
Non-Interactive Multiparty Computation
Without Correlated Randomness

Shai Halevi1, Yuval Ishai2, Abhishek Jain3, Ilan Komargodski4, Amit Sahai5,
and Eylon Yogev6

1 IBM Research shaih@alum.mit.edu
2 Technion and UCLA yuvali@cs.technion.ac.il
3 Johns Hopkins University abhishek@cs.jhu.edu

4 Cornell Tech komargodski@cornell.edu
5 UCLA sahai@cs.ucla.edu

6 Weizmann Institute eylon.yogev@weizmann.ac.il

Abstract. We study the problem of non-interactive multiparty compu-
tation (NI-MPC) where a group of completely asynchronous parties can
evaluate a function over their joint inputs by sending a single message
to an evaluator who computes the output. Previously, the only general
solutions to this problem that resisted collusions between the evaluator
and a set of parties were based on multi-input functional encryption and
required the use of complex correlated randomness setup.

In this work, we present a new solution for NI-MPC against arbitrary
collusions using a public-key infrastructure (PKI) setup supplemented
with a common random string. A PKI is, in fact, the minimal setup that
one can hope for in this model in order to achieve a meaningful “best
possible” notion of security, namely, that an adversary that corrupts the
evaluator and an arbitrary set of parties only learns the residual function
obtained by restricting the function to the inputs of the uncorrupted
parties. Our solution is based on indistinguishability obfuscation and
DDH both with sub-exponential security. We extend this main result to
the case of general interaction patterns, providing the above best possible
security that is achievable for the given interaction.

Our main result gives rise to a novel notion of (public-key) multiparty
obfuscation, where n parties can independently obfuscate program mod-
ules Mi such that the obfuscated modules, when put together, exhibit
the functionality of the program obtained by “combining” the underlying
modules Mi. This notion may be of independent interest.

1 Introduction

The recent breakthrough on general-purpose program obfuscation [16] has spur-
red a large body of research that studies different flavors of obfuscation and
their applications. Much of this research is driven by the goal of minimizing
interaction. In this work we revisit the question of minimizing interaction in
the broad context of secure multiparty computation (MPC). This question is



independently motivated by the goal of obtaining useful multi-party variants of
obfuscation and related primitives such as functional encryption [29,5,28].

Non-Interactive MPC. Consider the following non-interactive model of com-
putation: there are n parties who wish to securely evaluate a function f on their
joint inputs. For instance, the parties may wish to compute a majority of their
0/1 inputs for the purpose of voting. The parties are completely asynchronous.
At any point, a party can “wake up” and submit a single message to a central
server, also referred to as the evaluator. Upon receiving all the messages, the
evaluator computes the output.

The above model represents an example of MPC with limited interaction, and
contrasts with traditional MPC models [31,18] where the parties freely interact
with each other. Indeed, there are many scenarios where more limited forms
of interaction are desirable, e.g., when the parties cannot be simultaneously
available due to physical constraints or due to efficiency considerations.

The non-interactive model of computation was first proposed by Feige, Kilian
and Naor (FKN) [13]. In their model, they allow the messages of the parties to
depend on secret randomness that is unknown to the evaluator. As a result, a
major disadvantage of their model is that it does not provide any security in
case the evaluator colludes with one or more parties.7

The study of collusion-resistant MPC protocols with restricted interaction
was initiated by Halevi, Lindell, and Pinkas (HLP) [24]. They considered a vari-
ation of the non-interactive model in which the parties sequentially interact with
the evaluator, where this interaction can depend on a public-key infrastructure
(PKI). Subsequent to their work, Beimel et al. [3] and Halevi et al. [23] con-
sidered a model (similar to FKN) where each of the parties can independently
interact with the evaluator by sending it a single message. (It was also implicitly
considered in the context of multi-input functional encryption by Goldwasser
et al. [19].) Crucially, in this model, unlike the FKN model, security does not
completely break down in the presence of collusion attacks. We refer to MPC in
this model as non-interactive MPC, or NI-MPC for short.

Best-Possible Security for NI-MPC. An NI-MPC protocol should provide
the “best-possible security” for any given set of corrupted parties. The latter
can be formalized via the following notion of residual function [24]: when the
evaluator colludes with a set T of corrupted parties, it can inevitably learn
the value of the original function f on the honest parties’ inputs coupled with
every possible choice of inputs from T . Thus, the adversary effectively has oracle
access to the residual function obtained by restricting f to the honest parties’
inputs and allowing a free choice of the corrupted parties’ inputs. The security
requirement of NI-MPC informally asserts that the adversary learns no more
than the residual function. This gives a meaningful security guarantee in many
natural cases. For instance, for the above mentioned example of voting or, more

7 Indeed, it is not hard to see that in any protocol for a non-trivial function in this
model, all inputs can be recovered from the n messages and the common randomness.
This makes such protocols inherently vulnerable to collusions.

2



generally, in the case of symmetric functions, the residual function still hides the
sensitive information about the inputs of the uncorrupted parties. See [3] for a
more detailed discussion.

The strongest formalization of the above security requirement is via efficient
simulation. However, this cannot be achieved in general. Indeed, NI-MPC for
general functions can be easily seen to imply “virtual black-box” obfuscation
for general functions [19,3], which was ruled out in [2]. Instead, we consider a
natural relaxation that replaces efficient simulation by unbounded simulation, or
equivalently indistinguishability of different sets of inputs that induce the same
residual function. Roughly, the indistinguishability-based security definition is
described as follows – for simplicity, we state it for the three-party case where
the last party is corrupted and is colluding with the evaluator: for any input
pairs (x, y) and (x′, y′) for the honest parties such that f(x, y, ·) ≡ f(x′, y′, ·),
the adversary’s view is indistinguishable when the inputs of the honest parties
to the computation are (x, y) or (x′, y′). We refer the reader to the technical
sections for the general definition.

Necessity of Setup and iO. We next turn our attention to the necessity of
setup for NI-MPC. Unlike the FKN model, collusion-resistant NI-MPC cannot be
realized with a single common source of randomness that is shared by all clients.
Instead, NI-MPC requires a setup that allows authentication of the messages of
parties, while remaining robust to collusion. This is because otherwise, an adver-
sarial evaluator can spoof an honest party in order to learn private information
about the inputs of the other honest parties: consider NI-MPC for three parties
where the last party and the evaluator are corrupted. The security definition for
this case was described above. However, suppose there exists a “splitting input”
y∗ for f s.t. f(x, y∗, z) 6= f(x′, y∗, z), where z is some third party input. In the
absence of authentication, the adversary can prepare a message ŷ∗ on its own
using y∗ and then evaluate it together with the first and third party messages
to distinguish whether the first honest party’s input to the computation is x or
x′.

Further, as already noted in [3,19,23], NI-MPC for general functions implies
indistinguishability obfuscation (iO) [2,15]: recall the security definition of three-
party NI-MPC as described above, where the last party and the evaluator are
corrupted. Substituting x and x′ with two circuits C0 and C1, y and y′ with null
inputs and f with a universal circuit such that f(C,⊥, z) = C(z), we can recover
the security definition of iO. We stress that this implication holds regardless of
the choice of setup used in the NI-MPC protocol.

Our Question: NI-MPC with minimal setup? Known n-party NI-MPC
protocols [19,3,23] require intricate n-wise correlated randomness setups where
the private randomness ri input to each party i is computed asG(r) = (r1, . . . , rn)
for some function G. In particular, such a correlated randomness setup can only
be realized by using a trusted dealer with private channels to each protocol
participant, or alternatively a fully interactive MPC protocol that is executed
during an offline phase. The main question we ask is whether the use of such
general correlated randomness is necessary for NI-MPC.

3



Indeed, secure protocols in the HLP model or even the FKN model can be
realized using a standard PKI setup.8 A PKI setup can be viewed as a special
form of “pairwise” correlation that can be realized with no direct interaction
between the clients: it suffices for every client to post its own public key and read
all of the other clients’ public keys. Given that some form of setup is necessary
to prevent the aforementioned spoofing attacks in NI-MPC, using a PKI setup
is the best one could hope for.9

1.1 Our Results

I. NI-MPC without Correlated Randomness Setup. We construct the first
collusion-resistant NI-MPC protocols without general correlated randomness.
Instead, we use a PKI and a common random string (CRS).10 The security of
our construction is proven against malicious adversaries assuming iO and DDH,
both with sub-exponential security.

Theorem 1 (Informal). Assuming indistinguishability obfuscation and DDH,
both with sub-exponential security, there exists a collusion-resistant non-interacti-
ve multi-party computation protocol that achieves security in the malicious model
given a CRS and a PKI.

As explained earlier, iO is a necessary assumption for NI-MPC for general
functions.

II. Multi-Party Indistinguishability Obfuscation. Our main result gives
rise to a new notion of multiparty obfuscation (and iO) that may be of indepen-
dent interest. We start by explaining this notion via a motivating example: con-
sider a scenario where there are n parties, each holding a private program module
Mi. Suppose there is a public Combine algorithm that combines M1, . . . ,Mn to
yield a program M . The parties wish to jointly obfuscate M ; however, due to
proprietary reasons, they cannot share their modules with each other.

One option for the parties is to simply run a standard MPC protocol using
their modules as their respective private inputs to jointly compute an obfuscation
ofM . We ask whether it is possible for the parties to jointly obfuscateM in a non-
interactive manner. In particular, we require that each party i can individually
obfuscate its module Mi s.t. the obfuscated modules M1, . . . ,Mn put together,
exhibit the functionality of M while still hiding the individual modules.

8 Protocols in the FKN model can be realized using standard PKI by combining a
non-interactive 2-party key agreement protocol, which can be based on the DDH
assumption, with garbled circuits. The idea is to have every party Pi agree with the
last party Pn on the input keys of Pi, and have Pn generate and send the garbled
circuit based on all keys.

9 In particular, note that a common random string setup cannot prevent spoofing
attacks.

10 We note that even a construction with a PKI and a common reference string was
unknown prior to this work.

4



We refer to this as multiparty obfuscation, and in the context of iO, as
multiparty iO. Roughly speaking, the security of multiparty iO says that for any
pair of tuples (M0

1 , . . . ,M
0
n) and (M1

1 , . . . ,M
1
n) s.t. Combine(M0

1 , . . . ,M
0
n) and

Combine(M1
1 , . . . ,M

1
n) are functionally equivalent, the pair of tuples (M0

1 , . . . ,

M0
n) and (M1

1 , . . . ,M
1
n) are computationally indistinguishable. Here M b

i denotes
the obfuscation of M b

i computed by the i’th party.

We note that if we set n = 1 and the Combine function to be the identity
function, then we recover the standard notion of iO from the above definition.
Further, while the above definition considers the case where all the parties are
honest and only the obfuscation evaluator is dishonest, it can be easily modified
to allow for dishonest parties. However, in this case, the functional equivalence
requirement on the modules must be suitably modified, as in the case of NI-MPC.

Multiparty iO from NI-MPC. We now explain how our NI-MPC can be used to
obtain multiparty iO. The setup in multiparty iO is the same as in the NI-MPC,
namely, a PKI and a CRS. We consider NI-MPC between (n + 1) parties. The
inputs of the first n parties are set to be their respective modules M1, . . . ,Mn.
The (n + 1)th party is the evaluator which holds an input x for the “com-
bined” program M = Combine(M1, . . . ,Mn). The function computed by the
parties contains the Combine algorithm hardwired in its description. On input
(M1, . . . ,Mn, x), it computes M = Combine(M1, . . . ,Mn) and outputs M(x).

Now, suppose that only the (n+ 1)th party and the evaluator are corrupted.
Then, this case exactly corresponds to multiparty iO where all the parties (a.k.a.,
obfuscators) are honest. The case of more general corruptions is defined similarly.

III. General interaction patterns. As observed by Halevi et al. [23], the
problem of NI-MPC can be viewed as secure computation on a star interaction
pattern. Towards a generalization, Halevi et al. also considered the problem of
secure multiparty computation with general interaction patterns. They presented
a result for the same assuming (sub-exponentially secure) indistinguishability
obfuscation by using a complex correlated randomness setup.

We improve upon their result by providing a construction in the PKI model
assuming (sub-exponentially secure) indistinguishability obfuscation and DDH.
In particular, our main protocol for NI-MPC can be extended to handle more
general interaction patterns described by directed acyclic graphs, where each
node represents a party who expects to receive messages from all of its parents
and can then send messages to all of its children, and where the sinks of the
graph compute the output.

We note that any interaction pattern gives rise to a “best-possible” notion
of security, as formalized in [24] for the case of a “chain” pattern and in [23,
Definition 6] for general patterns. In [23], it was shown that the star pattern
is “complete” in the sense that any pattern can be reduced to it with no addi-
tional cryptographic assumptions. However, their reduction inherently requires
a correlated randomness setup and thus is not applicable in our setting.

Instead, we show how to directly modify our scheme to guarantee best-
possible security for any interaction pattern. A representative example is that of

5



a chain pattern considered in [24,20], namely a simple directed path traversing
all nodes. The “best-possible” security notion that can be achieved in this case
is typically stronger than the security notion for NI-MPC which corresponds to
a star pattern. To see this, notice that in the star pattern the adversary can
reset the input of each party it controls, whereas in the chain pattern he cannot
reset the input of a malicious party that is followed by an honest party along
the chain. Our results for the chain pattern provide the first extension of the
positive results in the HLP model [24] to general functions with a similar PKI
setup, at the (necessary) price of relying on stronger assumptions.11

1.2 Our Techniques

We now explain the main ideas in our construction of collusion-resistant NI-
MPC. As explained earlier, this suffices to obtain multiparty iO.

Initial Challenges. Recall that in an NI-MPC protocol, each party sends a
single message to the evaluator. Then, a starting idea to construct an NI-MPC
protocol is to “compile” an interactive MPC protocol into a non-interactive one
using program obfuscation. That is, let f be the function that the parties wish to
compute and let Π be an interactive MPC protocol for computing f . Then, each
party i simply computes an obfuscation NMFi of its next-message function NMFi
in Π, where NMFi contains its input xi and random tape ri hardwired. It then
sends NMFi to the evaluator. Upon receiving all the obfuscated programs, the
evaluator computes a transcript of Π by acting as the communication channel
between the “virtual parties” NMF1, . . . ,NMFn. At the end, it obtains the output
f(x1, . . . , xn).

The main problem with the above approach is that an adversarial evaluator
(that colludes with one or more parties) can perform resetting attacks to break
the security of the underlying MPC protocol Π. Indeed, since the obfuscated pro-
grams NMFi are computing a “reactive” functionality, an evaluator can simply
reset them to an earlier state and feed them different messages. Since the input
of each honest party i is fixed in the obfuscated program NMFi, this means that
the adversary can now execute multiple “sessions” of Π w.r.t. the same fixed
inputs of the honest parties. The security of standard MPC protocols completely
breaks down in such a case.

To address this problem, a natural idea is to replace Π with a resettably
secure MPC protocol [8,22,21]. Roughly speaking, resettable MPC guarantees
that the only advantage an adversary can gain by performing a resetting attack is
to change its input. As such, it can learn multiple function outputs w.r.t. a fixed
input vector of the honest parties. No information beyond this set of outputs
is leaked to the adversary. While resettably secure MPC for general functions
is impossible in the plain model [21], it can be realized in the CRS model by

11 Indeed, MPC for computing general functions on a chain implies indistinguishability
obfuscation (iO). The positive results of [24,20] based on weaker assumptions are only
for weaker classes of functions where positive results do not imply (general) iO.

6



compiling a UC-secure MPC protocol [10] using pseudorandom functions à la
[8].

The security guarantee of resettable MPC coincides with our definition of NI-
MPC, with the only difference that our definition is indistinguishability-based
while resettable MPC security is defined w.r.t. simulation. Nevertheless, it is
not immediately clear how to compile a resettably secure MPC protocol into
NI-MPC when using iO. In particular, note that the natural approach to argue
security in this context is to hardwire the simulated transcript in the obfuscated
programs so as to “force” the simulated execution on the adversary. This strategy
was previously used in [14] for constructing two-round MPC protocols. In our
context, however, since the adversary can legitimately perform resetting attacks,
the number of possible transcripts we may need to hardwire is unbounded.

A Starting Point: Obfuscation Combiners. In order to find a path to a
solution, let us first consider a weaker problem: suppose we are given N can-
didates for program obfuscation, many of which are possibly “bad”, i.e., either
they do not hide the program or do not preserve correctness. We do not know
which of the candidates are bad. The goal is to use these candidates to obfus-
cate a function in a secure manner. This problem is referred to as obfuscation
combiner [1].

To see why this problem is relevant to us, note that the “bad” candidate
obfuscations can be thought of as the corrupted parties in our setting. The role of
the evaluator is the same. Furthermore, in this setting, similar to ours, resetting
attacks are unavoidable. The key difference, however, is that while our setting is
inherently distributed, the above setting is centralized, in that a common entity
performs all the obfuscations.

Nevertheless, we use obfuscation combiner as a starting point for our con-
struction. Specifically, we build on ideas used in the obfuscation combiner of
Ananth et al. [1]. In their construction, they use a special-purpose MPC pro-
tocol [27] based on multi-key fully homomorphic encryption [26,11,27,12] (see
Section 2 for the definition). Our solution also uses this MPC scheme as a start-
ing basis. In particular, our construction implicitly compiles the MPC scheme of
[27] into a resettably secure one in an “iO-friendly” manner. In order to develop
a full solution for our setting, however, we have to address several additional
challenges that do not arise in the setting of obfuscation combiners. Below, we
elaborate on the details.

Our Approach. We first recall the notion of a multi-key FHE. A multi-key
FHE allows for generating individual encryption/decryption-key pairs eki, dki
such that they can be later combined to obtain a joint public key ek. To be more
precise, given a ciphertext with respect to eki, there is an Expand operation that
transforms it into a ciphertext with respect to a joint public key ek. Once this
done, the resulting ciphertext can be homomorphically evaluated just like any
FHE scheme. The resulting ciphertexts can then be individually decrypted using
the dki’s to obtain partial decryptions. Finally, there is a mechanism to combine
the partial decryptions to obtain the final output.

7



Given a multi-key FHE, a first idea for a non-interactive MPC protocol for
a function f is described below.12

1. Setup of party i: Sample an encryption/decryption key pair eki, dki and
sets its private-key to be SKi = (dki) and published the public-key PKi =
(eki).

2. Encryption of party i on input xi: Compute an encryption of xi with
respect to the key eki: CTi = Enc(eki, xi) and compute an obfuscation Gi of
the circuit given in Figure 1. The message of this party is the pair (Gi,CTi).

Gi
[
dki, {ekj}j∈[n]

]
Hardwired: the decryption key of party i, dki, and all the encryption keys {ekj}j∈[n].
Input: n ciphertexts: CT1, . . . ,CTn.

- For all j ∈ [n] compute ĈTj ← Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← Eval
(
f, ĈT1, . . . , ĈTn

)
.

- Output pi ← PartDec
(
ĈTout, ek1, . . . , ekn, i, dki

)
.

Fig. 1. The circuit Gi. The parameters in the square brackets are hardwired values
and the inputs are specified separately (this is the convention throughout the paper).

3. Evaluation given the messages of the parties: Given (Gi,CTi) for each
i ∈ [n], the evaluator executes each Gi on CT1, . . . ,CTn to get pi. Then, it
combines all partial decryptions p1, . . . , pn to get y

Correctness of the protocol is immediate by the correctness of the underlying
obfuscator and the correctness of the multi-key FHE scheme. However, proving
security of this scheme runs into several obstacles. First, we have to deal with
the fact that the Eval operation is randomized. Second, there seems to be a very
simple attack for the evaluator stemming from the fact that the encryption keys
can be used to encrypt arbitrary values. Namely, the evaluator, given eki, can
simulate ciphertexts generated by the i-th party and potentially fully recover all
inputs.

The first issue is (by now) quite standard in the iO literature and we over-
come it by using a puncturable PRF family. The second issue is more com-
plicated to handle. Our idea is to augment the setup procedure to generate a
signature/verification key pair and let each party sign its input. The circuit that
each party will obfuscate will verify each such signature to make sure it was hon-
estly generated. Intuitively, it seems to solve the problem, but formally arguing

12 For simplicity of notation we assume a single public function.

8



security using iO and an arbitrary signature scheme seems to be problematic.13

To overcome this, we construct a special kind of signatures with which we are
able to complete the proof. Specifically, our signatures have a property that al-
lows us to replace the verification key with a “punctured verification key” in an
indistinguishable way such that the punctured key (statistically) verifies only a
single signature.

Having these signatures, the proof proceeds by a sequence of hybrid experi-
ments in which we slowly replace each partial decryption with a simulation which
does not require the decryption key. The number of hybrids is proportional to
the input domain of the circuit Gi. Throughout the proof, we extensively use
the probabilistic iO of [9] and the partition-programming technique of [1].

The malicious case. Notice that in the malicious case, since our protocol is
non-interactive, the evaluator can plug in any value it wishes in the corrupted
parties and obtain a value for the function f . Thus, in this case, if the evaluator
colludes with a subset A ⊂ [n] of the parties (i.e. H = [n]\A is the honest set of
parties), then we could hope to get security only for functions f and challenge
({x0i }i∈H , {x1i }i∈H) that satisfy

f(〈{x0i }i∈H , {xi}i∈A〉) = f(〈{x1i }i∈H , {xi}i∈A〉)

for every {xi}i∈A and where 〈·〉 sorts the inputs according to the index i.
The proof and construction above do not guarantee security in the case where

the evaluator colludes with a subset of the parties. Specifically, there is no guar-
antee as to what happens when one of the (malicious) parties sends a malformed
ciphertext CTi. There, the partial decryption would still output some string,
but we have no guarantee on whether the simulation of this partial decryption
is going to be indistinguishable.

To overcome this we use non-interactive zero-knowledge proofs (NIZKs).
Specifically, during encryption of the value xi, party i will also provide (in ad-
dition to the obfuscated circuit, the ciphertext and the signature) a NIZK proof
asserting that the ciphertext is a legal well-formed ciphertext. As in most works
that combine NIZKs and iO, we need a special kind of NIZKs called statistically-
simulation-sound NIZKs (SSS-NIZKs) [15]. However, this is still not enough for
us. The reason is that for the partial-decryption simulation we need to know
the final output, but we have no control over the inputs coming from the mali-
cious parties (recall that they are encrypted!). To solve this we use statistical-
simulation-extractable zero-knowledge proofs (SSE-NIZKs) which are a special
kind of non-interactive zero-knowledge proofs of knowledge (NIWI-POKs) which
allow us to extract from the proof of the malicious parties their decryption key,
decrypt their ciphertexts and compute the expected final output of the com-
putation. We construct such SSE-NIZKs in the CRS model starting with any
NIWI-POK and any one-way permutation.

13 One standard way to handle this is to assume a differing-input obfuscator (diO)
rather than plain iO. A diO guarantees that if an adversary distinguishes two ob-
fuscated circuits, then it must know a differing input.

9



Reusable PKI with a session ID. The solution we described above only
gives a non-reusable scheme. Namely, the PKI cannot be used for more than
one encryption. We consider a stronger model where the PKI can be reused
but this requires a more delicate security definition since the evaluator can mix-
and-match ciphertexts corresponding to honest parties which makes the security
definition much less meaningful (as it applies to a much smaller set of functions).
We consider a hybrid security definition in which we support a reusable PKI
but introduce session IDs and require correctness only for ciphertexts that are
generated with the same session ID.

To support such functionality we construct puncturable signatures that can
be punctured such that only a single message with a specific prefix is allowed.
The session ID is used as a prefix and after puncturing no signature exists for
messages agreeing on the prefix, except the one generated by the honest party.
Our construction uses NIZKs and statistically-binding commitments.

1.3 Related Work

The problem of devising non-interactive protocols was first addressed in [13],
where it was shown how to compute any function assuming that all parties
share common private randomness which is unknown to the adversary.

As observed in [23], collusion-resistant non-interactive MPC in the correlated
randomness model follows from multi-input functional encryption [19]. Thus, the
MIFE scheme of Goldwasser et al. [19] gives an NI-MPC protocol in the corre-
lated randomness model assuming iO and one-way functions. As noted already
in [19], this is in fact tight since MIFE implies iO.

Non-interactive MPC protocols in the information-theoretic setting for a sim-
ple class of functions were constructed by [3] (see also improvements in [23]),
again using correlated randomness.

2 Preliminaries

We use the following primitives in our constructions.

1. We use the notion of indistinguishability obfuscation (iO), as defined in
[2,15].

2. We use the notion of puncturable PRFs, as defined in [6,7,25,30]. As
observed in these works, the GGM construction [17] of PRFs from one-way
functions yields puncturable PRFs.

3. We will also use the notion of threshold multi-key FHE [26,11,27]. The
initial constructions of threshold multi-key FHE based on learning with er-
rors assumption relied on a common random string. Recently, Dodis et al.
[12] constructed a multi-key FHE scheme based on iO and DDH. We will
use their scheme in our constructions.

The definitions of the above primitives are provided in the full version.

10



3 Building Blocks

3.1 Statistical Simulation-Extractable Zero Knowledge Proofs

Let R be an efficiently computable relation that consists of pairs (x,w), where
x is called the statement and w is the witness. Let L denote the language con-
sisting of statements in R. A statistical simulation-extractable non-interactive
zero-knowledge (SSE-NIZK) proof system for a language L consists of a tuple
of algorithms (K,P,V,S1,S2, E). We start by describing the basic algorithms
K,P,V below:

– σ ← K(1λ): On input the security parameter, it outputs a common random
string (CRS) σ.

– π ← P(σ, x, w): On input a CRS σ, a statement x and a witness w s.t.
(x,w) ∈ R, it outputs a proof string π.

– b ← V(σ, x, π): On input a CRS σ, a statement x and a proof π, it outputs
1 or 0, denoting accept or reject.

Perfect Completeness. A non-interactive proof system is complete if an honest
prover with a valid witness for a statement can convince a verifier of the validity
of the statement. Formally, for every (x,w) ∈ R,

Pr[σ ← K(1λ);π ← P(σ, x, w) : V(σ, x, π) = 1] = 1

Statistical Soundness. A non-interactive proof system is sound if it is infeasible to
convince a verifier if the statement is false. Formally, for all (possibly unbounded)
adversaries A,

Pr[σ ← K(1k); (x, π)← A(σ) : V(σ, x, π) = 1 : x /∈ L] ≤ negl(λ)

Computational Zero Knowledge. A non-interactive proof system is computa-
tional zero knowledge if the proof does not reveal any information about the
witness to the adversary. Formally, we require that for all non-uniform PPT
adversaries A, for all (x,w) ∈ R,

Pr[σ ← K(1λ) : π ← P(σ, x, w) : A(σ, x, π) = 1] ≈
Pr[(σ, τ)← S1(1λ, x) : π ← S2(σ, τ, x) : A(σ, x, π) = 1]

Statistical Simulation-Extractability. A NIZK proof system is statistical simulati-
on-extractable if under a simulated CRS, no proof for false statement exists,
except for simulated proof for a fixed statement fed into S1 to generate the sim-
ulated CRS. Furthermore, using an efficient extractor algorithm E , it is possible
to extract a witness from any accepting proof generated by an unbounded adver-
sary using the simulated CRS. Formally, for all statements x and all unbounded
adversaries A,

Pr[(σ, τ)←S1(1λ, x) : π ← S2(σ, τ, x) : (x∗, π∗)← A(σ, x, π) : (x∗ 6= x) :

1← V(σ, x∗, π∗) : w∗ ← E(σ, τ, x∗, π∗) : (x∗, w∗) ∈ R] ≥ 1− negl(λ)

11



The Construction

Let (K,P,V) be a non-interactive witness-indistinguishable proof of knowledge
(NIWI-POK) system in the common random string model. Let Com(·, ·) be a
non-interactive perfectly binding string commitment scheme with pseudorandom
commitments. Using these ingredients, we will construct an SSE-NIZK proof
system (K′,P ′,V ′).

Let ` be the upper bound on the length of the statements to be proven and
let L = L(`) denote the length of commitments output by Com.

– K′(1λ): Generate σ ← K(1λ) and sample random strings c1, . . . , cλ
$← {0, 1}L.

Output the common random string as σ′ = (σ, c1, . . . , cλ) (notice that σ′ is
a uniformly random string).

– P ′(σ′, x, w): Parse σ′ = (σ, c1, . . . , cλ) and generate π′ ← P(σ, x′, w) where
x′ is the statement:

∃w̃, r1, . . . , rλ : (x, w̃) ∈ R∨
(
c1 = Com (x; r1)∧. . .∧cλ = Com (x; rλ)

)
. (1)

– V ′(σ′, x, π′): Parse σ′ = (σ, c1, . . . , cλ) and output V(σ, x′, π′), where x′ is as
defined in Eq. (1).

Completeness. The completeness property of the scheme (K′,P ′,V ′) follows di-
rectly from the completeness property of the underlying NIWI-POK scheme
(K,P,V).

Statistical Soundness. Let σ′ = (σ, c1, . . . , cλ) be a CRS sampled at random by
K. With overwhelming probability, there does not exist x, r1, . . . , rλ s.t. for every
i, ci = Com(x; ri).

Now, for any x /∈ L, let x′ be the corresponding statement as defined in
Eq. (1). It follows from above that the second part of the statement x′ is false.
Then, from the statistical soundness of (K,P,V), it follows that there does not
exist any accepting proof for x′.

Zero-Knowledge and Statistical Simulation-Extractability. We first describe the
simulator and extractor algorithms (S ′1,S ′2, E ′) below. Let E = (E1, E2) denote
the extractor for the NIWI-POK scheme (K,P,V).

– S ′1(1λ, x): On input a statement x, it first computes (σ, τ)← E1(1λ). Next, for
every i ∈ [λ], it samples a random string ri and computes ci ← Com(x; ri).
It sets σ′ = (σ, c1, . . . , cλ), τ ′1 = (r1, . . . , rλ), τ ′2 = τ and outputs (σ′, τ ′1, τ

′
2).

– S ′2(σ′, τ ′1, x): It sets w = (r1, . . . , rλ) and computes π ← P(σ′, x′, w) where
x′ is as defined in Eq. (1). Note that here the honest prover algorithm uses
w to prove the second part of x′.

– E ′(σ′, τ ′2, x∗, π∗): It parses σ′ = (σ, c1, . . . , cλ) and outputs the value returned
by the extractor E2(σ, τ ′2, x

∗, π∗).

We first argue computational zero-knowledge property of our scheme. Let
x ∈ L be any statement. Consider the following sequence of hybrid experiments:

12



– H0: In this experiment, the CRS σ′ = (σ, c1, . . . , cλ) is honestly generated
and we compute a proof π′ for x using the honest prover algorithm.

– H1: Same as above, except that the CRS σ′ = (σ, c1, . . . , cλ) is computed
using the simulator algorithm S ′1(1λ, x) as described above. Let (τ ′1, τ

′
2) be

the trapdoor computed by S ′1.
– H2: Same as above, except that we now compute π′ using the simulator

algorithm S ′2(σ′, x, τ ′1).

In order to prove the zero knowledge property of (K′,P ′,V ′), it suffices to
show that H0 and H2 are computationally indistinguishable. The indistinguisha-
bility of H0 and H1 follows immediately from the hiding property of the commit-
ment scheme Com. Further, the indistinguishability of H1 and H2 follows from
the witness indistinguishability property of the underlying NIWI-POK (K,P,V).
Put together, we have that H0 and H2 are computationally indistinguishable.

We now argue statistical simulation-extractability. We first note that if x /∈ L,
then in experiment H2 described above, x is the only false statement for which
an accepting proof exists. This follows from the perfectly binding property of
Com and the statistical soundness property of the scheme. Now, let (x∗, π∗) be
a statement and proof output by an unbounded adversary A who is given σ′

s.t. V(σ′, x∗, π∗) = 1. Since x∗ 6= x, it follows from above that x∗ ∈ L. We now
run the extractor E ′(σ′, τ ′2, x∗, π∗) to compute w∗. From the proof of knowledge
property of the underlying NIWI-POK (K,P,V), it follows that w∗ is a valid
witness for x∗, except with negligible probability.

3.2 Puncturable Signatures

We define a special kind of signature scheme which is puncturable at any prefix,
such that after puncturing no signature exists for messages agreeing on the prefix.
A puncturable signature scheme is a tuple of efficient algorithms PuncSig =
(KeyGen,Sign,Verify,Puncture) described as follows:

– (sk, vk)← KeyGen(1λ): is a randomized algorithm which takes as input the
security parameter and outputs a key pair.

– σ ← Sign(sk,m): is a randomized algorithm which takes as input the signing
key sk, some message m and outputs a signature σ.

– b ← Verify(vk,m, σ): is a deterministic algorithm which takes as input the
verification key, a message m, and a signature σ and outputs a bit b.

– vkm,s ← Puncture(sk,m, s): is a randomized algorithm which takes as input
the signing key, a message m, a prefix s of m, and outputs a punctured
verification key vkm,s.

We require following properties from the scheme.

1. Correctness: For any message m ∈ {0, 1}λ it holds that

Pr[Verify(vk,m, σ) = 1 : (sk, vk)← KeyGen(1λ), σ ← Sign(sk,m)] = 1

13



2. Security: For any message m, and prefix s of m it holds that:

{vkm,s,m, σ} ≈c {vk,m, σ},

where (sk, vk)← KeyGen(1λ), σ ← Sign(sk,m), vkm,s ← Puncture(sk,m, s).

3. Punctured functionality: There exist a negligible function negl(·) such
that for any message m and for any m′ 6= m such that s is a prefix of m′ it
holds that

Pr[∃σ : Verify(vkm,s,m
′, σ) = 1] ≤ negl(λ),

where (sk, vk)← KeyGen(1λ) and vkm,s ← Puncture(sk,m, s).

The Construction

We show how to construct a puncturable signature scheme from NIZK proofs
and a statistically binding commitment scheme. The construction is as follows:

– KeyGen(1λ): Sample a PRF key K, sample a crs, compute c ← Com(CK ; r)
where C is a circuit that on input x outputs PRFK(x) (padded to be large
enough). Set sk = CK , r and vk = c, crs.

– Sign(sk,m): Compute y = CK(m) and a proof π that y is indeed that output
of the circuit committed in c on the input m.

– Verify(vk,m, σ): Parse σ as y and π. Verify that proof π to the instance
(m, y) and that y 6= ⊥.

– Puncture(sk,m, s): Compute PRF key K∗ that is punctured at the prefix s
except the message m. That is, using K∗ one can compute the PRF value on
m and on all inputs that do not begin with s. In the verification key, replace
the PRF key in the committed circuit to CK∗,s,m. In the secret key, replace
K with K∗.

Correctness is immediate from the construction. Security follows from the
hiding property of the commitment scheme. Punctured security follows from the
statistical soundness of the NIZK proof. After the circuit C is altered to output
⊥ on messages with prefix s, we know that (with high probability over the crs)
no valid proof exists for messages with prefix s, and thus no valid signatures.

4 Non-Interactive Multiparty Computation

A non-interactive multiparty computation protocol (NI-MPC) for a function
f : Xn → Y is a protocol between n parties and a single evaluator. Each party
holds an input xi and sends exactly one message to an evaluator, who com-
putes the output. The correctness requirement of the protocol is that the eval-
uator, given one message from each party, is able to compute the value y =
f(x1, . . . , xn) correctly.

Our security guarantee is formalized as an indistinguishability game in which
the evaluator commits on a set of parties with whom he is colluding. Specifically,

14



since our setting is non-interactive, the evaluator can use the controlled parties
to make resetting attacks that allow him to evaluate the function on different
inputs of his choice (but he has no control over the inputs of the honest parties).
Thus, our security is assuming that the “residual” function determined after
fixing the challenge inputs of the honest parties is functionally equivalent in the
view of the evaluator [24].

Definition 1 (Admissible inputs). Let f : Xn → Y be a function. We say
that H ⊆ [n], {x0i }i∈H and {x1i }i∈H are admissible for f if for any {xi}i/∈H it
holds that

f(〈{x0i }i∈H , {xi}i/∈H〉) = f(〈{x1i }i∈H , {xi}i/∈H〉),
where 〈·, . . . , ·〉 sorts the inputs according to the index i.

Definition 2 (Non-interactive multiparty computation). A non-interac-
tive multiparty computation protocol Π for the function f : Xn → Y consists of a
probabilistic setup procedure Setup, a probabilistic encryption procedure Enc and
a probabilistic evaluation procedure Eval that satisfy the following requirements:

1. Setup(1λ, crs, i) takes as input a security parameter λ, a common random
string crs, a party index i ∈ [n], computes a private key SKi and outputs a
public key PKi.

2. Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i) takes as input a security parameter λ, a
common random string crs, an input xi ∈ X , public keys PK1, . . . ,PKn, a
secret key SKi and a party index i ∈ [n], and outputs a ciphertext x̂i.

3. Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn) takes as input a security parameter
λ, a common random string crs, n ciphertexts x̂1, . . . , x̂n, n public keys
PK1 . . . ,PKn, and outputs a value y ∈ Y.

4. Correctness: This property states that the evaluation on n ciphertexts
of x1, . . . , xn gives f(x1, . . . , xn). Specifically, for every λ ∈ N and every
x1, . . . , xn ∈ X , it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.
5. Security: Informally speaking, this property states that an adversary that

controls a subset of parties does not learn anything about the underlying
plaintexts from the ciphertexts of the remaining parties, besides the output
of the function. Specifically, for any probabilistic polynomial-time adversary
A = (A1,A2), any admissible H ⊆ [n], x0 = {x0i }i∈H and x1 = {x1i }i∈H ,
there exists a negligible function negl(λ) such that

AdvNI-MPC
Π,A,H,x0,x1(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,x0,x1(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

15



for all sufficiently large λ ∈ N, where the random variable ExpNI-MPC
Π,A,H,x0,x1(λ)

is defined via the following experiment:

1. Sample crs← {0, 1}poly(λ) and b← {0, 1} at random.

2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)
3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)

4. For i ∈ H: x̂i ← Enc(1λ, crs, xbi ,PK1, . . . ,PKn,SKi, i).

5. b′ ← A2(1λ, crs, {PKi}i∈H , {x̂i}i∈H , st).
6. If b′ = b then output 1, and otherwise output 0.

A reusable PKI and session IDs. The above definition is not reusable. Namely,
it cannot be used across multiple ciphertexts generated by the honest parties. A
definition that support multiple encryption sessions is given below. We remark
that in our non-interactive setting, session IDs are required to prevent an ad-
versary for combining ciphertexts from one session with another (otherwise, the
definition of an admissible function becomes very weak and makes sense only for
a very restricted set of functions). Our construction and proof given in Section 5
satisfy the weaker definition above but we sketch in Section 5.2 how to prove
that our construction satisfies the stronger reusable-PKI with session IDs notion
as well.

Definition 3 (Non-interactive multiparty computation with session
IDs). A non-interactive multiparty computation protocol Π for the function
f : Xn → Y consists of a probabilistic setup procedure Setup, a probabilistic en-
cryption procedure Enc and a probabilistic evaluation procedure Eval. The setup
procedure and evaluation procedure have the same syntax as in Definition 2 but
Enc also received a session ID. Moreover, the correctness and security are mod-
ified as follows:

1. Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session) takes as input a security param-
eter λ, a common random string crs, an input xi ∈ X , public keys PK1, . . . ,
PKn, a secret key SKi, a party index i ∈ [n], and a session ID session ∈
{0, 1}λ, and outputs a ciphertext x̂i.

2. Correctness: This property states that the evaluation on n ciphertexts of
x1, . . . , xn encrypted in the same session gives f(x1, . . . , xn). Specifically, for
every λ ∈ N, every session ID session ∈ {0, 1}λ, and every x1, . . . , xn ∈ X ,
it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.

16



3. Security: For any probabilistic polynomial-time adversary A = (A1,A2),
any admissible H ⊆ [n], x0 = {x0i }i∈H and x1 = {x1i }i∈H , and any session
ID session ∈ {0, 1}λ, there exists a negligible function negl(λ) such that

AdvNI-MPC
Π,A,H,x0,x1,session(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,x0,x1,session(λ) = 1
]
− 1

2

∣∣∣∣
≤ negl(λ),

for all sufficiently large λ ∈ N, where ExpNI-MPC
Π,A,H,x0,x1,session(λ) is a random

variable defined via the following experiment:

1. Sample crs← {0, 1}poly(λ) and b← {0, 1} at random.
2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)
3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)
4. For i ∈ H: x̂i ← Enc(1λ, crs, xbi ,PK1, . . . ,PKn,SKi, i, session).

5. b′ ← AEnc(·,·,·)
2 (1λ, crs, {PKi}i∈H , {x̂i}i∈H , st), where the encryption or-

acle Enc(·, ·, ·) on input triple (xi, i, session
′) produces an encryption of

xi with respect to party i ∈ H as long as session′ 6= session (by running
Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session

′)).
6. If b′ = b then output 1, and otherwise output 0.

The fully honest case. A particularly interesting case is when H = [n] and the
evaluator does not collude with any party. In this case, which we call the fully
honest case, we can assume without loss of generality that one of the parties will
also generate the CRS as part of the PKI and thus we get a construction in the
PKI model.

Selective vs. adaptive security. Our security definitions are selective in the sense
that the adversary commits on the challenge before the challenger published
the PKI. By standard “random guessing” we can turn any selectively secure
scheme into an adaptively secure one. This is done by guessing ahead of time all
the adaptive choices made by the adversary throughout the game and reducing
to the selective case. By setting the security parameter to be large enough and
using the sub-exponential security of the scheme, we can tolerate this exponential
loss. (Recall that our main result assumes sub-exponentially secure primitives
to begin with so we can get adaptive security for free.)

4.1 Communication on a Chain

We follow Halevi et al. [23] and consider the case of more general interaction pat-
terns described by a directed acyclic graph (DAG), where each node represents
a party who expects to receive messages from all of its parents and can then
send messages to all of its children, and where the sinks of the graph compute
outputs. The setting of Definitions 2 and 3 is a special case of the above where
the communication pattern is a star, a graph connecting all nodes to a single
central node. Another special case is a chain, a simple directed path traversing
all nodes.

17



Here, we focus on a chain and define NI-MPC for this pattern. We assume
that there are n parties with corresponding inputs xi. The first party is the
source of the chain and party n is the last party in the chain which sends its
message to the evaluator.

Definition 4 (Chain admissible inputs). Let f : Xn → Y be a function.
Let H ⊆ [n] with maximal index i∗. We say that H, {x0i }i∈H , {x1i }i∈H , and
{xi}i/∈H∧i≤i∗ are chain-admissible for f if for any {xi}i/∈H∧i>i∗ it holds that

f(〈{x0i }i∈H , {xi}i/∈H〉) = f(〈{x1i }i∈H , {xi}i/∈H〉),

where 〈·, . . . , ·〉 sorts the inputs according to the index i.

Definition 5 (Non-interactive multiparty computation on a chain). A
non-interactive multiparty computation protocol Π for the function f : Xn → Y
on a chain consists of a probabilistic setup procedure Setup, a probabilistic en-
cryption procedure Enc and a probabilistic evaluation procedure Eval that satisfy
the following requirements:

1. Setup(1λ, crs, i) takes as input a security parameter λ, a common random
string crs, a party index i ∈ [n], computes a private key SKi and outputs a
public key PKi.

2. Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i) takes as input a security parameter
λ, a common random string crs, the message sent by party i− 1 an input
xi ∈ X , public keys PK1, . . . ,PKn, a secret key SKi and a party index i ∈ [n],
and outputs a ciphertext x̂i. We assume that x̂0 = ⊥.

3. Eval(1λ, crs, x̂n,PK1, . . . ,PKn) takes as input a security parameter λ, a com-
mon random string crs, the ciphertexts of the last party x̂n, n public keys
PK1 . . . ,PKn, and outputs a value y ∈ Y.

4. Correctness: This property states that the evaluation on n ciphertexts
of x1, . . . , xn gives f(x1, . . . , xn). Specifically, for every λ ∈ N and every
x1, . . . , xn ∈ X , it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.
5. Security: For any probabilistic polynomial-time adversary A = (A1,A2),

any chain-admissible H ⊆ [n], x0 = {x0i }i∈H , x1 = {x1i }i∈H , and x =
{xi}i/∈H∧i<i∗ , where i∗ is the maximal index in H, there exists a negligible
function negl(λ) such that

AdvNI-MPC
Π,A,H,x0,x1,x(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,x0,x1,x(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

18



for all sufficiently large λ ∈ N, where ExpNI-MPC
Π,A,H,x0,x1,x(λ) is a random vari-

able defined via the following experiment:

1. Sample crs← {0, 1}poly(λ) and b← {0, 1} at random.
2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)
3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)
4. For i = 1 . . . i∗:

i. If i ∈ H: x̂i ← Enc(1λ, crs, x̂i−1, x
b
i ,PK1, . . . ,PKn,SKi, i).

ii. If i /∈ H: x̂i ← Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i)
5. b′ ← A2(1λ, crs, {PKi}i∈H , x̂i∗ , st).
6. If b′ = b, then output 1, and otherwise, output 0.

5 Our Construction

We now present our construction of NI-MPC as in Definition 2. The main ingre-
dients in our construction are:

– A threshold multi-key FHE scheme MFHE = (KeyGen,Enc,Expand,Eval,Dec,
PartDec,FinDec).

– An SSE-NIZK proof system NIZK = (K,P,V,S1,S2, E) for NP.
– A puncturable PRF family F .
– A puncturable signature scheme PuncSig = (KeyGen,Sign,Verify,Puncture)
– An indistinguishability obfuscator iO for general circuits.

Let f : Xn → Y be a deterministic function that takes n inputs x1, . . . , xn ∈ X
and outputs y ∈ Y. We construct a non-interactive multiparty computation pro-
tocol Π = (Setup,Enc,Eval) for f below.

Setup(1λ, crs, i): It takes as input security parameter λ, a common random string
crs, and does the following.

1. Execute the key generation procedure of the signature scheme, (ski, vki)←
PuncSig.KeyGen(1λ).

2. Execute {(dki, eki)← MFHE.KeyGen(1λ)}i∈[n].
3. Output public key PKi = (vki, eki) and private key SKi = (ski, dki).

Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i): It takes as input security parameter λ, a
common random string crs, an input xi ∈ X , a list of n public keys PK1 . . . ,
PKn, one private key SKi, an index i ∈ [n], and does the following.

1. For every j ∈ [n], parse PKj = (vkj , ekj) and let SKi = (ski, dki).
2. Encrypt the input xi using eki: CTi ← MFHE.Enc(eki, xi).
3. Sign on (CTi, i) using ski: ψi ← PuncSig.Sign(ski, (CTi, i)).

4. Sample puncturable PRF key Ki
$←− {0, 1}λ.

5. Generate a proof πi that CTi and eki are valid ciphertext and encryp-
tion key, respectively. Namely, compute πi ← NIZK.P(crs, (CTi, eki), w =
(r, r′, xi, dki)), where r and r′ are the randomness used for the computation
of CTi and (dki, eki), respectively. The exact statement is given in Figure 2.

19



G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′,Mj , dkj : CTj = MFHE.Enc(ekj ,Mj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Fig. 2. The circuit G.

6. Obfuscate the circuit Gi ← iO
(
1λ, G

[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

] )
as described in Figure 2.

7. Output the tuple x̂i = (Gi,CTi, ψi, πi).

Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn): It takes as input security parameter λ, a
common random string crs, n strings x̂1, . . . , x̂n, a list of n public keys PK1 . . . ,PKn,
and does the following:

1. Parse each x̂i = (Gi,CTi, ψi, πi).

2. Evaluate each obfuscationGi on the input
(

(ĈT1, ψ1, π1), . . . , (ĈTn, ψn, πn)
)

to get the partial decryption pi.
3. Execute the final decryption algorithm, y ← MFHE.FinDec(p1, . . . , pn) and

output y.

We proceed with the proof of correctness and security of the scheme. Cor-
rectness follows by the correctness of the underlying building blocks. Specifically,
let x1, . . . , xn ∈ X be inputs such that party i holds xi. By the correctness of
the signature scheme and the threshold multi-key FHE scheme, each obfuscated
circuit will output a partial decryption pi such that MFHE.FinDec(p1, . . . , pn)
must be equal to f(x1, . . . , xn).

5.1 Proof of Security

We show that our scheme is secure for a restricted set of input vector pairs.

Lemma 1. Assume the existence of a indistinguishability obfuscator, a threshold
multi-key FHE scheme, an SSE-NIZK in the common random string model, a

20



puncturable PRF, and a puncturable signature, all of which are sub-exponentially
secure. Then, for any H ⊆ [n], any ind ∈ H and any x0 = {xi}i∈H , x1 =
{xi}i∈H\{ind} ∪ {x′ind}, such that H,x0,x1 are admissible, it holds that

AdvNI-MPC
Π,f,A,H,x0,x1(λ) ≤ negl(λ).

Given this lemma, we can construct a scheme that is secure as in Definition 2.

Lemma 2. Assume the existence of a indistinguishability obfuscator, a thresh-
old multi-key FHE scheme, an SSE-NIZK in the common random string model, a
puncturable PRF, and a puncturable signature, all of which are sub-exponentially
secure. Then, there exists a secure non-interactive multiparty computation scheme
for any efficiently computable function f .

The proof of Lemma 2 (given Lemma 1) is given in the full version of the paper.
Threshold multi-key FHE scheme exists based on the Learning with Errors

assumption [27] in the CRS model or on indistinguishability obfuscation and
DDH [12]. In Section 3.1 we constructed an SSE-NIZK scheme in the common
random string model assuming any NIWI-POK and one-way permutations. A
NIWI-POK can be constructed from any NIWI together with a standard encryp-
tion scheme. NIWI and one-way permutations exist based on iO and DDH [4]. Fi-
nally, we constructed a puncturable signature based on NIZKs and statistically-
binding commitments. In total, we can instantiate our construction based on
indistinguishability obfuscation and DDH, both with sub-exponential security.

Proof (of Lemma 1). FixH ⊆ [n], ind ∈ H, x0 = {xi}i∈H , and x1 = {xi}i∈H\{ind}∪
{x′ind}, such that H,x0,x1 are admissible. The lemma is proved by a sequence
of hybrid experiments. Denote by `(λ) a polynomial bounding the total length
of n ciphertexts and n NIZK proofs computed with security parameter λ.

Hyb1: This experiment corresponds to the original experiment ExpNI-MPC
Π,f,A,H,x0,x1(λ):

1. Sample a random bit b ∈ {0, 1}.
2. Do the following for party i ∈ H:

2.1. Sample (dki, eki)← MFHE.KeyGen(1λ; r), where r is a random string.
2.2. CTi ← MFHE.Enc(eki, x

b
i ; r
′), where r′ is a random string.

2.3. Sample (ski, vki)← PuncSig.KeyGen(1λ).
2.4. Set PKi = (vki, eki) and SKi = (ski, dki).

3. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every
i /∈ H of the form PKi = (vki, eki).

4. Do the following for party i ∈ H:
4.1. ψi ← PuncSig.Sign(ski, (CTi, i)).
4.2. Sample a PRF key Ki.
4.3. Compute πi ← NIZK.P(crs, (CTi, eki), w = (r, r′, xbi , dki)).
4.4. Compute Gi as the obfuscation of the following circuit defined in Fig-

ure 2:
G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

]
.

21



4.5. Let x̂i = (Gi,CTi, ψi, πi).
5. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

Hyb2: This experiment corresponds to experiment Hyb1 except that now the
published verification keys of parties in H are modified to verify only one pre-
computed message and nothing else. Specifically, now between Item 2.3. and
Item 2.4. we puncture the verification key of each i ∈ H and set

vki ← PuncSig.Puncture(ski, (CTi, i),⊥),

where the ⊥ corresponds to an empty prefix. That is, the new verification key
accepts the precisely one message which is (CTi, i). The indistinguishability of
this experiment and experiment Hyb1 follows directly from the security of the
signature scheme (see Item 2 at Section 3.2).

Hyb3: This experiment corresponds to experiment Hyb2 except that now the
NIZK proof of the honest party ind is generated via the zero-knowledge simulator.

1. Sample (dkind, ekind)← MFHE.KeyGen(1λ; r), where r is a random string.
2. CTind ← MFHE.Enc(ekind, x

b
ind; r

′), where r′ is a random string.
3. Sample (crs, τ)← NIZK.S1(1λ, (CTind, ekind)).
4. Sample random a bit b ∈ {0, 1}.
5. Proceed as before (Item 2) for party i ∈ H \ {ind}.
6. Do the following for party ind:

6.1. Sample (skind, vkind)← PuncSig.KeyGen(1λ).
6.2. vkind ← PuncSig.Puncture(skind, (CTind, i),⊥).
6.3. Set PKi = (vkind, ekind) and SKind = (skind, dkind).

7. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every
i /∈ H of the form PKi = (vki, eki).

8. Proceed as before (Item 4) for party i ∈ H \ {ind}.
9. Do the following for party ind:

9.1. Sample a PRF key Kind.
9.2. πind ← NIZK.S2(crs, τ, (CTind, ekind)).

9.3. Compute Gind as the obfuscation of the following circuit defined in Fig-
ure 2:

G
[
ind, crs,Kind, dkind, {ekj}j∈[n] , {vkj}j∈H

]
.

9.4. Let x̂ind = (Gind,CTind, ψind, πind).
10. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

The indistinguishability of this experiment and experiment Hyb2 follows di-
rectly from the zero-knowledge property of the NIZK (see definition in Sec-
tion 3.1), since the adversary does not get the trapdoor τ as input. The proof
here relies on the fact that the adversary has to commit to his challenge input
vectors before seeing the common random string.

Hyb4,1,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ):

22



1. Sample (dkind, ekind)← MFHE.KeyGen(1λ; r), where r is a random string.
2. CTind ← MFHE.Enc(ekind, x

b
ind; r

′), where r′ is a random string.
3. Sample (crs, τ)← NIZK.S1(1λ, (CTind, ekind)).
4. Sample random a bit b ∈ {0, 1}.
5. Proceed as before (Item 2) for party i ∈ H \ {ind}.
6. Do the following for party ind:

6.1. Sample (skind, vkind)← PuncSig.KeyGen(1λ).
6.2. vkind ← PuncSig.Puncture(skind, (CTind, i),⊥).
6.3. Set PKind = (vkind, ekind) and SKind = (skind, dkind).

7. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every
i /∈ H of the form PKi = (vki, eki).

8. Proceed as before (Item 4) for party i ∈ H \ {ind}.
9. Do the following for party ind:

9.1. ψind ← PuncSig.Sign(skind, (ĈTind, i)).
9.2. Sample a PRF key Kind.
9.3. πind ← NIZK.S2(crs, τ, (CTind, ekind)).

9.4. Compute G
(2)
ind as the obfuscation of the circuit defined in Figure 3:

G(2)
[
ind, crs, {τ j}j /∈H ,Kind, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xbj}j∈H ,

{CT∗j , π∗j }j /∈H
]

9.5. Let x̂ind = (Gind,CTind, ψind, πind).
10. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

Notice that when {CT∗i , π∗i }i/∈H are all equal to the all zero string, then this
hybrid is identical to Hyb3.

Hyb4,2,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hy-

brid, except that now hardwire in the circuit G
(2)
i a punctured PRF key K∗ =

Puncture(K, {CTi}i∈H‖{CT∗i }i/∈H), sample r∗i at random instead of via a PRF.

1. Repeat steps 1–9.1. from the previous experiment.
2. Modify step 9.2.–9.4. by doing the following for party ind:

2.1. Compute punctured key K∗ind = PRF.Puncture(K, {CTi}i∈H‖{CT∗i }i/∈H).

2.2. For j /∈ H, compute ĈT∗j = MFHE.Expand((ek1, . . . , ekn), j,CT∗j ) .

2.3. Compute ĈT∗out ← MFHE.Eval
(
f, {ĈTj}j∈H , {ĈT∗j}j∈H

)
.

2.4. rind ← PRFKind
(CT1‖π1‖ . . . ‖CTn‖πn).

2.5. Compute p∗ind ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, ind, dkind; rind

)
.

2.6. πind ← NIZK.S2(crs, τ, (CTind, ekind)).

2.7. Compute G
(3)
ind as the obfuscation of the circuit defined in Figure 4:

G(3)
[
ind, crs, {τ j}j /∈H ,K∗ind, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xbj}j∈H ,

{CT∗j , π∗j }j /∈H , p∗ind
]

23



G(2)
[
i, crs, τ,Ki, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xj}j∈H , {CT∗j , π∗j }j /∈H

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′, xj , dkj : CTj = MFHE.Enc(ekj , xj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).
- If {CTi, πi}i∈H < {CT∗i , π∗i }i∈H :

- For all j /∈ H, let (r, r′, xj , dkj)← NIZK.E(crs, τ, (CTj , ekj), πj).

- pi ← MFHE.Sim
(
y, ĈTout, {dkj}j∈[n]\{i}; ri

)
, where y = f(x1, . . . , xn).

- Otherwise:
- pi ← MFHE.PartDec

(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
- Output pi.

Fig. 3. The circuit G(2)

2.8. Let x̂ind = (G
(3)
ind , ĈTind, ψind, πind).

3. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

This hybrid is indistinguishable from Hyb4,1,{CT∗i ,π∗i } since the circuits G(2) and

G(3) (with all the hardwired values) are functionally equivalent, and therefore,
their obfuscation is indistinguishable.

Hyb4,3,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hy-

brid, except that in line 2.5., sample r∗ind at random instead of via a PRF. This
hybrid is indistinguishable from Hyb4,2,{CT∗i ,π∗i } from the security of the punc-
turable PRF.

Hyb4,4,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hy-

brid, except that in line 2.5., p∗ind is computed as follows:

- For all j /∈ H, compute (r, r′, xj , dkj)← NIZK.E(crs, τ, (CT∗j , ekj), π
∗
j ).

- p∗ind ← MFHE.Sim
(
y, ĈT∗out, {dki}i 6=ind

)
for y = f({xbj}j∈H , {xj}j /∈H).

This hybrid is indistinguishable from Hyb4,3,{CT∗i ,π∗i } from the simulation security
of the MFHE scheme. For the simulation security to hold, we need to show
that the value y actually corresponds to the message underlying the ciphertext

24



G(3)
[
i, crs, τ,Ki, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xj}j∈H , {CT∗j , π∗j }j /∈H , p∗i

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′, xj , dkj : CTj = MFHE.Enc(ekj , xj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).
- If {CTi, πi}i/∈H < {CT∗i , π∗i }i/∈H and i = ind:

- For all j /∈ H, let (r, r′, xj , dkj)← NIZK.E(crs, τ, (CTj , ekj), πj).

- pi ← MFHE.Sim
(
y, ĈTout, {dkj}j∈[n]\{ind}; ri

)
, where y = f(x1, . . . , xn).

- If {CTi, πi}i/∈H = {CT∗i , π∗i }i/∈H , output p∗i .
- Otherwise:

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Fig. 4. The circuit G(3)

ĈT∗out with respect to the public keys ek1, . . . , ekn. Notice that y is computed
as y = f({xbj}j∈H , {xj}j /∈H). For all j ∈ H we have that the signature ψj is

punctured such that it can verify only CTj , which is indeed an encryption of xbj .
For all j /∈ H by the statistical simulation extractability of the NIZK scheme,
we get the corresponding secret key and message xj for the ciphertext CTj , and
thus indeed it is a valid encryption of xj . Altogether, we get that y is the correct
value underlying the expanded ciphertext CT∗out and thus the security of the
simulation holds.

Hyb4,5,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hy-

brid, except that in line 2.5., sample r∗i via the PRF instead of uniformly at
random. Again, this hybrid is indistinguishable from the previous one from the
security of the puncturable PRF.

Hyb5: This experiment corresponds to experiment Hyb4,1,1`(λ) except that now

in step 2.7. we obfuscate the circuit with the values {x0j}j∈H hardwired instead

of {xbj}j∈H .

Since f is admissible (see Definition 1), we get that the two circuits are equiv-
alent, and thus the indistinguishability of this experiment and the previous one

25



follows from the security of the obfuscation scheme.

Hyb6: This experiment corresponds to experiment Hyb5 except that now in step 2

we encrypt x0ind in CTind and not xbind. Notice that this experiment is independent
of the bit b and thus the probability of any adversary in guessing b is 1/2.

The indistinguishability of this experiment and the previous one follows from
the semantic security of the MFHE scheme, since dkind is not used in this hybrid
any more.

In conclusion, notice that each two experiments are indistinguishable and
there are in total 5 · 2`(λ) + 3 hybrids, where in each such hybrid we lose the
security of the primitive in hand. Thus, if we start with sub-exponentially secure
schemes and initialize the underlying primitives with a large enough security
parameter poly(λ), our resulting scheme is secure, as required.

5.2 Reusable PKI

As discussed, the security we defined for the MPC protocol is a single challenge,
for a single PKI instantiation. A protocol that works for many sessions using the
same PKI instantiation can be achieved by using session ids for each computa-
tion. The only modification needed is to sign the ciphertexts with a prefix of the
session id. The puncturable signature scheme is constructed to support creating
verification keys that do not accept any message within a given prefix except
one. Thus, the only change in the proof would be to puncture the signature at
the given session id, instead of the prefix ⊥ as currently performed.

6 The Chain Construction

We now present our construction of NI-MPC for the chain graph communication
pattern. The construction is rather similar to the one of the start pattern, and
share the same building blocks. The setup procedure is the same, the main
difference is the encryption procedure. The obfuscated circuit will take as input
only the future inputs on the chain, and the rest will be hard-wired in the circuit.

Setup(1λ, crs, i): It takes as input security parameter λ, a common random string
crs, and does the following.

1. Execute the key generation procedure of the signature scheme, (ski, vki)←
PuncSig.KeyGen(1λ).

2. Execute {(dki, eki)← MFHE.KeyGen(1λ)}i∈[n].
3. Output public key PKi = (vki, eki) and private key SKi = (ski, dki).

Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i): It takes as input security parameter
λ, a common random string crs, an input xi ∈ X , a list of n public keys
PK1 . . . ,PKn, one private key SKi, an index i ∈ [n], the previous message m,
and does the following.

26



1. For every j ∈ [n], parse PKj = (vkj , ekj) and let SKi = (ski, dki).
2. Parse x̂i−1 = (G1,CT1, ψ1, π1), . . . , (Gi,CTi−1, ψi−1, πi−1), and let
σ = (CT1, ψ1, π1), . . . , (CTi−1, ψi−1, πi−1).

3. Encrypt the input xi using eki: CTi ← MFHE.Enc(eki, xi).
4. Sign on (CTi, i) using ski: ψi ← PuncSig.Sign(ski, (CTi, i)).

5. Sample puncturable PRF key Ki
$←− {0, 1}λ.

6. Generate a proof πi that CTi and eki are valid ciphertext and encryp-
tion key, respectively. Namely, compute πi ← NIZK.P(crs, (CTi, eki), w =
(r, r′, xi, dki)), where r and r′ are the randomness used for the computation
of CTi and (dki, eki), respectively. The exact statement is given in Figure 5.

7. Obfuscate the circuitGi ← iO
(
1λ, G

[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n], σ

] )
as described in Figure 5.

8. Output x̂i = x̂i−1, (Gi,CTi, ψi, πi).

G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n], σ

]
Input: (CTi, ψi, πi), . . . , (CTn, ψn, πn).

- Parse σ = (CT1, ψ1, π1), . . . , (CTi−1, ψi−1, πi−1).
- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′,Mj , dkj : CTj = MFHE.Enc(ekj ,Mj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Fig. 5. The circuit G.

Eval(1λ, crs, x̂n,PK1, . . . ,PKn): It takes as input security parameter λ, a common
random string crs, a string x̂n, a list of n public keys PK1 . . . ,PKn, and performs:

1. Parse x̂n = (G1,CT1, ψ1, π1), . . . , (Gn,CTn, ψn, πn).

2. Evaluate each obfuscation Gi on the input
(

(ĈTi, ψi, πi), . . . , (ĈTn, ψn, πn)
)

to get the partial decryption pi.
3. Execute the final decryption, y ← MFHE.FinDec(p1, . . . , pn) and output y.

The correctness of the scheme is immediate and follows by the correctness
of the underlying building blocks. Specifically, let x1, . . . , xn ∈ X be inputs

27



such that party i holds xi. By the correctness of the signature scheme and the
threshold multi-key FHE scheme, each obfuscated circuit will output a partial
decryption pi such that MFHE.FinDec(p1, . . . , pn) must be equal to f(x1, . . . , xn).

For security, we use the same overall strategy we used in the star case in
Section 5. Note however that the admissibility condition in the case of a chain
(see Definition 4) is weaker than the admissibility condition in the case of a star.
Indeed, in the chain case, the “free” inputs for which the adversary can reset
their values are only those appearing after the last honest party, whereas in the
star case he can reset the input of any dishonest party.

Consider first a function f that is admissible for a star (and thus also chain
admissible). Every (obfuscated) circuit in the chain construction is exactly like
the circuit in the star construction except that it has hardwired a subset of the
inputs (appearing earlier in the chain). Then, the same sequence of hybrids from
the star case applies and proves the security for f .

For the general case, where f is admissible for a chain pattern, we follow
the same sequence of hybrids, but make appropriate modifications. Instead of
hardwiring the inputs of the honest parties {xbi}i∈H , we hardwire the whole set of
inputs of parties up to i∗ (where i∗ is the index of the last honest party), namely,
{xbi}i∈H∪{xi}[i∗]\H . Notice that we know the inputs {xi}[i∗]\H in advance. Then,
the loop of hybrids from Hyb4,1,{CT∗i ,π∗i }i>i∗ to Hyb4,5,{CT∗i ,π∗i }i>i∗ is only over the

inputs of parties whose index is larger than i∗ (rather than i /∈ H).

Notice that in the original proof the only hybrid that uses the fact that
f is admissible (for a star) is for indistinguishability (based on iO) between
Hyb4,1,1`(λ) (the last hybrid in the loop) and Hyb5. Thus, here we use a similar
argument for the indistinguishability based on iO and the fact that f is admis-
sible. Since , we know the input of all parties before i∗ and since f is chain
admissible (with the hardwired inputs of the parties before i∗), we get that the
circuit with {xbi}i∈H ∪ {xi}[i∗]\H hardwired is functionally equivalent to the cir-
cuit with {x0i }i∈H ∪{xi}[i∗]\H hardwired. Thus, indistinguishability of the above
hybrids follows from the security of iO.

General interaction patterns. One can generalize the above idea, support arbi-
trary interaction patterns and achieve the “best-possible” security. The formal-
ization of the “best-possible” security per interaction pattern is given in [24,23].
The modification of our construction is: each party will forward all its input mes-
sages to the next party in the DAG in addition to its own message that includes
an obfuscated circuit and another ciphertext. The new obfuscated circuit, as in
the chain pattern, will have hardwired all ciphertexts it received from previous
parties in the chain. The contruction, other than this change, remains the same.

The security proof is also easily modified. Specifically, the only part in the
proof that relies on the interaction pattern is the part where we use the ad-
missibility of the function we compute (notice that the definition of admissible
functions varies per interaction pattern). We follow the modification we did for
the chain case and obtain a security proof for every pattern.

28



Acknowledgments

Shai Halevi was supported by the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-
0236. Yuval Ishai was supported in part by NSF-BSF grant 2015782, BSF grant
2012366, ISF grant 1709/14, ERC grant 742754, DARPA/ARL SAFEWARE
award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the DARPA through
the ARL under Contract W911NF-15-C-0205. Abhishek Jain was supported in
part by a DARPA/ARL Safeware Grant W911NF-15-C-0213 and a sub-award
from NSF CNS-1414023. Ilan Komargodski is supported in part by Elaine Shi’s
Packard Foundation Fellowship. Most of this work done while he was a Ph.D
student at the Weizmann Institute of Science, supported in part by grants
from the Israel Science Foundation and by a Levzion Fellowship. Amit Sahai
was supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This ma-
terial is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. Eylon Yogev is
supported in part by a grant from the Israel Science Foundation. The views
expressed are those of the authors and do not reflect the official policy or posi-
tion of the Department of Defense, the National Science Foundation, or the U.S.
Government.

References

1. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and
robust combiners for indistinguishability obfuscation and witness encryption. In:
CRYPTO. pp. 491–520 (2016)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001)

3. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: CRYPTO.
pp. 387–404 (2014)

4. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: TCC. pp. 401–427 (2015)

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: TCC. pp. 253–273 (2011)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: ASIACRYPT. pp. 280–300 (2013)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: PKC. pp. 501–519 (2014)

8. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC. pp. 235–244 (2000)

29



9. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: TCC. pp. 468–497 (2015)

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. pp. 494–503 (2002)

11. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: CRYPTO (2015)

12. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its ap-
plications. In: CRYPTO. pp. 93–122 (2016)

13. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC (1994)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: TCC (2014)

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) (1986)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

19. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi,
E., Zhou, H.: Multi-input functional encryption. In: EUROCRYPT. pp. 578–602
(2014)

20. Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of poly-
nomials and branching programs without simultaneous interaction. In: EURO-
CRYPT. pp. 575–591 (2013)

21. Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: FOCS. pp. 678–687
(2011)

22. Goyal, V., Sahai, A.: Resettably secure computation. In: EUROCRYPT. pp. 54–71
(2009)

23. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: ITCS. pp. 157–168 (2016)

24. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: CRYPTO. pp. 132–150 (2011)

25. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM SIGSAC (2013)

26. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

27. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: EUROCRYPT. pp. 735–763 (2016)

28. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010)

29. Sahai, A., Waters, B.: Slides on functional encryption. Available at http://www.

cs.utexas.edu/~bwaters/presentations/files/functional.ppt (2008)
30. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-

cryption, and more. In: STOC (2014)
31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)

30

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	Non-Interactive Multiparty Computation Without Correlated Randomness

