X[x+ 1][y][z].

(1) If only one bit X[x][y][z] contains variable v0, conditions X[x−1][y][z]+1 = 0

and X[x+ 1][y][z] = 0 can avoid v0 from diffusing by χ.

(2) If only n bits X[x0][y0][z0], X[x1][y1][z1]...X[xn−1][yn−1][zn−1] contain vari-

able v0, 2n conditions

X[x0 − 1][y0][z0] + 1 = 0, X[x0 + 1][y0][z0] = 0,

X[x1 − 1][y1][z1] + 1 = 0, X[x1 + 1][y1][z1] = 0,

...

X[xn−1 − 1][yn−1][zn−1] + 1 = 0, X[xn−1 + 1][yn−1][zn−1] = 0

can avoid v0 from diffusing by χ.

1. Condition: Under the above conditions added to the first round, the condi-

tional cube variable does not multiply with any of the ordinary cube variables

in the second round.

2. Constraint: If one bit S0[x][y][z] multiplies with the conditional cube vari-

able, the constraint

A[x][y][z] = 0

will be added to avoid it from being selected as ordinary cube variables.

5 Applications to round-reduced Keccak-MAC

5.1 Attack on 7-round Keccak-MAC-384

For Keccak-MAC-384 with 1600-bit state, rate occupies 832 bits, and capacity

768 bits. As Figure 5 shows us, 128-bit key (k0, k1) locates at the first two yellow

lanes, and conditional cube variable v0 is set in CP-like-kernel as S0[2][0][0] =

S0[2][1][0] = v0 in blue, then the white bits represent nonce or message bits,
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all of which can be selected as ordinary cube variables, while the grey ones are

initialized with all zero. Note that the lanes, which are possible to be ordinary

cube variables, obey CP-like-kernel. List these lanes in a set V:

V = {[0][1], [0][2], [1][1], [1][2], [2][0], [2][1], [2][2], [3][0], [3][1], [4][0], [4][1]}
Additionally, the subset of V, Vi, i = 0, 1...4 represents the set of lanes whose

x-index equals 0,1...4 respectively.

Fig. 5. The Initial State of Keccak-MAC-384

According to the modeling search strategy illustrated in Section 4, we search

for the maximal number of independent ordinary cube variables. The objective

function is

∑

x,y∈V,z∈{0,1...63}
A[x][y][z] −

∑

x∈{0,1...4},z∈{0,1...63}
d[x][z],

To model the CP-like-kernel, constraints are in the following:





∑

x,y∈Vx,z

A[x][y][z] ≥ 2d[x][z]

d[x][z] ≥ A[x][y][z], y ∈ Vx

for x = 0, 1...4, z = 0, 1...63 (4)

The input state is initialized with key k, conditional cube variable v0, possible

ordinary cube variables vi (placed in bit position [xi][yi][zi]) and zero padding.

After ρ, π, χ operation in the first round, the state is in the algebraic symbolic

form of the initial state bits. If any v0vi exists, and the bit corresponding to

i is [xi][yi][zi], constraint A[xi][yi][zi] = 0 is added. If any vivj exists, the bit

corresponding to i, j, constraint A[xi][yi][zi] + A[xj ][yj ][zj ] ≤ 1 is added. The

above constraints are to avoid any multiplication in the first round among cube

variables. Additionally, we add the four bit conditions around conditional cube

variable v0 before the first χ operation to reduce its diffusion. After θ, ρ, π, χ

operation in the second round, similarly, if any v0vi exists, and the bit corre-

sponding to i is [xi][yi][zi], constraint A[xi][yi][zi] = 0 is added to avoid any

ordinary cube variables from multiplying with v0 in the second second. With
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Table 3. Parameters set for attack on 7-round Keccak-MAC-384

Ordinary Cube Variables

A[2][0][1]=v1,A[2][1][1]=v2,A[2][2][1]=v1 + v2,A[3][0][3]=A[3][1][3]=v3,

A[2][0][5]=A[2][2][5]=v4,A[1][1][7]=A[1][2][7]=v5,A[2][0][8]=A[2][1][8]=v6,

A[3][0][9]=A[3][1][9]=v7,A[4][0][10]=A[4][1][10]=v8,A[2][1][11]=A[2][2][11]=v9,

A[2][0][12]=A[2][1][12]=v10,A[4][0][12]=A[4][1][12]=v11,A[3][0][13]=A[3][1][13]=v12,

A[2][1][14]=A[2][2][14]=v13,A[4][0][14]=A[4][1][14]=v14,A[0][1][15]=A[0][2][15]=v15,

A[1][1][15]=A[1][2][15]=v16,A[2][1][15]=A[2][2][15]=v17,A[2][1][18]=A[2][2][18]=v18,

A[2][1][19]=A[2][2][19]=v19,A[2][0][20]=v20,A[2][1][20]=v21,A[2][2][20]=v20 + v21,

A[3][0][20]=A[3][1][20]=v22,A[2][0][21]=A[2][2][21]=v23,A[0][1][22]=A[0][2][22]=v24,

A[3][0][23]=A[3][1][23]=v25,A[2][1][24]=A[2][2][24]=v26,A[2][0][27]=A[2][2][27]=v27,

A[0][1][28]=A[0][2][28]=v28,A[1][1][30]=A[1][2][30]=v29,A[3][0][30]=A[3][1][30]=v30,

A[0][1][32]=A[0][2][32]=v31,A[0][1][34]=A[0][2][34]=v32,A[1][1][34]=A[1][2][34]=v33,

A[3][0][35]=A[3][1][35]=v34,A[0][1][37]=A[0][2][37]=v35,A[0][1][38]=A[0][2][38]=v36,

A[1][1][38]=A[1][2][38]=v37,A[1][1][39]=A[1][2][39]=v38,A[3][0][39]=A[3][1][39]=v39,

A[1][1][40]=A[1][2][40]=v40,A[3][0][40]=A[3][1][40]=v41,A[2][0][41]=A[2][1][41]=v42,

A[2][0][43]=A[2][1][43]=v43,A[2][0][45]=A[2][1][45]=v44,A[0][1][46]=A[0][2][46]=v45,

A[3][0][46]=A[3][1][46]=v46,A[0][1][47]=A[0][2][47]=v47,A[0][1][49]=A[0][2][49]=v48,

A[1][1][50]=A[1][2][50]=v49,A[2][0][50]=A[2][1][50]=v50,A[1][1][52]=A[1][2][52]=v51,

A[2][1][52]=A[2][2][52]=v52,A[2][0][53]=A[2][1][53]=v53,A[2][1][56]=A[2][2][56]=v54,

A[3][0][56]=A[3][1][56]=v55,A[0][1][58]=A[0][2][58]=v56,A[2][1][58]=A[2][2][58]=v57,

A[0][1][59]=A[0][2][59]=v58,A[0][1][60]=A[0][2][60]=v59,A[2][0][61]=v60,A[2][1][61]=v61,

A[2][2][61]=v60 + v61,A[2][0][62]=v62,A[2][1][62]=v63,

A[2][2][62]=v62 + v63,A[4][0][63]=A[4][1][63]=v64,

Conditional Cube Variable

A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44] = A[4][1][44] + A[2][2][45],

A[2][0][4] = k0[5] + k1[5] + A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + 1,

A[2][0][59] = k0[60] + A[2][1][59] + A[2][2][59] + 1,

A[4][0][6] = A[2][0][7] + A[2][1][7] + A[4][1][6] + A[2][2][7] + A[3][1][7],

A[2][2][23]=A[2][0][23] + A[4][0][22] + A[2][1][23] + A[4][0][22],

A[2][2][46]=A[2][0][46] + A[4][0][45] + A[2][1][46] + A[4][1][45],

A[2][2][36]=A[2][0][36] + A[4][0][35] + A[2][1][36] + A[4][1][35],

A[2][2][63]=A[2][0][63] + A[4][0][62] + A[2][1][63] + A[4][1][62],

A[2][2][42]=A[2][0][42] + A[4][0][41] + A[2][1][42] + A[4][4][41],

A[0][2][35]=k0[35] + A[3][0][36] + A[0][1][35] + A[3][1][36],

A[2][2][53]=k0[54] + A[0][1][54] + A[0][2][54],A[4][1][13]=A[2][0][14] + A[4][0][13],

A[1][2][29]=k1[29] + A[3][0][28] + A[1][1][29] + A[3][1][28],

A[2][2][6]=k0[7] + A[2][0][6] + A[0][1][7] + A[2][1][6] + A[0][2][7],

A[1][2][45]=k1[45] + A[3][0][44] + A[1][1][45] + A[3][1][44],A[4][1][19]=A[4][0][19],

A[2][2][31]=A[2][0][31] + A[4][0][30] + A[2][1][31] + A[4][1][30],

A[2][2][17]=k0[18] + A[2][0][17] + A[0][1][18] + A[2][1][17] + A[0][2][18]

Guessed Key Bits

k0[5] + k1[5], k0[60],k0[35],k0[54], k1[29],k0[7],k1[45],k0[18]
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the help of Gurobi [2], the objective function is optimized under all the above

constraints, i.e. with all cube variables obeying CP-like-kernel, the maximum

of cube variables is 65. Actually, 64 cube variables are enough to perform the

7-round attack on Keccak-MAC-384. Both the cube variables and conditions are

listed in Table 3.

In 7-round attack on Keccak-MAC-384, 26 = 64 cube variables are denoted

by v0, v1...v63. Based on Corollary 1, v0 is the conditional cube variable fixed in

the beginning and v1, v2...v63 are ordinary cube variables found by MILP search

strategy. We summarize the requirements as following:

(1) v0, v1...v63 do not multiply with each other in the first round;

(2) Under some conditions on key and nonce, v0 does not multiply with

any of v1, v2...v63 in the second round.

While all the nonce bits are constant, all the bit conditions are satisfied if and

only if all the key bits are guessed correctly. Thus, zero sums over the 128-bit

tag with cube variables set as Table 3 mean a correct key guess.

We analyze the time and data complexity of the attack: with the parameters

set in Table 3, the 8 guessed key bits k0[5] + k1[5], k0[60], k0[35], k0[54], k1[29],

k0[7], k1[45], k0[18] can be recovered. The time complexity of one recovery is

28 ∗ 264. According to the property of permutation, it is totally symmetric in z-

axis. Thus we can obtain corresponding parameters set with any rotation of i-bit

(0 ≤ i < 64) in z-axis. Therefore, the guessed key bits rotated i-bit i.e. k0[i+ 5]

+ k1[i+5], k0[i+60], k0[i+35], k0[i+54], k1[i+29], k0[i+7], k1[i+45], k0[i+18]

can be recovered. Through simple count, for 0 ≤ i < 8, 70 independent key bits

out of 128 key bits can be recovered, 8 iterations consumes 8 × 28 × 264 and

the remaining 58 key bits are left to exhaustive search consuming 258. Combine

the two parts, the procedure consumes 8 × 28 × 264 + 258 = 275 computations

of 7-round of Keccak-MAC-384, correspondingly 275 (message, tag) pairs are

needed. After the procedure above, all the 128 bits in k0, k1 can be recovered.

Therefore, both time and data complexity of the attack are 275.

5.2 Attack on 6-round Keccak-MAC-512

For Keccak-MAC-512 with 1600-bit state, rate occupies 576 bits, and capacity

1024 bits. As Figure 6 shows us, 128-bit key (k0, k1) locates at the first two yellow

lanes, and conditional cube variable v0 is set in CP-like-kernel as S0[2][0][0] =

S0[2][1][0] = v0 in blue, then the white bits represent nonce bits, but only white

ones highlighted by red thick lines can be selected as ordinary cube variables,

while the grey ones are initialized with all zero. Note that the set of lanes possible

to be ordinary cube variables is denoted as V:

V = {[2][0], [2][1], [3][0], [3][1]}
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Additionally, the subset of V, Vi, i = 2, 3 represents the set of lanes whose x-index

equals 2,3 respectively. According to the modeling search strategy illustrated in

Fig. 6. The Initial State of Keccak-MAC-512

Section 4, we search the controllable bits for the most ordinary cube variables.

The objective function is
∑

x,y∈V,z∈{0,1...63}
A[x][y][z]−

∑

x∈{0,1...4},z∈{0,1...63}
d[x][z],

To model the CP-like-kernel, constraints are in the following according to Equa-

tions 3: 



∑

x,y∈Vx,z

A[x][y][z] ≥ 2d[x][z]

d[x][z] ≥ A[x][y][z], y ∈ Vx

for x = 2, 3, z = 0, 1...63 (5)

The method of adding constraints to avoid multiplication is just the same as

Keccak-MAC-384. With the help of Gurobi [2], the objective function is opti-

mized under all the above constraints. The maximum of cube variables obeying

CP-like-kernel is 26 (including a conditional cube variables). As the number of

cube variables is not enough to perform the 6-round attack on Keccak-MAC-

512, and many nonce bits are not utilized, we continue the search for appropriate

ordinary cube variables among the single bits in lanes [0,1],[1,1],[4,0].

Modeling the single bits

A single bit here means it is the only bit in its column that contains cube

variable, exactly, it is set as a new ordinary cube variable. As the optimization

according to CP-like-kernel above, most cube variables have been settled. Addi-

tionally, the state is so large as 1600-bit. Although a single bit diffuse to 11 bits

after the first θ operation, it may not multiply with all the other cube variables

in the first round, and not multiply with conditional cube variable v0 in the

second round. The objective function is the sum of all possible bits to be ordi-

nary cube variables. Then, constraints are added to avoid the above two kinds

of multiplication in the same way.
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Table 4. Parameters set for attack on 6-round Keccak-MAC-512

Ordinary Cube Variables

A[3][0][56]=A[3][1][56]=v1,A[2][0][1]=A[2][1][1]=v2,A[2][0][8]=A[2][1][8]=v3,

A[2][0][12]=A[2][1][12]=v4,A[2][0][23]=A[2][1][23]=v5,A[2][0][41]=A[2][1][41]=v6,

A[2][0][43]=A[2][1][43]=v7,A[2][0][45]=A[2][1][45]=v8,A[2][0][50]=A[2][1][50]=v9,

A[2][0][53]=A[2][1][53]=v10,A[2][0][62]=A[2][1][62]=v11,A[3][0][3]=A[3][1][3]=v12,

A[3][0][4]=A[3][1][4]=v13,A[3][0][9]=A[3][1][9]=v14,A[3][0][12]=A[3][1][12]=v15,

A[3][0][13]=A[3][1][13]=v16,A[3][0][14]=A[3][1][14]=v17,A[3][0][20]=A[3][1][20]=v18,

A[3][0][23]=A[3][1][23]=v19,A[3][0][27]=A[3][1][27]=v20,A[3][0][33]=A[3][1][33]=v21,

A[3][0][35]=A[3][1][35]=v22,A[3][0][39]=A[3][1][39]=v23,A[3][0][40]=A[3][1][40]=v24,

A[3][1][46]=A[3][0][46]=v25,A[2][1][56]=v26,A[4][0][12]=v27,A[2][0][56]=v28,

A[0][1][33]=v29,A[0][1][57]=v30,A[4][0][60]=v31

Conditional Cube Variable

A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44] = 0,A[2][0][59] = k0[60] + A[2][1][59] + A[0][1][60] + 1,

A[2][0][4] = k0[5] + k1[5] + A[0][1][5] + 1 + A[2][1][4],

A[4][0][6] = A[2][0][7] + A[2][1][7] + A[3][1][7],

A[2][0][46] = A[4][0][45] + A[2][1][46],A[2][0][31] = A[4][0][30] + A[2][1][31],

A[4][0][3] = k0[5] + k1[5] + A[0][1][5] + 1,A[0][1][19] = k0[19],

A[3][1][30] = k0[29] + A[3][0][30] + A[0][1][29],A[0][1][34] = k0[34],

A[3][1][22] = k0[21] + A[3][0][22] + A[0][1][21],A[1][1][28] = k1[28],

A[3][1][36] = k0[35] + A[3][0][36] + A[0][1][35],A[0][1][51] = 0,

A[3][1][49] = k0[48] + A[3][0][49] + A[0][1][48],A[2][0][18] = A[2][1][18] + 1,

A[3][1][41] = k0[40] + A[3][0][41] + A[0][1][40],A[4][0][8] = k0[8] + k1[7] + A[1][1][7],

A[3][0][63] = k0[62] + A[0][1][60] + A[3][1][63],A[4][0][51] = k1[50] + A[1][1][50],

A[2][0][51] = k0[52] + A[0][1][52] + A[2][1][51] + 1,

A[2][0][63] = A[4][0][62] + A[2][1][63] + A[3][1][63],

A[2][1][58] = k0[59] + A[2][0][58] + A[0][1][59],

A[4][0][13] = k0[13] + k1[12] + k1[34] + A[1][1][12] + A[1][1][34] + 1,

A[2][0][26] = A[3][0][26] + A[4][0][25] + A[2][1][26] + 1,

A[3][0][16] = k1[17] + A[1][1][17] + A[3][1][16],

A[1][1][24] = k1[24] + A[4][0][25] + A[0][1][25] + 1,

A[2][0][42] = A[4][0][41] + A[2][1][42] + A[3][1][42] + 1,

A[4][0][40] = 1, A[2][0][17] = k0[18] + A[0][1][18] + A[2][1][17],

A[3][0][15] = k1[16] + A[1][1][16] + A[2][1][16] + A[3][1][15] + 1,

A[3][0][6] = k0[5] + A[0][1][5] + A[3][1][6] + 1,

A[2][0][33] = A[2][1][33], A[0][1][13] = k0[13] + 1,

A[3][0][59] = k0[58] + A[0][1][58] + A[3][1][59] + 1,

A[0][1][32] = k0[32] + A[4][0][30] + A[1][1][32]

Guessed Key Bits

k0[60], k0[5] + k1[5], k0[19], k0[29], k0[34], k0[21], k0[35], k0[48], k0[40],

k0[62], k0[52],k0[59], k0[13] + k1[12] + k1[34],k1[17],k1[28],k1[24],

k0[8] + k1[7], k0[18], k1[16],k0[5], k1[50], k0[13], k0[58], k0[32]
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Another 6 single bits are found as 6 new ordinary cube variables. Totally, we

find (6+26=)32 dimension cube and based on it a 6 round key-recovery attack

on Keccak-MAC-512 is achieved. Both the cube variables and conditions are

listed in Table 4.

In 6-round attack on Keccak-MAC-512, 25 = 32 cube variables denoted

by v0, v1...v31. Based on Corollary 1, v0 is the conditional cube variable and

v1, v2...v31 are ordinary cube variables. We summarize the requirements as fol-

lowing:

(1) v0, v1...v31 do not multiply with each other in the first round;

(2) Under some conditions on key and nonce, v0 does not multiply with

any of v1, v2...v31 in the second round.

All the bit conditions are satisfied if and only if all the key bits are guessed

correctly. Thus, zero sums over the 128-bit tag with cube variables set as Ta-

ble 4 suggest a correct key guess. Furthermore, the similar key recovery can be

performed with any offset in z-axis.

We analyze the time and data complexity of the attack: 4 iterations in z-axis

recover 72 key bits, and the remaining 56 key bits are recovered by exhaustive

search, thus the procedure consumes 4× 224× 232 + 256 = 258.3 computations of

6-round initialization of Keccak-MAC-512, correspondingly 258.3 (message, tag)

pairs are needed. After the procedure above, all the 128 bits in k0, k1 can be

recovered. Therefore, both time and data complexity of the attack are 258.3.

6 Attacks on round-reduced Initialization of Ketje

At 6 March 2017, the Keccak team announces the Ketje cryptanalysis prize to

encourage the cryptanalysis.

6.1 Attacks on round-reduced Initialization of Ketje Major

Ketje Major operates on a 1600-bit state, the recommended key length is 128-bit,

which is similar to Keccak-MAC. We focus on the instances with recommended

128-bit key. The number of nonce bits in Ketje Major is variable from 0 to 1454.

To explore the resistance against conditional cube attack of the different in-

stances, we apply the MILP search strategy to search the possible cube variables

in the instances with different lengths of nonce, and list the corresponding num-

ber of cube variables in Table 5. Similar to attacks on Keccak-MAC described in

Section 5.1, 5.2, 32 cube variables are needed to perform 6-round attack, and 64

cube variables are needed to perform 7-round attack. Thus, Table 5 tells us that

when the nonce is no less than 704 bits (11 lanes), cube variables are enough to
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Table 5. The number of cube variables in CP-like-kernel in different nonces in Ketje

Major

nonce: bits(lanes) number of cube variables in CP-like-kernel

448(7) 21

512(8) 41

576(9) 50

640(10) 59

704(11) 75

832(13) 81

Table 6. Parameters set for attack on 6-round Ketje Major

Ordinary Cube Variables

A[4][1][2] =A[4][4][2]=v1, A[4][1][4]=A[4][4][4]=v2, A[4][1][10]=A[4][4][10]=v3,

A[4][1][11]=A[4][4][11]=v4,A[3][0][14]=A[3][3][14]=v5,A[3][0][17]=A[3][3][17]=v6,

A[4][1][19]=A[4][4][19]=v7,A[4][1][20]=A[4][4][20]=v8,A[4][1][27]=A[4][4][27]=v9,

A[3][0][28]=A[3][3][28]=v10,A[4][1][28]=A[4][4][28]=v11,A[3][0][33]=A[3][3][33]=v12,

A[3][0][36]=A[3][3][36]=v13,A[3][0][37]=A[3][3][37]=v14,A[4][1][38]=A[4][4][38]=v15,

A[3][0][45]=A[3][3][45]=v16,A[4][1][59]=A[4][4][59]=v17,A[4][1][60]=A[4][4][60]=v18,

A[2][2][18]=A[2][4][18]=v19,A[2][2][19]=A[2][4][19]=v20,A[2][2][51]=A[2][4][51]=v21,

A[2][2][27]=A[2][4][27]=v22,A[2][2][28]=A[2][4][28]=v23,A[2][2][52]=A[2][4][52]=v24,

A[2][2][53]=A[2][4][53]=v25,A[2][2][36]=A[2][4][36]=v26,A[2][2][37]=A[2][4][37]=v27,

A[2][2][39]=A[2][4][39]=v28,A[2][2][55]=A[2][4][55]=v29,A[2][2][60]=A[2][4][60]=v30,

A[2][2][62]=A[2][4][62]=v31

Conditional Cube Variable

A[3][0][0]=A[3][3][0]=v0

Bit Conditions

A[3][3][41]=k1[42] + A[1][0][42] + A[3][0][41] + A[2][2][42] + A[1][3][42] + 1,

A[4][4][7]=A[3][0][7] + A[0][2][6] + A[3][3][7],

A[2][4][31]=k1[31] + A[1][0][31] + A[3][0][30] + A[1][3][31] + A[3][3][30] + 1,

A[3][3][8]=A[3][0][8] + A[4][1][8] + A[0][2][7],

A[4][4][49]=A[2][1][50] + A[4][1][49] + A[2][2][50] + A[3][3][50] + A[2][4][50],

A[2][4][11]=A[2][1][11] + A[3][3][11] + 1,

A[2][4][61]=A[2][1][61] + A[2][2][61] + A[3][3][61],

A[0][2][38]=k0[30] + k1[38] + A[2][1][37] + 1,

A[4][4][12]=A[2][1][13] + A[4][1][12] + A[3][3][13] + A[2][4][13]

Guessed Key Bits

k1[42],k1[31],k0[30] + k1[38]
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perform 7-round attack on Ketje Major and 6-round attack on Ketje Major can

be performed if the nonce is no less than 512 bits (8 lanes).

As instances with more nonce bits can directly use the parameters of instances

with less nonce bits, we list the details of 6-round and 7-round attacks on Ketje

Major with 512-bit and 704-bit nonce.

Attack on 6-round Initialization of Ketje Major According to parameters

set in Table 6, guess the 3 key bits listed, compute cube sums on variables

v0, ..., v31, zero cube sums suggest a right key(i.e. 3 guessed key bits in Table 6).

It consumes 23 × 232 = 235 computations of 6-round initialization of Ketje

Major. According to the property of permutation, it is totally symmetric in

z-axis. Thus we can obtain corresponding parameters set with any rotation of

i-bit (0 ≤ i < 64) in z-axis. Therefore, 128 key bits can be recovered by 64

iterations for 0 ≤ i < 64, so the time complexity is 64× 23 × 232 = 241.

Attack on 7-round Initialization of Ketje Major We useA[1][0][0]=A[1][3][0]=v0
as condition cube variable. According to parameters set in Table 7, guess the 16

key bits listed, compute cube sums on variables v0, ..., v63, zero cube sums sug-

gest a right key(i.e. 16 guessed key bits in Table 7). It consumes 216× 264 = 280

computations of 7-round initialization of Ketje Major. Similar to the case

above, 46 key bits can be recovered by 4 iterations for 0 ≤ i < 4, and the re-

maining 82 key bits can be recovered by exhaustive search. The time complexity

is 4× 216 × 264 + 282 = 283.

6.2 Attacks on round-reduced Initialization of Ketje Minor

The state of Ketje Minor is 800-bit, which is the half of the state size of Keccak-

MAC (1600-bit). As the upper part of Figure 7 shows, in Huang et al.’s attack

on Keccak-MAC, one conditional cube variable v0 is chosen, placed in two black

bits of S0. After adding some conditions, the conditional cube variable v0 is

diffused to 22 bits shown in state S1.5, we denote the diffusion pattern as 2-2-22.

For the state of Ketje Minor is much smaller, the conditional cube variable in

2-2-22 pattern diffuses relatively much greater, there are only 26 ordinary cube

variables in CP-like-kernel optimized with MILP search strategy, which is not

enough for 7-round attack.

In order to solve the problem, we find a new conditional cube variable. As

shown in the lower part of Figure 7, after adding some conditions, the diffusion

pattern is 6-6-6 and only 6 bits in S1.5 contains the conditional cube variable.

At last, we find enough ordinary cube variables with the MILP tool to launch

the key-recovery attacks on 5/6/7-round reduced Ketje Minor.
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Table 7. Parameters set for attack on 7-round Ketje Major

Ordinary Cube Variables

A[3][2][0]=A[3][3][0]=v1,A[1][0][1]=A[1][3][1]=v2,A[4][1][4]=A[4][4][4]=v3,

A[3][0][5]=v4,A[3][2][5]=v5,A[3][3][5]=v4+v5,A[1][0][7]=A[1][3][7]=v6,

A[1][0][9]=A[1][3][9]=v7,A[3][2][9]=A[3][3][9]=v8,A[4][1][9]=A[4][4][9]=v9,

A[3][0][10]=v10,A[3][2][10]=v11,A[3][3][10]=v10+v11,A[4][1][10]=A[4][4][10]=v12,

A[3][2][11]=A[3][3][11]=v13,A[4][1][11]=A[4][4][11]=v14,A[1][0][12]=A[1][3][12]=v15,

A[3][2][15]=A[3][3][15]=v16,A[1][0][17]=A[1][3][17]=v17,A[1][0][19]=A[1][3][19]=v18,

A[4][1][20]=A[4][4][20]=v19,A[4][1][26]=A[4][4][26]=v20,A[3][0][27]=A[3][2][27]=v21,

A[1][0][29]=A[1][3][29]=v22,A[3][2][30]=A[3][3][30]=v23,A[3][2][31]=A[3][3][31]=v24,

A[1][0][32]=A[1][3][32]=v25,A[1][0][33]=A[1][3][33]=v26,A[4][1][33]=A[4][4][33]=v27,

A[3][0][38]=A[3][2][38]=v28,A[1][0][39]=A[1][3][39]=v29,A[3][0][41]=A[3][3][41]=v30,

A[3][0][42]=A[3][2][42]=v31,A[1][0][43]=A[1][3][43]=v32,A[3][0][43]=A[3][3][43]=v33,

A[3][0][45]=A[3][2][45]=v34,A[3][0][46]=v35,A[3][2][46]=v36,A[3][3][46]=v35+v36,

A[3][0][47]=A[3][2][47]=v37,A[3][0][48]=A[3][2][48]=v38,A[3][0][49]=v39,

A[3][2][49]=v40,A[3][3][49]=v39+v40,A[3][2][50]=A[3][3][50]=v41,

A[3][2][51]=A[3][3][51]=v42,A[3][2][52]=A[3][3][52]=v43,A[4][1][52]=A[4][4][52]=v44,

A[3][2][53]=A[3][3][53]=v45,A[3][0][56]=v46,A[3][2][56]=v47,A[3][3][56]=v46+v47,

A[3][2][60]=A[3][3][60]=v48,A[4][1][61]=A[4][4][61]=v49,A[1][0][62]=A[1][3][62]=v50,

A[3][2][63]=A[3][3][63]=v51,A[2][2][20]=A[2][4][20]=v52,A[2][1][26]=A[2][4][26]=v53,

A[1][0][4]=A[1][3][4]=v54,A[2][2][33]=A[2][4][33]=v55,A[2][1][35]=v56,

A[2][2][35]=v57,A[2][4][35]=v56+v57,A[2][1][40]=A[2][2][40]=v58,

A[2][1][44]=A[2][2][44]=v59,A[2][2][45]=A[2][4][45]=v60,A[2][2][54]=A[2][4][54]=v61,

A[2][1][23]=A[2][2][23]=v62,A[1][0][2]=A[1][3][2]=v63

Bit Conditions

A[4][4][42]=k1[41] + A[1][0][41] + A[4][1][42] + A[0][2][42] + A[1][3][41] + 1,

A[2][4][48]=k0[38] + k1[48] + A[1][0][48] + A[1][3][48] + A[0][2][46],

A[4][4][47]=k1[46] + A[1][0][46] + A[4][1][47] + A[1][3][46]+ 1,

A[3][3][58]=k1[59] + A[1][0][59] + A[3][0][58] + A[2][1][59] + A[3][2][58] + A[1][3][59],

A[3][3][17]=k0[8] + A[3][0][17] + A[0][2][16]+ A[3][2][17],

A[3][3][26]=k0[17] + A[3][0][26] + A[0][2][25] + A[3][2][26],

A[3][3][27]=k0[18] + A[0][2][26], A[3][3][47]=k0[38] + A[0][2][46],

A[3][3][7]=k1[8] + A[1][0][8] + A[3][0][7] + A[3][2][7] + A[1][3][8],

A[3][3][48]=k0[39] + A[0][2][47],A[4][4][44]=A[2][1][45] + A[4][1][44] + A[3][3][45],

A[3][3][55]=k0[46] + A[3][0][55] + A[0][2][54] + A[3][2][55],

A[4][4][41]=A[2][0][42] + A[2][1][42] + A[4][1][41] + A[3][3][42] + A[2][4][42],

A[4][4][46]=k1[45] + A[1][0][45] + A[4][1][46]+ A[0][2][46] + A[1][3][45] + 1,

A[2][4][52]=k1[52] + A[1][0][52] + A[3][0][51] + A[1][3][52],

A[0][2][43]=k0[35] + k1[43] + A[2][0][42] + A[2][1][42] + A[2][4][42] + 1,

A[1][3][61]=k1[61] + A[1][0][61] + A[3][0][60] + A[2][1][61],

A[0][2][44]=k1[43] + A[2][1][45] + A[3][3][45] + 1

Guessed Key Bits

k1[41],k0[38] + k1[48],k1[46],k1[59],k0[8],k0[17],k0[18],k0[38],k1[8],k0[39],k0[46],

k1[45],k1[52],k0[35] + k1[43],k1[61],k1[43]
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S0 S1 S1.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S0 S1 S1.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Fig. 7. Diffusions of the Conditional Cube Variable in 2-2-22 and 6-6-6 Pattern in

Ketje Minor

In details, from S0 to S1, θ, ρ, π, χ, ι are operated in sequence. θ operation

holds the distribution of v0 according to CP-like-kernel. Operations ρ and π only

permute the bit positions, while ι only adds a constant. Thus, we only need to

control the diffusion of χ operation. We denote the state before χ operation in

the first round as S0.5. According to Property 1-(2), 12-bit conditions based on

key and nonce are introduced to keep the 6 bits containing v0 from diffusion.

Then the diffusion of v0 maintains the 6-6-6 pattern.

Attack on 5-round Initialization of Ketje Minor In 5-round attack, we

choose 24 = 16 cube variables denoted by v0, v1...v15. Based on Corollary 1, v0
is the conditional cube variable and v1, v2...v15 are ordinary cube variables. We

summarize the requirements as following:

(1) v0, v1...v15 do not multiply with each other in the first round;

(2) Under some conditions on key and nonce, v0 does not multiply with

any of v1, v2...v15 in the second round.

Under (1), any of cube variables v0, v1...v15 only exists as a one-degree term

in the output of 1-round Ketje Minor, i.e. the degree of any bit in S1 is no more

than one. The degree of one round function is 2. When we say the degree of some
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Table 8. Parameters Set for Attack on the 5-round Initialization of Ketje Minor

Conditional Cube Variable

A[0][1][19]=A[0][3][19]=A[1][2][15]=A[1][3][15]=A[3][1][0]=A[3][2][0]=v0

Ordinary Cube Variables

A[2][0][2]=A[2][1][2]=v1,A[2][0][4]=A[2][1][4]=v2,A[2][0][7]=A[2][1][7]=v3,

A[2][0][11]=A[2][1][11]=v4,A[2][0][12]=A[2][1][12]=v5,A[2][0][20]=A[2][1][20]=v6,

A[2][0][23]=A[2][1][23]=v7,A[2][0][29]=A[2][1][29]=v8,A[2][0][30]=A[2][1][30]=v9,

A[3][0][3]=A[3][1][3]=v10,A[3][0][6]=A[3][1][6]=v11,A[3][0][12]=A[3][1][12]=v12,

A[3][0][13]=A[3][1][13]=v13,A[3][0][17]=A[3][1][17]=v14,A[3][0][21]=A[3][1][21]=v15.

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[0][1][16]=k0[8] + k3[17] + A[0][2][16] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[0][4][16] + A[3][4][17]

A[0][1][13]=k0[5] + k2[12] + A[0][2][13] + A[1][2][13] + A[0][3][13]

+ A[2][3][12] + A[0][4][13] + A[2][4][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[0][1][27]=k0[19] + k3[28] + A[3][0][28] + A[4][0][28] + A[3][1][28]

+ A[0][2][27] + A[3][2][28] + A[0][3][27] + A[0][4][27] + A[3][4][28] + 1

A[0][1][15]=k0[7] + k3[16] + A[3][0][16] + A[3][1][16] + A[0][2][15]

+ A[3][2][16] + A[4][2][16] + A[0][3][15] + A[0][4][15] + A[3][4][16]

A[0][1][20]=k0[12] + k3[21] + A[0][2][20] + A[3][2][21] + A[4][2][21]

+ A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[0][1][26]=k0[18] + k2[25] + A[2][0][25] + A[2][1][25] + A[0][2][26]

+ A[0][3][26] + A[2][3][25] + A[0][4][26] + A[1][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1

Guessed Key Bits

k1[24],k1[31] + k3[30],k1[19] + k3[18],k0[8] + k3[17] ,k0[5] + k2[12],

k1[20],k1[10] + k3[9],k0[19] + k3[28],k0[7] + k3[16] ,k0[12] + k3[21],

k0[18] + k2[25],k1[25] + k3[24]
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state, we mean the highest degree among the cube variables in all terms of the

state. If conditions in (2) are met, according to Corollary 1, the term v0v1...v15
will not appear in S5, so the degree over cube variables v0, v1...v15 is at most 15.

Otherwise, the degree of S5 is 16.

Thus, under given conditions on key and nonce, the cube sums of all bits in S5

over v0, v1...v15 are zero, otherwise the cube sums are random if those conditions

are not met. Actually, ρ = 128 bits of S5 are known in Ketje Minor. If the cube

sum on each of the 128 bits is zero, we can determine that the corresponding

conditions are satisfied.

As Table 8 shows, the 12 bit conditions are related to key and nonce bit-

s. We guess the 12 key bits with all the possible values. While all the nonce

bits are constant, all the bit conditions are satisfied if and only if all the key

bits are guessed correctly. Thus, zero sums over the 128 known bits of S5

(S5[0][0], S5[1][1], S5[2][2], S5[3][3]5) with cube variables set as Table 8 mean a

correct key guess. We give an example here for intuition, in which key is gener-

ated randomly and all the controllable nonce bits are set as zero.

128-bit key (K = k0||k1||k2||k3||k4):

1010000011010110011101001101110001110010000111011101110010110110

1111110010011101001011000101010100010111101000111100101100000101

The correct value for the guessed key bits in Table 8 is 110111101010.

guessed value: 000000000000,

cube sums: 0xf0217c64, 0x8a61f7e1, 0x67f01330, 0xa9b1c06

...

guessed value: 110111101010,

cube sums: 0x0, 0x0, 0x0, 0x0

...

guessed value: 000011010110,

cube sums: 0xf4c1bc4, 0xea79d2a4, 0xc2880990, 0x8ae4140d

...

guessed value: 111111111111,

cube sums: 0x7b115312, 0xa9156874, 0x9cabc23, 0x6ecd5ef9

Furthermore, we can perform the similar key recovery with any offset 0, 1...31

in z-axis. We analyze the time and data complexity of the attack: the procedure

consumes 32 × 212 × 216 = 233 computations of 5-round initialization of Ketje

Minor, correspondingly 233 (nonce, plaintext, ciphertext, tag) pairs are needed.

After the procedure above, all the 120 bits in k0, k1, k2, k3 can be recovered, and

the remaining 8 bits of k4 can be determined by brute search. Therefore, time

complexity of the attack is 233 computations of 5-round initialization of Ketje

Minor, and data complexity is 233 (nonce, plaintext, ciphertext, tag) pairs.

5 These four 32-bit words are the first four words after π which are the output bits of

Keccak-p∗.
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Attack on 6-round Initialization of Ketje Minor In 6-round attack, similar

to the 5-round attack, we choose 25 = 32 cube variables denoted by v0, v1...v31.

Based on Corollary 1, v0 is the conditional cube variable and v1, v2...v31 are

ordinary cube variables. We summarize the requirements as following:

(1) v0, v1...v31 do not multiply with each other in the first round;

(2) Under some conditions on key and nonce, v0 does not multiply with

any of v1, v2...v31 in the second round.

The recovery attack can be performed similarly to 5-round attack. While all

the nonce bits are constant, all the bit conditions are satisfied if and only if all

the key bits are guessed correctly. Thus, zero sums over the 128 known bits of S6

(S6[0][0], S6[1][1], S6[2][2], S6[3][3]) with conditional cube variable set as Table 8

and ordinary cube variables set as Table 9 mean a correct key guess. We give

an example here for intuition, in which key is generated randomly and all the

controllable nonce bits are set as zero.

128-bit key (K = k0||k1||k2||k3||k4):

1001011000001001100010100101011010101110110110011100100111011010

0011111110101101101001110111100101000101101110001110011101101101

The correct value for the guessed key bits in Table 8 is 100001001100.

guessed value: 000000000000,

cube sums: 0x555b48a6, 0xcce8cd70, 0x9e41800d, 0x66b12d4f

...

guessed value: 100001001100,

cube sums: 0x0, 0x0, 0x0, 0x0

...

guessed value: 010101101100,

cube sums: 0xc61fa207, 0x24f02427, 0x3fed45e0, 0x36a8326d

...

guessed value: 111111111111,

cube sums: 0x834061d2, 0x14200817, 0xd56d2379, 0xc93e01f8

We analyze the time and data complexity of the attack: the procedure con-

sumes 32×212×232 = 249 computations of 6-round initialization of Ketje Minor,

correspondingly 249 (nonce, plaintext, ciphertext, tag) pairs are needed. After

the procedure above, all the 120 bits in k0, k1, k2, k3 can be recovered, and the

remaining 8 bits in k4 can be determined by brute search. Therefore, both time

and data complexity of the attack are 249.

Attack on 7-round Initialization of Ketje Minor In 7-round attack, similar

to the 5/6-round attack, we choose 26 = 64 cube variables denoted by v0, v1...v63.

Based on Corollary 1, v0 is the conditional cube variable and v1, v2...v63 are

ordinary cube variables. We summarize the requirements as following:
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Table 9. Ordinary Cube Variables and Bit Conditions for Attack on the 6-round

Initialization of Ketje Minor

Ordinary Cube Variables

A[2][0][2]=A[2][1][2]=v1,A[2][0][4]=A[2][1][4]=v2,A[2][0][7]=A[2][1][7]=v3,

A[2][0][11]=A[2][1][11]=v4,A[2][0][12]=A[2][1][12]=v5,A[2][0][20]=A[2][1][20]=v6,

A[2][0][23]=A[2][1][23]=v7,A[2][0][29]=A[2][1][29]=v8,A[2][0][30]=A[2][1][30]=v9,

A[3][0][3]=A[3][1][3]=v10,A[3][0][6]=A[3][1][6]=v11,A[3][0][12]=A[3][1][12]=v12,

A[3][0][13]=A[3][1][13]=v13,A[3][0][17]=A[3][1][17]=v14,A[3][0][21]=A[3][1][21]=v15,

A[3][0][22]=A[3][1][22]=v16,A[3][0][26]=A[3][1][26]=v17,A[3][0][31]=A[3][1][31]=v18,

A[4][0][0]=A[4][1][0]=v19,A[4][0][5]=A[4][1][5]=v20,A[4][0][8]=A[4][1][8]=v21,

A[4][0][15]=A[4][1][15]=v22,A[4][0][18]=A[4][1][18]=v23,A[4][0][22]=A[4][1][22]=v24,

A[4][0][24]=A[4][1][24]=v25,A[0][2][1]=A[0][3][1]=v26,A[0][2][5]=A[0][3][5]=v27,

A[0][2][10]=A[0][3][10]=v28,A[0][2][15]=A[0][3][15]=v29,A[0][2][31]=A[0][3][31]=v30,

A[1][2][4]=A[1][3][4]=v31.

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[0][1][16]=k0[8] + k3[17] + A[0][2][16] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[0][4][16] + A[3][4][17]

A[0][1][13]=k0[5] + k2[12] + A[0][2][13] + A[1][2][13] + A[0][3][13]

+ A[2][3][12] + A[0][4][13] + A[2][4][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[0][1][27]=k0[19] + k3[28] + A[3][0][28] + A[4][0][28] + A[3][1][28]

+ A[0][2][27] + A[3][2][28] + A[0][3][27] + A[0][4][27] + A[3][4][28] + 1

A[0][1][15]=k0[7] + k3[16] + A[3][0][16] + A[3][1][16] + A[3][2][16]

+ A[4][2][16] + A[0][4][15] + A[3][4][16]

A[0][1][20]=k0[12] + k3[21] + A[0][2][20] + A[3][2][21] + A[4][2][21]

+ A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[0][1][26]=k0[18] + k2[25] + A[2][0][25] + A[2][1][25] + A[0][2][26]

+ A[0][3][26] + A[2][3][25] + A[0][4][26] + A[1][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1
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(1) v0, v1...v63 do not multiply with each other in the first round;

(2) Under some conditions on key and nonce, v0 does not multiply with

any of v1, v2...v63 in the second round.

While all the nonce bits are constant, all the bit conditions are satisfied if and

only if all the key bits are guessed correctly. Thus, zero sums over the 128 known

bits of S7 (S7[0][0], S7[1][1], S7[2][2], S7[3][3]) with conditional cube variable set

as Table 8 and ordinary cube variables set as Table 10 mean a correct key guess.

We analyze the time and data complexity of the attack: the procedure con-

sumes 32×212×264 = 281 computations of 7-round initialization of Ketje Minor,

correspondingly 281 (nonce, plaintext, ciphertext, tag) pairs are needed. After

the procedure above, all the 120 bits in k0, k1, k2, k3 can be recovered, and the

remaining 8 bits in k4 can be determined by brute search. Therefore, both time

and data complexity of the attack are 281.

Table 10. Ordinary Cube Variables for Attack on the 7-round Initialization of Ketje

Minor

Ordinary Cube Variables

A[0][1][0]=v1,A[0][2][0]=v2,A[0][3][0]=v3,A[0][4][0]=v1 + v2 + v3,A[0][2][1]=v4,

A[0][3][1]=v5,A[0][4][1]=v4 + v5,A[0][1][2]=A[0][3][2]=v6,A[0][2][3]=A[0][4][3]=v7,

A[0][1][4]=v8,A[0][3][4]=v9,A[0][4][4]=v8 + v9,A[0][1][5]=v10,A[0][2][5]=v11,

A[0][3][5]=v10 + v11,A[0][1][6]=v12,A[0][2][6]=v13,A[0][4][6]=v12 + v13,

A[0][1][8]=A[0][3][8]=v14,A[0][1][9]=v15,A[0][2][9]=v16,A[0][3][9]=v17,

A[0][4][9]=v15 + v16 + v17,A[0][2][10]=v18,A[0][3][10]=v19,A[0][4][10]=v18 + v19,

A[0][1][13]=v20,A[0][3][13]=v21,A[0][4][13]=v20 + v21,A[0][1][14]=v22,A[0][2][14]=v23,

A[0][4][14]=v22 + v23,A[0][1][15]=v24,A[0][2][15]=v25,A[0][3][15]=v24 + v25,

A[0][1][16]=v26,A[0][2][16]=v27,A[0][4][16]=v26 + v27,A[0][2][17]=A[0][4][17]=v28,

A[0][2][19]=A[0][4][19]=v29,A[0][3][21]=A[0][4][21]=v30,A[0][1][22]=v31,

A[0][2][22]=v32,A[0][3][22]=v33,A[0][4][22]=v31 + v32 + v33,A[0][2][23]=A[0][4][23]=v34,

A[0][1][24]=v35,A[0][3][24]=v36,A[0][4][24]=v35 + v36,A[0][1][25]=v37,A[0][3][25]=v38,

A[0][4][25]=v37 + v38,A[0][1][27]=A[0][4][27]=v39,A[0][1][30]=A[0][2][30]=v40,

A[0][1][31]=v41,A[0][2][31]=v42,A[0][3][31]=v43,A[0][4][31]=v41 + v42 + v43,

A[2][0][1]=A[2][4][1]=v44,A[2][0][2]=v45,A[2][1][2]=v46,A[2][3][2]=v47,

A[2][4][2]=v45 + v46 + v47,A[2][1][3]=v48,A[2][3][3]=v49,A[2][4][3]=v48 + v49,

A[2][0][4]=v50,A[2][1][4]=v51,A[2][3][4]=v50 + v51,A[2][0][5]=A[2][4][5]=v52,

A[2][0][7]=v53,A[2][1][7]=v54,A[2][3][7]=v53 + v54,A[2][0][9]=A[2][3][9]=v55,

A[2][0][10]=A[2][4][10]=v56,A[2][0][11]=v57,A[2][1][11]=v58,A[2][4][11]=v57 + v58,

A[2][0][12]=v59,A[2][1][12]=v60,A[2][4][12]=v59 + v60,A[2][1][13]=v61,A[2][3][13]=v62,

A[2][4][13]=v61 + v62,A[2][1][14]=A[2][4][14]=v63.
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7 Conclusion

In this paper, we comprehensively study the conditional cube attack against

Keccak keyed modes. In order to find enough ordinary cube variables in low

degrees of freedom of Keccak keyed modes, we introduce a new MILP model.

We show how to model the CP-like-kernel and model the way that the ordinary

Table 11. Bit Conditions for Attack on the 7-round Initialization of Ketje Minor

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[3][0][17]=k0[8] + k3[17] + A[3][1][17] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[3][4][17]

A[1][2][13]=k0[5] + k2[12] + A[0][2][13] + A[2][3][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][0][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[3][0][28]=k0[19] + k3[28] + A[4][0][28] + A[3][1][28] + A[0][2][27]

+ A[3][2][28] + A[0][3][27] + A[3][4][28] + 1

A[3][0][16]=k0[7] + k3[16] + A[3][1][16] + A[3][2][16] + A[4][2][16]

+ A[0][4][15] + A[3][4][16]

A[3][0][21]=k0[12] + k3[21] + A[0][1][20] + A[3][1][21] + A[0][2][20]

+ A[3][2][21] + A[4][2][21] + A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[1][4][26]=k0[18] + k2[25] + A[2][0][25] + A[0][1][26] + A[2][1][25]

+ A[0][2][26] + A[0][3][26] + A[2][3][25] + A[0][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1

cube variables do not multiply together in the first round as well as do not

multiply with the conditional cube variable in the second round. Then, a series

of linear inequality system are brought out, which accurately restrict the way to

add an ordinary cube variable. Then, by choosing the objective function of the

maximal number of ordinary cube variables, we convert Huang et al.’s greedy

algorithm into an MILP problem and maximal number of ordinary cube variables

is determined. Based on this method, we extend the best previous attacks on

round-reduced Keccak-MAC-384 and Keccak-MAC-512 by 1 round, and achieve

the first 7-round and 6-round key-recovery attacks, respectively. In addition, we
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give some results on Ketje Major and Minor and get the best results on these

two ciphers.

Currently, the cryptanalysis progress of symmetric-key ciphers heavily de-

pends on automated evaluation tools. For many reasons, the cryptanalysis of

the new SHA-3 standard Keccak is very hard and limited, more evaluation tool-

s on Keccak are urgently needed. The MILP method introduced in this paper

enriches the Keccak tools, and helps academic communities study Keccak much

easier.
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