Optimal-Rate Non-Committing Encryption*

* * %k

Ran Canetti**, Oxana Poburinnaya , and Mariana RaykovaT

Abstract. Non-committing encryption (NCE) was introduced in order to imple-
ment secure channels under adaptive corruptions in situations when data erasures
are not trustworthy. In this paper we are interested in the rate of NCE, i.e. in how
many bits the sender and receiver need to send per plaintext bit.

In initial constructions the length of both the receiver message, namely the public
key, and the sender message, namely the ciphertext, is m - poly () for an m-bit
message, where A is the security parameter. Subsequent work improve efficiency
significantly, achieving rate poly log(\).

We show the first construction of a constant-rate NCE. In fact, our scheme has rate
1+0(1), which is comparable to the rate of plain semantically secure encryption.
Our scheme operates in the common reference string (CRS) model. Our CRS has
size poly(m - \), but it is reusable for an arbitrary polynomial number of m-bit
messages. In addition, ours is the first NCE construction with perfect correctness.
We assume one way functions and indistinguishability obfuscation for circuits.

Keywords: adaptive security, non-committing encryption.

1 Introduction

Informally, non-committing, or adaptively secure, encryption (NCE) is an encryption
scheme for which it is possible to generate a dummy ciphertext which is indistinguish-
able from a real one, but can later be opened to any message [[CFGN96]. This primitive
is a central tool in building adaptively secure protocols: one can take an adaptively se-
cure protocol in secure channels setting and convert it into adaptively secure protocol
in computational setting by encrypting communications using NCE. In particular, NCE
schemes are secure under selective-opening attacks [DNRS99].

This additional property of being able to open dummy ciphertexts to any message
has its price in efficiency: while for plain semantically secure encryption we have con-
structions with O(\)-size, reusable public and secret keys for security parameter A, and
m + poly(A) size ciphertext for m-bit messages, non-committing encryption has been

* This work was done [in part] while the authors were visiting the Simons Institute for the
Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Col-
laboration in Cryptography through NSF grant #CNS-1523467.

** Boston University and Tel Aviv University. Member of the Check Point Institute for Informa-
tion Security. canetti@bu.edu. Supported in addition by the NSF MACS project and ISF
Grant 1523/14.

*** Boston University. oxanapob@bu . edu. Supported in addition by the NSF MACS project
and NSF grant 1421102.

T Yale University. mariana.raykova@yale.edu. Supported by NSF grants

1421102,1633282,1562888, DARPA W911NF-15-C-0236,W911NF-16-1-0389

far from being that efficient. Some justification for this state of affairs is the lower bound
of Nielsen [Nie02], which shows that the secret key of any NCE has to be at least m
where m is the overall number of bits decrypted with this key. Still, no bound is known
on the size of the public key or the ciphertext.

In this paper we focus on building NCE with better efficiency: specifically, we op-
timize the rate of NCE, i.e. the total amount of communication sent per single bit of a
plaintext.

1.1 Prior Work

The first construction of adaptively secure encryption, presented by Beaver and Haber
[BHO2], is interactive (3 rounds) and relies on the ability of parties to reliably erase
parts of their internal state. An adaptively secure encryption that does not rely on se-
cure erasures, or non-committing encryption, is presented in [CEGN96]. The scheme
requires only two messages, just like standard encryption, and is based on joint-domain
trapdoor permutations. It requires both the sender and the receiver to send ©(\?) bits
per each bit of a plaintext. Subsequent work has focused on reducing rate and num-
ber of rounds. Beaver [Bea97] and Damgard and Nielsen [DNQOO] propose a 3-round
NCE protocol from, respectively, DDH and a simulatable PKE (which again can be
built from similar assumptions to those of [CEGN96]) with m - 8(/\2) bits overall com-
munication for m bit messages, but only m - ©(\) bits from sender to receiver. These
results were improved by Choi et al. [CDMW09] who reduce the number of rounds to
two, which matches optimal number of rounds since non-interactive NCE is impossible
[NieO2]]. Also they reduced simulatable PKE assumption to a weaker trapdoor simu-
latable PKE assumption; such a primitive can be constructed from factoring. A recent
work of Hemenway et al. [HOR15]] presented a two-round NCE construction based on
the ¢-hiding assumption which has ©(m log m)+poly(\) ciphertext size and m - O(\)
communication from receiver to sender. In a concurrent work, Hemenway, Ostrovsky,
Richelson and Rosen [HORR16] show how to build NCE with rate poly log()) under
the ring-LWE assumption.

We remark that the recent results on adaptively secure multiparty computation (MPC)
from indistinguishability obfuscation in the common reference string (CRS) model
[CGP15 IGP15, IDKR15] do not provide an improvement of NCE rate. Specifically,
[CGP15] and [DKRI15] already use NCE as a building block in their constructions, and
the resulting NCE is as inefficient as underlying NCE. The scheme by Garg et al. [GP15]]
does not use NCE, but their second message is of size poly(mA\) due to the statistically
sound non-interactive zero knowledge proof involved.

Another line of work focuses on achieving better parameters for weaker notions of
NCE where the adversary sees the internal state of only one of the parties (receiver or
sender). Jarecki and Lysyanskaya [JLOO] propose a scheme which is non-committing
for the receiver only, which has two rounds and ciphertext expansion factor 3 (i.e., the
ciphertext size is 3m + poly(A)), under DDH assumption. Furthermore, their public
key is also short and thus their scheme achieves rate 4. Hazay and Patra [HP14]] build
a constant-rate NCE which is secure as long as only one party is corrupted, which was
later modified by [HLP15]] to obtain a constant-rate NCE in the partial erasure model,
meaning that security would hold even with both parties corrupted, as long as one party

is allowed to erase. Canetti at al. [CHKOS]| construct a constant-rate NCE with erasures,
meaning that the sender has to erase encryption randomness, and the receiver has to
erase the randomness used for the initial key generation. Their NCE construction has
rate 13.

1.2 Our Results

We present two NCE schemes with constant-rate in the programmable CRS model.
We first present a simpler construction which gives us rate 13, and then, using more
sophisticated techniques, we construct the second scheme with rate 1 + o(1).

Our first construction is given by a rate-preserving transformation from any NCE
with erasures to full NCE, assuming indistinguishability obfuscation (:(0) and one
way functions (OWFs). The known construction of constant-rate NCE with erasures
([CHKOS5]) requires decisional composite residuosity assumption and has rate 13.

Our second construction assumes only iOand OWFs and achieves rate 1 + o(1). To
be more precise, the public key, which is the first protocol message in our scheme, has
the size O()\). The ciphertext, which is the second message, has the size O(X\) + |m].
The CRS size is O(poly(mA)), but the CRS is reusable for any polynomially-many
executions without an a priori bound on the number of executions. Thus when the length
|m| of a plaintext is large, the scheme has overall rate that approaches 1.

In addition, this NCE scheme is the first to guarantee perfect correctness. Note that
NCE in the plain model cannot be perfectly correct, and therefore some setup assump-
tion is necessary to achieve this property.

1.3 Construction and Proof Techniques

Definition of NCE. Before describing our construction, we recall what a non-committing
encryption is in more detail. Such a scheme consists of algorithms (Gen, Enc, Dec, Sim),
which satisfy usual correctness and security requirements. Additionally, the scheme
should remain secure even if the adversary first decides to see the communications in
the protocol and later corrupt the parties. This means that the simulator should be able
to generate a dummy ciphertext ¢y (without knowing which message it encrypts). Later,
upon corruption of the parties, the simulator learns a message m, and it should generate
internal state of the parties consistent with m and cy - namely, encryption randomness
of the sender and generation randomness of the receiver.

First attempts and our first construction. Recall that the recent puncturing technique
adds a special trapdoor to a program, which allows to “explain” any input-output behav-
ior of a program, i.e. to generate randomness consistent with a given input-output pair
(ISW14/IDKR15]). Given such a technique, we could try to build NCE as follows. Start
from any rate-efficient non-committing encryption scheme in a model with erasures.
Obfuscate key generation algorithm Gen and put it in the CRS. The protocol then pro-
ceeds as follows: the receiver runs Gen, obtains (pk, sk), sends pk to the sender, gets
back c and decrypts it with sk. In order to allow simulation of the receiver, augment
Gen with a trapdoor which allows a simulator to come up with randomness for Gen
consistent with (pk, sk). However, this approach doesn’t allow to simulate the sender.

One natural way to allow simulation of the sender is to modify Gen: instead of
outputting pk, it should output an obfuscated encryption algorithm F = iO(Enc[pk])
with the public key hardwired, and the receiver should send E (instead of pk) to the
sender in round 1. In the simulation Enc[pk] can be augmented with a trapdoor, thus
allowing to simulate the sender. The problem is that this scheme is no longer efficient:
in all known constructions the trapdoor (and therefore the whole program FE) has the
size of at least A|m|, meaning that the rate is at least A (this is due to the fact that
this trapdoor uses a punctured PRF applied to the message m, and, to the best of our
knowledge, in all known constructions of PPRFs the size of a punctured key is at least
Alml).

Another attempt to allow simulation of the sender is to add to the CRS an obfuscated
encryption program E’ = iO(Enc(pk, m,r)), augmented with a trapdoor in the simu-
lation. Just like in the initial scheme, the receiver should send pk to the sender; however,
instead of computing c directly using pk, the sender should run obfuscated program E’
on pk, m and r. This scheme allows to simulate both the sender and the receiver, and at
the same time keeps communication as short as in the original PKE. However, we can
only prove selective security, meaning that the adversary has to commit to the challenge
message m before it sees the CRS. This is a limitation of the puncturing technique be-
ing used: in the security proof the input to the program Enc, including message m, has
to be hardwired into the program.

We get around this issue by using another level of indirection, similar to the ap-
proach taken by [KSW14] to obtain adaptive security. Instead of publishing F/ =
iO(Enc(pk, m,r)) in the CRS, we publish a program GenEnc which generates E’ and
outputs it. The protocol works as follows: the receiver uses Gen to generate (pk, sk)
and sends pk to the sender. The sender runs GenEnc and obtains E’, and then executes
E'(pk,m,r) — c and sends ¢ back to the receiver. Note that GenEnc doesn’t take m
as input, therefore there is no need to hardwire m into CRS and in particular there is no
need to know m at the CRS generation step.

When this scheme uses [CHKO0S] as underlying NCE with erasures, it has rate 13.
The scheme from [[CHKOS] additionally requires the decisional composite residuosity
assumption.

Our second construction. We give another construction of NCE, which achieves nearly
optimal rate. That is, the amount of bits sent is |m| 4+ poly()), and by setting m to be
long enough, we can achieve rate close to 1. The new scheme assumes only indistin-
guishability obfuscation and one-way functions; there is no need for composite residu-
osity, used in our previous scheme.

Our construction proceeds in two steps. We first construct a primitive which we call
same-public-key non-committing encryption with erasures, or seNCE for short; essen-
tially this is a non-committing encryption secure with erasures, but there is an additional
technical requirement on public keys. Our seNCE scheme will have short ciphertexts,
i.e. ciphertext size is m + poly (). However, the public keys will still be long, namely
poly(m\).

The second step in our construction is to transform any seNCE into a full NCE
scheme such that the ciphertext size is preserved and the public key size depends only
on security parameter. We achieve this at the cost of adding a CRS.

Same-public-key NCE with erasures (seNCE). As a first step we construct a special
type of non-committing encryption which we can realize in the standard model (without
a CRS). This NCE scheme has the following additional properties:

— security with erasures: the receiver is allowed to erase its generation randomness
(but not sk); the sender is allowed to erase its encryption randomness. (This means
that sk is the only information the adversary expects to see upon corrupting both
parties.)

— same public key: the generation and simulation algorithms executed on the same
input r produce the same public keys.

Construction of seNCE. The starting point for our seNCE construction is the PKE con-
struction from 7O by Sahai and Waters [SW14]. Similarly to that approach we set our
public key to be an obfuscated program with a key k inside, which takes as inputs mes-
sage m and randomness r and outputs a ciphertext ¢ = (c1, ca) = (prg(r), Fx(prg(r))®
m), where F is a pseudorandom function (PRF). However, instead of setting % to be a
secret key, we set the secret key to be an obfuscated program (with k hardwired) which
takes an input ¢ = (¢, ¢2) and outputs Fi(c1) @ co. Once the encryption and decryp-
tion programs are generated, the key &k and the randomness used for the obfuscations
are erased, and the only thing the receiver keeps is its secret key. Note that ciphertexts
in the above scheme have length m + poly(\).

To see that this construction is secure with erasures, consider the simulator that sets
a dummy ciphertext c¢ to be a random value. To generate a fake decryption key sk,
which behaves like a real secret key except that it decrypts ¢y to a challenge message
m, the simulator obfuscates a program (with m, cy, k hardwired) that takes as input
(c1,c2) and does the following: if ¢; = ¢ +1 then the program outputs cyp @ ca & m,
otherwise the output is F(c1) @ co. Encryption randomness of the sender, as well as &
and obfuscation randomness of the receiver, are erased and do not need to be simulated.
(Note that the simulated secret key is larger than the real secret key. So, to make sure
that the programs have the same size, the real secret key has to be padded appropriately.)

Furthermore, the scheme has the same-public-key property: The simulated encryp-
tion key is generated in exactly the same way as the honest encryption key.

Note that this scheme has perfect correctness.

From seNCE to full NCE. Our first step is to enhance the given seNCE scheme, such
that the scheme remains secure even when the sender is not allowed to erase its encryp-
tion randomness. Specifically, following ideas from the deniable encryption of Sahai
and Waters [SW14], we add a trapdoor branch to the encryption program, i.e. the public
key. This allows the simulator to create fake randomness 7 gnc, Which activates this
trapdoor branch and makes the program output ¢y on input m. In order to create such
randomness, the simulator generates 7 ¢ gqc as an encryption (using a scheme with pseu-
dorandom ciphertextsﬂ) of an instruction for the program to output cy. The program will
first try to decrypt r s gnc and check whether it should output ¢ via trapdoor branch, or
execute a normal branch instead.

! For this purpose we use a puncturable deterministic encryption scheme (PDE), since it is iO-
friendly and has pseudorandom ciphertexts.

The above construction of enhanced seNCE still has the following shortcomings.
First, its public key (recall that it is an encryption program) is long: the program has
to be padded to be at least of size poly()) - |m|, since in the proof the keys for the
trapdoor branch are punctured and have an increased size, and therefore the size of
an obfuscated program is poly(mA). E] Second, the simulator still cannot simulate the
randomness which the receiver used to generate its public key, e.g. keys for the trapdoor
branch and randomness for obfuscation. Third, the scheme is only selectively secure,
meaning that the adversary has to fix the message before it sees a public key. This is due
to the fact that our way for explaining a given output (i.e. trapdoor branch mechanism)
requires hardwiring the message inside the encryption program in the proof.

We resolve these issues by adding another “level of indirection” for the generation
of obfuscated programs. Specifically, we introduce a common reference string that will
contain two obfuscated programs, called GenEnc and GenDec, which are generated
independently of the actual communication of the protocol and can be reused for un-
boundedly many messages. The CRS allows the sender and the receiver to locally and
independently generate their long public and private keys for the underlying enhanced
seNCE while communicating only a short token. Furthermore, we will only need to
puncture these programs at points which are unrelated to the actual encrypted and de-
crypted messages. The protocol proceeds as follows.

Description of our protocol. The receiver chooses randomness 7Genpec and runs a CRS
program GenDec(7Genpec)- This program uses 7Genpec to sample a short token ¢. Next
the program uses this token ¢ to internally compute a secret generation randomness
TseNCE, from which it derives (pk, sk) pair for underlying seNCE scheme. Finally, the
program outputs (¢, sk). In round 1 the receiver sends the token ¢ (which therefore is a
short public key of the overall NCE scheme) to the sender.

The sender generates its own randomness 7Gengnc and runs a CRS program GenEnc(t,
TGenEnc)- GenEnc, in the same manner as GenDec, first uses ¢ to generate secret r'seNcE
and sample (the same) key pair (pk, sk) for the seNCE scheme. Further, GenEnc gener-
ates trapdoor keys and obfuscation randomness, which it uses to compute a public key
program Pg,.[pk| of enhanced seNCE, which extends the underlying seNCE public key
with a trapdoor as described above. Pgnc[pk] is the output of GenEnc. After obtaining
Penc, the sender chooses encryption randomness g, and runs ¢ <— Pgne[pk](m, rgnc)-
In its response message, the sender sends c to the receiver, who decrypts it using sk.

Correctness of this scheme follows from correctness of the seNCE scheme, since at
the end a message is being encrypted and decrypted using the seNCE scheme. To get
some idea of why security holds, note that the seNCE generation randomness rsencE 1S
only computed internally by the programs. This value is never revealed to the adver-
sary, and therefore can be thought of as being “erased”. In particular, if we had a VBB
obfuscation, we could almost immediately reduce security of our scheme to security of
seNCE. Due to the fact that we only have O, the actual security proof becomes way
more intricate.

% To the best of our knowledge, in all known puncturable PRFs the size of a punctured key
applied to m is at least \|m)|

To see how we resolved the three issues from above (namely, with the length of the
public key, with simulating the receiver, and with selective security), note:

(a) The only information communicated between sender and receiver is the short
token ¢ which depends only on the security parameter, and the ciphertext ¢ which has
size poly(A) + |m/|. Thus the total communication is poly(\) 4 |m].

(b) The simulator will show slightly modified programs with trapdoor branches inside;
they allow the simulator to “explain” the randomness for any desired output, thus al-
lowing it to simulate internal state of both parties.

(c) We no longer need to hardwire message-dependent values into the programs in the
CRS, which previously made security only selective. Indeed, in a real world the inputs
and outputs of these programs no longer depend on the message sent. They still do de-
pend on the message in the ideal world (for instance, the output of GenDec is sk,,);
however, due to the trapdoor branches in the programs it is possible for the simulator to
encode sk, into randomness 7Genpec rather than the program GenDec itself. Therefore
m can be chosen adaptively after seeing the CRS (and the public key).

To give more details about adaptivity issues which come up in the analysis of the
simulator, let us look closely at the following three parts of the proof:

— Starting from a real execution, the first step is to switch real sender generation
randomness 7Genenc to fake randomness 7 ¢ Genenc (Which “explains” a real output
Penc). During this step we need to hardwire Pg, inside GenEnc, which can be
done, since Pg,. doesn’t depend on m yet.

— Later in the proof we need to switch real encryption randomness gy to fake ran-
domness 7 gnc. During this step we need to hardwire m into Pg,.. However, at
this point Pgnc is not hardwired into the program GenEnc; instead it is being en-
coded into randomness 7gengnc, and therefore it needs to be generated only when
the sender is corrupted (which means that the simulator learns m and can create
Penc with m hardwired).

- Eventually we need to switch real seNCE values pk, ¢, sk to simulated pk, cs, sky.
Before we can do this, we have to hardwire pk into GenEnc. Luckily, in the un-
derlying seNCE game the adversary is allowed to choose m after it sees pk, and
therefore the requirement to hardwire pk into the CRS program doesn’t violate
adaptive security.

In the proof of our NCE we crucially use the same public-key property of underlying
seNCE: Our programs use the master secret key MSK to compute the generation ran-
domness rence from token ¢, and then sample seNCE keys (pk, sk) using this random-
ness. In the proof we hardwire pk in the CRS, then puncture MSK and choose rsencE
at random. Next we switch the seNCE values, including the public key pk, to simulated
ones. Then we choose rsence as a result of a PRF, and unhardwire pk. In order to un-
hardwire (now simulated) pk from the program and compute (pk, sk) = Fmsk (7'seNcE)
instead, simulated pk generated from rncg should be exactly the same as the real pub-
lic key pk which the program normally produces by running seNCE.Gen (r¢ence). This
ensures that the programs with and without pk hardwired have the same functionality,
and thus security holds by iO.

An additional interesting property of this transformation is that it preserves the cor-
rectness of underlying seNCE scheme, meaning that if seNCE is computationally (sta-

tistically, perfectly) correct, then the resulting NCE is also computationally (statisti-
cally, perfectly) correct. Therefore, when instantiated with our perfectly correct seNCE
scheme presented earlier, the resulting NCE achieves perfect correctness. To the best of
our knowledge, this is the first NCE scheme with such property.

Shrinking the secret key. The secret key in the above scheme consists of an obfuscated
program D, where D is the secret key (i.e. decryption program) for the seNCE scheme,
together with some padding that will leave room to “hardwire”, in the hybrid distribu-
tions in the proof of security, the |m|-bit plaintext m into D. Overall, the description
size of D is [m|+O(X); when using standard IO, this means that the obfuscated version
of D is of size poly(|m|\).

Still, using the succinct Turing and RAM machine obfuscation of [KLW 15//CHIV 15|
BGLT 15 [CHI3] it is possible to obtain program obfuscation where the size of the ob-
fuscated program is the size of the original program plus a polynomial in the security
parameter. This can be done in a number of ways. One simple way is to generate the
following (short) obfuscated TM machine OU: The input is expected to contain a de-
scription of a program that is one-time-padded, and then authenticated using a signed
accumulator as in [KLW15]], all with keys expanded from an internally known short key.
The machine decrypts, authenticates, and then runs the input circuit. Now, to obfuscate
a program, simply one time pad the program, authenticate it, and present it alongside
machine OU with the authentication information and keys hardwired.

Augmented explainability compiler. In order to implement the trapdoor branch in
the proof of our NCE scheme, we use among other things the “hidden sparse triggers”
method of Sahai and Waters [SW14]]. This method proved to be useful in other appli-
cations as well, and Dachman-Soled et al [DKR15]] abstracted it into a primitive called
“explainability compiler”. Roughly speaking, explainability compiler turns a random-
ized program into its “trapdoored” version, such that it becomes possible, for those
who know faking keys, to create fake randomness which is consistent with a given
input-output pair.

We use a slightly modified version of this primitive, which we call an augmented
explainability compiler. The difference here is that we can use the original (unmodified)
program in the protocol, and only in the proof replace it with its trapdoor version. This is
important for perfect correctness of NCE: none of the programs GenEnc, GenDec, and
Enc in the real world contain trapdoor branches (indeed, if there was a trapdoor branch
in, say, encryption program Enc, it would be possible that an honest sender accidentally
chooses randomness which contains an instruction to output an encryption of 0, making
the program output this encryption of 0 instead of an encryption of m).

Organization. In section [2] we define the different variants of non-committing en-
cryption, as well as other primitives we use. In section [3] we define and construct an
augmented explainability compiler, used in the construction of our NCE. Our optimal-
rate NCE and a sketch of security proof are described in section 4]

2 Preliminaries

2.1 Non-committing Encryption and its Variants.

Non-committing encryption. Non-committing encryption is an adaptively secure en-
cryption scheme, i.e., it remains secure even if the adversary decides to see the cipher-
text first and only later corrupt parties. This means that the simulator should be able to
first present a “dummy” ciphertext without knowing what the real message m is. Later,
when parties are corrupted and the simulator learns m, the simulator should be able to
present receiver decryption key (or receiver randomness) which decrypts dummy c to
m and sender randomness under which m is encrypted to c.

Definition 1 A non-committing encryption scheme for a message space M = {0, l}l
is a tuple of algorithms (Gen, Enc, Dec, Sim), such that correctness and security hold.:

(pka Sk) — Gen(1>‘, rGen);
— Correctness: For all m € M Pr {m =m/|c « Enc(m, rgac); >1—
m’ + Dec(c)
negl(\).

— Security: An adversary cannot distinguish between real and simulated ciphertexts
and internal state even if it chooses message m adaptively depending on the public
key pk. More concretely, no PPT adversary A can win the following game with
more than negligible advantage:

A challenger chooses random b € {0,1}. If b = 0, it runs the following experiment
(real):
1. It chooses randomness rGen and creates (pk, sk) < Gen(1*,7¢en). It shows
pk to the adversary.
2. The adversary chooses message m.
3. The challenger chooses randomness rgqc and creates ¢ < Enc(pk, m; rgqac). It
shows (¢, TEnc, TGen) t0 the adversary.
If b =1, the challenger runs the following experiment (simulated):
1. It runs (pk®, c®) + Sim(1*). It shows pk? to the adversary.
2. The adversary chooses message m.
3. The challenger runs (r¢,.,7¢e,) < Sim(m) and shows (¢*,1¢,c, T&en) 10 the
adversary.
The adversary outputs a guess b’ and wins if b = b'.

Note that we allow Sim to be interactive, and in addition we omit its random coins.

In this definition we only spell out the case where both parties are corrupted, and
all corruptions happen after the execution and simultaneously. Indeed, if any of the
parties is corrupted before the ciphertext is sent, then the simulator learns m and can
present honest execution of the protocol; therefore we concentrate on the case where
corruptions happen afterwards. Next, m is the only information the simulator needs,
and after learning it (regardless of which party was corrupted) the simulator can already
simulate both parties; thus we assume that corruptions of parties happen simultaneously.
Finally, without loss of generality we assume that both parties are corrupted: if only
one or no party is corrupted, then the adversary sees strictly less information in the

experiment, and therefore cannot distinguish between real execution and simulation, as
long as the scheme is secure under our definition.

Note that this definition only allows parties to encrypt a single message under a
given public key. This is due to impossibility result of Nielsen [Nie02], who showed
that a secret key of any NCE can support only bounded number of ciphertexts. If one
needs to send many messages, it can run several instances of a protocol (each with a
fresh pair of keys). Security for this case can be shown via a simple hybrid argument.

Non-committing encryption in a programmable common reference string model. In this
work we build NCE in a CRS model, meaning that both parties and the adversary are
given access to a CRS, and the simulator, in addition to simulating communications and
parties’ internal state, also has to simulate the CRS. Before giving a formal definition,
we briefly discuss possible variants of this definition.

Programmable CRS. One option is to consider a global (non-programmable) CRS
model, where the CRS is given to the simulator, or local (programmable) CRS model,
where the simulator is allowed to generate a CRS. The first variant is stronger and more
preferable, but in our construction the simulator needs to know underlying trapdoors
and we therefore focus on a weaker definition.

Reusable CRS. Given the fact that in a non-committing encryption a public key can
be used to send only bounded number of bits, a bounded-use CRS would force parties to
reestablish CRS after sending each block of messages. Since sampling a CRS is usually
an expensive operation, it is good to be able to generate a CRS which can be reused for
any number of times set a priori. It is even better to have a CRS which can be reused
any polynomially many times without any a priori bound. In our definition we ask a
CRS to be reusable in this stronger sense.

Security of multiple executions. Unlike NCE in the standard model, in the CRS
model single-execution security of NCE does not immediately imply multi-execution
security. Indeed, in a reduction to a single-execution security we would have to, given a
challenge and a CRS, simulate other executions. But we cannot do this since we didn’t
generate this CRS ourselves and do not know trapdoors. Therefore in our definition we
explicitly require that the protocol remains secure even when the adversary sees many
executions with the same CRS.

Definition 2 An NCE scheme for a message space M = {0, l}l in a common refer-
ence string model is a tuple of algorithms (GenCRS, Gen, Enc, Dec, Sim) which satisfy
correctness and security.
CRS < GenCRS(1%);
| (pk, sk) < Gen(1*, CRS; 7'Gen); 1
¢ < Enc(m, CRS; rgnc); =
m’ <— Dec(CRS, ¢)

Correctness: Forallm € M Pr |lm=m

negl(\).

If this probability is equal to 1, then we say that the scheme is perfectly correct. E]
Security: For any PPT adversary A, advantage of A in distinguishing the following
two cases is negligible:

3 Note that this definition implies that there are no decryption errors for any CRS.

10

A challenger chooses random b € {0, 1}. If b = 0, it runs the following experiment
(real):

First it generates a CRS as CRS < GenCRS(1*,1). CRS is given to the adversary.
Next the challenger does the following, depending on the adversary’s request:

— On a request to initiate a protocol instance with session ID id, the challenger
chooses randomness Tgenia and creates (pkiq, skia) < Gen(1*,CRS, rgen,ia)- It
shows pkiq to the adversary.

— On a request to encrypt a message miq in a protocol instance with session ID id, the

challenger chooses randomness Tgnc,iq and creates cig <— Enc(pkig, mid; Tenc,id)- It

shows ciq to the adversary.

On a request to corrupt the sender of a protocol instance with ID id, the challenger

Shows Tenc,id to the adversary.

On a request to corrupt the receiver of a protocol instance with ID id, the challenger

Shows TGen,id fo the adversary.

Ifb =1, it runs the following experiment (simulated):
First it generates a CRS as CRS® « Sim(1*,1). CRS® is given to the adversary.
Next the challenger does the following, depending on the adversary’s request:

— On a request to initiate a protocol instance with session ID id, the challenger runs
(pky, cy) < Sim(12) and shows pks, to the adversary.

— On a request to encrypt a message miq in a protocol instance with session ID id,
the challenger shows c;; to the adversary.

— On a request to corrupt the sender of a protocol instance with ID id, the challenger
shows ¢, 14 < Sim(miq) to the adversary.

— On a request to corrupt the receiver of a protocol instance with ID id, the challenger
Shows 1, 4 < Sim(miq) to the adversary.

The adversary outputs a guess b’ and wins ifb = b'.

Constant rate NCE. The rate of an NCE scheme is how many bits the sender and
receiver need to communicate in order to transmit a single bit of a plaintext: NCE
scheme for a message space M = {0, l}l has rate f(I, \), if (|pk| + |¢|)/l = f(I, N).
If f(I,\) is a constant, the scheme is said to have constant rate.

Same-public-key non-committing encryption with erasures (seNCE). Here we define a
different notion of NCE which we call same-public-key non-committing encryption with
erasures (seNCE). First, such a scheme allows parties to erase unnecessary information:
the sender is allowed to erase its encryption randomness, and the receiver is allowed to
erase its generation randomness 7gen (but not its public or secret key). Furthermore,
this scheme should have “the same public key” property, which says that both real
generation and simulated generation algorithms should output exactly the same public
key pk, if they are executed with the same random coins.

Definition 3 The same-public-key non-committing encryption with erasures (seNCE)
for a message space M = {0, 1}l is a tuple of algorithms (Gen, Enc, Dec, Sim), such
that correctness, security, and the same-public-key property hold:

11

(pk, sk) + Gen(1*,7Gen);
— Correctness: Forallm € M Pr {m =m/|c < Enc(m, rgnc); >1-—
m’ + Dec(c)
negl(\).
— Security with erasures: No PPT adversary A can win the following game with
more than negligible advantage:

A challenger chooses random b € {0,1}. If b = 0, it runs a real experiment:
1. The challenger chooses randomness rcen and creates (pk, sk) < Gen(1*, rgen).
It shows pk to the adversary.
2. The adversary chooses a message m.
3. The challenger chooses randomness rgnc and creates ¢ < Enc(pk, m; rgac). It
shows c to the adversary.
4. Upon corruption request, the challenger shows to the adversary the secret key
sk.
If b =1, the challenger runs a simulated experiment:
1. A challenger generates simulated public key and ciphertext (pk?®, c®) + Sim(1>‘
It shows pk? to the adversary.
2. The adversary chooses a message m.
3. The challenger shows the ciphertext c® to the adversary.
4. Upon corruption request, the challenger runs sk*® < Sim(m) and shows to the
adversary simulated secret key sk*.
The adversary outputs a guess b’ and wins if b = b'.
— The same public key: For any r if Gen(1*,r) = (pk, sk); Sim(1*,r) = (pky¢, cy),
then pk = pky.

2.2 Puncturable Pseudorandom Functions and their variants

Puncturable PRFs. In puncrurable PRFs it is possible to create a key that is punctured
at a set S of polynomial size. A key & punctured at S (denoted k{S}) allows evaluating
the PRF at all points not in S. Furthermore, the function values at points in .S remain
pseudorandom even given k{S}.

Definition 4 A puncturable pseudorandom function family for input size n(\) and out-
put size m(\) is a tuple of algorithms {Sample, Puncture, Eval} such that the following
properties hold:

— Functionality preserved under puncturing: For any PPT adversary A which out-
puts a set S C {0,1}", forany x & S,

Pr{Fi(z) = Fy(sy(2) : k « Sample(1*), k{S} + Puncture(k, S)] = 1.

— Pseudorandomness at punctured points: For any PPT adversaries Ay, As, de-
fine a set S and state state as (S, state) < Ay (1%). Then

Pr[Ay(state, S, k{S}, Fi(S))] — Pr[Ax(state, S, k{S}, Uis|.m(r))] < negl(}A),

where F},(S) denotes concatenated PRF values on inputs from S, i.e. Fi(S) =

The GGM PRF |[GGM&4] satisfies this definition.

4 We omit the random coins and state of Sim.

12

Statistically injective puncturable PRFs. Such PRFs are injective with overwhelming
probability over the choice of a key. Sahai and Waters [SW14] show that if F is a
puncturable PRF where the output length is large enough compared to the input length,
and h is 2-universal hash function, then F} , = Fy () ® h(z) is a statistically injective
puncturable PRF.

Extracting puncturable PRFs. Such PRFs have a property of a strong extractor: even
when a full key is known, the output of the PRF is statistically close to uniform, as long
as there is enough min-entropy in the input. Sahai and Waters [SW 14] showed that if
the input length is large enough compared to the output length, then such PRF can be
constructed from any puncturable PRF F as F} , = h(Fy(x)), where h is 2-universal
hash function.

3 Augmented Explainability Compiler

In this section we describe a variant of an explainability compiler of [DKRI15]. This
compiler is used in our construction of NCE, as discussed in the introduction.

Roughly speaking, explainability compiler modifies a randomized program such
that it becomes possible, for those who know faking keys, to create fake randomness 7 ¢
which is consistent with a given input-output pair. Explainability techniques were first
introduced by Sahai and Waters [SW14]] as a method to obtain deniability for encryption
(there they were called “a hidden sparse trigger meachanism”). Later Dachman-Soled,
Katz and Rao [DKR15]] generalized these ideas and introduced a notion of explainabil-
ity compiler.

We modify this primitive for our construction and call it an “augmented explain-
ability compiler”. Before giving a formal definition, we briefly describe it here. Such
a compiler Comp takes a randomized algorithm Alg(input;w) with input input and
randomness v and outputs three new algorithms:

— Comp.Rerand(Alg) outputs a new algorithm Alg’ (input; r) which is a “rerandom-
ized” version of Alg. Namely, Alg’ first creates fresh randomness u using a PRF on
input (input, r) and then runs Alg with this fresh randomness .

— Comp.Trapdoor(Alg) outputs a new algorithm Alg” (input;r) which is a “trap-
doored” version of Al g', which allows to create randomness consistent with a given
output: namely, before executing Alg’, Alg” interprets its randomness 7 as a ci-
phertext and tries to decrypt it using internal key. If it succeeds and r encrypts an
instruction to output output, then Alg” complies. Otherwise it runs Alg’.

— Comp.Explain(Alg) outputs a new algorithm Explain(input, output) which out-
puts randomness for algorithm Alg” consistent with given input and output. It
uses an internal key to encrypt an instruction to output output on an input input,
and outputs the resulting ciphertext.

Definition 5 An augmented explainability compiler Comp is an algorithm which takes
as input algorithm Alg and randomness and outputs programs PRrerand, PTrapdoors PExplain:
such that the following properties hold:

13

— Indistinguishability of the source of the output. For any input it holds that
{(Prapdoor; PExplain, output) : r < U, output < Alg(input;r)}
and
{(Prapdoor; PExplain, output) : r < U, output <— Prrapdoor (input; r)}

are indistinguishable.
— Indistinguishability of programs with and without a trapdoor. Pgrerang and
Prapdoor are indistinguishable.
— Selective explainability. Any PPT adversary has only negligible advantage in
winning the following game:
1. Adv fixes an input input™;
The challenger runs Prerand, PTrapdoor, PExplain <— Comp(Alg);
It chooses random r* and computes output™ < Prrapdoor (input™; r*);
It chooses random p and computes fake 1% <— Pexplain (input*, output™; p)
It chooses random bit b. If b = 0, it shows (PTrapdoor; PExplain, output™, 1),
else it shows (PTrapdoor, PExplain, output™, r;‘c)
6. Adv outputs b’ and wins if b =1’

SRS

Differences between [DKR15] compiler and our construction. For the reader familiar
with [SW14], [DKR15], we briefly describe the differences.

First, we split compiling procedure into two parts: the first part, rerandomization,
adds a PRF to the program Alg, such that the program uses randomness F(input,r)
instead of r. The second part adds a trapdoor branch to rerandomized program. This is
done for a cleaner presentation of the proof.

Second, we slightly change a trapdoor branch activation mechanism: together with
faking keys we hardwire an image S of a pseudorandom generator into the program.
Whenever this program decrypts fake r, it follows instructions inside 7 only if these
instructions contain a correct preimage of S. This trick allows us to first change S
to random and then to indistinguishably “delete” the whole trapdoor branch from the
program. Thus it becomes possible to use a program without a trapdoor in the protocol
(and only in the proof change it to its trapdoor version), which is crucial for achieving
perfect correctness.

Construction. Our explainability compiler is described in Figure [T} It takes as in-
put algorithm Alg and randomness r. It uses r to sample keys Ext (for an extracting
PRF), f (for a special encryption scheme called puncturable deterministic encryption,
or PDE[SW14]), as well as random s, and randomness for Q. It sets S = prg(s). Then
it obfuscates programs Rerand[Alg, Ext], Trapdoor[Alg, Ext, f, S], and Explain[f, s]. It
outputs these programs.

Theorem 1. Algorithm Comp presented in Figure [I| is an augmented explainability
compiler.

The proof of security can be found in the full version of the paper.

14

Explainability compiler Comp.

Program Comp(Alg;r)
Inputs: Algorithm Alg, randomness r

1. Use r to sample keys Ext (for extracting PRF), f (for PDE), as well as random s and ran-
domness for iO r1, 12, 3.

2. Set S « prg(s);

3. Set Prerand < iO(Rerand|[Alg, Ext];r1), P, < iO(Trapdoor|Alg, Ext, f, S];r2), and
Pexplain < 1O (Explain[f, s]; r3).

4. OUtpUt PRerand, PTrapdoon and IDEprain-

Program Rerand

Program Rerand[Alg, Ext](input;r)
Constants: underlying randomized algorithm Alg(input; u), a key for extracting prf Ext
Inputs: input input, randomness r

1. Create randomness u < Fex (input, r);
2. output output < Alg(input;u)

Program Trapdoor

Program Trapdoor[Alg, f, Ext, S|(input;r)

Constants: underlying randomized algorithm Alg(input; u), a faking key f, a key for extracting
prf Ext, prg image S

Inputs: input input, randomness r

1. Trapdoor branch:
(a) decode out <— PDE.Decy(r); if out = L then goto normal branch;
(b) parse out as (input’, output’, s', p). If input = input’ and prg(s’) = S then output
output’ and halt, else goto normal branch;
2. Normal branch:
(a) Create randomness u < Fex(input, 1);
(b) output output < Alg(input;u)

Program Explain

Program Explain[f, s](input, output; p)
Constants: a faking key f, secret s, which is a prg preimage of S
Inputs: input and output (input, output), randomness p

1. output r - PDE.Ency (input, output, s, prg(p))

Fig. 1: Explainability compiler and programs used.

15

4 Optimal-rate Non-committing Encryption in the CRS Model.

In this section we show how to construct a fully non-committing encryption with rate
1+ o(1). A crucial part of our protocol is the underlying seNCE scheme with short
ciphertexts, which we will transform into a full NCE in section[@

4.1 Same-public-key Non-committing Encryption with Erasures

In this section we present our construction of the same-public-key non-committing en-
cryption with erasures (seNCE for short) (defined in section 2] definition [3)), which is a
building block in our construction of a full fledged NCE.

Inspired by Sahai and Waters [SW14] way of converting a secret key encryption
scheme into a public-key encryption, we set our public key to be an obfuscated encryp-
tion algorithm pk = iO(Enclk]) (see Figure [2). To allow the simulator to generate a
fake secret key, we apply the same trick to the secret key: we set the secret key to be an
obfuscated decryption algorithm with hardcoded PRF key, namely sk = iO(Dec[k]).
In other words, the seNCE protocol proceeds as follows: the receiver generates the ob-
fuscated programs pk, sk and then erases generation randomness, including the key k.
Then it sends pk to the sender; the sender encrypts its message m, erases his encryption
randomness, and sends back the resulting ciphertext ¢, which the receiver decrypts with
sk. We present the detailed description of the seNCE protocol in Figure

Theorem 2. The scheme given on Fig. 2] is the same-public-key non-committing en-
cryption scheme with erasures, assuming indistinguishability obfuscation for circuits
and one way functions. In addition, it has ciphertexts (the second message in the proto-
col) of size poly(X) + |m|. The protocol is also perfectly correct.

Proof. We show that the scheme from Figure[2] is a seNCE and has short ciphertexts.

Perfect correctness. The underlying secret key encryption scheme is perfectly correct,
since Dec(Enc(m,r)) = Fr(c1) @ (Fr(c1) @ m) = m. Due to perfect correctness of
10, our seNCE protocol is also perfectly correct.

Security with erasures: We need to show that real and simulated pk, ¢, sk are indis-
tinguishable, even when the adversary can choose m adaptively after seeing pk.

1. Real experiment. In this experiment Pg,. and Ppe are generated honestly using
Gen, ¢* is a ciphertext encrypting m* with randomness r*, i.e. ¢j = prg(r*), c5 =
F(ct) & m*.

2. Hybrid 1. In this experiment c¢j is generated at random instead of prg(r™*).
Indistinguishability from the previous hybrid follows by security of the PRG.

3. Hybrid 2. In this experiment we puncture key k in both programs Enc and Dec,
more specifically, we obfuscate programs Pg,. = i{O(Enc:1[k{c}}]),

Ppec = 1O(SimDec[k{c}}, ¢*, m*]). We claim that functionality of these programs
is the same as that of Enc and Dec:

16

The seNCE Protocol:
Inputs: sender’s message m
— Round 1. The receiver chooses randomness rgen and generates keys (Pgnc, Ppec)
Gen(rgen). It sends Penc to the sender and erases 7gen.-
— Round 2. The sender chooses randomness re,c and generates a ciphertext ¢ <
Penc(m; renc). It sends ¢ to the receiver and erases rgnc.
— The receiver decrypts m’ < Ppec(c) and outputs m/.

Program Gen(r)

Inputs: randomness r which consists of three parts 7 = (r1,72,73)

(a) Set k < r1 and generate Penc < i{O(Enc[k]; 72) and Ppec < O (Dec[k]; r3).
(b) Output (Pgnc, Ppec)

Program Enc[Kk](m, r) // hardcoded PRF key &

Inputs: message m, randomness 7

Program Size: this program is padded to be of the maximum size of Enc and Enc:1
(a) Setcy < prg(r) and ¢2 < Fr(c1) & m.

(b) output ¢ = (c1, ¢2)

Program Dec[k](c) /l hardcoded PRF key k&

Inputs: ciphertext ¢ consisting of two parts (c1, c2)

Program Size: this program is padded to be of the maximum size of Dec and SimDec.
(a) Output F(c1) @ ca.

Fig.2: seNCE protocol

Indeed, in Enc:1 (defined in Figure), ¢} is random and thus with high probability
it is outside the image of the PRG; therefore no input r results in evaluating F at the
punctured point ¢}, and we can puncture safely. In SimDec (defined in Figure [3)),
if ¢c; # ¢j, then the program behaves exactly like the original one (i.e. computes
Fi(c1) @ c2); if ¢4 = ¢f, then SimDec outputs ¢5 @ co @ m = (Fi(c}) & m) @
co ® m = Fi(c}) @ co, which is exactly what Dec outputs when ¢; = ¢}. Note
that ¢} is random (and thus independent of m), therefore pk = Enc:1[k{c}}] can
be generated before the message m* is fixed.

Indistinguishability from the previous hybrid follows by the security of :O.

4. Hybrid 3. In this hybrid we switch ¢} from Fj(c}) ®m™* to random. This hybrid re-
lies on the indistinguishability between punctured value Fi(c;) and a truly random
value, even given a punctured key k{cj}.

Indeed, to reconstruct this hybrid, first choose random ¢} and get k{c}} and val*
(which is either random or F(c})) from the PPRF challenger. Show obfuscated
Enc : 1[k{c{}] as a public key. When the adversary fixes message m*, set ¢ =
val* @ m* and upon corruption show obfuscated SimDec[k{c}}, ¢*, m*]. If val*
is truly random, then ¢5 = val* @& m* is distributed uniformly and thus we are in
hybrid 3. If val* is the actual PRF value, then ¢5 = Fj(c}) & m* and we are in
hybrid 2.

Indistinguishability holds by security of a punctured PRF.

17

Simulation:

(a) Generate a simulated public key Pgnc as follows: choose a random PRF key k and random-
ness r, set
Penc iO(Enc[k];).

(b) Generate a simulated ciphertext ¢* = (c7, ¢3) for random c7, c5.

(c) Generate a simulated receiver’s internal state Ppec for message m™ as follows:
Ppec < i1O(SimDeclk, ¢*, m™]).

Program SimDec[k, c*, m*](c) // hardcoded PRF key k, dummy ciphertext ¢*, challenge
message m™

Inputs: ciphertext ¢ which consists of two parts (c1, ¢2)

Program Size: this program is padded to be of the maximum size of Dec and SimDec.

(a) If c1 = cf, output ¢; @ c2 @ m™. Otherwise, output Fi(c1) @ ca.

Fig.3: seNCE Simulator.

Program Enc:1[k{cj}|(m,r) //hardcoded punctured PRF key k{c7 }

Inputs: message m, randomness 7

Program Size: this program is padded to be of the maximum size of Enc and Enc:1
(@) Setecr < prg(r) and c2 < Fryery(c1) @ m.

(b) Output ¢ = (c1, c2).

Fig.4: Program Enc:1 used in the proof.

5. Hybrid 4 (Simulation). In this hybrid we unpuncture the key k in both programs
and show Pgnc < iO(Enclk]), Ppec < iO(SimDeclk, c*, m*]).
This is without changing the functionality of the programs: Indeed, in Enc no ran-
dom input 7 results in prg(r) = ¢}, thus we can remove the puncturing. In Dec:1
due to preceding “if”” no input ¢ causes evaluation of Fj .+, thus we can unpunc-
ture it as well.

The indistinguishability from the previous hybrid follows by the security if the i O.

We observe that the last hybrid is indeed the simulation experiment described in Fig-
ure ¢* is a simulated ciphertext since ¢} is random, ¢ = Fy(c}), Penc is honestly
generated, and Ppec is a simulated key SimDec[k, ¢*, m*|, which decrypts ¢* to m*.
Thus, we have shown that this scheme is non-committing with erasures.

The same public key. Both real generation algorithm Gen and the simulator on random-
ness rgen = (71,72, 3) produce exactly the same public key pk = iO(Enc[r1];r2).

Efficiency: Our PRG should be length-doubling to ensure that its image is sparse. Thus
|e1] = 2, and |c2| = |m|. Thus the size of our ciphertext is 2\ + |m)|.

18

4.2 From seNCE to full NCE

In this section we show how to transform any seNCE (for instance, seNCE constructed
in Section {.T) into full non-committing encryption in the CRS model. We start with a
brief overview of the construction:

Construction. Our CRS contains algorithms Comp.Rerand(GenEnc) and Comp.Rerand
(GenDec) which share master secret key MSK. Both programs can internally generate
the parameters for the underlying seNCE scheme using their MSK and then output an
encryption program or a decryption key. More specifically, GenDec takes a random
input, produces generation token ¢ and then uses this token and MSK to generate ran-
domness ryce for seNCE.Gen. Then the program samples seNCE keys pk, sk from
rnce- It outputs the token ¢t and the generated decryption key sk for a seNCE scheme.
The receiver keeps sk for itself and sends the token ¢ to the sender.

GenEnc, given a token ¢, can produce (the same) pair (pk, sk) and outputs an algo-
rithm Comp.Rerand(Enc,y), which has pk hardwired. This algorithm takes a message
m and outputs its encryption ¢, which the sender sends back to the receiver. Then re-
ceiver decrypts it using sk.

We present our full NCE protocol and its building block functions GenEnc, GenDec,
Enc in Figure 5]

Theorem 3. Assuming Comp is a secure explainability compiler, seNCE is a secure
same-public-key NCE with erasures with a ciphertext size O(poly(\)) +m, and assum-
ing one-way functions, the described construction is a constant-rate non-committing
public key encryption scheme in a common reference string model. Assuming perfect
correctness of underlying seNCE and Comp, our NCE scheme is also perfectly correct.

4.3 Proof of the Theorem 3]

Proof. We first show correctness of the scheme. Next we present a simulator and argue
that the scheme is secure. Finally we argue that the scheme is constant-rate.

Correctness. The presented scheme is perfectly correct, as long as the underlying
seNCE and Comp are perfectly correct: First, due to perfect correctness of Comp, using
compiled versions Comp.Rerand(GenEnc), Comp.Rerand(GenDec), Comp.Rerand(Enc)
is as good as the using original programs. Next, both the sender and receiver generate
public and secret seNCE keys as (pk, sk) < seNCE.Gen(Fmsk(t)). The sender also
generates ¢, which is an encryption of m under pk, which is decrypted under sk by
receiver. Thus the scheme is as correct as the underlying seNCE scheme is.

Since the protocol for seNCE which we give in section 4. 1] has perfect correctness,
the overall NCE scheme, when instantiated with our seNCE protocol from section
also achieves perfect correctness.

Description of the simulator In this subsection we first explain which variables the
adversary sees and then describe our simulator.

19

The NCE Protocol

CRS: programs Pgengnc and Pgenpec, Where
Pgenenc = Comp.Rerand(GenEnc[MSK]), Pgenpec = Comp.Rerand(GenDec[MSK])
Inputs: sender’s message m

1. Round 1. The receiver chooses randomness rgenpec and generates (t,sk) <
P Genbec(7GenDec)- The receiver sends ¢ to the sender.

2. Round 2. The sender chooses randomness 7'genenc and generates Penc <— Pgenknc (t; GenEnc)-
Then the sender chooses randomness 7gqc and encrypts ¢ <— Penc(m; 7Enc). The sender sends
c to the receiver.

3. The receiver decrypts m’ <— seNCE.Decy (c) and outputs m’

Program GenEnc[MSK](¢; e)
// hardcoded values: master key MSK
Inputs: token ¢, randomness e

1. Set the randomness rnce < Fusk (t), run (pk, sk) < seNCE.Gen(rnce).-
2. Generate Pgnc +— Comp.Rerand(Enc[pk]; e).
3. Output the program Pgyc.

Program Enc[pk](m; u)
/I hardcoded values: seNCE public key pk
Inputs: message m, randomness u

1. Output ciphertext ¢ «— seNCE.Encpy (m; u).

Program GenDec[MSK](w)
// hardcoded values: master key MSK
Inputs: randomness w

1. Generate token ¢ < prg(w).
2. Set the randomness rnce < Fusk (t), run pk, sk < seNCE.Gen(rncE).
3. Output (¢, sk).

Fig.5: The NCE Protocol.

20

The view of the adversary. The view of the adversary consists of the CRS (programs
P&enenc: PGenbec)> as Well as the communication and the internal states of several pro-
tocol instances. Namely, for each protocol instance the adversary sees the following
variables:

1. The first protocol message t*, after which the adversary assigns an input m for this
protocol instance;

2. The second protocol message c*;

3. The sender internal state 7£,_, "'Cengncs

4. The receiver internal states ¢, pec-

*

Other values, such as P£, . and sk*, can be obtained by the adversary by running pro-
grams in the CRS: P{, . < P& enc (B TEenenc)s (SE*, %) <= Péanpec (TEenDec)-
Simulation. The simulator runs the compiler Comp on programs Enc, GenEnc, GenDec
and sets a simulated CRS to be a description of programs Comp.Trapdoor(GenEnc),
Comp.Trapdoor(GenDec). The difference from the real-world CRS is that these sim-
ulated programs have a trapdoor branch inside them, which allows the simulator to
produce randomness such that a program outputs a desired output on this randomness.
The simulator keeps programs Explg,. = Comp.Explain(Enc),

Explgenene = Comp.Explain(GenEnc), Explcenpec = Comp.Explain(GenDec) for later
use.

— CRS generation. The simulator sets the CRS to be a description of programs

P&enenc = Comp.Trapdoor(GenEnc), P¢.,pec = Comp.Trapdoor(GenDec).
Next the simulator responds to requests of the adversary. The adversary can in-
teractively ask to setup a new execution of the protocol (where the input m can
be chosen based on what the adversary has already learn from other executions),
or ask to deliver messages or corrupt parties in protocols which are already being
executed. Below we describe what our simulator does in each case:

— Simulation of the first message. If the receiver is already corrupted, then the
simulator generates the first message by choosing random r¢, .. and running
(t*, sk*) = P&anpec(TEenbec)- Otherwise the simulator chooses random ¢* as the
first message.

— Simulation of the second message. If either the sender or the receiver is already
corrupted, then the simulator learns m and therefore can generate the second mes-
sage honestly. If neither the sender nor the receiver in this execution are corrupted
by this moment, the simulator runs (pk7}, ;) < seNCE.Sim(Fmsk (2)) and gives
¢} to the adversary as the second message.

— Simulation of the sender internal state. If either the sender or the receiver had
been corrupted before the second message was sent, then the simulator has gener-
ated the second message honestly and can thus show true sender randomness.
Otherwise it first generates a program Pg, . = Comp.Trapdoor(Enc[pk}]) with

simulated pk} hardwired inside. Next it encodes m™, ¢} into sender encryption

randomness, 1.e. Sets 7} g, Explg,(m*, c};pg) for random p3; so that P,

on input (m*, 7% g,.) outputs c}.

21

Finally, it encodes Pg, . into 7% cegnes 1-€. sets the sender’s generation randomness
T;,GenEnc A EXpIGenEnc (t*’ PEnc; ,02) for random P2, SO that PEenEnc outputs P>|Iénc
on input (t*, 7} Gengnc)-

The pair (7'} enkncs 7'F Enc) 1 St to be the sender internal state.

Simulation of the receiver internal state. If the corruption happens before the
first message is sent, then the simulator has generated the first message honestly
and thus can show true receiver internal state.

If corruption happens after the first message, but before the second, then the first
message t* was generated at random. In this case the simulator computes sk*
seNCE.Gen(Fusk (t*)). It encodes (t*, sk*) into receiver randomness, i.e. sets

7% GenDec < EXPlgenpec(t™; sk™; p1) forrandom p1, so that P&, pec ONINPULT Gonpec
outputs (t*, sk™*).

Simulation

. Generate a CRS:

(a) Choose a PRF key MSK and randomness pcenenc, fPGenDec

(b) Compute P&, nene + Comp.Trapdoor(GenEnc[MSK]; pcenknc),
Explgenenc < Comp.Explain(GenEnc[MSK]; pgenknc)-

(c) Compute P&,pec + Comp.Trapdoor(GenDec[MSK]; pcenbec),
Explgenpec < Comp.Explain(GenDec[MSK]; pcenbec)-

(d) Set the CRS t0 be (P&enencs Ptenbec)- Publish the CRS.

. Generate communications in the protocol:

(a) Choose a random t* and generate rycg < Fusk (™). Show t* as the first message in
the protocol.

(b) Run the seNCE simulator to simulate the public key pk} < seNCE.Sim(rfce)

(c) After the adversary decides on the message m”, run the seNCE simulator c} <
seNCE.Sim(rycg) to generate a simulated ciphertext.

(d) Show c} as the second message in the protocol.

. Generate parties’ internal state consistent with message m™ and communications:

(a) Run the seNCE simulator to create a simulated secret key: sk} < seNCE.Sim(st, m™)

(b) Set the receiver’s randomness '} genpec — EXPlgenpec(t™, 8kF; p1) for random p1.

(c) Compute P, <= Comp.Trapdoor(Enc[pk]; penc)s
Explg,. <= Comp.Explain(Enc[pk]; penc)-

(d) Set the sender’s generation randomness 77 genenc = EXPlgengnc(t™, PEnc: p2) for ran-
dom p2.

(e) Set the sender’s encryption randomness 77 g, < Explg,.(m™, ¢}; p3) for random ps.

(f) Show (7% Genkncs T'F.Enc) @s the sender’s internal state and '} genpec as receiver’s internal
state.

Fig. 6: Simulation.

If corruption happens after the second message, then the simulator runs seNCE sim-
ulator and gets fake secret key sk} which decrypts dummy ¢’ to m*, chosen by the
adversary. Next it encodes (t*, sk}) into receiver randomness, i.€. Sets '} Genpec <
Explgenpec (t*, sk}; p1) for random p1, so that P, pe. 0N input 7% o pec OUtPULS
(t*, sk*%).

f

22

Note that simulation of each protocol instance is independent of simulation of other
protocol instances (except for the fact that they share the same CRS). Therefore in order
to keep the description of the simulator simple enough, in Figure[§ we present a detailed
description of the simulator for a single execution only; it can be trivially generalized to
a multiple-execution case according to what is written above. In addition, the simulator
is presented for a difficult case, i.e. when nobody is corrupted by the time the ciphertext
is sent, and therefore the simulator has to present a dummy c and later open it to a
correct m.

Next we outline the intuition for the security proof and after that provide the detailed
description of the hybrids.

Overview of the analysis of the simulator Before presenting hybrids, let us give a
roadmap of the proof: Starting from the real execution, we first switch the programs
in the CRS: instead of compiling them with Comp.Rerand, we compile them using
Comp.Trapdoor; in other words, we add trapdoor branches to the programs in the CRS,
in order to allow creating fake randomness which explains a given output. Next we
change what the simulator shows as internal states of the parties: instead of showing
their real randomness, the simulator shows fake randomness (which explains outputs of
programs from a real execution, i.e. this randomness explains honestly generated sk*,
¢, and PZ,). Our next step is to puncture the key MSK{¢*} in both CRS programs.
This allows us to switch seNCE generation randomness g from Fysk (t*) to a ran-
dom value; this means that seNCE parameters (pk*, sk*) are now freshly generated and
do not depend on the rest of an experiment anymore. Therefore we can use security of
seNCE and switch seNCE values (pk*, c*, sk*) from real to simulated (in particular,
the simulator hardwires these simulated c;, sk;‘c into fake randomness, instead of hard-
wiring real-execution c*, sk*). Next we undo previous hybrids: we set ry g as the result
of Fmsk (t*), and then unpuncture MSK{¢*} in both CRS programs.

In security proof we will be using the following properties of explainability com-
piler Comp for any algorithm Alg:

1. Indistinguishability of programs with and without trapdoor branch;
Comp.Rerand(Alg) ~ Comp.Trapdoor(Alg).

2. Indistinguishability of explanations:
given programs P(x;r) = Comp.Trapdoor(Alg) and Expl = Comp.Explain(Alg),
it is impossible to distinguish between real randomness and input (z,) and fake
randomness (z,r; < Comp.Expl(z,P(x,r)). In particular, evaluating P(z;7y)
results in P(x,r), with the only difference that the computation P(z;7) uses the
trapdoor branch, which is however undetectable.

3. Indistinguishability of source of the output:
given programs P(x;r) = Comp.Trapdoor(Alg) and Expl = Comp.Explain(Alg),
it is infeasible to tell whether a given output y was obtained by running original
program Alg or its compiled version Comp.Trapdoor(Alg).

We omit proofs of these statements, since they generally follow the proofs of explain-
ability compiler in previous works [DKR15l], with some adaptations for our scenario
(such as added indistinguishablity of programs with and without a trapdoor). Formal
proofs appear in the full version of our paper.

23

We now briefly describe each hybrid. The full description with detailed security
reductions is given in the full version of the paper.

— Hybrid 0. We start with a real execution of the protocol.

— Hybrids 1a-1b. We change how we generate the CRS programs: instead of ob-
taining them as Comp.Rerand(GenEnc) and Comp.Rerand(GenDec), we generate
them as Comp.Trapdoor(GenEnc) and Comp.Trapdoor(GenDec). Security holds
by indistinguishability of programs with and without trapdoor branch.

Next for every execution i, in which the receiver is corrupted between the first
and the second messages, we run hybrids 2; — 3;.

e Hybrid 2;. Instead of showing the real randomness ¢, pe., the simulator
shows fake 7% conpec, Which encodes ¢, sk*. These experiments are indistin-
guishable because of the indistinguishability of explanation: indeed, P¢,, pec
on both inputs r¢.,pec and '} Genpec OULPULS ¢*, sk™, therefore true random-
NesS T'Genpec 1S indistinguishable from randomness 7% ¢onpec, Which explains
the output ¢*, sk*.

Note that since there is no non-random input to our program Pgenpec, it is
enough to use the selective indistinguishability of explanation.

e Hybrid 3;. We set t* = prg(w*) for random w* and then compute sk* as
(pk*, sk*) + seNCE.Gen(Fusk(t*)). In other words, we compute (t*,sk™)
as the result of running GenDec instead of Comp.Trapdoor(GenDec). Indis-
tinguishability holds by indistinguishability of the source of the output for the
compiler Comp and program GenDec.

e Hybrid 4;. Finally we set t* to be randomly chosen instead of being the result
of prg(w*). Security follows from security of the prg.

This is the simulation for the case when the receiver is corrupted between the
first and the second message.
For every execution 7, in which both corruptions happen after the second mes-
sage is sent, we run hybrids 2; — 5h;.

— Hybrid 2;. Instead of showing the real randomness r¢.,g., the simulator shows

fake % Genenc, Which encodes t*, Pg, . These experiments are indistinguishable

because of the indistinguishability of explanation: indeed, P¢,,g,. on both inputs

U, TGenkne ANd t*, 7% cenpnc OUtpUts FE., and by the theorem true randomness
TGenEnc 18 indistinguishable from fake randomness 7% .g,. Which explains P¢
on input t*. Note that non-random input to our program Pgengnc is t*, obtained by
running t* <— P¢, pec ("&enbec) for random ré, ... i.e., it can be generated before
a CRS is shown to the adversary. Thus it is enough to use the selective indistin-
guishability of explanation.

— Hybrid 3;. In the next step instead of showing the real r¢,, pec» the simulator shows
fake 7% Genpec: Which encodes t*, sk™. These experiments are indistinguishable be-
cause of the indistinguishability of explanation: indeed, P¢,,p.. on both inputs
TGenDec AN 7% Genpec OULPULS ¢*, sk™, therefore true randomness r¢e,pe. 18 indistin-
guishable from randomness 1} ¢.,pec, Which explains the output ¢, sk* on empty
non-random input.

Note that since there is no non-random input to our program Pgenpec, it is enough
to use the selective indistinguishability of explanation.

24

— Step 4. Next global step is to switch random 7, to fake r% g, which encodes
(m*, ¢*). We do this in several steps:

e Hybrid 4a;. We obtain ¢*, sk* by running GenDec on random w* instead of
running P&, p.. = Comp.Trapdoor(GenDec) on ¢, pe.. Indistinguishability
holds by indistinguishability of a source of the output for programs GenDec
and Comp. Trapdoor(GenDec).

e Hybrid 4b;. We choose t* at random instead of choosing it as prg(w*) for ran-
dom w*. (pk*, sk™) are then obtained from rjz = Fmsk(t*). Indistinguisha-
bility holds by security of a prg.

o Hybrid 4c¢;. We generate P¢, . by running GenEnc on ¢* and random e*, in-
stead of running P%,,z,. = Comp.Trapdoor(GenEnc) on (t*, &, gnc)- Secu-
rity holds by indistinguishability of source of the output for programs GenEnc
and Comp.Trapdoor(GenEnc).

e Hybrid 4d,. We generate the program P _ < Comp.Trapdoor(Enc[pk*])
instead of Comp.Rerand(Enc[pk®]). Security holds by indistinguishability of
programs with and without trapdoor branch for program Enc.

e Hybrid 4e;. In this step we finally change rg,. to 7} g as follows: we first cre-
ate a CRS and give it to the adversary. Then we generate random ¢* and show
t* to the adversary as the first message in the protocol. Next the adversary fixes
an input m*. Then we generate pk*, sk* as seNCE.Gen(Fusk (t*)) and give
Enc() = seNCE.Enc,-() to the explainability challenger as the underlying
program. The challenger chooses random e*, runs Comp(Enc; e*) and gives
us either (7g,.,m*, c*, Pg,) or (1} g,.,m*, ¢, Pg,.), where r _ is random,

Pgn. = Comp.Trapdoor(Enc;e®), ¢* = Pg (m*;7g,.), and r} g, encodes

m*, c*. We show the given c* as the second message in the protocol. Once

asked to open the internal state, we present the given r¢ . or T;Z’Enc, generate

T &enEnc €Xplaining the given P§ _, and generate r&, p.. explaining (t*, sk*).

We can rely on the selective indistinguishability of explanation for program
Comp.Trapdoor(Enc) since at the moment when we need to see the challenge
in explanation game (i.e., when we need to show c* to the adversary), PE, s
input m* is already fixed.

— Step 5;. Our next global step is to change the underlying seNCE values to simu-
lated. We proceed in several steps:

o Hybrids 5a;-5b;. We puncture MSK at ¢*. In P&, p.. We can puncture imme-
diately, since due to the sparseness of the length-doubling prg, t* lies outside of
the prg image and therefore Fisk is never called at t*. In P¢, g, . we hardwire

pk* and use it whenever ¢ = t*; otherwise, we use the punctured key MSK{¢* }
to generate rnce and then sample pk.

e Hybrid 5c¢;. Once MSK{¢*} is punctured, we can choose the generation ran-
domness for underlying seNCE scheme 7y at random.

e Hybrids 5d;. We generate c* as a result of running Enc on m* and random
u* instead of running P§ = Comp.Trapdoor(Enc) on (m*;rf,.). We rely on
indistinguishability of the source of the output for program Enc.

o Hybrid Se;. Next we switch the seNCE values from real to simulated: namely,
¢} is now simulated and sk is now a simulated key decrypting ¢} to m*. We
rely on the security of the underlying seNCE. Here we crucially use the fact

25

that in the underlying NCE scheme pk* is shown before the adversary chooses
a message, since we hardwire this pk* into the CRS (in P&, g,.0)-

o Hybrid 5f;. We switch back 7§ ¢ to be the result of Fysk (t*).

o Hybrid 5g;-5h;. We unpuncture MSK{¢*} in P¢, ¢, and P&, pe. and remove
the hardwired pk* from P¢, ... To remove hardwired pk*, we crucially use
the fact that pk*, although simulated, is the same as real pk*, generated from
randomness Fysk (t*), which is guaranteed by the same-public-key property
of seNCE.

This concludes the overview of hybrids. For the detailed description of the hybrids
with security reductions, see the full version of the paper.

Sizes in our construction Our construction has a lot of size dependencies. We present

a size diagram on Figure [/} assuming our implementation of explainability compiler

based on ¢O and puncturable deterministic encryption (PDE). There all sizes are grouped
in “complexity classes”. Here we outline several main dependencies:

— if a fake randomness has values encoded, it should be longer than these values, but
not much longer. Namely, if underlying encoded message has size [, then the size
of the plaintext for PDE (which consists of encoded message, secret s and prg(p))
is [+ 3X, and the size of PDE ciphertext should be at least 4 times bigger (the
latter is because explainability compiler uses statistically injective PRF). Therefore
randomness and encoded value are in the same “complexity class”.

— if a key is punctured on some input, its size is at least A|input|.

— if randomness is used as input for sparse extracting PREF, its length should be at
least O(\) (since in this case we can construct such a PRF by theorem ??).

— size of an obfuscated program is significantly larger than the size of the original
program (polynomial in original size s and security parameter \).

Note that all dependencies in the graph are due to the “hardwired values”, i.e. due
to the fact that some values should be hardcoded into programs, or messages should be
encrypted into ciphertexts. In particular, the same length restrictions remain even when
succinct O for TM or RAM ([CHIV 15, ICH15, KLW15])) is used.

Note that the dependency graph is acyclic, and variables which we actually send
over the channel - ¢ and c - are in the very top of the graph. This means that we can set
length of ¢ and m to be a security parameter, and then set lengths of other variables as
large as needed by following edges in dependency graph.

Acknowledgements

We thank anonymous ASIACRYPT reviewers for pointing out that explainability com-
piler can be used in a black box manner, which greatly simplified the presentation of
the results.

26

seNCE.Dec

A*iO(A m) |

EXtGenDec{t’ I'GenDec}
GenDec
O(@O(Am
P._ i0GO(A m)
GenEnc
; NiOGO(A m))
fGenEnc{t PEnc} EXtGenEnc{t’ PEnc’ rGenEnc} |
GenEnc

iO(A * iO(A m)) |
GenDec 1

IO(\IOGO(A m))) |

Fig.7: Size dependency graph between different variables, when underlying seNCE is
instantiated with our construction from section Notation: ¢O(s) for size s means the
resulting size of an obfuscated program of the initial approximate size s. Dependencies
due to obfuscation are drawn as fat blue arrows. Green boxes mark CRS, yellow boxes
mark randomness used for extracting PRF, and blue denotes variables which are sent in
the protocol. Arrows for ¢ are shown dashezd7 for easier tracking. Red dashed rectangles
with size in the top right corner denote a “Size group”, e.g. any variable inside iO(Am)
box is as large as an obfuscated program of initial size Am.

References

Bea97.

BGL™15.

BHO92.

CDMWO09.

CFGNO6.

CGP15.

CH15.

CHIVI15S.

CHKO5.

DKRI15.

DNOO.

DNRS99.

GGM&4.

Donald Beaver. Plug and play encryption. In Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 1997, Proceedings, pages 75-89, 1997. 2]

Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Ronitt Rubinfeld, editor, Sympo-
sium on the Theory of Computing (STOC), 2015.[§]

Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against
dynamic adversaries. In Advances in Cryptology - EUROCRYPT ’92, Workshop on
the Theory and Application of of Cryptographic Techniques, Balatonfiired, Hungary,
May 24-28, 1992, Proceedings, pages 307-323, 1992. |Z|

Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple,
black-box constructions of adaptively secure protocols. In Theory of Cryptography,
6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, pages 387-402, 2009. 2]

Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 639-648, 1996. [T} 2]

Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-
party computation from indistinguishability obfuscation. In Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-
25, 2015, Proceedings, Part II, pages 557-585, 2015. 2]

Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. IACR Cryptology
ePrint Archive, 2015:388, 2015. [B] 26]

Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 429-437, 2015. [8] [26]

Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive
public-key encryption. In Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
pages 150-168, 2005. 3} 4]

Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, uni-
versally composable, multiparty computation in constant rounds. In Theory of Cryp-
tography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part II, pages 586613, 2015. 21 Bl Bl [13] [T4] 23]
Ivan Damgard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In Advances in Cryptology -
CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings, pages 432—450, 2000. |2|
Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic func-
tions. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
17-18 October, 1999, New York, NY, USA, pages 523-534, 1999. |I|

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In 25th Annual Symposium on Foundations of Com-
puter Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages 464—479,
1984.[12

28

GP15.

HLP15.

HORIS.

HORRI16.

HP14.

JLOO.

KLW15.

KSW14.

Nie02.

SW14.

Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. In Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Fart II, pages 614-637, 2015. 2]

Carmit Hazay, Yehuda Lindell, and Arpita Patra. Adaptively secure computation
with partial erasures. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC 2015, Donostia-San Sebastidn, Spain, July 21 - 23,
2015, pages 291-300, 2015. 2]

Brett Hemenway, Rafail Ostrovsky, and Alon Rosen. Non-committing encryption
from @-hiding. In Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages
591-608, 2015.2]

Brett Hemenway, Rafail Ostrovsky, Silas Richelson, and Alon Rosen. Adaptive se-
curity with quasi-optimal rate. In Theory of Cryptography - 13th International Con-
ference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I,
pages 525-541, 2016.]

Carmit Hazay and Arpita Patra. One-sided adaptively secure two-party computation.
In Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014,
San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 368-393, 2014. |Z|

Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptogra-
phy: Introducing concurrency, removing erasures. In Advances in Cryptology - EU-
ROCRYPT 2000, International Conference on the Theory and Application of Cryp-
tographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages 221—
242, 2000. 2]

Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In Ronitt Rubinfeld, editor,
Symposium on the Theory of Computing (STOC), 2015. [8] [26]

Dakshita Khurana, Amit Sahai, and Brent Waters. How to generate and use universal
parameters. IJACR Cryptology ePrint Archive, 2014:507, 2014. E|

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 2002, Proceedings, pages 111-126, 2002. 2] [10]

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 475-484, 2014. 3| Bl B} [13] [14] [T6]

29

	Optimal-Rate Non-Committing Encryption

