Authenticated Encryption in the Face of
Protocol and Side Channel Leakage

Guy Barwell!, Daniel P. Martin?, Elisabeth Oswald', and Martijn Stam'

! Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
rgb.crypto@gmail.com, {elisabeth.oswald, martijn.stam}@bris.ac.uk
2 School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK,
and the Heilbronn Institute for Mathematical Research, Bristol, UK.
dan.martin@bris.ac.uk

Abstract. Authenticated encryption schemes in practice have to be ro-
bust against adversaries that have access to various types of leakage, for
instance decryption leakage on invalid ciphertexts (protocol leakage), or
leakage on the underlying primitives (side channel leakage). This work in-
cludes several novel contributions: we augment the notion of nonce-base
authenticated encryption with the notion of continuous leakage and we
prove composition results in the face of protocol and side channel leak-
age. Moreover, we show how to achieve authenticated encryption that
is simultaneously both misuse resistant and leakage resilient, based on
a sufficiently leakage resilient PRF, and finally we propose a concrete,
pairing-based instantiation of the latter.

Keywords: provable security, authenticated encryption, generic com-
position, leakage resilience, robustness

1 Introduction

Authenticated Encryption (AE) has arisen out of (practical) necessity: historic
modes-of-operation for symmetric encryption [33] implicitly target confidential-
ity against passive adversaries, but most realistic threat models also demand
security against active adversaries. Thwarting adversaries trying to modify ci-
phertexts is best captured by requiring ciphertext integrity; encryption schemes
that offer both this and a suitable passive indistinguishability notion are said
to provide authenticated encryption. Today, authenticated encryption has be-
come the primitive of choice to enable secure communication. AE schemes can
be constructed from components that individually provide either confidentiality
or authenticity, both in a traditional probabilistic setting [6] and a more modern
nonce-based one [32]. As a result, there exist several black-box constructions of
authenticated encryption schemes based on simpler, keyed primitives such as
pseudorandom functions or permutations, including MACs and blockciphers.

2 Barwell, Martin, Oswald, and Stam

Unfortunately, in practice neither the composition nor the underlying com-
ponents behave as black-boxes: side-channel attacks often leak additional infor-
mation to an adversary, leading to real-life breaks (e.g. [47]). Invariably, these
attacks are possible by exploiting a discrepancy between the capabilities of a
theoretical adversary and an actual, real-life one. Thus, these attacks neither
violate the security assumptions on the primitive nor do they invalidate the
security claims: rather, they render these claims insufficient and the existing
security models as inadequate.

In response, a number of works have tried to capture more closely how proto-
cols behave when implemented [10,16,19]. We are particularly interested in subtle
authenticated encryption [4] which augments the authenticated encryption se-
curity game with an implementation-dependent leakage oracle that provides an
adversary deterministic decryption leakage on invalid ciphertexts only. Subtle
authenticated encryption encompasses earlier notions such as multiple decryp-
tion errors [9] and the release of unverified plaintexts [2]; it can be regarded as
protocol leakage.

Orthogonally, primitives can leak. Kocher (et al.) [24,25] showed how both
timing and power measurements lead to a side-channel, enabling the extraction
of secret data out of cryptographic devices. Primitives believed to be secure, such
as AES, were broken without actually violating the assumption that AES is a
secure pseudorandom permutation. Such attacks are captured in the framework
of leakage resilient cryptography. Here an adversary can adaptively choose a
leakage function that is restricted in scope as only computation is assumed to
leak information [31], and in size. The latter is captured by leaking only a certain
number of bits per call. If the overall leakage remains unbounded the model is
referred to as continuous leakage. For a variety of schemes and security notions,
resilience against certain classes of leakage can be proven [12,23,46], but dealing
with adaptivity that allows leakage after an adversary has received a challenge
is often problematic.

The current theory of authenticated encryption is not suited to take this
additional leakage resource into account. In this work we provide a framework
for dealing with AE in the presence of leakage, which then allows us to determine
the constraints on primitives and constructions alike to yield AE secure against
classes of leakage functions. Moreover, we propose a concrete instantiation of
a leakage-resilient pseudorandom function suitable to be used to form the first
leakage-resilient, nonce-based authenticated encryption scheme.

1.1 Owur Contributions

Augmenting nonce-base authenticated encryption with leakage. We
start by augmenting the nonce-based authenticated encryption security notion
(Section 2.1) with leakage (Section 3). This new notion, which we will refer to
as LAE, can be regarded as a generalization of the SAE framework by Barwell
et al. [4], yet it also captures leakage-resilience as introduced by Dziembowski
and Pietrzak [14]. We provide corresponding leakage notions for the primitives
used by the composition results by Namprempre, Rogaway and Shrimpton [32]

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 3

(henceforth NRS), namely nonce- or iv-based encryption, pseudorandom func-
tions, and message authentication codes.

For the traditional AE notion by Rogaway and Shrimpton [42], an adversary
has to distinguish between a world with a real encryption and decryption or-
acle on the one hand, and a world with a random ciphertext generator and a
rejection oracle on the other. In the LAE game the number of oracles available
to the adversary increased from two to four: both worlds are augmented with
true encryption and decryption oracles and we will allow (only) these additional
oracles to leak.

For the leakage mechanism, we adopt the approach originally suggested by
Micali and Reyzin [31] and later adapted for leakage resilience [14] where an ad-
versary can provide a leakage function to be evaluated on the internal variables
of the oracle, with the leakage output to be returned to the adversary alongside
the normal output. The model is very powerful, allowing the adversary to adap-
tively choose which leakage function they would like evaluated on a query by
query basis.

To avoid trivial wins, the leakage functions that are allowed need to be re-
stricted to prevent, for instance, leaking the entire key in one go. We model
this by explicitly defining security relative to a class of leakage functions (as is
common for instance in the contexts for related-key or key-dependent message
attacks). By appropriately setting the class of leakage functions, we show that
our notion generalises previous strengthened AE security notions, including SAE,
RUP and distinguishable decryption errors [2,4,9], and previous leakage notions,
including the simulatable leakage, auxiliary input and probing models [12,20,46].

Generic composition with leakage. Our second contribution (Section 5) is
an investigation on how to perform generic composition in the presence of leakage
by extending the results of NRS [32]. We establish that schemes susceptible
to release of unverified plaintext are unsuitable even for much more modest
types of leakage and we confirm modern folklore that this affects all schemes
that are roughly of the type Encrypt-and-MAC or MAC-then-Encrypt (cf. [2]).
Conversely, we show that Encrypt-then-MAC style schemes are secure against a
large class of leakage functions, where we express this class in terms of the leakage
classes against which the underlying primitives are secure. For this composition
of leakage from different primitives, we effectively just concatenate the leakage
of the constituent parts, which implicitly assumes that only computation leaks
(cf. [31]).

In particular, we show security of the N2 and A5 constructions of NRS against
nonce-respecting adversaries (Theorem 1 and Corollary 1), and of A6 against
adversaries who never repeat a nonce and associated-data pair (Corollary 2).

The above result imply that none of the NRS schemes achieve misuse re-
sistant LAE security (mrLAE), hence we propose a novel generic construction
that does meet this strongest definition of security, albeit at the cost of further
ciphertext expansion (Theorem 3). Our result gives ciphertexts that are two
blocks longer than the messages (rather than the single block expansion of an

4 Barwell, Martin, Oswald, and Stam

NRS scheme): we leave open whether mrLAE security can be achieved with less
ciphertext expansion.

Moreover, we show that instantiating CFB mode with a pseudorandom func-
tion yields a secure iv-based encryption scheme even under leakage (Theorem 4).
This allows us to apply our generic composition results to construct the first AE
scheme secure against continuous leakage based on a pseudorandom function
actively secure against continuous leakage and a MAC scheme secure against
continuous leakage of both tagging and verification.

Instantiation using a new leakage resilient PRF. Our final contribution
(in the full version [3]) is the construction of these latter two primitives. To this
end, we extend the MAC of Martin et al. [30] in two directions. First, we show
how it can be adapted such that it may leak under verification, answering an open
question from their work. Then, we show how to implement the tagging function
such that it is a PRF in the face of leakage. While the previous implementation of
the MAC is a pseudorandom function when no leakage is present, already small
amounts of leakage are disastrous for the pseudorandomness property. It turns
out that the underlying key update mechanism due to Kiltz and Pietrzak [23] is
intrinsically unsuitable to create an actively secure pseudorandom function: the
mechanism shares a key out in two which allows a form of leak-in-the-middle
attack. The solution we propose is to use three shares instead and we prove that
the resulting construction is indeed a pseudorandom function that is leakage-
resilient even against adaptive adversaries.

1.2 Related Work

Authenticated encryption. One of the earliest symmetric works on concrete secu-
rity of AE was by Bellare and Namprempre [6]. Working within the probabilistic
model, they formalised what it meant to be both confidential and authentic, and
investigated how one could achieve this through generic composition, combin-
ing two schemes (one with each security property) such that their composition
achieved both. Yet, modern authenticated encryption is a stateless and deter-
ministic notion, taking in any randomness or state as an extra parameter termed
the nonce. It was formalised across a number of papers, culminating in Rogaway
and Shrimpton’s 2006 work on DAE [42] and only recently a comprehensive
study of all the ways one could combine a PRF with an encryption scheme was
completed in the nonce-based setting [32].

The CAESAR competition [7] has driven further research into AE, and par-
ticularly into the concept of robustness, namely the idea that a scheme should
be more resistant to common problems faced in the real-world. One branch of
this research has been into designing schemes that are resistant to certain forms
of leakage. Prior to the competition, Boldyreva et al. [9] had investigated how to
model a scheme from which decryption failures are not identical, such as under
a timing attack. Andreeva et al. [2] (RUP) considered the release of unverified
plaintexts, where the decryption oracle releases candidate plaintexts even if they

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 5

fail verification. The robust authenticated encryption notion of Hoang et al. [19]
also implies security against the leakage of these candidate plaintexts, among
other goals. Barwell et al. [4] defined the SAE framework as a generalisation
of these notions, and used it to compare the three previous works. However, in
each of these cases the adversary only receives leakage from decryption, and this
leakage is modelled as a fixed, deterministic function, rather than a more general
set of functions available to an adaptive side-channel attacker.

Leakage resilient constructions. Within the leakage resilient literature, there are
several works towards providing leakage resilient encryption, but most of them
have been in the bounded leakage model [18,37]. In the bounded retrieval model,
Bellare et al. [5] proved the security of a symmetric encryption scheme that
provides authenticated encryption in the leak free case, and indistinguishability
when leakage is involved. Pereira et al. [34] proposed what is, to our knowledge,
the first and only leakage resilient encryption scheme in the simulatable leakage
model. However, the construction requires a leak free component and in practice
relies on the existence of efficient simulators of the leakage from (e.g.) AES,
simulators that Longo et al. [27] demonstrate are unlikely to exist.

Following on from Pereira et al. [34], the recent work by Berti et al. [8] also at-
tempts to construct leakage resilient misuse-resistent authenticated encryption,
albeit from a very different direction. In some respects, our work is “top-down”,
setting a clear objective and evaluating what this demands of the underlying
primitives, while theirs is “bottom-up”, beginning with well understood prim-
itives and asking what can be constructed. Motivated by this, the two papers
adopt very different leakage models: we work in full generality, whereas differ-
ent sections of Berti follow different leakage models. More generally, their work
assumes a single (completely) leak free component, whereas ours allows any of
the components to leak as long as the overall leakage is not too great. They
hypothesis that (without many leak-free components) leakage resilient misuse
resistant authenticated encryption is impossible, while we show that this can be
achieved. Furthermore, their work does not consider associated data.

Another manner to ensure that the adversary cannot progressively leak the
key material is to update the keys themselves (instead of their representation).
Previous leakage resilient works in this direction include the MAC of Schipper
[44], or the DH-ratcheting concept [11,35]. However, these tend to require that
all parties to the communication hold modifiable state and remain perfectly in
sync, a demand we are able to avoid.

Each of the models above severely restricts the information or computations
that an adversary may be able to perform, thereby limiting their utility for
modelling active side-channel attacks. The continuous leakage model mitigates
these problems, which is why we focus on that when instantiating our AE scheme.
To the best of our knowledge, ours is the first leakage resilient encryption scheme
in the continuous leakage model.

Our generic composition results allow us to combine leakage resilient com-
ponents, for which we provide candidates built around a PRF secure against
leakage. Currently there are two leakage resilient PRGs, due to Pietrzak (and

6 Barwell, Martin, Oswald, and Stam

Dziembowski) [14,36], from which it may be possible to build a leakage resilient
stream cipher, although issues arise with restarting using the same key. Works
of Dodis and Pietrzak [13], and Faust et al. [15] describe two PRFs secure under
non-adaptive leakage: each requires that the leakage (functions) are fixed at the
start of the game, while the latter also requires the inputs to be fixed. For a
PRF to be used within a composition theorem, adaptive security is required.
Finally, Martin et al. [30] provide a MAC which is secure against leakage on the
tagging function only. We will use this as the basis of our instantiations, and
extend it to achieve security against leakage on verification queries, resolving an
open question from their work.

2 Preliminaries

General notation. For assignment of a value U to the variable T" we will write
T + U, where U may also be the outcome of some computation. If the variable
is a set, we use the shorthand S' <—v U for S < SU{U}. To assign a value drawn
uniformly at random from some finite set B to variable A, we write A <—s B. By
convention, arrays and lists are initialised empty. We use = for equality testing.
We write A — b, to denote that adversary A outputs some value b. To define
notions etc. we will write X : =Y to say that X is defined as some expression
Y. The distinguished symbol ¢ denotes an invalid query. The symbol || denotes
an unambiguous encoding, meaning if Z < X||Y it must be possible given Z to
uniquely recover X and Y, notated X||Y < Z, no matter what types X,Y may
take. The length |A| is the length of A when expressed as a string of elements
of some underlying alphabet X' (usually X = {0,1}).

Whenever a function is described with a subscript, this will define the first
parameter, meaning fi(-,-) = f(k,-,-). For consistency and clarity of notation,
we refer to security definitions in capitals (e.g. IND-CPA) and typeset functions
in calligraphic (£), spaces in sans serif (K), “secret” elements in lower case (k),
known elements in upper case (M), and adversaries in blackboard bold (A).
When we introduce implementations, these will be denoted in bold (&).

Adversarial advantages. We will define our security notions through indistin-
guishability games where an adversary is given access to one of two collections
of oracles. The adversary A may make queries to these oracles, and eventually
outputs a bit. Instead of writing the games in code, we adopt shorthand nota-
tion [2] so that the distinguishing advantage of A between two collections of n
oracles (O1,...,0,) and (Pi,...,Py) is defined as

A (Bl Fr) = [Pr[AOvOn 5 1] — Pr [APPr 1]

A 1y---s/n

)

where the probabilities are taken over the randomness of the oracles, and key
k «s K (note that multiple oracles will often use the same key). We may refer
to the oracles by their numerical position: the i*" oracle implements either O;
or P; depending which collection the adversary is interacting with.

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 7

A scheme is considered secure with respect to a particular security goal if the
relevant adversarial advantage is small for all adversaries running within reason-
able resources. We do not draw judgement as to what “small” may mean, nor
what constitutes “reasonable resources”, since these depend heavily on context.

2.1 Authenticated Encryption

Core definitions. Early works to formalize symmetric encryption (cf. [21])
closely followed the precedent for public key encryption. Over the years under-
standing of what should be expected of symmetric encryption evolved consider-
ably, both in terms of syntax and security. The basis for our work will be the
widely accepted nonce-based model using indistinguishability from random bits
for confidentiality [39-41]. After introducing this model, we will briefly refer back
to an older, non-authenticated version of encryption as it is one of the building
blocks later on.

Syntaz. An authenticated encryption scheme consists of a pair of deterministic
functions Enc and Dec, called encryption and decryption, respectively. Encryp-
tion Enc takes four inputs, resulting in a single ciphertext C € C. Besides the
key k € K and the message M € M, the inputs are some associated data A € A
that will be authenticated but not encrypted, and finally a nonce NV € N used to
ensure that repeat encryptions will not result in repeat ciphertexts. Decryption
Dec takes as input again the key, the nonce, and the associated data, in addition
to the ciphertext. It outputs a purported message or an error message L& M.
This syntax can be summarized as

Enc: KXxNxAXxM—=C
Dec: Kx Nx AxC—MU{L}.

In practice, the key space K, nonce space N, associated data A, message space M,
and ciphertext space C are generally bitstrings of various lengths. It is common
to have A=M =C={0,1}*, and K=N = {0,1}" for some security parameter
n. That said, our implementation in Appendix 7?7 instantiates the various spaces
with more general groups (linked to pairings).

We require that an authenticated encryption scheme is both correct and tidy.
These two properties are satisfied iff, for all k&, N, A, M, C in the appropriate
spaces:

Correctness : Decy (N, A, Ency, (N, A,M)) =M

Tidiness : if Decy(N, A, C) #.L then Ency (N, A, Decy (N, A,C)) =C
Together, tidiness and correctness imply that decryption is wholly specified by
the encryption routine.

Additionally, we require encryption to be length regular, which is satisfied
if there exists some stretch function 7: N — N such that for all inputs the
ciphertext length |Ency, (N, A, M)| = |[M| + 7(|M]).

8 Barwell, Martin, Oswald, and Stam

function $£'(X) function 1%(X)
Co+ F(X) return L
Cl s 2|CO|
return C;

Fig.1: The generic oracles $F and L€ idealise the output of F' as random elements of ¥, and of
G as always rejecting. They are used to define the reference world in our security definitions, for
various choices of (F,G), which will be omitted whenever clear. Usually ¥ = {0, 1}, with |Cy| the
length of Cy as a bitstring.

Security notions. Ever since Rogaway and Shrimpton’s treatment of determinis-
tic authenticated encryption, it is customary to capture both confidentiality and
integrity requirements in a single game. Here the adversary gets oracle access ei-
ther to the “real” world or to the “ideal” world and needs to distinguish between
these two worlds. In the real world, oracle access consists of the encryption and
decryption functionalities Encg and Decg, using a randomly drawn and secret
key k. In the ideal world, the encryption oracle is replaced with an oracle $ that
generates randomly drawn ciphertexts and the decryption oracle with an oracle
L that rejects all ciphertexts. Irrespective of which world the adversary is in, we
will refer to the Enc; vs. $ oracle as the challenge encryption oracle or as the
first oracle (based on the oracle ordering) and to the Decy vs. L oracle as the
challenge decryption (or second) oracle.

We will use a slightly different, but equivalent, formulation where an adver-
sary additionally has access to the true encryption and decryption oracles in both
worlds. Thus the adversary will have access to four oracles in each world: the
challenge encryption oracle, the challenge decryption oracle, the true encryption
oracle, and finally the true decryption oracle. Having these extra oracles will help
us later on to add leakage, which will only ever be on the true oracles and never
on one of the challenge oracles. One could even argue that the additional oracles
provide a more representative and expressive framework: the honest oracles de-
scribe how an adversary may “learn” about a system, while the challenge ones
allow them to “prove” they have done so (cf. a similar, more detailed argument
for subtle authenticated encryption [4]).

As our reference point we will use the oracles defined in Figure 1, with all
probabilities taken over randomness of the key and sampling within the oracle.

Queries. Already in the leak-free setting, certain combinations of queries will
easily distinguish the two worlds. To avoid these trivial wins, we will therefore
prohibit certain queries—or in some cases simply assume adversaries refrain from
making prohibited queries. For example, if an adversary can send a challenge
encryption to decryption they can trivially win. As a general rule, we prohibit
the same query being made to oracles which take the same inputs (such as
the honest and challenge encryption oracles), and also prohibit performing the
inverse of previous queries. For example, the ciphertext output from the challenge
encryption oracle cannot be passed into the decryption oracle.

If an adversary has made a query (N, A, M) to an encryption oracles (ei-
ther challenge or true) receiving output C, then making the same query again

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 9

to one of the encryption oracles or making the query (N, A,C) to one of the
decryption oracles (either challenge or true) the original and the new queries
are deemed equivalent. For any query, we refer to the process of later making
an equivalent query as forwarding the query, i.e. to make a second query whose
inputs were inputs or outputs from the first query. A special case of forwarding
a query is repeating the query, namely making the same query again to the same
oracle. Forwarding queries from challenge to true oracles (or vice versa) or from
challenge encryption to challenge decryption oracles (or vice versa) will lead to
trivial wins unless oracle behaviour is adapted. Without loss of generality, we
will restrict the adversary from making problematic queries instead.

Nonce selection requirements. Our security games will be agnostic over how the
nonce is selected, with this property enforced by restricting the adversary. An
adversary against an (authenticated) encryption scheme is called nonce respect-
ing if whenever making a new query they do not use a nonce more than once to
any oracle matching the syntax of Ency or £. They are random-iv respecting,
or simply v respecting, if for any new query with these oracles their nonce N
(which we term an IV and will generally write as I instead) is sampled uni-
formly from N immediately prior to querying the oracle (and thus not involved
in the logic used to select other elements of the query). These requirements do
not apply when interacting with oracles matching the syntax of Decy or Dy. A
scheme is called (nonce) misuse resistant if the adversary does not have to be
nonce respecting, providing that the adversary does not make multiple queries
using the same (N, A, M) triple.

Definition 1. Let Enc be an authenticated encryption scheme, A an adversary
who does forward queries to or from his first or second oracle (and thus does not
repeat first oracle queries). Then, the nAE advantage of an adversary A against
Enc s

AE L Ency,Decy, Ency, Decy,
AdvEm(A)'_f($., L ,Enck,Deck)'

Following our earlier convention, we will refer to a secure nAE scheme (or
simply nAE) if this nAE advantage is small for all nonce-respecting adversaries
running within reasonable resources, and mrAE if it is small for all adversaries
running within reasonable resources that might repeat nonces.

Building blocks: Encryption, MACs and PRFs. An authenticated encryp-
tion scheme is often constructed out of simpler components, with authenticated
encryption security derived from that of its constituent parts. The most com-
mon of these are “simple” symmetric encryption (ivE), MACs and PRF's. Here
we omit the relevant syntax and security notions of these notions, though in
the full version [3] we provide a treatment analogous to that for authenticated
encryption above.

10 Barwell, Martin, Oswald, and Stam

N M A N M A N M
- | |
Exr Fir F{ivEr, Fir
))
T Thas
C T C T c

Fig.2: Graphical representations of the encryption directions of generic composition mechanisms.
On the left, N2 converts a nonce-based encryption algorithm £ and MAC scheme (7, V) into an nAE
scheme. On the right, iv2n converts an iv-based encryption scheme iv€ and a PRF into a nonce-based
encryption algorithm. Composing these yields A5, shown in the middle ignoring the dotted input,
while A6 includes the dotted input. Overall decryption of A5, A6, and N2 will recompute and verify
the tag first, only proceeding with further decryption of C' if this verification is successful.
Generic composition for nAE. NRS [32] investigated how to construct an
nAE scheme by composing two PRFs with an ivE scheme. The IV of the ivE
scheme is derived from the nAE’s inputs using the first PRF call; the optional
second PRF call may be used to create an authentication tag. Different schemes
emerge by changing which variables are provided to each of the components.
NRS identify eight schemes, dubbed A1-A8, with strong security bounds. For a
further four schemes (A9—-A12) neither strong security bounds nor insecurity was
established. Additionally, NRS investigated mechanisms for combining a PRF
with an nE scheme. Three schemes (N1-N3) were found secure, with that of a
fourth (N4) remaining unresolved.

Figure 2’s middle panel shows the schemes A5 and A6. For these two schemes,
as well as for N2 (on the left), the ciphertext is input to the second PRF, which
means they classify as Encrypt-then-MAC (EtM). The schemes A4, A7-A12, as
well as N3 and N4 only use a single PRF and release the IV as tag; for that reason
we refer to them as MAC-then-Encrypt (MtE). Finally, the schemes A1-A3 and
N1 use two PRFs that can be called in parallel, leading to their classification as
Encrypt-and-MAC (E&M). We refer to NRS for full descriptions and graphical
illustrations of all schemes mentioned above.

3 Security Notions Involving Leakage

Authenticated encryption, as defined above, is deterministic. In a leakage-free
setting, this provides a stronger notion than the older probabilistic notion of en-
cryption (as implicitly still used for ivE). When introducing leakage, determinis-
tic schemes are problematic both from a practical and a theoretical perspective.

On the one hand, a practical side-channel attack such as differential power
analysis can effectively recover keys from unprotected blockciphers and their AE
modes with near certainty. Randomized masking based on secret sharing is one
of the main countermeasures against these attacks.

On the other hand, theoretical leakage is often modelled as a function on the
inputs of the computation, which will include the key. If with each invocation of

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 11

the scheme an adversary can let the scheme leak a different key bit of its choice,
the full key is easily recovered. To prevent such devastating yet simple leakage,
a typical design strategy is to split the key in two shares and update the shares
on-the-fly using fresh randomness, mimicking the practical approach.

3.1 Implementations Versus Functions

In both the practical and the theoretical approaches mentioned above, a de-
terministic scheme is implemented in a randomized fashion in order to provide
resistance against leakage. Therefore, when arguing about leakage, we will need
to make a distinction between the scheme (a collection of deterministic func-
tions) and its probabilistic implementation.

For our definition of the implementations of a function we take our cue from
the secret-sharing approach, where a redundant representation of the key is used
and this representation is rerandomized as part of the implementation. To enable
this rerandomization, we provide the implementation of a function with explicit
randomness in Definition 2 below, where we use a bold font to denote either
the implementation of a function or the representation of a key used by the
implementation.

Definition 2. An implementation of a function f : KxX = Y is a deterministic
function f: K x X x R — K x Y along with a probabilistic key initialisation
function v: K — K such that o(k) = (1) = k = 1. We define the inverse of v as
the function t=1: K — KU { L} such that .71 (k) = k if u(k) could have resulted
i k, and L if no such k exists.

The implementation is correct iff for all k € K, X € X, and r € R, setting
k<« (k) and (K',Y) <+ f(k, X;r) guarantees both Y = f(k,X) and .~ *(k') = k.

The initial representation of the key is generated using the function ¢, which
maps a key k € K to a suitable representation k € K for the implementation. We
assume that ¢ is performed only once, and in a leak-free manner, during setup
(straight after key generation). Moreover, its inverse : =1 induces an equivalence
relation on the space K; in other words, the implementation keys k can be
thought of as alternative representations of the key. During evaluation of f the
auxiliary input r € R is used to refresh the representation; typically this requires
a good randomness source to draw 7 from.

Discussion. Correctness implies that an implementation is identical to the
original function when restricted to the second output and that the new key
representation k’ is equivalent to the initial one k. We make no demands of k
or k' beyond these, so it is permissible to set k = k' = k and thus recover the
traditional syntax. Our security definitions will be such that for correct schemes
and assuming “trivial” leakage, the corresponding leak-free security notions from
the preceding section will emerge.

Definition 2 can be linked to practice in a straightforward manner. Recall
that practical implementations of blockciphers often use masking based on secret

12 Barwell, Martin, Oswald, and Stam

sharing schemes. In this case, the implementation of the blockcipher describes
how to evaluate the blockcipher based on the shares of the key as well as how the
sharing is refreshed using external randomness r (which need not be leak-free).
Furthermore, ¢ is exactly the function that creates the initial secret sharing of
the key.

Syntactically the implementation f may appear stateful: after all they take
in some k and output an updated k’ for the next invocation. However, since the
implementation is of a stateless function f, there is no need to synchronize state
between communication parties. Instead, each party can use its own, independent
representation of the key.

Implementation of an nAE Scheme. For concreteness, we now explicitly
define the implementation of an nAE scheme. We assume that Enc and Dec
syntactically use the same representations K (and key initialisation function ¢),
which we later use for expressing our security notions.

By correctness of the implementation, one can see that the ciphertext output
by Enc (resp. message by Dec) will always be independent of the randomness r,
since they are equal to the corresponding output of Enc (resp. Dec). Definitions
for the implementations of other security primitives are written accordingly.

Definition 3. Let (Enc,Dec) be an authenticated encryption scheme. An AE
implementation is a pair of deterministic functions

Enc: KxNxAXxMxR—-KxC
Dec: KXNXAXxCxR—-Kx (MU{L})

along with v: K — K satisfying (k) = 1(l) = k =1 and .™1: K — KU {1}
such that 171 (k) = k if u(k) could have resulted in k, and L if no such k exists.
The implementation is correct iff for any k, N, A, M,C,r from the appropriate
spaces and k <s 1(k), setling

(K',C")+Enc(k, N, A, M;r) and (k" ,M') < Dec(k, N, A, C;r),

(k',C")+ Enc(k,N,A, M;r) and (k" ,M’')+ Dec(k,N,A,C;r), the following
properties hold:

k=u1k)="YK)=1"1(K")
C’ = Ency(N, A, M) and M’ = Decy,(N, A, C) .

3.2 What Constitutes Leakage

Following Micali and Reyzin’s approach, we will model leakage by allowing an
adversary to specify a leakage function in conjunction with an oracle query. The
input signature of the leakage function matches that of the implementation f it
relates to, allowing it to wholly simulate the implementation. A leakage set is a
collection of leakage functions for an implementation.

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 13

Definition 4. A leakage function of an implementation f: Kx X xR — KxY
s a function L: K x X x R — L for some output leakage space L. A leakage set
of an implementation f is a set of leakage functions.

The choice of leakage set should contain all plausible (functions of) inputs to
the implementation that an adversary can compute, and may be probabilistic.
This might include functions of any intermediate variables, since these are com-
putable from the inputs simply by simulating the construction. Broadly speaking,
the larger the leakage set the more powerful the adversary is likely to be. The
leakage set () allows us to model the leak-free case. Technically we define it to
be the set containing just the null function, meaning the adversary can always
select a leakage function, thus maintaining the correct syntax for our security
games.

3.3 Security Notions Incorporating Leakage

We are now in a position to define the security of an implementation in the
presence of leakage. We do so by reframing the classical notions given to work
on the implementation of a function, and by extending the notions such that
the honest oracles are allowed to leak. The adversary wins the game if they
can distinguish whether their leak-free challenge oracles implement the scheme
honestly or are idealised. We differentiate our notions from the classic variant
by prefixing an “L”, for leakage.

In the classical setting, each oracle simply evaluates the appropriate func-
tion with the game’s secret key. For an implementation, a similar, but slightly
more complicated, approach is required. The oracle must draw randomness, and
provide this to the implementation to update the key representation. This same
randomness, along with all other inputs, must be provided to the leakage func-
tion. The new representation must then be stored, and the two outputs returned
to the adversary. For any implementation f, the corresponding leakage oracle
is denoted ¢[f],, when initialised with representation k = ¢(k). Code-based de-
scriptions for certain leaky implementations related to authenticated encryption
are given in Figure 3. If an adversary has access to multiple oracles based on the
same key, say Ency and Decy, then we will assume that their respective imple-
mentation oracles (so /[Enc], and /[Dec],) will operate on the same representa-
tion k, which hence will be initialized only once. Such a shared representation
corresponds to a setting where both Enc and Dec are implemented on the same
device. Needless to say, our security definitions below can be strengthened by
allowing an adversary to interact with multiple implementations each using their
own representation of the same key.

As in the leakage free definitions, security is taken over the randomness of
the initial keys, and of the oracles. Notice that this choice includes the sampling
from R. We assume the adversary only ever makes queries for which his inputs
are selected from the appropriate spaces. For leakage, this means some leakage
set that will be specified in the security notion.

14 Barwell, Martin, Oswald, and Stam

function ([€], (M; L) function ([D], (C; L)
r <s R r s R
A« L(k,M;r) A L(k,C;r)
C,k+E(k,M;r) M, k<« D(k,C;r)
return (C, A) return (L, A)

function ¢[Enc|, (N, A, M; L) function /[Dec|, (N, A,C; L)
r <s R r +s R
A+ L(k,N, A, M;r) A+ L(k,N,A C;r)
C,k<+Enc(k,N,A, M;r) M, k< Dec(k,N,A,C;r)
return (C, A) return (M, A)

Fig. 3: Honest leakage oracles an adversary may use to help them distinguish. All inputs are taken
from the appropriate spaces, with leakage functions chosen from the relevant leakage set. For Lg-
IND-CPLA, the adversary has access to £[€],, and for the augmented notion (Lg, Lp)-IND-aCPLA
they are also given very limited access to £[D], . LAE security, (Lgnc, Lpec)-LAE provides access to
(£[Enc], , £[Dec],).

For the purposes of defining forwarding of queries, we will ignore the ad-
ditional input associated to the leakage. For instance, after a query (N, A, M)
to the challenge encryption oracle, the query (N, A, M, L) to the true encryp-
tion oracle will be considered equivalent—and would constitute forwarding—
irrespective of L.

Definition 5. Let (Enc,Dec) be an implementation of an authenticated encryp-
tion scheme Enc,Dec, and A an adversary who does not forward queries to or
from his first or second oracles (and thus does not repeat such queries). Then,
the (Lenc, Lpec)-LAE advantage of an adversary A against (Enc, Dec) under
leakage (Lenc, Lpec) 18

LAE o Ency,Decy, ¢[Enc], , /[Dec]|,
AdVE“C»DeCiEEncyﬁDec(A)'_f($, L ,/Enc|,,(Dec|,)"

Definition 6. Let £ be an implementation of an encryption scheme &£, and A
an adversary who never forwards queries to or from his first oracle (and thus
does not repeat first oracle queries). The Le-IND-CPLA advantage (named for
chosen-plaintezt-with-leakage-attack) of A against € is

Advp P PHA(A) = A (‘%’“%k) :

We next provide an additional encryption notion, IND-aCPLA, that will
be required for our composition results later. It describes a modified version of
the IND-CPLA game in which the adversary is also allowed leakage from the
decryption implementation ¢[D], (see Figure 3), but only on ciphertexts they
have previously received from ([£],. At first glance, this appears to be more
similar to an IND-CCA style notion, but we emphasise this is not the case since
the possible decryption queries are heavily restricted. Thus it should be thought
of as IND—CPA under the most general form of leakage. Indeed, when the leakage
sets are empty, the resulting security notion is equivalent to IND-CPA.

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 15

Definition 7. Let (€, D) be an implementation of an encryption scheme, A an
adversary who does not forward queries to or from his first oracle, and only
makes queries to their third oracle that were forwarded from the second. Then
the (Lg, Lp)-IND-aCPLA advantage of A against € is

IND—aCPLA o Ep, LE], D
st o:=a (SUfE Bl -

The IND-aCPLA notion is required for the general composition, where the
goal is to construct an LAE scheme from an ivLE scheme (and other compo-
nents). However, for decryption of the LAE scheme to leak (as we want the
leakage to be as powerful as possible), the decryption of ivLE scheme would
have to leak. The IND-CPLA security notion does not capture this. Consider an
IND—-CPA scheme where encryption does not leak, but the leakage from decrypt-
ing the zero string returns the key. Clearly the scheme is also IND-CPLA but
will trivially break when the adversary is given decryption leakage. The IND-
aCPLA notion is trying to capture that decryption “does not leak too much
information”, so that limited decryption queries made by the LAE scheme will
be able to leak.

Against many natural choices of leakage sets, (Lg, Lp)-IND-aCPLA and Lg-
IND-CPLA are equivalent, since the encryption oracle often suffices to simulate
any leakage from decryption. In the nonce-abusing setting (where the adversary
is free to select nonces however they wish) there is an obvious mechanism for
proving the equivalence, using repeat encryption queries to simulate leaking de-
cryption queries, but even this requires rather strong assumptions on the leakage
sets.

In the nonce respecting or iv respecting scenarios such a general reduction
is not possible, because there is no way to allow the adversary to use the same
nonce multiple times, something a decryption oracle would allow. If the leakage
is independent of the nonce (for example) similar results can be recovered, but
these are much more restrictive scenarios. It is an interesting open problem to
describe sets Lgp that are in some sense “minimal” for various pairs of leakage
sets (Lg, Lp) taken from some general function classes.

LMAC and LPRF. Here we give the PRF and MAC notions a similar treat-
ment to the encryption definitions by enhancing the standard definitions to in-
corporate leakage.

The LPRF definition below strengthens earlier definitions by Dodis and
Pietrzak [13], and by Faust et al. [15]: in our definition both the leakage func-
tions and the inputs can be chosen adaptively based on outputs already seen by
the adversary.

Definition 8. Let F be an implementation of a function F, and A an adver-
sary who never forwards or repeats queries. Then the Lg-PRLF advantage of A
against F under leakage Lf is

k>.

k

FillF
aaviir)= (ifF

)

16 Barwell, Martin, Oswald, and Stam

function ([T, (M; L) function ([V], (M, T; L)
r <s R r <s R
A Lk, M;7) A Lk, M, T;7)
Tk« T (k, M;r) V,k 4« V(k, M, T;7)
return (T, A) return (V, A)

Fig. 4: Honest leakage oracles an adversary may use to help them distinguish. All inputs are taken
from the appropriate spaces, with leakage functions chosen from the relevant leakage set. (Lt, Lv)-
LMAC security gives access to (£[T],,£[V],). Since PRFs and the tagging function of a MAC have
the same syntax, the LPRF game provides access to £[F], , which is identical to £[T], .

Our notion of strong existential unforgeability under chosen message with
leakage (below) strengthens both the classical definition, and the leakage def-
inition of Martin et al. [30] (they only allow tagging to leak; setting Ly = 0
recovers their definition). Allowing meaningful leakage on 7~ hampers direct use
of a secure LPRF as a MAC as typically during verification the “correct” tag
would be recomputed as output of the PRF and could consequently be leaked
upon (effectively yielding a surreptitious tagging algorithm).

Definition 9. Let (T,V) be an implementation of a« MAC (T,V), and A an
adversary who does not forward queries from his second oracle to the first. Then
the (L1, Ly)-sEUF-CMLA advantage of A against (T, V) under leakage (L1, Lv)

18
SEUF—CMLA gy . A Vies £[T 11 €[V,
Advryre, " (A):=24 (L AT (V)

Note that we cast unforgeability as a distinguishing game, rather than as
a more usual computational game (“adversary must forge a tag”), but it is
straightforward to show equivalence (even in the face of leakage).

4 Applying LAE to Attacks in Theory and Practice

A security framework is not much use if it does not highlight the difference be-
tween schemes for which strong security results are known, and those against
which efficient attacks exist. In this section we discuss the types of leakage nor-
mally considered within the literature. We show how previous leakage models
can be captured by our leakage set style notion. In the literature there is focus
on two types of leakage; protocol leakage (by the AE literature) and side channel
leakage (by the leakage resilient literature). We believe that these two notions
are highly related and thus we discuss how to capture both. For example, termi-
nation of an algorithm at different points (distinguishable decryption failures) is
normally detected by a side-channel; timing can be used to capture this if the
failures terminate the algorithm at different points in time and power can be
used to detect if conditional branches were taken.

Below we recast existing leakage resilience work within our general frame-
work. For completeness, in the full version [3] we describe an existing attack
(against GCM) within our setting.

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 17

4.1 Theoretical Leakage Models

We observe that our model is in many ways the most general possible, and that
many previous leakage notions can be captured as version of the (Lg, Lp)-LAE
security game for suitable choice of leakage sets (Lg, Lp). Reassuringly, by setting
(Lg,Lp) = (0,0) we recover the traditional leakage-free security notions, with
(B, ®)-nLAE equivalent to nAE, and both (-IND-CPLA and ((}, #)-IND-aCPLA
equivalent to IND-CPA, meaning a secure nE scheme is (-nLE secure.

The deterministic decryption leakage notions from the AE literature can be
recovered by choosing the appropriate leakage set. The SAE framework gener-
alises both the RUP model, and (nonce-based analogues of) the Distinguishable
Decryption Failure notions of Boldyreva et al. [2,4,9]. The security notions are
parametrised by a deterministic decryption leakage function A, corresponding to
security under the leakage sets (Lg, Lp) = (0, {A}). Thus the strongest notions
available in these settings are equivalent to (f), {A})-LAE. Several of their weaker
notions translate to the corresponding weakening of this, including authenticity
under deterministic leakage, (known variously as CTI-sCPA, INT-RUP or an
extended form of INT-CTXT), which translates to a variant of (0, {A})-LAE
in which the adversary cannot query the encryption challenge oracle (and thus
does not interact with either & or §).

In the simulatable leakage model (e.g. [46]), the adversary receives leakage
in addition to their query, but is restricted to leakage functions that can be
simulated without the key. The simulatable model considered by Standaert et al.
(for example) can be captured by our model by having set of leakage functions
contain the single function which provides the power trace to the adversary. The
auxiliary input model [12] gives the adversary the output of a hard to invert
function applied to the key, alongside the normal security notion interactions.
The only computation leaks model [31] (discussed in more detail in Section 5.1)
restricts the adversary to leakage functions that can be locally computed: any
step of the algorithm can only leak on variables being used at that point. In
the following sections we show how this leakage set can be defined for our given
constructions.

In the probing model [20] the adversary can gain access to the values of ¢ of
the internal wires from the computation. A scheme is secure if an adversary with
the knowledge of ¢ internal wires can do no better than if they had access to the
function in a black box manner. If there are n internal wires, this leakage can
be captured by our set notation by constructing a set with n choose ¢ leakage
functions, each giving the complete value of the relevant wires.

Our leakage sets incorporate the bounded leakage model (e.g. [18,22,26]) by
restricting the set of allowable adversaries to those who only make sufficiently
few queries to the leakage oracles.

One mechanism that need not rely on randomness is to instead use a leak-free
component [48]. Although instantiating such components in practice is between
hard and impossible [29], our framework nonetheless supports it (by suitable
choice of leakage set).

18 Barwell, Martin, Oswald, and Stam

Another idea to provide security is frequent rekeying. However, such a so-
lution relies on synchronized states between encryption and decryption which
can be difficult to maintain, thereby restricting applicability of this approach.
However, in specific contexts such as secure channels, synchronization might not
be too onerous.

5 Generic Composition for LAE

5.1 Modelling Composed Leakage

Our challenge is to establish to what extent the NRS schemes remain secure when
taking leakage into account. Ideally, we would like to claim that if both the ivE
and the PRFs are secure in the presence of leakage, then so will the composed
nAE be. To make such a statement precise, the leakage classes involved need to
be specified. We opt for an approach where the leakage classes for the components
are given (and can be arbitrary) and then derive a leakage class for the resulting
nAE for which we can prove security.

Encryption leakage. In a nutshell, we define the leakage of the composition as
the composition of the leakage. As an example, consider an implementation of A5
(Figure 2). When encrypting, the leakage may come from any of the components:
the PRF F may leak some information Lz (kr, N;rp); the IV-encryption routine
iv€ might leak some information Lg(kg,I, M;rg); the Tag function T may
leak some information Ly (kps, N, A, Ce;rar). To ease notation, we will use the
shorthand L (%), Lg(x), and Lz (%) respectively for these leakages. In that case,
we say that the leakage on the authenticated encryption operation as a whole
consists of the triple (Lg (%), Lg(x), L7(%)). Under the hood, this implies some
parsing and forwarding of the AE’s key (kr, kg, k), randomness (rp,rg, rar)
and inputs IV, A, M, including the calculated values I and C,, to the component
leakage functions Lg, Ly, and L.

Expanding the above to classes of functions is as follows. Let Lg, Lg, and Lt
be the respective leakage classes for F,ivE, and T . Then the leakage class Lgnc
for the resulting authenticated encryption scheme is defined as

{(LF,LE,LT)‘LF S CF,LE S EE,LT S ,CT}

Since an adversary has to select a leakage function in Lg,. the moment it queries
the encryption oracle, it will not be possible to adaptively select for instance the
leakage function Ly based on the leakage received from Lg of that encryption
query.

Decryption leakage. In order to describe leakage from decryption, we take a
closer look at the role of the two PRF's in the generic constructions. The first
one, F, computes the initial vector which is needed both for encryption and
decryption. This makes it inevitable that during decryption F is again computed
as a PRF, presumably using the same implementation F. On the other hand, the

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 19

Structure Leakage Inverse Inverse Leakage
MtE LT(*), LF(*), LE(*)

M&E |Lr(x), Le(x), Le)| O Lr(*), Lp(*), Ly ()
D&V LF(*)) LD(*), Lv(*)
Ly () if V(x) = L

EtM LF(*), LE (*), LT (*) VtD

Ly(x),Lp(x),Lp(*) ifV(x) =T

Fig.5: The structure of a leakage function from a composition scheme based on the order of its
primitives. The exact input parameters to the leakage function vary per scheme, so have been replaced
with *: the different * variables are not the same. On the left are the encryption structures MtE,
M&E and EtM, along with the associated leakage function. The right gives the associated inverse:
DtV (Decrypt then Verify) is the only way of inverting MtE or M&E schemes. EtM schemes can
be inverted in any order, as DtV, D&V (Decrypt and Verify) or VtD (Verify then Decrypt). All
constructions have the same encryption leakage, and most have the same decryption leakage. The
only one that is different is an EtM-VtD scheme, where the decryption leakage format depends on
the validity of the ciphertext.

second PRF, T, is used to create a tag T' during encryption. Normally during
decryption one would recompute the tag (again using 7)) and check whether
the recomputed tag T’ equals the received tag T. Yet, in the leakage setting
this approach is problematic: 1" is the correct tag and its recomputation might
well leak it, even when used (repeatedly) to check an incorrect and completely
unrelated T'. Hence, during decryption we will not use a recompute-and-check
model, but rather refer directly to a tag-verification implementation V (that
hopefully leaks less).

When considering the decryption leakage of A5, we will assume that, on
invalid ciphertexts, the computation terminates as soon as the verification algo-
rithm returns L. This implies that for invalid ciphertexts only leakage on V will
be available, whereas for valid ciphertexts all three components (V, F, and ivE)
might leak.

Overview and interpretation. Recall that we divided the NRS schemes in
three categories: MtE, M&E, and EtM. Figure 5 shows how the composed leakage
will leak for each of these schemes. For completeness, we also listed the leakage
for the EtM scheme (such as A5) in case full decryption will always take place,
even for invalid ciphertexts (where one could have aborted early).

Our choice to model the leakage from the authenticated encryption scheme as
completely separate components from the three underlying primitives is rooted
in the assumption that only computation leaks. This assumption was first for-
malized by Micali and Reyzin [31] and, although there are counterexamples to
the assumption at for instance the gate level [38], we believe that implementa-
tions of the three primitives result in large enough physical components, which
can be suitably segregated to avoid cross-leakage.

Leakage on the wire (for instance of the initial vector I) can be captured
as leakage of the PRF computing the I or alternatively as that of the ivE. In
particular, by letting the decryption of the iv€ component leak its full output
(while not allowing any further leakage), we capture the release of unverified
plaintext. Furthermore, distinguishable decryption failures on MtE and M&E

20 Barwell, Martin, Oswald, and Stam

schemes invariably arise from verification, which might incorporate a padding
check as well. This is modelled by allowing V to leak, but not any of the other
components.

5.2 MAC-and/then-Encrypt are Brittle under Leakage

For schemes where the plaintext is input to the MAC (i.e. MtE and M&E
schemes), decryption is inevitably of the form DtV. Consequently, during de-
cryption a purported message M is computed before the tag can be verified.
Leaking this message M corresponds to the release of unverified plaintext [2],
but even more modest leakage, such as the first bit of the candidate message,
can be insecure as we show by the following example.

Let us assume for a moment that the encryption routine iv€ is online, so
that reencrypting a slightly modified plaintext using the same I will only affect a
change in the ciphertext after the modification in the plaintext. CBC and CFB
modes are well-known examples of online iv€ schemes. Additionally, assume
that ivE’s decryption routine indeed leaks the first bit of the message. Then the
authenticated encryption scheme is not secure in the presence of leakage (for the
leakage class derived according to the principles outlined previously), which an
attack demonstrates.

The adversary first submits a message M to its challenge encryption ora-
cle, receiving a ciphertext C' which either is an encryption & (M||T) or, in the
ideal world, a uniformly random string. The adversary subsequently queries its
decryption-with-leakage oracle on C' with its final bit flipped. In the real world,
where C' = &, (M||T), the leakage will then equal the first bit of M with proba-
bility 1. Yet in the ideal world, C' is independent of M, so the leakage will equal
the first bit of M with probability half. Thus, testing whether the decryption
leakage equals the first bit of M leads to a distinguisher with a significant ad-
vantage. However, this does not invalidate IND-aCPLA security of iv€ as in
that game decryption only leaks on valid ciphertexts with known plaintexts.

The above observation implies that for schemes where decryption follows a
DtV or D&V structure proving generic composition secure in the presence of
leakage is impossible. This affects the NRS compositions A1-A4, A7-A12, N1,
N3 and N4; none of which can be regarded as generically secure under leakage
and all are insecure when using online iv€ and releasing unverified plaintext.

Less general composition results might still be possible, for instance by re-
stricting the leakage classes of the primitives. After all, in the trivial case that
the leakage classes are all), the original NRS results hold directly. We leave
open whether significantly larger realistic leakage classes exist leading to secure
MtE constructions.

Alternatively, stronger assumptions on £ could help. For instance, if £’s se-
curity matches that of a tweakable (variable input length) cipher, the MAC-
then-Encrypt constructions become a sort of encode-then-encipher. The latter
is secure against release of unverified plaintext [19]. We leave open the iden-
tification of sufficient conditions on & for a generic composition result in the

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 21

presence of leakage to pull through for EtM or E&M; relatedly, we leave open
the extension of our work to the encode-then-encipher setting.

5.3 Encrypt-then-MAC is Secure under Leakage

The iv-based schemes A5 and A6, as well as the nonce-based N2, all fall under
the EtM design. The inverse of an EtM scheme can be D&V or VtD, but as
just discussed for the D&V variant no meaningful generic security is possible;
henceforth we restrict attention to the VtD variant only. These schemes, along
with the iv2n mechanism for building a nonce-based encryption scheme out of
an iv-based one, are all represented in Figure 2. Before proving their security,
we begin with some observations about EtM-VtD designs in the face of leakage.

Initial observations. Since the final ciphertext will be formed from an en-
cryption ciphertext and a tag, if the overall output is to be indistinguishable
from random bits, then so must the tag. Thus we require both that (7,V) is
a secure (Lt,Ly)-LMAC, and that T is a secure L1-LPRF. Shrimpton and
Terashima [45] defined a (weaker) authenticated encryption notion where the
“recovery information” does not need to be random—only the ciphertext—in
which case one may drop the second requirement.

In the traditional case, it is possible to build secure EtM schemes from an
encryption scheme that is IND-CPA secure. After all, by assumption on the se-
curity of the MAC, the only output the adversary can ever receive from the in-
ternal decryption function D is a plaintext corresponding to a previous £ query.
However, when leakage is involved, this previously harmless decryption query
suddenly allows the adversary to evaluate a leakage function L € Lp, albeit on a
(N, C) pair for which they already know the corresponding plaintext. If Lp con-
tained functions revealing sufficient information about the key, this would render
the composed scheme completely broken, notwithstanding any IND-CPLA secu-
rity. Luckily, the augmented IND-aCPLA game in which the adversary is allowed
to leak on select decryption queries, is sufficiently nuanced to capture relevant
weaknesses in the decryption’s implementation.

Security of EtM composition schemes. We now describe the security of the
composition schemes A5, A6 and N2, and the iv2n construction. Working under
the assumption of OCLI-style leakage, as described in Section 5.1, we will reduce
the security of the composition to the security of its components. Technically
the bound includes a term quantifying any additional weaknesses due to the
composition scheme, but in all cases this term is zero. The proofs can be found
in the full version [3]. We begin with N2, and show it is essentially as secure as
the weakest of its components, by constructing explicit adversaries against each.

Theorem 1. Let (Lg,Lp, L1,Ly) be leakage sets for the appropriate primi-
tives, and define (Lenc, Lpec) as in Section 5.1. Let A be an adversary against
the (Lenc, Lpec)-nLAE security of N2[E, D;T,V]. Then, there exist adversaries

22 Barwell, Martin, Oswald, and Stam

Acpa, Aprr and Ayac against the (Lg, Lp)-nLE security of (€,D), the Lr-
LPRF security of T and the (L1, Lyv)-LMAC security of (T, V) such that:

LAE
Advr'\llz;L"Enml:Dec (A) S
IND—aCPLA LPRF sEUF—-CMLA
Advg p.rer,” (Acpa) + Adviy o (Aprr) + 2 Adviy o (Auac)-

As the following result shows, the intuitive mechanism for building a nLE
scheme from a secure ivLE scheme and a secure LPRF is itself secure. While
unsurprising, this will allow us to instantiate the N2 construction with the more
common object of an ivLE scheme.

Theorem 2. Let (Live, Livp, L) be leakage sets for the appropriate primitives,
and define (Lg, Lp) as in Section 5.1. Let A be an adversary against the (Lg, Lp)-
nLE security of W2n[ivE,ivD;F|. Then, there exist Acpa, Aprr against the
(Live, Livp)-1wLE security of (ivE,ivD), and the Lg-LPRF security of F respec-
tively, such that:

IND—aCPLA LPRF IND—aCPLA
Adviv2n;£E,£D (A) < Adv}';ﬁ.: (APRF) + Advivs,ivD;LiVE,EwD (ACPA) :

Pulling these two results together and taking the maximum over the similar
adversaries, we are able to prove the security of the A5 construction. The security
of A6 against adversaries who never repeat the pair (N, A) can be easily recovered
from this by considering it as an equivalent representation of the A5 scheme
acting on nonce space N = N x A but with no associated data.

Corollary 1 (nLAE from ivLE and LPRF via A5 composition). Let
(Live, Livp, L1, Lv, L) be leakage sets for the appropriate primitives, and define
(LEnc, Lpec) as in Section 5.1. Let A be an adversary against the (Lenc, LDec)-
nLAE security of AS[ivE,ivD;F;T,V]. Then, there exist adversaries Acpa,
Aprp, Abgp, and Avac against the (Live, Livp)-LE security of (ivE,ivD), the
Le-LPRF security of F, the L1t-LPRF security of T and the (L1, Ly)-LMAC
security of (T, V) such that

AQVEAE o, (4) < AQVER O () + AdVETES (o)
LPRF EUF—CMLA
+ Advy s (Aprp) +2- Advyy, 2 0 (Avac) -

Corollary 2 (nLAE from ivLE and LPRF via A6 composition). Let
(Live, Livp, L1, Lv, L) be leakage sets for the appropriate primitives, and define
(Lenc, Lpec) as in Section 5.1. Let A be an adversary against the (Lenc, Lpec)-
LAE security of A6[ivE,ivD; F; T, V] who does not make two encryption queries
with the same (N, A) pair. Then, there exist explicit adversaries Acpa, Aprr,
Aprp, and Ayac against the (Live, Livp)-wLE security of (ivE,ivD), the Lg-
LPRF security of F, the L1-LPRF security of T and the (L1, Ly)-LMAC se-
curity of (T,V) such that

nLAE IND—aCPLA LPRF
AdVieiLe, oo (A) < Adve ppopo (Acea) + Advir s (Aprr)

+ AAVE R (Abgp) + 2 AdVEY 2 (Ayac) -

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 23

]Tf M A Z\{ M A
Fier
I ivﬁg ivDE N
W r
T]
I C T I C T

Fig.6: The Synthetic-IV-and-Tag (SIVAT) scheme. On the left, the encryption routine runs from top
to bottom, outputting a ciphertext I||C||T. Decryption (on the right) runs from bottom to top. If
during decryption verification fails, and Vg, returns L, no further computations are performed. In
the decryption direction, the PRF F is not required.

5.4 Achieving Misuse Resistant LAE Security

In Section 5.2 we discussed why no composition scheme can be (generically) se-
cure against leakage if its decryption begins by calculating a candidate plaintext.
This meant ruling out every NRS construction secure in the nonce misuse model,
an important feature for a modern robust AE schemes [7,19,42]. Roughly speak-
ing, for MRAE security a scheme must be MtE (to ensure maximum diffusion)
yet for leakage resilience it must be EtM (to ensure minimal leakage).

The Synthetic IV and Tag (SIVAT) scheme, defined in Figure 6, addresses
the combined mrLAE goal, by essentially using an MtEtM approach. It can be
seen as composing the SIV construction [42] (referred to as A4 in NRS) with a
secure MAC, or alternatively as the natural strengthening of A6 towards nonce
misuse security, by adding the message to the IV calculation and making the
appropriate modifications to enable decryption.

Our additional feature does come at a cost. While schemes in the tradi-
tional setting achieve misuse resistance for the same ciphertext expansion as
non-resistant schemes, the SIVAT scheme requires essentially twice the expan-
sion. It also has a large number of internal wires, with each function taking in
a large number of inputs, although removing any one leads to incorrectness or
insecurity. For encryption calls, all inputs must go into the LPRF (for misuse
resistance) and for decryption they must go into verification (to prevent RUP
attacks).

The proof (in the full version)is very similar to that for A5 or A6 (Corollaries 1
and 2), since the additional element of a SIVAT ciphertext (I) is present in those
settings, and might already be available to the adversary through leakage.

Theorem 3. Let (Live, Livd, £, Lv, L) be leakage sets for the appropriate prim-
itives, and define (Lgnc, Lpec) as in Section 5.1. Let A be an adversary against
the (Lenc, Lpec)-mrLAE security of SIVAT[ivE,ivD; F; T ,V|. Then, there exist
explicit adversaries Acpa, Aprr, Aprp, and Avac against the (Live, Livp)-wLE
security of (ivE,ivD), the Lg-LPRF security of F, the Lt-LPRF security of T
and the (L1, Ly)-LMAC security of (T,V) such that

24 Barwell, Martin, Oswald, and Stam

‘1 M1 M2 M3 M4
D D D ?
Cl CQ Cg 04

Fig.7: CFB Mode of Operation based on F : K x X — X. The message M is parsed into blocks or
elements My||...||M,,, and fed through to output ciphertext Ci||...||Cy,. The operation @ can be
any group operation on X.

nLAE IND—aCPLA LPRF
AdVSAT e, Lo. (B) SAAVE DL rry (Aopa) + Advir ., (Aprr)

LPRF EUF—CMLA
+ Advy oy (Aprp) +2- AdvE 0 (Auac) -

5.5 A Leakage Resilient IV-based Encryption Scheme

A crucial component required for our composition is an encryption scheme ivE,
whose implementation (iv€,ivD) is IND-aCPLA secure against a rich class
(Live, Livp) of leakage functions. As generic composition relies on a secure PRLF
implementation F anyway, we will investigate to what extent this PRLF can
be used to bootstrap some ivE implementation as well. Here we turn to the
classical mode of operation CFB (Fig. 7), which has the advantage that only the
forward direction of the underlying primitive F is required, even for decryption
(relevant if one would instantiate with a blockcipher). When we move from
the standard CFB[F] to its implementation CFB[F] (by replacing F with its
implementation F), processing multi-block plaintexts (or ciphertexts) will result
in multiple refreshes of the key’s representation k (one for each call to F). We
will show that CFB is secure against leakage when instantiated with a PRLF,
using an adaptation of the classical proof for CFB security [1].

Our first task is to express the leakage sets (Livg, Livp) for scheme ivE in
terms of that of the PRF F, namely Lg. When tracing through the operation
of CFB-encryption, we will make two assumptions. Firstly, that leakage for each
of the F calls is local (cf. OCLI), which in particular means leakage will be
restricted to the representation of k specific for the F call at hand (and k is
expected to be refreshed during a single iv€ call). Secondly, that all visible wires
in Fig. 7, corresponding to the iv€’s public inputs and outputs, will leak. Note
that longer messages will lead to more leakage for an adversary, which matches
practice (where the size of the power trace might be linear in the size of the
message.

Decryption closely matches encryption and, under the same assumptions as
above, leakage on decryption of a ciphertext can be expressed instead as leakage
on the encryption of the corresponding plaintext. Hence we refer to decryption

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 25

leakage as Lig’ (where the prime connotes the syntactical malarkey to deal with
the different input spaces for encryption and decryption).

Concluding, we define the leakage set L;,g to be the collection of all functions
Lerp : KX N x M x R — {0,1}" that are of the form

Lerg(k, I, M;r) = (M, C, Li(ki, Ci;7)ic{0..n—1})

with L; € Lt (for i € {0..n — 1}) and where M is an n-block message, C =
iv€y(I, M) is an (n+1)-block ciphertext constituted of blocks C; (i € {0,..n}), r
is the concatenation of the random values r; passed to the i*® F-call (i € {1..n}),
and k;_1 is the key representation for the i*h F-call (i € {1..n}).

Theorem 4. Let F : T* — T be a PRF with leakage class Lg and let (ivE,ivD)
be the symmetric encryption scheme CFB[F]| with derived leakage (Lie, Live').
Let A be an iv-respecting adversary against the (Lie, Live')-IND-aCPLA security
of (ivE€,ivD). Then there exists an adversary Aprr of similar complezity to A
against the Le-PRLF security of F such that

3 o2
IND—aCPLA PRL
AdViV£7iV%§ﬁivE,£ivE/(A) S 2 ’ Adv-"'-%LFF(APRF) + Z . m ’

where o is the total number of blocks encrypted, and the blocksize is |T|.

The proof can be found in the full version [3].

6 mrLAE Security by Instantiating the PRF and MAC

The A5 and SIVAT composition mechanisms can be instantiated with any suit-
ably secure primitives to yield secure nLAE or mrLAE schemes. Together with
using CFB[F] as underlying ivE, these allow us to construct a secure mrLAE
scheme through any PRF F with a secure implementation F and a secure MAC
implementation (7, V). The remaining questions therefore are what can be said
about securely implementing these primitives and what conclusions for the over-
all scheme can subsequently be drawn. We will answer these questions from two
perspectives: a practical side-channel one (for those favouring masked AES) and
a more theoretical, yet eminently implementable one in the continuous leakage
model.

A side-channel perspective. Our result provides a roadmap for obtaining a
side-channel misuse-resistant AE scheme by selecting reasonable practical prim-
itives (and implementations) for the PRF and the MAC (say a suitably masked
AES, respectively KMAC) and subsequently gauging to what extent actual leak-
age on the primitive implementations can be used to break the relevant PRLF
or EUF-CLMA notions as well as whether leakage on the full implementation is
cleanly segregated or whether undesired correlation indicates bleeding of leakage
from the values or variables from one component into say part of the power trace
associated with another component.

26 Barwell, Martin, Oswald, and Stam

The result above no longer explicitly takes into account leakage classes; these
have effectively become implicit artefacts of the attack. We assume that a suc-
cessful attack on the full scheme will be recognized as such: our result essentially
says that if such an attack is found then either the leakage is not cleanly sepa-
rated or one of the primitive implementations is already insecure (or both).

A leakage resilience perspective. A complementary approach to the prac-
tical one above is to design the primitives and their implementations with a
provable level of resistance against leakage functions from a specific class. As
already explained in the introduction, a multitude of models exist depending
on the class of functions under consideration. One of the stronger models is
that of continuous leakage: here the leakage functions can be arbitrary, subject
to the constraint that their range is bounded. A usual refinement is to use a
split-state model, where the key’s representation k is operated upon in two (or
more) tranches and each tranch can only leak on that part of k in scope for the
operation at hand (assuming only computation leaks, as usual).

While there are PRF's that have been proven secure in the continuous leakage
model, as far as we can tell this has always come at the price of adaptivity. In
order for our constructions to be implemented a new PRF is called for, with an
implementation secure in the stronger, adaptive continuous leakage model. In
the full version [3] we provide such a function and implementation, and prove
the latter secure in the generic group model (against adaptive continous leakage
in a split-state setting). Additionally, we show how to create a related MAC such
that leaking on the verification’s implementation is ok.

Our construction is an evolution of the MAC of Martin et al. [30], itself
inspired by a scheme by Kiltz and Pietrzak [23]. The key enabling novelty is the
use of three shares instead of the customary two. A thorough discussion of the
design choices, specifications, and security justification can be found in the full
version [3] but for completeness we provide the final theorem statement below.

Theorem 5. Let SIVAT be the SIVAT mechanism instantiated with the imple-
mentations described in the full version [3] over a generic group of p elements,
and assume that each share of the internal PRF leaks at most \ per call following
the associated leakage functions, as described by leakage sets (Lenc, Lpec). Let A
be an adversary making at most g direct queries to the generic group oracle (in-
cluding the complezity of all chosen leakage queries) and making q construction
queries totalling o blocks. Then,

7
AAVENAT oo (B) < . (2" 0% (g+9¢+50)> + 8(g + 9¢ + 50)?) .

To get a feel for the practical security level, let’s look at parameters if the
schemes are instantiated over a 512 bit elliptic curves, and we want the keep
the attack success probability below 270 (a common limit in the real world,

e.g. [28]). Let’s assume that each internal leakage function leaks at most A\ = 85
bits, which is approximately a sixth of a group element. Then the scheme would

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 27

remain secure until the adversary has encrypted or decrypted around 222 blocks,
and made a similar number of queries to the generic group.

This result comes with a few caveats, covered in more detail by the full ver-
sion [3]. For instance, to ensure security against the leakage of arbitrary functions
of the key, to process ¢ queries of total o blocks the construction must sample
4q + o random group elements in a leakage-resilient manner, which can be com-
plicated [30]. Nonetheless, our construction is proof positive of the existence of
leakage resilient authenticated encryption in a very strong sense.

7 Conclusions and Open Problems

We introduced notions for strengthened AE when considering leakage, discussed
generic composition under leakage, and showed the EtM type constructions can
be proven secure in this context. We give a new scheme, SIVAT, that achieves
misuse resistance and leakage resilience simultaneously, and show how this can
be bootstrapped from a PRF secure against leakage. Finally, we give a concrete
instantiation for the SIVAT mechanism. Our research unveils several interesting
open problems, which we summarise subsequently.

IND-aCPLA. If one allows nonce-reuse, then for any leakage set Lg security
against Le-IND-CPLA adversary implies (Lg, Lg')-IND-aCPLA security, where
Lg’ is the essentially the same set as Lg with some minor bookkeeping to ensure
correct syntax. The implication is trivial as the leakage on any valid D-query
can be perfectly simulated by repeating the corresponding £-query instead. In
the the nonce or iv respecting cases the implication remains open (as repeat-
ing encryption queries including nonce is no longer allowed). Nonetheless, we
conjecture that even in these two settings for many reasonable leakage sets L,
Le-IND-CPLA does imply (Lg, Lg')-IND-aCPLA. We leave it as an interesting
question to formalise this or find a counter-example. More generally, is there

some way of defining Lgp as a function of some general sets Lg, Lp such that
Lep-IND-CPLA = (Lg, £p)-IND-aCPLA?

MtE with restricted leakage sets. The insecurity of the majority of the MtE
schemes when considering leakage comes from a generic attack against any
schemes whose inverse follows the decrypt-then-verify or decrypt-and-verify struc-
ture. We leave it as an interesting open question to investigate the leakage secu-
rity under other more restricted leakage sets.

Misuse resistance with minimal message expansion. We demonstrate that misuse
resistance can be achieved through generic composition, at the cost of additional
message expansion, using a MAC-then-Encrypt-then-MAC structure (leading to
SIVAT). We believe that dedicated constructions are likely to exist that can
achieve mrLAE security with minimal expansion, or more generally LAE without
requiring independent keys.

28

Barwell, Martin, Oswald, and Stam

Acknowledgements. Initial work was conducted while Dan Martin was em-
ployed by the Department of Computer Science, University of Bristol. Guy Bar-
well was supported by an EPSRC grant; Elisabeth Oswald and Dan Martin
were in part supported by EPSRC via grants EP/1005226/1 (SILENT) and
EP/N011635/1 (LADA).

References

1.

10.

11.

12.

13.

14.

15.

Alkassar, A., Geraldy, A., Pfitzmann, B., Sadeghi, A.R.: Optimized self-
synchronizing mode of operation. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 78-91. Springer, Heidelberg (Apr 2002)

Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar and
Iwata [43], pp. 105-125

Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in
the face of protocol and side channel leakage. Cryptology ePrint Archive, Report
2017/068 (2017), http://eprint.iacr.org/2017/068

Barwell, G., Page, D., Stam, M.: Rogue decryption failures: Reconciling AE ro-
bustness notions. In: Groth [17], pp. 94-111

Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: Resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 373-402. Springer, Heidelberg (Aug 2016)

Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531-545. Springer, Heidelberg (Dec 2000)
Bernstein, D.J. CAESAR competition call (2013),
http://competitions.cr.yp.to/caesar-call-3.html

Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.X.: Leakage-resilient
and misuse-resistant authenticated encryption. Cryptology ePrint Archive, Report
2016/996 (2016), http://eprint.iacr.org/2016,/996

Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367-390. Springer, Heidelberg (Mar 2014)

Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric
encryption in the presence of ciphertext fragmentation. Cryptology ePrint Archive,
Report 2015/059 (2015), http://eprint.iacr.org/2015/059

Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal se-
curity analysis of the signal messaging protocol. Cryptology ePrint Archive, Report
2016/1013 (2016), http://eprint.iacr.org/2016/1013

Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC. pp. 621-630. ACM Press (May / Jun
2009)

Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp- 21-40. Springer, Heidelberg (Aug 2010)

Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS. pp.
293-302. IEEE Computer Society Press (Oct 2008)

Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213-232. Springer, Heidelberg (Sep 2012)

Authenticated Encryption in the Face of Protocol and Side Channel Leakage 29

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

Fischlin, M., Giinther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security
of stream-based channels. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 545-564. Springer, Heidelberg (Aug 2015)

Groth, J. (ed.): 15th IMA International Conference on Cryptography and Coding,
LNCS, vol. 9496. Springer, Heidelberg (Dec 2015)

Hazay, C., Lépez-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160-176. Springer, Heidelberg (May 2013)

Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15-44. Springer, Heidelberg (Apr 2015)

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463-481.
Springer, Heidelberg (Aug 2003)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC (2008)

Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 703-720. Springer,
Heidelberg (Dec 2009)

Kiltz, E., Pietrzak, K.: Leakage resilient ElGamal encryption. In: Abe, M. (ed.)
ASTACRYPT 2010. LNCS, vol. 6477, pp. 595-612. Springer, Heidelberg (Dec 2010)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104—
113. Springer, Heidelberg (Aug 1996)

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (Aug 1999)
Kurosawa, K., Phong, L.T.: Leakage resilient IBE and IPE under the DLIN as-
sumption. In: Jacobson Jr., M.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 13. LNCS, vol. 7954, pp. 487-501. Springer, Heidelberg (Jun 2013)
Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.: Simulatable
leakage: Analysis, pitfalls, and new constructions. In: Sarkar and Iwata [43], pp.
223-242

Luykx, A., Paterson, K.: Limits on authenticated encryption use in tls (2016),
http://www.isg.rhul.ac.uk/ kp/TLS-AEbounds.pdf

Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2008)

Martin, D.P., Oswald, E., Stam, M., Wéjcik, M.: A leakage resilient MAC. In:
Groth [17], pp. 295-310

Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278-296. Springer, Heidelberg (Feb
2004)

Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257-274. Springer, Heidelberg (May 2014)

NIST: FIPS 81: DES Modes of Operation. Issued December 2, 63 (1980)
Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and en-
cryption from symmetric cryptographic primitives. In: Ray, 1., Li, N., Kruegel:, C.
(eds.) ACM CCS 15. pp. 96-108. ACM Press (Oct 2015)

Perrin, T.: Double ratchet algorithm (2014),
https://github.com/trevp/double_ratchet /wiki, Retrieved 2016-09-01

30

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Barwell, Martin, Oswald, and Stam

Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462-482. Springer, Heidelberg (Apr 2009)
Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: Simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19-36. Springer, Heidelberg (Mar 2014)

Renauld, M., Standaert, F.X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109-
128. Springer, Heidelberg (May 2011)

Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 02. pp. 98-107. ACM Press (Nov 2002)

Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348-359. Springer, Heidelberg (Feb 2004)
Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 01. pp. 196-205.
ACM Press (Nov 2001)

Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373-390.
Springer, Heidelberg (May / Jun 2006)

Sarkar, P., Iwata, T. (eds.): ASTACRYPT 2014, Part I, LNCS, vol. 8873. Springer,
Heidelberg (Dec 2014)

Schipper, J.: Leakage-Resilient Authentication. Ph.D. thesis, Utrecht University
(2010)

Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part L.
LNCS, vol. 8269, pp. 405-423. Springer, Heidelberg (Dec 2013)

Standaert, F.X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography
under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335-352. Springer, Heidelberg (Aug
2013)

Yau, A.K.L., Paterson, K.G., Mitchell, C.J.: Padding oracle attacks on CBC-mode
encryption with secret and random IVs. In: Gilbert, H., Handschuh, H. (eds.)
FSE 2005. LNCS, vol. 3557, pp. 299-319. Springer, Heidelberg (Feb 2005)

Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
CCS 10. pp. 141-151. ACM Press (Oct 2010)

