
Collisions and Semi-Free-Start Collisions for
Round-Reduced RIPEMD-160

Fukang Liu1, Florian Mendel2, Gaoli Wang1?

1 Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science
and Software Engineering, East China Normal University, Shanghai, China

liufukangs@163.com, glwang@sei.ecnu.edu.cn
2 Graz University of Technology, Austria

florian.mendel@iaik.tugraz.at

Abstract. In this paper, we propose an improved cryptanalysis of the
double-branch hash function RIPEMD-160 standardized by ISO/IEC.
Firstly, we show how to theoretically calculate the step differential prob-
ability of RIPEMD-160, which was stated as an open problem by Mendel
et al. at ASIACRYPT 2013. Secondly, based on the method proposed
by Mendel et al. to automatically find a differential path of RIPEMD-
160, we construct a 30-step differential path where the left branch is
sparse and the right branch is controlled as sparse as possible. To ensure
the message modification techniques can be applied to RIPEMD-160,
some extra bit conditions should be pre-deduced and well controlled.
These extra bit conditions are used to ensure that the modular differ-
ence can be correctly propagated. This way, we can find a collision of
30-step RIPEMD-160 with complexity 267. This is the first collision at-
tack on round-reduced RIPEMD-160. Moreover, by a different choice of
the message words to merge two branches and adding some conditions to
the starting point, the semi-free-start collision attack on the first 36-step
RIPEMD-160 from ASIACRYPT 2013 can be improved. However, the
previous way to pre-compute the equation T≪S0 � C0 = (T � C1)≪S1

costs too much. To overcome this obstacle, we are inspired by Daum’s
et al. work on MD5 and describe a method to reduce the time complex-
ity and memory complexity to pre-compute that equation. Combining
all these techniques, the time complexity of the semi-free-start collision
attack on the first 36-step RIPEMD-160 can be reduced by a factor of
215.3 to 255.1.

Keywords: RIPEMD-160, semi-free-start collision, collision, hash func-
tion, compression function

1 Introduction

A cryptographic hash function is a function which takes arbitrary long messages
as input and output a fixed-length hash value of size n bits. There are three

? Corresponding author.



basic requirements for a hash function, which are preimage resistance, second-
preimage resistance and collision resistance. Most standardized hash functions
are based on the Merkle-Damg̊ard paradigm[2,12] and iterate a compression
function H with fixed-size input to compress arbitrarily long messages. Therefore,
the compression function itself should satisfy equivalent security requirements so
that the hash function can inherit from it. There are two attack models on the
compression function. One is called free-start collision attack, the other is semi-
free-start collision attack. The free-start collision attack is to find two different
pairs of message and chaining value (CV,M), (CV ′,M ′) which satisfy H(CV,M)
= H(CV ′,M ′). The semi-free-start collision attack works in the same way apart
from an additional condition that CV = CV ′. The last decade has witnessed
the fall of a series of hash functions such as MD4, MD5, SHA-0 and SHA-1 since
many break-through results on hash functions cryptanalysis [15,20,21,22,23] were
obtained. All of these hash functions belong to the MD-SHA family, whose design
strategy is based on the utilization of additions, rotations, xor and boolean
functions in an unbalanced Feistel network.

RIPEMD family can be considered as a subfamily of the MD-SHA-family
since RIPEMD-0 [1] is the first representative and consists of two MD4-like
functions computed in parallel with totally 48 steps. The security of RIPEMD-0
was first put into question by Dobbertin [4] and a practical collision attack on it
was proposed by Wang et al. [20]. In order to reinforce the security of RIPEMD-0,
Dobbertin, Bosselaers and Preneel [3] proposed two strengthened versions of
RIPEMD-0 in 1996, which are RIPEMD-128 and RIPEMD-160 with 128/160
bits output and 64/80 steps, respectively. In order to make both computation
branches more distinct from each other, not only different constants, but also
different rotation values, message insertion schedules and boolean functions are
used for RIPEMD-128 and RIPEMD-160 in their both branches.

For RIPEMD-128, there has been a series of analysis on it [5,8,16,17,18],
threatening its security. As for RIPEMD-160, Mendel et al. [11] proposed an
improved method to automatically find the differential path of RIPEMD-160 at
ASIACRYPT 2013. With their method, they found a 48-step differential path
and a 36-step differential path. Based on the two differential paths, Mendel
et al. [11] mounted a semi-free-start collision attack on 42-step RIPEMD-160
and a semi-free-start collision attack on the first 36-step RIPEMD-160. Ad-
ditionally, they also proposed an open problem to theoretically calculate the
step differential probability. Besides, there are also some other analytical result-
s on RIPEMD-160, such as a preimage attack [13] on 31-step RIPEMD-160,
a distinguisher on up to 51 steps of the compression function [14], a practical
semi-free-start collision attack on 36 steps of the compression function [9] (not
starting from the first step), and a semi-free-start collision attack on 48-step
RIPEMD-160 [19]. However, RIPEMD-160 is yet unbroken and is widely used
in the implementations of security protocols as a ISO/IEC standard.

In 2005, Daum investigated the probability computation of T-functions (a
function for which the i-th output bit depends only on the i first lower bits of all
input words) in his PhD thesis [6]. More specifically, he proposed a method to

2



calculate the probability that T satisfies the equation (T �C0)≪S = T≪S �C1

where C0 and C1 are constants. According to our analysis of the open problem to
calculate the step differential probability of RIPEMD-160, we find that calculat-
ing such a probability is equivalent to calculating the probability that the modu-
lar difference of the internal states is correctly propagated and the bit conditions
on the internal states hold. Although Daum’s work can be used to calculate the
probability that the modular difference is correctly propagated, it can’t solve
the open problem completely since the probability that one bit condition on the
internal state holds is not 1/2 any more. However, by considering the calculation
of the probability that T satisfies the equation (T �C0)≪S = T≪S�C1 from a
different perspective, we can deduce some useful characteristics of T which can
be used to calculate the probability that the bit conditions hold. In this way, we
can solve the open problem completely.

This paper is organized as follows. In Section 2, we briefly describe the al-
gorithm of RIPEMD-160. In Section 3, we describe our method to calculate the
step differential probability. In Section 4, we describe our improved way to pre-
compute the equation T≪S0 � C0 = (T � C1)≪S1 . In Section 5, we describe
the collision attack on the first 30-step RIPEMD-160. In Section 6, we describe
the improved semi-free-start collision attack on the first 36-step RIPEMD-160.
Finally, we conclude the paper in Section 7.

Our Contributions

1. Our method to theoretically calculate the step differential probability con-
sists of two steps. At first, we consider the probability that the modular
difference of the internal states holds, which will help obtain some charac-
teristics of Qi (Qi is referred to Section 2.2). Then, for each characteristics
of Qi, the probability that the bit conditions on the internal states hold
under the condition that this characteristic of Qi holds can be calculated.
In this way, the theoretical calculation of the step differential probability of
RIPEMD-160 becomes feasible.

2. We deduce a useful property from the PhD thesis of Daum [6]. Based on it, we
can convert solving the equation T≪S0�C0 = (T �C1)≪S1 into solving the
equation T≪S0 �C2 = T≪S1 . By analyzing the expectation of the number
of the solutions to the equation if given many pairs of (C0, C1), we can
claim that our new method to obtain the solutions at the phase of merging
only costs 4 times of checking the equation T≪S0 � C0 = (T � C1)≪S1 on
average, thus having a negligible influence on the efficiency compared with
the previous method [5,11]. Moreover, both the time complexity and memory
complexity of our new method to pre-compute the equation is 232, which is
much smaller than the strategy by constructing a table of size 264 to store
the solutions.

3. By using the technique described in [11] to automatically find a differential
path for RIPEMD-160, we can construct a 30-step differential path where the
left branch is sparse and the right branch is controlled as sparse as possible.
For the left branch, we leave it holding probabilistically. For the right branch,

3



we apply the message modification techniques [20] to it. However, according
to our analysis of the open problem to theoretically calculate the step dif-
ferential probability of RIPEMD-160, the differential path of RIPEMD-160
holds only when both the bit conditions and the modular difference of the
internal states hold. That’s different from MD4 since the differential path of
MD4 holds only when the bit conditions on the internal states hold. Since
the message modification can only be used to ensure the bit conditions hold,
the difficulty is how to have the modular difference of the internal states
hold when applying it to RIPEMD-160. Fortunately, we discover that we
can add some extra bit conditions on the internal states to have the mod-
ular difference hold. Therefore, before applying the message modification,
we have to pre-deduce these extra bit conditions on the internal states by
considering the characteristics of Qi. After obtaining the newly added extra
bit conditions, by adjusting the message modification techniques so that it
can be applied to RIPEMD-160, we can mount a 30-step collision attack on
RIPEMD-160 with probability 2−67.

4. Based on the 36-step differential path, by a different choice of message words
to merge both branches, we can improve the time complexity of the merging
phase. Moreover, based on the characteristics of Q15, we can add some extra
bit conditions on Y11 at the phase of finding a starting point to further
improve our attack. The improved semi-free-start collision attack on the
first 36-step RIPEMD-160 is 255.1, which is much smaller than the previous
best known result.

Table 1. Summary of preimage and collision attack on RIPEMD-160.

Target Attack Type Steps Complexity Ref.

comp. function preimage 31 2148 [13]

hash function preimage 31 2155 [13]

comp. function semi-free-start collision 36a low [9]

comp. function semi-free-start collision 36 270.4 [11]

comp. function semi-free-start collision 36 255.1 new

comp. function semi-free-start collision 42a 275.5 [11]

comp. function semi-free-start collision 48a 276.4 [19]

hash function collision 30 267 new
a An attack starts at an intermediate step.

2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function H which takes as input a 512-bit message block

4



Mi and a 160-bit chaining variables CVi :

CVi+1 = H(CVi,Mi)

where a message M to hash is padded beforehand to a multiple of 512 bits and
the first chaining variable is set to the predetermined initial value IV , that is
CV0 = IV . We refer to [3] for a detailed description of RIPEMD-160.

2.1 Notations

For a better understanding of this paper, we introduce the following notations.

1. ≪,≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: rotate left,
rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substrac-
tion on 32 bits.

3. M = (m0, m1, ..., m15) and M ′ = (m′0, m′1, ..., m′15) represent two 512-bit
message blocks.

4. ∆mi = m′i − mi represents the modular difference between two message
words mi and m′i.

5. Kl
j and Kr

j represent the constant used at the left and right branch for round
j.

6. Φlj and Φrj represent respectively the 32-bit boolean function at the left and
right branch for round j.

7. Xi, Yi represent respectively the 32-bit internal state of the left and right
branch updated during step i for compressing M .

8. X ′i, Y
′
i represent respectively the 32-bit internal state of the left and right

branch updated during step i for compressing M ′.
9. Xi,j , Yi,j represent respectively the j-th bit of Xi and Yi, where the least

significant bit is the 0th bit and the most significant bit is the 31st bit.
10. Qi represents the 32-bit temporary state of the right branch updated during

step i for compressing M .
11. sli and sri represent respectively the rotation constant used at the left and

right branch during step i.
12. π1(i) and π2(i) represent the index of the message word used at the left and

right branch during step i.
13. [Z]i represents the i-th bit of the 32-bit Z.
14. [Z]j∼i (0 ≤ i < j ≤ 31) represents the i-th bit to the j-th bit of the 32-bit

word Z.
15. xi[j], xi[−j] (x can be X and Y ) is the resulting value by only changing the

j-th bit of xi. xi[j] is obtained by changing the j-th bit of xi from 0 to 1.
xi[−j] is obtained by changing the j-th bit of xi from 1 to 0.

16. xi[±j1,±j2, ...,±jl] (x can be X and Y ) is the value by changing the j1-th,
j2-th, jl-th bit of xi. The ”+” sign means the bit is changed from 0 to 1,
and the ”−” sign means the bit is changed from 1 to 0.

17. P(A) is the probability of the event A.

5



2.2 RIPEMD-160 Compression Function

The RIPEMD-160 compression function is a wider version of RIPEMD-128,
which is based on MD4, but with the particularity that it consists of two dif-
ferent and almost independent parallel instances of it. We differentiate the two
computation branches by left and right branch. The compression function con-
sists of 80 steps divided into 5 rounds of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable CVi is divided into five 32-
bit words hi (i=0,1,2,3,4), initializing the left and right branch 160-bit internal
state in the following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148,X−3 = Y−3 = 0x7c30f4b8,X−2 = Y−2 = 0x1d840c95,
X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

The Message Expansion. The 512-bit input message block is divided into 16
message words mi of size 32 bits. Each message word mi will be used once in
every round in a permuted order π for both branches.

The Step Function. At round j, the internal state is updated in the following
way.

Xi = X≪10
i−4 � (X≪10

i−5 � Φ
l
j(Xi−1, Xi−2, X

≪10
i−3 )�mπ1(i) �K

l
j)

≪sli ,

Yi = Y≪10
i−4 � (Y≪10

i−5 � Φrj(Yi−1, Yi−2, Y
≪10
i−3 )�mπ2(i) �K

r
j )≪sri ,

Qi = Y≪10
i−5 � Φrj(Yi−1, Yi−2, Y

≪10
i−3 )�mπ2(i) �K

r
j ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean
functions and round constants for RIPEMD-160 are displayed in Table 2. As for
other parameters, you can refer to [3].

The Finalization. A finalization and a feed-forward is applied when all 80
steps have been computed in both branches. The five 32-bit words h

′

i composing
the output chaining variable are computed in the following way.

h
′

0 = h1 �X79 � Y78)≪10,

h
′

1 = h2 �X
≪10
78 � Y≪10

77 ,

h
′

2 = h3 �X
≪10
77 � Y≪10

76 ,

h
′

3 = h4 �X
≪10
76 � Y80,

h
′

4 = h0 �X80 � Y79.

6



Table 2. Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z

3 Calculate the Step Differential Probability

In [11], Mendel et al. pointed out that it is not as easy to calculate the differential
probability for each step of a given differential path of RIPEMD-160 as that of
RIPEMD-128. The main reason is that the step function in RIPEMD-160 is
no longer a T-function. Therefore, the accurate calculation of the differential
probability becomes very hard. However, we can divide the calculation of the
step differential probability into two steps. Define as µ the event that all bit
conditions on the internal state hold, as ν the event that the modular difference of
the internal state holds. Although Daum has proposed a method [6] to calculate
P (ν), we will use a different method to calculate it, since our goal is not only to
calculate P (ν) but also to obtain some useful characteristics of Qi. Then, we can
leverage the deduced characteristics and the bit conditions on the internal states
to calculate P (µν). In this way, the step differential probability P (µν) can be
obtained. We use the step function of the right branch as an example and give
its description below. We will show how to deduce the useful characteristics of
Qi and calculate P (µν).

3.1 Description of the Open Problem

Since the step function of RIPEMD-160 at both branches has the same form, we
take the right branch as an example to describe the open problem.

Yi = Y≪10
i−4 � (Y≪10

i−5 � Φlj(Yi−1, Yi−2, Y
≪10
i−3 )�mπ2(i) �K

r
j )≪sri .

To ensure the given differential path holds, we need to impose conditions on
some bits of Yi and control the modular difference of Yi. The open problem
is how to calculate the probability that both the bit conditions on Yi and the
modular difference of Yi are satisfied under the condition that all conditions on
Yi−1, Yi−2, Yi−3, Yi−4, Yi−5 are satisfied. For example, according to the differen-
tial path displayed in Table 16, we know that:

Y ′15 = Y15[−5,−20,−26], Y ′14 = Y14[5, 11, 22], Y ′13 = Y13[−9,−24, 26,−30],

Y ′12 = Y12[0,−15, 21], Y ′11 = Y11[1, 10, 12, 15,−16, 24, 26,−28],

Y ′10 = Y10[−3, 21, 22, 23, 24, 25, 26,−28], ∆m3 = 0.

7



Firstly, we use Y10, Y11, Y12, Y13, Y14, m3 to calculate Y15. Then, we use Y ′10, Y ′11,
Y ′12, Y ′13, Y ′14, m′3 to calculate Y ′15. Then, the differential probability for step 15 is
equal to the probability that Y ′15 = Y15�25�220�226 and that all bit conditions
on Y15 are satisfied.

3.2 The Probability of (T � C0)≪S = T≪S � C1

Given two constants C0 and C1, Daum has described a method [6] to calculate
the probability that T satisfies (T�C0)≪S = T≪S�C1 (1 ≤ S ≤ 31). However,
we consider the problem from a different perspective by considering the char-
acteristics of T which satisfies such an equation. In this way, we can not only
calculate the probability of this equation, but also can obtain the characteristics
of T for further use to theoretically calculate the step differential probability.

Let R0||R1 = T �C0, where R0 is an S-bit variable representing the higher S
bits of T�C0 and R1 is a (32-S)-bit variable representing the lower (32-S) bits of
T �C0. Let R′1||R′0 = T≪S �C1, where R′1 is a (32-S)-bit variable representing
the higher (32-S) bits of T≪S �C1 and R′0 is an S-bit variable representing the
lower S bits of T≪S � C1. Then, the probability of (T � C0)≪S = T≪S � C1

(1 ≤ S ≤ 31) is equal to P(R0 = R′0 and R1 = R′1). Since

R0 ≡ [T ]31∼(32−S) + [C0]31∼(32−S) + carry0 mod (2S),

R′0 ≡ [T ]31∼(32−S) + [C1](S−1)∼0 mod (2S),

R1 ≡ [T ](31−S)∼0 + [C0](31−S)∼0 mod (232−S),

R′1 ≡ [T ](31−S)∼0 + [C1]31∼S + carry1 mod (232−S),

where carry0 represents the carry from the (31-S)-th bit to the (32-S)-th when
calculating T �C0, and carry1 represents the carry from the (S-1)-th bit to the
S-th bit when calculating T≪S � C1. For simplicity, we define as κ the event
that carry0 = 0 and as ω the event that carry1 = 0. Therefore,

P (R0 = R′0) = P (κ and [C0]31∼(32−S) =

[C1](S−1)∼0) + P (κ and [C0]31∼(32−S) + 1 ≡ [C1](S−1)∼0 mod (2S)),

P (R1 = R′1) = P (ω and [C0](31−S)∼0 =

[C1]31∼S) + P (ω and [C0](31−S)∼0 ≡ [C1]31∼S + 1 mod (232−S)).

We denote the positions of the bits of [C0](31−S)∼0 equal to 1 by k0, k1 , ..., kn
and denote the positions of the bits of [C1](S−1)∼0 equal to 1 by r0, r1 , ..., rm.
Then, the value of P (κ) and P (ω) can be directly deduced as below:

1. If [C0](31−S)∼0 = 0, then P (κ) = 1. Otherwise, P (κ) = 1−
∑n
i=0 2−(32−S−ki).

2. If [C1](S−1)∼0 = 0, then P (ω) = 1. Otherwise, P (ω) = 1−
∑m
i=0 2−(S−ri).

Thus, we can compute P (R0 = R′0 and R1 = R′1) in this way:

1. If [C0](31−S)∼0 = [C1]31∼S and [C0]31∼(32−S) = [C1](S−1)∼0, then
P (R0 = R′0 and R1 = R′1) = P (κ)× P (ω).

8



2. If [C0](31−S)∼0 = [C1]31∼S and [C0]31∼(32−S) + 1 ≡ [C1](S−1)∼0 mod (2S),
then P (R0 = R′0 and R1 = R′1) = P (κ)× P (ω).

3. If [C0](31−S)∼0 ≡ [C1]31∼S+1 mod (232−S) and [C0]31∼(32−S) = [C1](S−1)∼0,
then P (R0 = R′0 and R1 = R′1) = P (κ)× P (ω).

4. If [C0](31−S)∼0 ≡ [C1]31∼S + 1 mod (232−S)) and [C0]31∼(32−S) + 1 ≡
[C1](S−1)∼0 mod (2S)), then P (R0 = R′0 and R1 = R′1) = P (κ)× P (ω).

5. If C0 and C1 doesn’t belong to any of the above four cases, then
P (R0 = R′0 and R1 = R′1)=0.

According to the above method to calculate P (R0 = R′0 and R1 = R′1), the
following property can be directly deduced. (In fact, we can also deduce it by
using the Corollary 4.14 in [6].)

Property 1. Given random constants C0 and C1 of 32 bits each, there exists
a T of 32 bits which satisfies (T � C0)≪S = T≪S � C1 if and only if (C0, C1)
satisfies one of the following equations:

1. C1 = (C0 � 1)≪S , and [C1](S−1)∼0 6= 0.

2. C1 = (C0 � 232−S)≪S , and [C0](31−S)∼0 6= 0.

3. C1 = (C0 � 232−S � 1)≪S , and [C1](S−1)∼0 6= 0, [C0](31−S)∼0 6= 0.

4. C1 = C≪S
0 .

Example. In the following, we give an example how to calculate the probability
of (T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c. To have a better understand-
ing of our method to calculate the probability, we explain it by Table 3.

Table 3. Calculation of the Probability

T 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T

C0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1

R0 R1

T≪12 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20

T≪12

C1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

R′1 R′0

According to Table 3, we can find the following relationship between C0 and C1:

[C0]19∼0 = [C1]31∼12, [C0]31∼20 + 1 ≡ [C1]11∼0 mod (212).

Therefore, we can get P ((T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c) =
P (κ) × P (ω). By considering the characteristics of T, P (κ) and P (ω) can be

9



calculated as below:

P (κ) = P ([T ]19 = 1) + P ([T ]19∼18 = 01) + P ([T ]19∼17 = 001)

+P ([T ]19∼16 = 0001) + P ([T ]19∼15 = 00001) + P ([T ]19∼14 = 000001)

+P ([T ]19∼12 = 00000011) + P ([T ]19∼11 = 000000101)

+P ([T ]19∼8 = 000000100111) + P ([T ]19∼7 = 0000001001101)

+P ([T ]19∼6 = 00000010011001) + P ([T ]19∼5 = 000000100110001)

+P ([T ]19∼4 = 0000001001100001) + P ([T ]19∼3 = 00000010011000001)

+P ([T ]19∼2 = 000000100110000001) + P ([T ]19∼1 = 0000001001100000001)

+P ([T ]19∼0 = 00000010011000000001)

= Σ6
i=12−i + 2−8 + 2−9 +Σ20

i=122−i.

P (ω) = 1− P ([T ]31 = 1)− P ([T ]31−23 = 011111111)− P ([T ]31−22 = 0111111101)

= 1− (2−1 + 2−9 + 2−10).

Thus, P ((T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c) ≈ 2−1. In this example,
we call [T ]19 = 1 one possible characteristic of T , and we call [T ]31 = 1 one
impossible characteristic of T . Totally, there are 17 possible characteristics of T
and 3 impossible characteristics of T .

3.3 Calculating the Step Differential Probability

We use the step function of the right branch to explain our method to calculate
the step differential probability. Let ∆ = Y ′i � Yi, ∆i−5 = Y ′≪10

i−5 � Y≪10
i−5 ,

∆i−4 = Y ′≪10
i−4 � Y≪10

i−4 , ∆F = Φlj(Y
′
i−1, Y

′
i−2, Y

′≪10
i−3 ) � Φlj(Yi−1, Yi−2, Y

≪10
i−3 ),

then P (ν) = P (∆ = ∆i−4�(∆i−5�∆F�∆mπ2(i)�Qi)
≪sri �Q≪sri

i ). Given the
differential path and the bit conditions to control the differential propagation,
∆, ∆i−5, ∆i−4, ∆F and ∆mπ2(i) are all fixed. Let C0 = ∆i−5 �∆F �∆mπ2(i)

and C1 = ∆�∆i−4, we can obtain that P (ν) = P ((Qi�C0)≪sri = Q
≪sri
i �C1),

which can be quickly calculated as described in Section 3.2.

Observe that when calculating Yi, there are conditions on some bits of Yi−4
and Yi, i.e., some bits of Yi−4 and Yi are fixed. In addition, in order to make the
modular difference of Yi satisfied, there are some constraints on Qi. By analyzing
the constraints carefully, the characteristics of Qi can be discovered, which will
make the theoretical calculation of P (µν) feasible. By the following example, we
will introduce how to leverage the characteristics of Qi and the bit conditions
on Yi−4 and Yi to calculate P (µν). The general case can be handled in the same
way.

10



Example. For the given differential path in Table 16, we know that

∆F = ONX (Y ′14, Y
′
13, (Y

′
12)≪10)�ONX (Y14, Y13, Y

≪10
12 ) = 0xbffa20,

Y ′≪10
11 = Y≪10

11 [−26, 25, 22, 20, 11,−6, 4, 2], ∆11 = Y ′≪10
11 � Y≪10

11 = 0xfe5007d4,

Y ′≪10
10 = Y≪10

10 [31,−13,−6, 4, 3, 2, 1, 0], ∆10 = Y ′≪10
10 � Y≪10

10 = 0x7fffdfdf,

∆ = Y ′15 − Y15 = 0xfbefffe0, ∆m3 = 0.

Therefore, Q15 has to satisfy the equation (Q15� 0x80bfd9ff)≪12 = Q≪12
15 �

0xfd9ff80c. According to the example in Section 3.2, the characteristics of Q15

which satisfies such an equation can be deduced and we display it in Table 4.

Table 4. The Characteristics of Q15

i χi (Characteristic) Type i χi (Characteristic) Type

1 [Q15]31 = 1 Impossible 11 [Q15]19∼11 = 000000101 Possible

2 [Q15]31∼23 = 011111111 Impossible 12 [Q15]19∼8 = 000000100111 Possible

3 [Q15]31∼22 = 0111111101 Impossible 13 [Q15]19∼7 = 0000001001101 Possible

4 [Q15]19 = 1 Possible 14 [Q15]19∼6 = 00000010011001 Possible

5 [Q15]19∼18 = 01 Possible 15 [Q15]19∼5 = 000000100110001 Possible

6 [Q15]19∼17 = 001 Possible 16 [Q15]19∼4 = 0000001001100001 Possible

7 [Q15]19∼16 = 0001 Possible 17 [Q15]19∼3 = 00000010011000001 Possible

8 [Q15]19∼15 = 00001 Possible 18 [Q15]19∼2 = 000000100110000001 Possible

9 [Q15]19∼14 = 000001 Possible 19 [Q15]19∼1 = 0000001001100000001 Possible

10 [Q15]19∼12 = 00000011 Possible 20 [Q15]19∼0 = 00000010011000000001 Possible

Let a = Q≪12
15 , b = Y≪10

11 , d = Y15, since Y15 = Y≪10
11 � Q≪12

15 , we can
obtain that d = a � b. In addition, we denote by ci the carry from the(i-1)-th
bit to the i-th bit when calculating a� b. Thus,

[d]i = [a]i ⊕ [b]i ⊕ ci, (c0 = 0, 0 ≤ i ≤ 31).

Define as Ai the event that [a]i = 0, as Bi the event that [b]i = 0, as λi
the event that ci = 0, as Di the event that Y15,i = 0, as ν15 the event that
Y ′15 − Y15 = 0xfbefffe0, as η15 the event that all the 7 conditions on Y15 hold.
For a better understanding of our method, we display the calculation of Y15 in
Table 5. Then, P (η15ν15) can be calculated as follows:

P (η15ν15) = P (λ12η15ν15) + P (λ12η15ν15),

P (λ12η15ν15) = Σ20
i=4P (D26D22D20D19χi | λ12)× {P (D11D5D2λ12)

−Σ3
i=1[P (D11D5D2λ12 | χi)× P (χi)]},

P (λ12η15ν15) = Σ20
i=4P (D26D22D20D19χi | λ12)× {P (D11D5D2λ12)

−Σ3
i=1[P (D11D5D2λ12 | χi)× P (χi)]}.

However, according to the characteristics of Q15, we know that [Q15]31 is al-
ways 0 if Y ′15 � Y15 = 0xfbefffe0, which implies that P (λ12 | ν15) = 0 and

11



Table 5. Calculation of Y15 = Y≪10
11 �Q≪12

15

Q≪12
15 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20

Y≪10
11 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22

Y15 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q≪12
15 (a)

Y≪10
11 (b) - 1 - - 1 1 0 - - 0 - 0 - - 1 0 0 0 0 1 0 - 0 - - 1 - 0 1 0 - -

Y15(d) - - - - - 1 - - - 1 - 1 0 - - - - - - - 1 - - - - - 1 - - 1 - -

P (λ12 | ν15) = 1. Therefore, calculating P (λ12η15ν15) is enough. Take the calcu-
lation of P (D11D5D2λ12)−Σ3

i=1[P (D11D5D2λ12 | χi)× P (χi)] as an example.
Firstly, we calculate P (D11D5D2λ12 | χ3). As Table 6 shows, the calculation is
detailed as below.

Table 6. Calculation of P (D11D5D2λ12 | χ3)

Q≪12
15 31 30 29 28 27 26 25 24 23 22 21 20

Y≪10
11 1 0 31 30 29 28 27 26 25 24 23 22

Y15 11 10 9 8 7 6 5 4 3 2 1 0

Q≪12
15 (a) 0 1 1 1 1 1 1 1 0 1 - -

Y≪10
11 (b) 0 - 0 - - 1 - 0 1 0 - -

Y15(d) 1 - - - - - 1 - - 1 - -

P (D11D5D2λ12 | χ3) = P (D11D5D2 | χ3).

P (D11D5D2 | χ3) = P (λ11D5D2 | χ3) = P (B10) × P (D5D2 | χ3) + P (B10) ×
P (λ10D5D2 | χ3)
= 1

2 × P (D5D2 | χ3) + 1
2 × P (λ10D5D2 | χ3).

P (D5D2 | χ3) = P (B5)× P (λ5D2 | χ3) + P (B5)× P (λ5D2 | χ3)
= 1

2 × P (λ5D2 | χ3) + 1
2 × P (λ5D2 | χ3) = 1

2 × P (D2 | χ3).

P (D2 | χ3) = P (λ2).

P (λ2) = P (A1B1) + [P (A1B1) + P (A1B1)]× P (λ1) = 1
4 + 1

2 × P (λ1).

P (λ1) = P (A1B1) + P (A1B1) + P (A1B1) = 3
4 .

P (λ10D5D2 | χ3) = P (λ9D5D2 | χ3) = P (B8) × P (D5D2 | χ3) + P (B8) ×
P (λ8D5D2 | χ3)

= 1
2 × P (D5D2 | χ3) + 1

2 × P (λ8D5D2 | χ3).

P (λ8D5D2 | χ3) = P (B7)× P (D5D2 | χ3) + P (B7)× P (λ7D5D2 | χ3)
= 1

2 × P (D5D2 | χ3) + 1
2 × P (λ7D5D2 | χ3).

P (λ7D5D2 | χ3) = P (D5D2 | χ3).

12



Therefore, P (D11D5D2λ12 | χ3) = 5
16 . In the same way, we can obtain that

P (D11D5D2λ12 | χ2) = 1
4 , P (D11D5D2λ12 | χ1) = 159

1024 and P (D11D5D2λ12) =

P (D11D5D2) = 1
8 . Hence,

P (D11D5D2λ12)−Σ3
i=1[P (D11D5D2λ12 | χi)× P (χi)]

=
1

8
− 1

2
× 159

1024
− 1

29
× 1

4
− 1

210
× 5

16
≈ 1

16
= 2−4 .

Since

Σ20
i=4P (D26D22D20D19χi | λ12) = Σ20

i=4[P (D26D22D20D19 | χiλ12)× P (χi | λ12)]

= Σ20
i=4[P (D26D22D20D19 | χiλ12)× P (χi)],

and P (D26D22D20D19 | χiλ12) (4 ≤ i ≤ 20) can be calculated in the same way
as above, the value of Σ20

i=4P (D26D22D20D19χi | λ12) can be obtained. Thus,
the probability of the step function can be calculated.

In summary, in order to theoretically calculate the step differential proba-
bility for step i, we should firstly deduce the characteristics of Qi so that the
modular difference can be correctly propagated. Then, for each characteristics of
Qi, the calculation of the probability that the bit conditions hold is changed to
calculating the probability that A+B = C where only part bits of A and B are
fixed and some bits of C are restricted to fixed values. When all characteristics
of Qi are considered, the step differential probability can be obtained.

4 Solving the Equation T≪S0 � C0 = (T � C1)
≪S1

When using the method proposed by Landelle and Peyrin to analyze RIPEMD-128
and RIPEMD-160 [5], an equation like T≪S0 � C0 = (T � C1)≪S1 is always
constructed. In order to reduce the time complexity of the merging phase, pre-
computing the equation becomes a feasible way. However, in the previous anal-
ysis [5,11], the method of pre-computing the equation costs too much time and
memory. In this section, we propose a method to reduce the time complexity and
memory complexity. Based on Property 1, given a constant C1, if there exists a
solution to the equation (T �C1)≪S1 = T≪S1 �C2, then C2 can only take the
following four possible values:

1. C2 = (C1 � 1)≪S1 , and [C2](S1−1)∼0 6= 0.
2. C2 = (C1 � 232−S1)≪S1 , and [C1](31−S1)∼0 6= 0.
3. C2 = (C1 � 232−S1 � 1)≪S1 , and [C2](S1−1)∼0 6= 0, [C1](31−S1)∼0 6= 0.

4. C2 = C≪S1
1 .

Therefore, given a constant C1, we can compute and store the four possible
values of C2 based on the relationship between C1 and C2 as above. Then, for
each value of C2, we need to solve the equation T≪S0 � C0 = T≪S1 � C2.
Let C3 = C0 � C2, the equation becomes T≪S0 � C3 = T≪S1 . Therefore, we
only need to pre-compute the equation T≪S0 � C3 = T≪S1 . Then, in order

13



to obtain the solutions to the equation T≪S0 � C0 = (T � C1)≪S1 , we only
need to guess four possible values of C2. For each guessed value of C2, the
solutions to the equation T≪S0 � C3 = T≪S1 can be quickly obtained. For
the obtained solution T , we have to verify whether it satisfies the equation
(T �C1)≪S1 = T≪S1 �C2 since T satisfies it with probability. Pre-computing
the equation T≪S0 �C3 = T≪S1 only costs 232 time and 232 memory, which is
much smaller.

The expectation of the number of the solution to T≪S0�C0 = (T �C1)≪S1

also has an influence on the time complexity of the merging phase. Since it
is not mentioned in the previous analysis, it is necessary to give a theoretical
value. Consider the equation T≪S0 � C0 = (T � C1)≪S1 . Once we fix one
constant, supposing that is C0, and then exhaust all the 232 possible values of
T , the corresponding C1 can be obtained. Since more than one value of T might
correspond to the same C1, one value of C1 will correspond to more than one
value of T if C0 is fixed. We show it in Table 7.

Table 7. Number of the Solutions

T 0 ... i ... j ... 0xffffffff

C1 x ... x ... x ... y

C1 0 ... i ... j ... k ... 0xffffffff

T ... NULL ... Ti2 , Ti3 , Ti4 ... Ti5 , Ti6 , Ti7 , Ti8 ...

When C0 is fixed and C1 is random, we denote by ε the number of the
solutions, and denote by pi the probability of that there are i solutions to the
equation. In addition, we denote by Ni the number of C1 which corresponds to i
solutions to the equation. Suppose there are at most n solutions to the equation.
Then, we can deduce that

N1 + 2N2 + ...+ nNn = 232,

pi =
Ni
232

,

E(ε) = p1 + 2p2 + ...+ npn =
N1 + 2N2 + ...+ nNn

232
= 1.

Therefore, the number of expected solutions to T≪S0 � C0 = (T � C1)≪S1 is
1. In the same way, we can obtain that the number of expected solutions to
T≪S0 � C3 = T≪S1 is also 1.

In conclusion, given many pairs of (C0, C1), we can calculate the four cor-
responding possible values of C2 at first. Since the number of expected solu-
tions to T≪S0 � C3 = T≪S1 is 1, we will obtain four possible solutions to
T≪S0 � C3 = T≪S1 on average for the four values of C2. However, we need to
further check whether the four solutions T satisfy T≪S0�C0 = (T�C1)≪S1 . S-
ince the expectation of the number of the solution to T≪S0�C0 = (T �C1)≪S1

14



is 1, we will obtain one solution to T≪S0�C0 = (T�C1)≪S1 on average. There-
fore, when solving the equation T≪S0 � C0 = (T � C1)≪S1 , only four times of
check is enough on average, which is very quick. Therefore, the time complexity
of solving the equation is 22.

5 Collision Attack on the First 30-Step RIPEMD-160

By constructing a 30-step differential path, where the left branch is sparse and
the right branch is controlled as sparse as possible, applying the message mod-
ification techniques proposed by Wang [20] to the right branch while the left
branch remains probabilistic, it is possible to mount a collision attack on 30-
step RIPEMD-160 with probability 2−67. The 30-step differential path is shown
in Table 8. Using the single-step modification and multi-step modification in [20],
the bit conditions on the internal states can be satisfied. As mentioned before,
the differential path holds only when both the modular difference of the internal
states and the bit conditions hold, which is different from MD4. However, the
message modification techniques can’t be directly used to ensure the modular
difference of the internal states holds. Moreover, the probability that the mod-
ular difference of the internal states holds has a great effect on the phase of
the message modification, the reason for this will be discussed later. Therefore,
how to have the modular difference of the internal states hold when using the
message modification becomes an urgent problem to be solved. According to the
previous part to calculate the step differential probability, we can change such a
problem into how to ensure Qi satisfies its corresponding equation so that ∆Yi
holds when using the message modification.

5.1 Deducing Extra Bit Conditions to Control the Characteristics
of Qi

Given a differential path, both the bit conditions on the internal states and
the equations that all Qi have to satisfy are fixed. The differential path holds
only when all these bit conditions hold and all Qi satisfy their corresponding
equations. Although the message modification techniques proposed by Wang
can be used to ensure the bit conditions on the internal states hold, it can’t be
directly used to ensure Qi satisfies its corresponding equation. However, if we
can add some extra bit conditions on Yi and Yi−4 to ensure Qi always satisfies its
corresponding equation, the influence of Qi can be eliminated. Then, the message
modification ensures that both the bit conditions and the modular differences
of the internal state hold at the same time. Taking Q13 as an example, we show
how to deduce the extra bit conditions on Y13 and Y9.

Based on the 30-step differential path in Table 8, we can obtain that Q13 has
to satisfy the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff so that
the modular difference ∆Y13 holds, from which we can deduce the characteristics
of Q13 as described before. We only choose two possible characteristics of Q13,
which are [Q13]31 = 0 and [Q13]17 = 1. By applying the single-step message

15



Table 8. 30-step Differential Path, where m′15 = m15 � 224, and ∆mi = 0 (0 6
i 6 14). Note that the symbol n represents that a bit changes to 1 from 0, u
represents that a bit changes to 0 from 1, and - represents that the bit value is
free.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 -------- -------- -------- -------- 14
02 -------- -------- -------- -------- 02 02 -------- -------- -------- -------- 07
03 -------- -------- -------- -------- 03 03 -------- -------- -------- -------- 00
04 -------- -------- -------- -------- 04 04 -------- -------- -------- -------- 09
05 -------- -------- -------- -------- 05 05 -------- -------- -------- -------- 02
06 -------- -------- -------- -------- 06 06 -------- -------- -------- -------- 11
07 -------- -------- -------- -------- 07 07 -------- -------- -------- -------- 04
08 -------- -------- -------- -------- 08 08 -------- -------- -------- -------- 13
09 -------- -------- -------- -------- 09 09 -----1-1 -1------ -------- -------- 06
10 -------- -------- -------- -------- 10 10 ----0000 00-1--1- --0000-- 1-001010 15
11 -------- -------- -------- -------- 11 11 -0--0--- 00001101 10010000 000nuuuu 08
12 -------- -------- -------- -------- 12 12 nuuuuuuu uuuuuuuu u0n0n00- ---01100 01
13 -------- -------- -------- -------- 13 13 0unn1uu- 111-1-1- -nuunn11 011011un 10
14 -------- -------- -------- -------- 14 14 -1000011 11----1- 10nu1010 1-nu1-11 03
15 -------- -------- -------- -------- 15 15 00---011 11-0u-u- 101000-u ----0-01 12
16 -------- -------- -------- -------n 07 16 111-n1uu 000n1n-- 0001n--- -nuuuuuu 06
17 -------- -------- -------- -------0 04 17 1u1-1--u n--0111- 00u10unn n-nnn01- 11
18 -------- -------- -----1-- -------1 13 18 01------ 0n-011-- 1n0000-- --0-00-1 03
19 -------- -------- -----0-- -------- 01 19 1u------ 1--100-- 010----- -----1-1 07
20 -------- -------- -----n-- -------- 10 20 -0------ --1----- ----0nu1 1---11-0 00
21 -------- -------- -----0-- -------- 06 21 -1-----1 011----- 11111-10 1------- 13
22 -------- ---1---- -----1-- -------- 15 22 u-----00 1-u----- ------1u ------00 05
23 n------- ---0---- -------- -------- 03 23 1------- -------0 -----01- ------n- 10
24 0------- ---n---- -------- -------- 12 24 1------- -------1 ----0-1- ------00 14
25 1------- ---0---- ------1- -------- 00 25 1----n-- ---0---- ----1--- ------01 15
26 -1------ ---1---- ------0- -------- 09 26 -------- ---0---- ----unn- -------- 08
27 -0------ -------- ------n- -------- 05 27 -u------ -------- -------- -------- 12
28 -n------ -------- ------0- -------- 02 28 -------- -------- -------- -------- 04
29 -0------ ----1--- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01

Other Conditions
Y11,31

∨
¬Y10,21 = 1, Y11,29

∨
¬Y10,19 = 1, Y11,28

∨
¬Y10,18 = 1, Y11,26

∨
¬Y10,16 = 1, Y11,25

∨
¬Y10,15 = 1, Y11,24

∨
¬Y10,14 = 1.

Y14,21 = 1, Y14,20 = 1, Y14,9 = 1 (We use the three conditions); Or Y15,21 = 1, Y14,21 = 0, Y14,20 = 0, Y14,19 = 0.
Y15,6 = 1, Y14,6 = 0, Y15,5 = 1; Or Y14,6 = 1, Y15,5 = 0 (We use the two conditions).
Y15,29 = 0, Y15,28 = 0, Y15,27 = 1.
Y18,28 = Y17,28, Y18,21 = Y17,21, Y18,16 = Y17,16.
Y19,17 = Y18,17, Y19,8 = Y18,8, Y19,1 = Y18,1.
Y20,24 = Y19,24.
Y22,19 = Y21,19, Y22,20 = Y21,20.
Y28,19 = Y27,19, Y28,20 = Y27,20, Y28,21 = Y27,21.
X15,0 = X14,22.
X22,31 = X21,21.

16



modification, all the bit conditions on Y13 and Y9 can be satisfied, which means
that some bits of them are fixed. Considering the relationship between Y13 and
Y9 :

Q≪14
13 = Y13 � Y

≪10
9 ,

our goal is to ensure the two bit conditions on Q13 are satisfied under the condi-
tion that some bits of Y13 and Y9 are already fixed. We show the calculation of
Q≪14

13 = Y13 � Y≪10
9 in Table 9, which will help understand how to accurately

deduce the extra bit conditions.

Table 9. The Calculation of Q≪14
13 = Y13 � Y≪10

9

Y13 0 1 0 0 1 u u - 1 1 1 - 1 - 1 - - n u u n n 1 1 0 1 1 0 1 1 u n

Y≪10
9 1 0 - - - - - - - - - - - - - - - - 1 0 - - - - - - - 1 - 1 - 1

Q≪14
13 1 - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - -

If we impose four bit conditions on Y9, which are Y9,2 = 0, Y9,3 = 1, Y9,20 = 0,
Y9,21 = 1, the two bit conditions on Q13 will hold with probability 1. In other
words, if all the bit conditions (including the extra conditions) on Y9 and Y13
hold, the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff will always
hold. Therefore, by adding four extra conditions on Y9, the message modification
can ensure both the bit conditions on Y13 and the modular difference ∆Y13 hold.

Sometimes, however, adding many extra conditions costs too much. There-
fore, for some special cases, we use a dynamic way to add fewer conditions to
ensure that Qi satisfies its corresponding equation with probability 1 or close
to 1. For example, in order to ensure that the modular difference ∆Y23 holds,
Q23 has to satisfy the equation (Q23 � 0x81000001)≪9 = Q≪9

23 � 0x102, from
which we can deduce the characteristics of Q23. Then, we choose one possible
characteristic, which is [Q23]31 = 1. In this way, Q23 satisfies its correspond-
ing equation with probability 1 − 2−23 ≈ 1. By considering the calculation of
Q≪9

23 = Y23 � Y≪10
19 as shown in Table 10, we describe how to dynamically

determine the bit conditions on Y23.

Table 10. The Calculation of Q≪9
23 = Y23 � Y≪10

19

Y23 1 - - - - - - - - - - - - - - 0 - - - - - 0 1 - - - - - - - n -

Y≪10
19 1 u - - - - - - 1 - - 1 0 0 - - 0 1 0 - - - - - - - - - - 1 - 1

Q≪9
23 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - -

According to the multi-step message modification [20], we should deal from
lower bits to higher bits to correct Y23. Therefore, we compare [Y23]7∼0 with
[Y≪10

19 ]7∼0 only when Y23,1 has been corrected. For different relationships be-
tween them, we should determine the bit conditions differently. By dynamically

17



determine the conditions on Y23 in this way, we can ensure Q23 satisfies it-
s corresponding equation with probability close to 1 by applying the message
modification to correct Y23,8.

1. If [Y23]7∼0 ≥ [Y≪10
19 ]7∼0, we add a condition Y23,8

⊕
Y19,30 = 1.

2. If [Y23]7∼0 < [Y≪10
19 ]7∼0, we add a condition Y23,8

⊕
Y19,30 = 0.

As described above, we can deduce many extra bit conditions on the internal
states, and they are displayed in Table 11. Then we can take these newly added
bit conditions into consideration when applying the message modification tech-
niques. In this way, both the bit conditions and the modular difference of the
internal states can be satisfied at the same time.

Table 11. Equations of Qi for the 30-Step Differential Path and Extra Condi-
tions to Control the Equations

Equation: (Qi � in)≪shift = Q≪shift
i � out

i shift in out Extra conditions

11 8 0x1000000 0x1 Y7,24 = 1

12 11 0x15 0xa800 Y8,21 = 0, Y8,19 = 0

13 14 0x6ffba800 0xea001bff Y9,3 = 1, Y9,2 = 0, Y9,21 = 1, Y9,20 = 0

14 14 0x40400001 0x1010 Y10,31 = 0

15 12 0xafffff5f 0xfff5fb00 Y15,9 = 0, Y11,31 = 1

16 6 0x9d020 0x2740800

17 9 0x85f87f2 0xbf0fe410 Y13,20 = 1, Y13,18 = 0, Y17,28 = 0, Y17,26 = 1, Y13,16 = 0.

18 7 0x0 0x0

19 15 0xffffd008 0xe8040000 Y15,21 = 0

20 7 0xd75fbffc 0xafdffdec

21 12 0x10200813 0x812102 Y21,6 = 1, Y17,28 = 0, Y21,10 = Y17,0

22 8 0xff7edffe 0x7edffeff Y22,30 = 1, Y18,21 = 1, Y22,2 = Y18,24, Y22,3 = Y18,25,
Y22,4 = Y18,26, Y22,5 = Y18,27, Y22,6 = Y18,28, Y22,7 = Y18,29

23 9 0x81000001 0x102 If [Y23]7∼0 ≥ [Y≪10
19 ]7∼0, then Y23,8

⊕
Y19,30 = 1.

If [Y23]7∼0 < [Y≪10
19 ]7∼0, then Y23,8

⊕
Y19,30 = 0.

24 11 0xffffff00 0xfff80000

25 7 0x80000 0x4000000

26 7 0x1000800 0x80040000

27 12 0x7ffc0000 0xbffff800

28 7 0x0 0x0

29 6 0xc0000000 0xfffffff0

30 15 0x10 0x80000

5.2 Multi-Step Modification for RIPEMD-160

After obtaining the newly added bit conditions, we need to apply the message
modification techniques to correct the bits of the internal states. Since the single-
step modification is relatively simple, we refer the interested readers to [20] for
more details. The following is an example to correct the three bit conditions
on Y1 by single-step modification. For the first round, we can correct the bit

18



conditions on the internal states in this similar way.

Y1 ←− Y1 ⊕ (Y1,3≪ 3)⊕ (Y1,14≪ 14)⊕ (Y1,29≪ 29).

m5 ←− (Y1 � Y
≪10
−3 )≫8 � (Y≪10

−4 �ONX(Y0, Y−1, Y
≪10
−2 )�Kr

0).

For the internal states after the first round, the multi-step modification
should be applied. However, the step function of RIPEMD-160 is no longer a
T-function. Therefore, the multi-step modification for RIPEMD-160 is slightly
different from that for MD4 [20]. We take correcting Y17,4, Y17,3 and Y23,16 as
three examples to show three types of multi-step modification for RIPEMD-160.

Table 12. Message Modification for Correcting Y17,4

Modify m New internal Q
state

Y9 m13 7 m13 ←− m13 � (Q≪7
9 � 227)≫7 �Q9) Y new

9 = Y9[27] Q9 is changed.

Y10 m6 7 m6 ←− (Y10 � Y≪10
6 )≫7 � Y≪10

5 �ONX(Y new
9 , Y8, Y

≪10
7 )�Kr

0 Y10 Q10 stays the same.

Y11 m15 8 m15 ←− (Y11 � Y≪10
7 )≫8 � Y≪10

6 �ONX(Y10, Y
new
9 , Y≪10

8 )�Kr
0 Y11 Q11 stays the same.

Y12 m8 11 m8 ←− (Y12 � Y≪10
8 )≫11 � Y≪10

7 �ONX(Y11, Y10, Y
new≪10
9 )�Kr

0 Y12 Q12 stays the same.

Y13 m1 14 m1 ←− (Y13 � Y new≪10
9 )≫14 � Y≪10

8 �ONX(Y12, Y11, Y
≪10
10 )�Kr

0 Y13 Q13 is changed.

Y14 m10 14 m10 ←− (Y14 � Y≪10
10 )≫14 � Y new≪10

9 �ONX(Y13, Y12, Y
≪10
11 )�Kr

0 Y14 Q14 stays the same.

Table 13. Message Modification for Correcting Y23,16

Modify m New internal Extra
state Conditions

Y1 m5 8 m5 ←− m5 � 27 Y new
1 = Y1[15] (Q1 � 27)≪8 = Q≪8

1 � 215.

Y2 m14 9 m14 = (Y2 � Y≪10
−2 )≫9 � Y≪10

−3 �ONX(Y new
1 , Y0, Y

≪10
−1 )�Kr

0 Y2

Y3 m7 9 Y3 Y0,5 = 0.

Y4 m0 11 Y4 Y2,25 = 1.

Y5 m9 13 m9 ←− (Y5 � Y new≪10
1 )≫13 � Y≪10

0 �ONX(Y4, Y3, Y
≪10
2 )�Kr

0 Y5

Y6 m2 15 m2 ←− (Y6 � Y≪10
2 )≫15 � Y new≪10

1 �ONX(Y5, Y4, Y
≪10
3 )�Kr

0 Y6

Table 14. Message Modification for Correcting Y17,3

Modify m New internal Q
state

Y6 m2 15 Y new
6 ←− [Y10 � (Y≪10

5 �ONX(Y9, Y8, Y
≪10
7 )�m6 � 226 �Kr

0 )≪7]≫10 Y new
6 Q6 is changed.

m2 ←− (Y new
6 � Y≪10

2 )≫15 � Y≪10
1 �ONX(Y5, Y4, Y

≪10
3 )�Kr

0

Y7 m11 15 m11 ←− (Y7 � Y≪10
3 )≫15 � Y≪10

2 �ONX(Y new
6 , Y5, Y

≪10
4 )�Kr

0 Y7 Q7 stays the same.

Y8 m4 5 m4 ←− (Y8 � Y≪10
4 )≫5 � Y≪10

3 �ONX(Y7, Y
new
6 , Y≪10

5 )�Kr
0 Y8 Q8 stays the same.

Y9 m13 7 m13 ←− (Y9 � Y≪10
5 )≫7 � Y≪10

4 �ONX(Y8, Y7, Y
new≪10
6 )�Kr

0 Y9 Q9 stays the same.

Y10 m6 7 m6 ←− m6 � 226 Y10 Q10 is changed.

Y11 m15 8 m15 ←− (Y11 � Y≪10
7 )≫8 � Y new≪10

6 �ONX(Y10, Y9, Y
≪10
8 )�Kr

0 Y11 Q11 stays the same.

In order to correct Y17,4, we can change the 27th bit of m6. Therefore, we can
change the 27th bit of Y9 by changing the value of m13. Then, modify m6, m15,
m8, m1, m10 to have Yi (10 ≤ i ≤ 14) remaining the same. In this way, Y17,4 can

19



be corrected. According to Table 12, we can find that Q9 and Q13 are changed
during the phase of message modification. Since there is no constraints on Q9,
it doesn’t matter if Q9 is changed. However, Q13 has to satisfy the equation
(Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff so that the modular difference
∆Y13 holds. Thus, we have to consider the influence of its change. As introduced
in the previous part, we have added some extra conditions on Y9 to ensure Q13

will always satisfy this equation under the condition that all bit conditions on Y9
and Y13 hold. Although Y9 is changed when correcting Y17,4, it won’t have an in-
fluence on the conditions added to control the characteristics ofQ13, which means
that Q13 still satisfies its corresponding equation even though it is changed. The
main reason is that we have controlled the characteristics of Q13 by the newly
added bit conditions and such a Q13 will always satisfy its corresponding equa-
tion. If we don’t pre-deduce the extra bit conditions to control the characteristics
of Q13, the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff may not
hold any more since Q13 has been changed. In other word, Y17,4 may be prob-
abilistically corrected. And the probability is equal to the probability that the
equation (Q13� 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff holds, which is about
2−0.5. Moreover, if we correct n bits of Y17 by using the strategy as Table 12
displays and don’t pre-deduce the extra bit conditions, the probability that they
are right corrected is about 2−0.5n, which will have a great effect on the prob-
ability to mount the collision attack on 30-step RIPEMD-160. Therefore, it is
significant to pre-deduce the extra bit conditions to control the characteristics
of Qi, which will improve the time complexity of the message modification.

In order to correct Y23,16, we can change the 7th bit of m5. As displayed in
Table 13, by modifying some message words and adding some extra conditions
on the internal states, Y23,16 can be corrected. For the strategy in Table 13, Y23,16
can be corrected with probability that the equation (Q1 � 27)≪8 = Q≪8

1 � 215

holds, which is 1 − 2−17 ≈ 1. Therefore, we can ignore the influence of this
equation. Sometimes, however, such an equation holds with a low probability,
which is bad for the correcting. In order to eliminate the influence, we can use
the same idea in Section 5.1 to pre-deduce some extra bit conditions to control
the characteristics of Qi so that Qi will satisfy such an equation.

In order to correct Y17,3, we can change the 26th bit of m6. Firstly, we
compute a new value of Y6 so that Y10 can stay the same only by adding 226

to m6. Then, a new value of m2 can be obtained. To have Yi (7 ≤ i ≤ 11)
remaining the same, m11, m4, m13, m6, m15 should be accordingly modified. As
for strategy displayed in Table 14, it is because there is no condition on Y6 that
we can choose such a method to correct Y17,3. Since there is no condition on Y3
either, Y18,31 can be corrected by using the similar strategy.

The multi-step message modification is summarized in Table 15. In this table,
we also display some extra bit conditions to control the characteristics of Q1 and
Q4 so that the newly added bit conditions on them for message modification can
be satisfied. Although some of the equations of Q1 and Q4 remain uncontrolled,
they will hold with probability close to 1.

20



Table 15. Summarization of the Multi-Step Modification for Yi (17 ≤ i ≤ 23)

Chaining Bits to be corrected (i) Chaining variables used Extra Conditions
variables

Y17 1,2,12,13,14,15,23,24,30,31,21 Y5, Y6, Y7, Y8, Y9, Y10 Y5[i− 19].

Y17 4,5,7,8,9,10,17,18,19,20,26,27,28 Y9, Y10, Y11, Y12, Y13, Y14 Y9[i− 9].

Y17 11,29 Y8, Y9, Y10, Y11, Y12, Y13 Y8[i− 9], Y7,i−19 = 1.

Y17 3 Y6, Y7, Y8, Y9, Y10, Y11

Y18 2,3,5,11,12,13,14,15,18,19,20,28,30 Y2, Y3, Y4, Y5, Y6, Y7 Y2[i− 23].

Y18 0,10,16,21,22,23 Y4, Y5, Y6, Y7, Y8, Y9 Y4[i− 23], Y5,i−13 = 0.

Y18 31 Y3, Y4, Y5, Y6, Y7, Y8

Y19 19 Y15, Y16, Y17, Y18 Y15[16], Y14,6 = 1, Y16,26 = Y17,26.

Y20 0,2,3,7,8,9,10,11,21,24,30 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i− 7], Y0,i−17 = 1.

Y21 7,8,9,13,15,22,23,24,30 Y4, Y5, Y6, Y7, Y8, Y9 Y4[i− 1],
Y4,28 = 1, Y4,27 = 1, Y4,26 = 1, Y0,19 = 0,
Y0,16 = 0,Y4,5 = 1, Y0,28 = 0, Y0,27 = 0.

Y21 6,10,11,12,14,21 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i− 22], Y0,i = 0, Y2,i−12 = 0.

Y22 0,1,2,3,4,5,6,7,8,9, Y8, Y9, Y10, Y11, Y12, Y13 Y8[i− 8], Y7,i−18 = 0.
19,20,21,23,24,25,30,31

Y23 8,9,10,16,31 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i− 1], Y0,i−11 = 0, Y2,i+9 = 1,
Y1,29 = 1, Y−3,20 = 0, Y−3,19 = 0.
Y1,6 = 0, Y−3,29 = 1, Y−3,28 = 1.

Y4,28 = 1, Y4,27 = 1, Y4,26 = 1, Y0,19 = 0, Y0,16 = 0 are used to control: (Q4 � 218)≪11 = Q≪11
4 � 229.

Y4,5 = 1, Y0,28 = 0, Y0,27 = 0 are used to control: (Q4 � 228)≪11 = Q≪11
4 � 27 and (Q4 � 229)≪11 = Q≪11

4 � 28.

Y1,29 = 1, Y−3,20 = 0, Y−3,19 = 0 are used to control: (Q1 � 222)≪8 = Q≪8
1 � 230.

Y1,6 = 0, Y−3,29 = 1, Y−3,28 = 1 are used to control: (Q1 � 231)≪8 = Q≪8
1 � 27.

5.3 Complexity Evaluation

For the left branch, we don’t apply any message modification techniques to it.
By randomly generating message words, we test the probability that the left
branch holds. According to our experiments, the probability is about 2−29.

For the right branch, we can use the message modification techniques to
correct the bits of Yi (17 ≤ i ≤ 23). However, we can’t find a way to correct all
the bits of them, thus leaving 14 bit conditions remaining uncontrolled, i.e., 13
bits of Y19 and 1 bit of Y23. Besides, to ensure Q20 can satisfy its corresponding
equation with probability 1, some extra bit conditions on Y20 and Y16 should
be added. However, it is difficult to have all these newly added bit conditions
hold by using the message modification techniques, which will cause a lower
probability. Therefore, we leave Q20 holding with probability about 2−1. For Qi
(11 ≤ i ≤ 23, i 6= 20), by correcting the newly added extra bit conditions, they
will satisfy their corresponding equations with probability 1 or close to 1.

For Yi (24 ≤ i ≤ 30), since it is difficult to correct the 20 bit conditions on
them, we leave them holding probabilistically. In addition, Qi (24 ≤ i ≤ 30)
satisfy their corresponding equations with probability about 2−3. Therefore, the
right branch holds with probability about 2−14−1−20−3 = 2−38.

When applying the message modification techniques, we add 26 bit conditions
on Y0 and 4 bit conditions on Y−3. Therefore, we need to use two message
blocks (M1,M2) to mount the 30-step collision attack. M1 is used to generate
such a hash value that the bit conditions on Y0 and Y−3 have been satisfied
when compressing M2, which costs 226+4 = 230 time. In conclusion, the 30-step
collision attack succeeds with probability of about 2−29−38 = 2−67, and the

21



time complexity is about 267 + 230 ≈ 267. The implementation of this attack is
available at https://github.com/Crypt-CNS/RIPEMD160-30Step.git.

6 Improved Semi-Free-Start Collision Attack

6.1 36-Step Semi-Free-Start Collision Path

Mendel et al. [11] improved the techniques in [7,10], and used the improved
algorithm to find two differential paths of RIPEMD-160. One is a 48-step semi-
free-start collision path, the other is a 36-step semi-free-start collision path. Since
we focus on the semi-free-start collision attack on the first 36-step RIPEMD-160,
we only introduce the 36-step semi-free-start collision path. The differential path
is displayed in Table 16. In order to have a full understanding of our improve-
ment, it is necessary to briefly introduce the method proposed by Landelle and
Peyrin [5].

The main idea of the method can be divided into three steps. Firstly, the
attacker chooses the internal states in both branches and fixes some message
words to ensure the non-linear parts. This step is called find a starting point.
Secondly, the attacker uses the remaining free message words to merge both
branches to ensure that the chaining variables in both branches are the same by
computing backward from the middle. At last, the rest of the differential path
in both branches are verified probabilistically by computing forward from the
middle.

6.2 Finding a Starting Point

Different from the choice of the message words for merging in [11], we set m3

free at the phase of finding a starting point and use it at the phase of merging.
In this way, we can improve the successful probability of merging. However, the
right branch is not fully satisfied any more, thus resulting in an uncontrolled
probability in the right branch.

According to the characteristics of Q15 displayed in Table 4, we observe that
[Q15]31 = 0. According to Table 5, we can find that if Y11,0 = 1, Y11,29 = 1,
Y11,30 = 1 are satisfied at the phase of finding a starting point, Y15,11 = 1 will
hold with a much higher probability, thus improving the uncontrolled probability
in the right branch.

By adding three more bit conditions on Y11,0, Y11,29, Y11,30 and setting m3

free, using the technique for finding a starting point in [11], we obtain a new
starting point displayed in Table 17.

6.3 Probability Neglected While Computing Backward

Based on the differential path in Table 16, we know that ∆X5 = 0, ∆X4 = 0,
∆X3 = 0, ∆Y1 = 0, ∆Y0 = 0, ∆Y−1 = 0, ∆Y−2 = 0 while ∆X8 6= 0, ∆X9 6= 0,
∆Y3 6= 0, ∆Y4 6= 0, ∆Y5 6= 0. At the phase of finding a starting point, ∆X5 = 0

22

 https://github.com/Crypt-CNS/RIPEMD160-30Step.git


Table 16. 36-step Differential Path, where m′7 = m7 � 24 � 215 � 230, and
∆mi = 0 (i 6= 7, 0 6 i 6 15). Note that the symbol n represents that a bit
changes to 1 from 0, u represents that a bit changes to 0 from 1, and - represents
that the bit value is free.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 --1----- -------- -1------ ----1--- 14
02 -------- -------- -------- -------- 02 02 --0---10 -------- -10----- 0---0--- 07
03 -------- -------- -------- -------- 03 03 ------1n -------- -1n----0 n---0--- 00
04 -------- -------- -------- -------- 04 04 100----n 0-11-n0- -------1 10--n0-- 09
05 -------- -------- -------- -------- 05 05 n1-1---0 0----00n 0-1---00 0---1101 02
06 -------- -------- -------- -------- 06 06 n--10001 11110un- --uuuuuu uu11-1u- 11
07 -------- -------- -------- -------- 07 07 uuu00un- n1u011nn 00000110 1-01-n00 04
08 ------n- uuuuuuuu uuu-nuuu -uuuuuuu 08 08 11u0uu-- 1-u1u0n1 nn-nu-10 0---000u 13
09 --uun-nn -n---nnu nnuu---- ---n--nn 09 09 0-uu011- -01-u000 11000n-n n01--111 06
10 -----n-- unuun-u- u-----nn ----u--- 10 10 --1u1nnn nnn01100 10-0-0-0 0100u1-0 15
11 --n---nu uu--nu-- un-n---- -------- 11 11 0--u-n1n ---1--1u n--n-n-- 100001n- 08
12 -----u-- --n-nnnn nnnnnnnn nnn----- 12 12 10-110-- --n0---0 u1--1--- -0-111-n 01
13 -------- -------- -------- -------- 13 13 1u--0n-u -------- ---1-1u- -10---1- 10
14 -------- -------- -------- -------- 14 14 ----1--- -n-00--0 ----n111 --n1-0-- 03
15 -------- -------- -------- -------- 15 15 -----u-- -1-u0--- ----1--- --u--1-- 12
16 -------- -------- -------- -------- 07 16 -------- -------- -------- ---0---- 06
17 -------- -------- -------- -------- 04 17 -------- -------- -------- ---1---- 11
18 -------- -------- -------- -------- 13 18 -------- -------- -------- -------- 03
19 -------- -------- -------- -------- 01 19 -------- -------- -------- -------- 07
20 -------- -------- -------- -------- 10 20 -------- -------- -------- -------- 00
21 -------- -------- -------- -------- 06 21 -------- -------- -------- -------- 13
22 -------- -------- -------- -------- 15 22 -------- -------- -------- -------- 05
23 -------- -------- -------- -------- 03 23 -------- -------- -------- -------- 10
24 -------- -------- -------- -------- 12 24 -------- -------- -------- -------- 14
25 -------- -------- -------- -------- 00 25 -------- -------- -------- -------- 15
26 -------- -------- -------- -------- 09 26 -------- -------- -------- -------- 08
27 -------- -------- -------- -------- 05 27 -------- -------- -------- -------- 12
28 -------- -------- -------- -------- 02 28 -------- -------- -------- -------- 04
29 -------- -------- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01
31 -------- -------- -------- -------- 08 31 -------- -------- -------- -------- 02
32 -------- -------- -------- -------- 03 32 -------- -------- -------- -------- 15
33 -------- -------- -------- -------- 10 33 -------- -------- -------- -------- 05
34 -------- -------- -------- -------- 14 34 -------- -------- -------- -------- 01
35 -------- -------- -------- -------- 04 35 -------- -------- -------- -------- 03
36 -------- -------- -------- -------- 36 -------- -------- -------- --------

23



Table 17. The Starting Point,where m′7 = m7 � 24 � 215 � 230,and ∆mi =
0.(i 6= 7, 0 6 i 6 15). Note that the word messages marked in green are all fixed.
Those marked in black are all free while the one marked in red is to be inserted
difference in.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 --1----- -------- -1------ ----1--- 14
02 -------- -------- -------- -------- 02 02 10000010 11111100 01000110 00110000 07
03 -------- -------- -------- -------- 03 03 0111101n 11000000 01n10010 n0100001 00
04 -------- -------- -------- -------- 04 04 1001110n 00110n01 01100011 1001n000 09
05 -------- -------- -------- -------- 05 05 n1010110 0111000n 00110000 01111101 02
06 11011100 10101101 01110010 01011001 06 06 n0010001 11110un1 00uuuuuu uu1111u1 11
07 01001101 01110100 11010011 11101011 07 07 uuu00un1 n1u011nn 00000110 11011n00 04
08 001100n0 uuuuuuuu uuu1nuuu 1uuuuuuu 08 08 11u0uu11 10u1u0n1 nn0nu110 0010000u 13
09 00uun0nn 1n110nnu nnuu1011 001n10nn 09 09 01uu0111 0011u000 11000n0n n0100111 06
10 10110n11 unuun0u0 u00100nn 1100u011 10 10 011u1nnn nnn01100 10000000 0100u110 15
11 10n101nu uu11nu10 un1n0100 01011100 11 11 011u1n1n 1011011u n00n1n11 100001n1 08
12 00011u00 11n1nnnn nnnnnnnn nnn01101 12 12 10011010 11n00110 u1011000 0001111n 01
13 11111000 01111111 01000011 00010100 13 13 1u100n0u 11110100 000111u0 01010111 10
14 10010011 00110110 11101010 00010010 14 14 01001000 1n000110 0000n111 11n10000 03
15 -------- -------- -------- -------- 15 15 -----u-- -1-u0--- ----1--- --u--1-- 12
16 -------- -------- -------- -------- 07 16 -------- -------- -------- ---0---- 06
17 -------- -------- -------- -------- 04 17 -------- -------- -------- ---1---- 11
18 -------- -------- -------- -------- 13 18 -------- -------- -------- -------- 03
19 -------- -------- -------- -------- 01 19 -------- -------- -------- -------- 07
20 -------- -------- -------- -------- 10 20 -------- -------- -------- -------- 00
21 -------- -------- -------- -------- 06 21 -------- -------- -------- -------- 13
22 -------- -------- -------- -------- 15 22 -------- -------- -------- -------- 05
23 -------- -------- -------- -------- 03 23 -------- -------- -------- -------- 10
24 -------- -------- -------- -------- 12 24 -------- -------- -------- -------- 14
25 -------- -------- -------- -------- 00 25 -------- -------- -------- -------- 15
26 -------- -------- -------- -------- 09 26 -------- -------- -------- -------- 08
27 -------- -------- -------- -------- 05 27 -------- -------- -------- -------- 12
28 -------- -------- -------- -------- 02 28 -------- -------- -------- -------- 04
29 -------- -------- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01
31 -------- -------- -------- -------- 08 31 -------- -------- -------- -------- 02
32 -------- -------- -------- -------- 03 32 -------- -------- -------- -------- 15
33 -------- -------- -------- -------- 10 33 -------- -------- -------- -------- 05
34 -------- -------- -------- -------- 14 34 -------- -------- -------- -------- 01
35 -------- -------- -------- -------- 04 35 -------- -------- -------- -------- 03
36 -------- -------- -------- -------- 36 -------- -------- -------- --------

Message Words m0 m1 m2 m3 m4 m5 m6 m7

Value * 0x67dbd0a9 * * 0x5cd30b65 * 0x651c397d *

Message Words m8 m9 m10 m11 m12 m13 m14 m15

Value 0x050ff865 * 0xa9f94c09 0x509bf856 0x0588c327 0x86671566 * 0xc3349b51

24



and ∆Y1 = 0 have been satisfied. However, for the original algorithm [11] to
merge both branches, the conditions that ∆X4 = 0, ∆X3 = 0, ∆Y0 = 0, ∆Y−1 =
0, ∆Y−2 = 0 have been neglected. We define the probability of these conditions
as neglected probability.

According to the conditions ∆X4 = 0, ∆X3 = 0, ∆Y0 = 0, ∆Y−1 = 0 and
∆Y−2 = 0, we can get the following equations:

0 = (X
′

9 �X
≪10
5 )≫11 � (X9 �X

≪10
5 )≫11 � (XOR(X ′8, X

′
7, X

′≪10
6 )

�XOR(X8, X7, X
≪10
6 )),

0 = (X
′

8 �X
≪10
4 )≫9 � (X8 �X

≪10
4 )≫9 � (m′7 �m7),

0 = (Y
′

5 � Y
≪10
1 )≫13 � (Y5 � Y

≪10
1 )≫13 � (ONX (Y

′

4 , Y
′

3 , Y
≪10
2 )

�ONX (Y4, Y3, Y
≪10
2 )),

0 = (Y
′

4 � Y
≪10
0 )≫11 � (Y4 � Y

≪10
0 )≫11 � (ONX (Y

′

3 , Y2, Y
≪10
1 )

�ONX (Y3, Y2, Y
≪10
1 )),

0 = (Y
′

3 � Y
≪10
−1 )≫9 � (Y3 � Y

≪10
−1 )≫9 � (m′7 �m7).

Observing the five equations above, it is easy to find that there are some
similarities between them. Therefore, we can change the problem of calculating
the probability that the five equations hold into calculating the probability that
T satisfies (T � C0)≫S = T≫S � C1. Let T ′ = T≫S , the equation becomes
T ′≪S � C0 = (T ′ � C1)≪S , whose probability can be calculated as introduced
before.

For equation (X
′

9�X
≪10
5 )≫11�(X9�X≪10

5 )≫11�(XOR(X ′8, X
′
7, X

′≪10
6 )�

XOR(X8, X7, X
≪10
6 )) = 0, X ′9 � X9 = 0xdb459013, XOR(X ′8, X

′
7, X

′≪10
6 ) �

XOR(X8, X7, X
≪10
6 ) = 0x25b68b3, C0 = 0xdb459013 � 0 = 0xdb459013, C1

= 0x25b68b3. Therefore, P (∆X4 = 0) = P (T≪11 � 0xdb459013 = (T �
0x25b68b3)≪11) ≈ 2−11.7. In the same way, we can obtain that

P (∆X3 = 0) = P (T≪9 � 0x1002081 = (T � 0x40008010)≪9) ≈ 2−8.4,

P (∆Y0 = 0) = P (T≪13 � 0x80010000 = (T � 0xfffc0008)≪13) =≈ 2−1,

P (∆Y−1 = 0) = P (T≪11 � 0x1040008 = (T � 0x1002080)≪11) ≈ 1,

P (∆Y−2 = 0) = P (T≪9 � 0x1002080 = (T � 0x40008010)≪9) ≈ 2−0.4.

Therefore, the negelected probability is 2−11.7−8.4−1−0.4 = 2−21.5. In order to
eliminate the influence of the negelected probability at the phase of merging, for
a given starting point, we can pre-compute the valid m9 that makes ∆X4 = 0 and
∆X3 = 0 satisfied, which costs 232 time and about 232×P (∆X4 = 0)×P (∆X3 =
0) = 232−11.7−8.4 = 212.9 memory. Then, at the phase of merging, given one
valid m9, we can firstly compute and store the valid m2 that makes Y1,3 = 1,
Y1,14 = 1, Y1,29 = 1, ∆Y0 = 0 and ∆Y−1 = 0 satisfied, which costs 229 time
and about 229 × P (∆Y0 = 0) × P (∆Y1 = 0) = 228 memory. After choosing the
valid m9 and m2, only the condition ∆Y−2 = 0 has an influence on the merging,
whose probability is P (∆Y−2 = 0) ≈ 2−0.4.

25



6.4 Merging Both Branches with m0,m2,m3,m5,m7,m9,m14

At the merging phase, our target is to use the remaining free message words to
obtain a perfect match on the values of the five initial chaining variables of both
branches. Our procedure of merging is detailed as below.

Step 1: Choose a valid value of m9, then compute until X4 in the left branch. Fix
Y1,3 = 1, Y1,14 = 1, Y1,29 = 1 and exhaust all the 229 possible values of
Y1. Then compute and store the valid m2 that makes ∆Y0 = 0, ∆Y1 = 0
satisfied. We denote the valid number of m2 by V NUM and define the
array that stores the valid m2 as V ALIDM2[].

Step 2: Set random values to m7, then compute until X2 in the left branch.
Step 3: Set m2 = V ALIDM2[index] (initialize index as 0), Y1 and Y0 can be

computed based on the following equation. If index becomes V NUM
again, goto Step 2.

Y≪10
1 = (Y6 � Y

≪10
2 )≫15 � (ONX(Y5, Y4, Y

≪10
3 )�m2 �K

r
0),

Y≪10
0 = (Y5 � Y

≪10
1 )≫13 � (XOR(Y4, Y3, Y

≪10
2 )�m9 �K

r
0).

Step 4: Since X0 = Y0 and we have obtained the value of Y0 at Step 3, we can
compute X0, X1 and m5 as follows. X0 = Y0, X≪10

1 = X5 � (X≪10
0 �

ONX(X4, X3, X
≪10
2 )�m4�Kl

0)≪5, m5 = (X6�X≪10
2 )≫8�(X≪10

1 �
ONX(X5, X4, X

≪10
3 )�Kl

0).
Step 5: We can use the conditions X−1 = Y−1 and X−2 = Y−2 to construct an

equation system of m0 and m3. Observe the step functions:

X≪10
−1 = (X4 �X

≪10
0 )≫12 � (XOR(X3, X2, X

≪10
1 )�m3 �K

l
0),

X≪10
−2 = (X3 �X

≪10
−1 )≫15 � (XOR(X2, X1, X

≪10
0 )�m2 �K

l
0),

Y≪10
−1 = (Y4 � Y

≪10
0 )≫11 � (ONX(Y3, Y2, Y

≪10
1 )�m0 �K

r
0),

Y≪10
−2 = (Y3 � Y

≪10
−1 )≫9 � (ONX(Y2, Y1, Y

≪10
0 )�m7 �K

r
0).

Let A = (X4 �X≪10
0 )≫12 � (XOR(X3, X2, X

≪10
1 )�Kl

0), B = (Y4 �
Y≪10
0 )≫11�(ONX(Y3, Y2, Y

≪10
1 )�Kr

0), C = XOR(X2, X1, X
≪10
0 )�

m2 � Kl
0, D = ONX(Y2, Y1, Y

≪10
0 ) � m7 � Kr

0 , T ′ = X3 � A � m3,
T = T ′≫15, C0 = Y3 � X3, C1 = D � C. According to the condition
X−1 = Y−1, we can obtain one equation: A�m3 = B �m0. According
to the condition X−2 = Y−2, we can obtain another equation: T≪15 �
C0 = (T �C1)≪9. As introduced before, we can obtain its solutions by
22 computations on average. If there is no solution, goto Step 3. It is
essential that all solutions should be taken into consideration since there
may be more than one solution to the equation T≪15�C0 = (T�C1)≪9.

Step 6: Compute X−1 and Y−1 by m3. Since ∆Y−2 = 0 holds with probabil-
ity, we have to check whether Y−1 satisfies the equation 0 = (Y

′

3 �
Y≪10
−1 )≫9� (Y3�Y≪10

−1 )≫9� (m′7�m7). If this equation doesn’t hold
for all pairs of (m0, m3), goto Step 3.

Step 7: Compute X−2, Y−2, X−3, Y−3 and m14.

26



Step 8: This is the uncontrolled part of merging. At this point, all freedom
degree have been used and the last condition X−4 = Y−4 will hold with
probability 2−32.

Verification. We have verified the merging phase by implementation. Based on
the starting point in Table 17, we choose a valid value of m9 = 0x471fba32,
and the number of the corresponding valid m2 is 0xfcf2100. The following is
an instance obtained by carrying out the merging phase.

m0 = 0x678c8c36,m2 = 0x5293b823,m3 = 0xd90c1aa9,m5 = 0x13d3dff6,

m7 = 0x794a60c6,m14 = 0xee8e443e, Y−4 = 0xd055ce6, Y−3 = 0xdf979ac7,

Y−2 = 0xae4836b3, Y−1 = 0x57b6f5fb, Y0 = 0x6b9ec934.

6.5 Uncontrolled Probability

Firstly, we give the theoretical calculation of the uncontrolled probability of the
left branch.

P (∆X15 = 0) = P (T≪9 � 0xf0bfff7f = (T � 0x7f785fff)≪9)

= (2−1 + 2−2 + 2−3 + 2−4 + 2−9 +Σ23
i=112−i)× (1− 2−1 −Σ9

i=32−i)

=
0x3ca85f7f

232
≈ 2−2.1,

P (∆X16 = 0) = P (T≪8 � 0x40008010 = (T � 0xf400081)≪8)

= 2−4 × (2−2 + 2−17 + 2−24)

=
0x4000810

232
≈ 2−6.

Therefore, the theoretical value of the uncontrolled probability of the left branch
is about 2−2.1−6 = 2−8.1.

Secondly, we use our method to evaluate the uncontrolled probability of the
right branch. Since we add three bit conditions on Y11 at the phase of finding a
starting point, it is necessary to fix the values of the three bits before calculation.
Then, we obtain that the probability that the modular difference of Y15 and the
seven bit conditions (as showed in Table 16) on Y15 hold is about 2−7.6. The
probability that the modular difference of Y16 and the one bit condition (as
showed in Table 16) on Y16 hold is about 2−2. The probability that the modular
difference of Y17 and the one bit condition (as showed in Table 16) on Y17 hold is
about 2−2. The probability that the modular difference of Y18 holds is about 1.
The probability that the modular difference of Y19 holds is about 2−0.4. Besides,
there are five more bit conditions on on Y15, Y16 and Y17, which are Y15,0 = Y16,0,
Y15,15 = Y16,15, Y15,21 = Y16,21, Y16,15 = Y17,15 and Y16,30 = Y17,30. Therefore,
with our method to calculate the step differential probability, the uncontrolled
probability of the right branch is about 2−7.6−2−2−0.4−5 ≈ 2−17.

Then, we consider the uncontrolled probability of both branches for a specific
starting point in Table 17. We can calculate the uncontrolled probability of the
left branch in this way: exhaust all 232 possible values of m14 and count the

27



number of m14 which makes ∆X15 = 0 and ∆X16 = 0 satisfied. According to
the experiment, the valid number of m14 is 0x1020000 and thus the uncontrolled
probability of the left branch is about 2−8. For the uncontrolled probability of
the right branch, we can exhaust all 232 possible values of m3 and count the
number of m3 which makes the conditions on Y15, Y16, Y17, Y18, Y19 satisfied.
According to the experiment, the valid number of m3 is 0x9f64 and thus the
uncontrolled probability of the right branch is about 2−16.68. We have to stress
this is the uncontrolled probability of both branches for a specific starting point.
Comparing this result with the theoretical value, we observe that they are almost
the same, which implies that our method to theoretically calculate the step
differential probability is reliable.

Moreover, during the merging phase, we can not control the value matching
on the first IV word, and it adds another factor 2−32. Since the expected value
of the number of the solution to T≪S0�C0 = (T �C1)≪S1 is 1, its influence on
the probability can be ignored. What’s more, Y ′−2 = Y−2 holds with probability
2−0.4. Therefore, the total uncontrolled probability is 2−32−8.1−17−0.4 = 2−57.5,
which is much higher than the original one 2−72.6. Given a starting point, the
degree of freedom left is 32+28+12=72 since m7, m2, m9 can take 232, 228,
212 possible values respectively. Besides, we can generate many staring points
to mount the semi-free-start collision attack on the first 36-step RIPEMD-160.
Therefore, the degree of freedom is enough.

6.6 Complexity Evaluation

Firstly, we consider the complexity of the merging phase. Based on the fact that
X−4 = Y−4 holds with probability 2−32, Y ′−2 = Y−2 holds with probability 2−0.4,
and the expectation of the number of the solution to T≪S0�C0 = (T �C1)≪S1

is 1, we can give an estimation of the running times of each step at the merging
phase. We estimate that Step 7 to Step 8 will run for 232 times, Step 6 will run
for 232+0.4 = 232.4 times, Step 3 to Step 5 will run for 232+0.4 = 232.4 times,
Step 2 will run for 232.4−28 = 24.4 times, Step 1 will run for only one time.
Since Step 2 contains about 2-step computation of the step function, Step 3 to
Step 5 contains about (8+22=12)-step computation of the step function, Step 6
contains about 2-step computation of the step function, and Step 7-8 contains
5-step computations of the step function, we estimate the complexity of the
merging phase as 24.4 × 2/72 + 232.4 × 12/72 + 232.4 × 2/72 + 232 × 5/72 ≈ 230.
Taking the uncontrolled probability of both branches into consideration, the
complexity becomes 230+17+8.1 = 255.1.

Next, we consider the memory complexity of the merging phase. Given a
valid m9, computing the valid values of m2 and storing the results costs 229 time
and 228 memory. At the pre-computing phase, pre-computing the valid values
of m9 and storing the results costs 232 time and 212.9 memory. In addition, pre-
computing the equation T≪15 � C0 = T≪9 costs 232 time and 232 memory.
Since the probability of the 36-semi-free-start collision attack is 2−57.5, one valid
m9 is enough for the improved attack. Therefore, at the merging phase, the
memory complexity is 232 + 228. Since the time complexity of computing valid

28



m2, m9 and pre-computing the equation is much smaller than 255.1, it can be
ignored. In summary, the time complexity of the semi-free-start collision attack
on RIPEMD-160 reduced to 36 steps is 255.1 and the memory requirements
are 232 + 228 + 212.9 ≈ 232. The implementation of this attack is available at
https://github.com/Crypt-CNS/RIPEMD160-36Step.git.

7 Conclusion

In this paper, we propose a feasible method to theoretically calculate the step
differential probability, which was stated as an open problem at ASIACRYPT
2013. Besides, we propose a method to reduce the time complexity and memory
complexity to pre-compute the equation T≪S0 �C0 = (T �C1)≪S1 . Based on
our analysis of the expectation of the number of the solutions to this equation,
we conclude that our new way to obtain the solutions only costs four times of
checking. In addition, we construct a differential path where the left branch is
sparse and the right branch is controlled as sparse as possible. Using the message
modification techniques and deducing some extra bit conditions based on the
equation that Qi has to satisfy, it is possible to mount a 30-step collision attack
on RIPEMD-160 with probability about 2−67. What’s more, based on the 36-step
differential path found by Mendel et al., we take a different strategy to choose
the message words for merging. In this way, we improve the time complexity
of the semi-free-start attack on the first 36-step RIPEMD-160. Compared with
the best analytical result of this attack on RIPEMD-160, we reduce the time
complexity from 270.4 to 255.1. Moreover, our improvement also brings us some
insights into the choice of message words for merging. Therefore, the message
words for merging should be determined with care, which will make a difference.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their helpful comments and suggestions. Fukang Liu and Gaoli Wang are
supported by the National Natural Science Foundation of China (Nos. 61572125,
61632012, 61373142), and Shanghai High-Tech Field Project (No. 16511101400).
Florian Mendel has been supported by the Austrian Science Fund (FWF) under
grant P26494-N15.

References

1. Bosselaers, A., Preneel, B.(eds.): RIPE 1992. LCNS, vol. 1007. Springer, Heidelberg
(1995)

2. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYP-
TO 1989. LNCS, vol. 435, pp. 416-427. Springer, Heidelberg (1990)

3. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71-82.
Springer, Heidelberg (1996)

4. Dobbertin, H.: RIPEMD with two-round compress function is not collision-free.
Journal of Cryptology, 10(1), pp. 51-69, 1997.

29

https://github.com/Crypt-CNS/RIPEMD160-36Step.git


5. Landelle, F., Peyrin,T.:Cryptanalysis of Full RIPEMD-128. In: Johansson, T., N-
guyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 71-82. Springer, Hei-
delberg (2013)

6. Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. (2005) http:
//www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/diss.pdf

7. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Conditions. In: Lee, D.H., Wang, X. (eds.) ASIACRYP-
T 2011. LNCS, vol. 7073, pp. 288-307. Springer, Heidelberg (2011)

8. Mendel, F., Nad, T., Schläffer. M.: Collision attacks on the reduced dual-stream
hash function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012, LNCS, vol. 7549,
pp. 226-243. Springer, Heidelberg (2012)

9. Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential Attacks on Reduced
RIPEMD-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483,
pp. 23-38. Springer, Heidelberg (2012)

10. Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on
Reduced SHA-256. In: Johanson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262-278. Springer, Heidelberg (2013)

11. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved Cryptanalysis of
Reduced RIPEMD-160. In: Kazue, S., Palash, S. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 484-503. Springer, Heidelberg (2013)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428-446. Springer, Heidelberg (1990)

13. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X, Yung, M., Lin D. (eds.) Inscrypt
2010. LNCS, vol. 435, pp. 428-466. Springer, Heidelberg (2011)

14. Sasaki, Y., Wang, L.: Distinguishers beyond Three Rounds of the RIPEMD-128/-
160 Compression Functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 275-292. Springer, Heidelberg (2012)

15. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The First
Collision for Full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 570-596. Springer, Cham (2017)

16. Wang, G., Wang, M.: Cryptanalysis of reduced RIPEMD-128. Journal of Software,
19(9), pp. 2442-2448, 2008.

17. Wang, G.: Practical collision attack on 40-step RIPEMD-128. In: Benaloh, J. (ed.)
CT-RSA 2014. LNCS, vol. 8366, pp. 444-460. Springer, Heidelberg (2014)

18. Wang, G., Yu, H.: Improved Cryptanalysis on RIPEMD-128. IET Information
Security, 9(6), pp. 354-364, 2015.

19. Wang, G., Shen, Y., Liu, F.: Cryptanalysis of 48-step RIPEMD-160. IACR Trans-
actions on Symmetric Cryptology, 2017(2), pp. 177-202, 2017.

20. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for hash functions
MD4 and RIPEMD. In: Cramer R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1-18. Springer, Heidelberg (2005)

21. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35. Springer, Heidelberg (2005)

22. Wang, X., Yu, B., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup
V. (ed.) CRYPTO 2005. LNCS, vol 3621, pp. 1-16. Springer, Heidelberg (2005)

23. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup V.
(ed.) CRYPTO 2005. LNCS, vol 3621, pp. 17-36. Springer, Heidelberg (2005)

30

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/diss.pdf

	Collisions and Semi-Free-Start Collisions for Round-Reduced RIPEMD-160
	Fukang Liu1, Florian Mendel2, Gaoli Wang1

