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Abstract. A universal circuit (UC) can be programmed to simulate
any circuit up to a given size n by specifying its program bits. UCs have
several applications, including private function evaluation (PFE). The
asymptotical lower bound for the size of a UC is proven to be Ω(n logn).
In fact, Valiant (STOC’76) provided two theoretical UC constructions
using so-called 2-way and 4-way constructions, with sizes 5n log2 n and
4.75n log2 n, respectively. The 2-way UC has recently been brought into
practice in concurrent and independent results by Kiss and Schneider (EU-
ROCRYPT’16) and Lipmaa et al. (Eprint 2016/017). Moreover, the lat-
ter work generalized Valiant’s construction to any k-way UC.
In this paper, we revisit Valiant’s UC constructions and the recent re-
sults, and provide a modular and generic embedding algorithm for any
k-way UC. Furthermore, we discuss the possibility for a more efficient
UC based on a 3-way recursive strategy. We show with a counterexam-
ple that even though it is a promising approach, the 3-way UC does not
yield an asymptotically better result than the 4-way UC. We propose a
hybrid approach that combines the 2-way with the 4-way UC in order to
minimize the size of the resulting UC. We elaborate on the concrete size
of all discussed UC constructions and show that our hybrid UC yields on
average 3.65% improvement in size over the 2-way UC. We implement
the 4-way UC in a modular manner based on our proposed embedding
algorithm, and show that our methods for programming the UC can be
generalized for any k-way construction.
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1 Introduction

Universal circuits (UCs) are Boolean circuits that can be programmed
to simulate any Boolean function f(x) up to a given size by specifying
a set of program bits pf . The UC then receives these program bits as
input besides the input x to the functionality, and computes the result as
UC(x, pf ) = f(x). This means that the same UC can evaluate multiple
Boolean circuits, only the different program bits are to be specified.

Valiant proposed an asymptotically size-optimal construction in [Val76]
with size Θ(n log n) and depth O(n), where n is the size of the simula-
ted Boolean circuit description of f(x). He provides two constructions,
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based on 2-way and 4-way recursive structures. Recently, optimizations
of Valiant’s size-optimized construction appeared in concurrent and inde-
pendent works of [KS16] and [LMS16]. Both works implement Valiant’s
2-way recursive construction.

1.1 Applications of Universal Circuits

Size-optimized universal circuits have many applications. We review some
of them here and refer to [KS16,LMS16] for further details.

Private Function Evaluation (PFE). Secure two-party computation
or secure function evaluation (SFE) provides interactive protocols for eva-
luating a public function f(x, y) on two parties’ private inputs x and y.
However, in some scenarios, the function f is a secret input of one of the
parties. This setting is called private function evaluation (PFE). PFE of
f(x) can be achieved by running SFE of UC(x, pf ), where the UC is a pu-
blic function and the program bits pf – and therefore f – are kept private
due to the properties of SFE. Protocols designed especially for PFE such
as [MS13, BBKL17] achieve the same asymptotic complexity O(n log n)
as PFE using UCs, where n is the size of the function f .1 However, to the
best of our knowledge, they have not yet been implemented, and they are
not as generally applicable as PFE with UCs.

UC-based PFE can be easily integrated into any SFE framework and
can directly benefit from recent optimizations. For instance, outsourcing
UC-based PFE is directly possible with outsourced SFE [KR11]. The non-
interactive secure computation protocol of [AMPR14] can also be genera-
lized to obtain a non-interactive PFE protocol [LMS16].

One of the first applications for PFE was privacy-preserving checking
for credit worthiness [FAZ05], where not only the loanee’s data, but also
the loaner’s function needs to be kept private. PFE allows for running
proprietary software on private data, such as privacy-preserving software
diagnosis [BPSW07], medical programs [BFK+09], or privacy-preserving
intrusion detection [NSMS14]. UCs can be applied to obliviously filter
remote streaming data [OI05] and for hiding queries in private database
management systems such as Blind Seer [PKV+14,FVK+15].

1There also exist PFE protocols with linear complexity O(n) which are based
on public-key primitives [KM11,MS13,MSS14]. However, the concrete complexity of
these protocols is worse than that of the protocols based on (mostly) symmetric-key
primitives, i.e., the OT-based PFE protocols of [MS13,BBKL17] or PFE using UCs.
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Applications Beyond PFE. Universal circuits can be applied for pro-
gram obfuscation. Candidates for indistinguishability obfuscation are con-
structed using a UC as a building block in [GGH+13a,BOKP15], which
can be improved using Valiant’s UC implementation [KS16]. Direct pro-
gram obfuscation was proposed in [Zim15], where the circuit is a secret key
to a UC. [LMS16] mentions that UCs can be applied for secure two-party
computation in the batch execution setting [HKK+14, LR15]. It can be
applied for verifiable computation [FGP14], and for multi-hop homomor-
phic encryption [GHV10]. Ciphertext-policy Attribute-Based Encryption
was proposed in [Att14], where the policy circuit is hidden [GGH+13b].

1.2 Related Work on Universal Circuits

Valiant defined universal circuits in [Val76] and gave two size-optimized
constructions. The constructions are based on so-called edge-universal
graphs (EUGs) and utilize either a 2-way or a 4-way recursive structure,
also called 2-way or 4-way UCs. Both achieve the asymptotically optimal
size Θ(n log n) [Val76,Weg87], where n is the size of the simulated cir-
cuit. The concrete complexity of the 4-way UC is ∼ 4.75n log2 n which is
smaller than that of the 2-way UC of ∼ 5n log2 n [Val76].

The first modular UC construction was proposed by Kolesnikov and
Schneider in [KS08b]. This construction achieves a non-optimal asympto-
tic complexity of O(n log2 n), and was the first implementation of UCs.
A generalization of UCs for n-input gates was given in [SS08].

Recently, two independent works have optimized and implemented
Valiant’s 2-way UC [KS16,LMS16]. Kiss and Schneider in [KS16] mainly
focus on the most prominent application of UCs, i.e., private function eva-
luation (PFE). Due to the free-XOR optimization of [KS08a] in the SFE
setting, they optimize the size of the UC for the number of AND gates in
the resulting UC implementation and provide a framework for PFE using
UCs as public function. They also propose hybrid constructions for cir-
cuits with a large number of inputs and outputs, utilizing efficient building
blocks from [KS08b]. Lipmaa et al. in [LMS16] also provide an (unpublis-
hed) implementation of the 2-way UC. While keeping the number of AND
gates minimal, they additionally optimize for the total number of gates,
i.e., include optimizations to also reduce the number of XOR gates. They
adapt the construction to arithmetic circuits and generalize the design to
a k-way construction in a modular manner, for k ≥ 2.

Both papers utilize 2-coloring of the underlying graphs for defining
the program bits pf for any given functionality f . Generally, 2-coloring
can be utilized for any 2i-way construction. [LMS16] calculate the optimal
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value for k to be 3.147, and conclude that the two candidates for the most
efficient 2i-way constructions are the 2-way and 4-way UCs, of which the
4-way construction results in an asymptotically smaller size.

So far only Valiant’s 2-way UC has been implemented and the not yet
implemented 4-way UC was postulated to be the most efficient one.

1.3 Outline and Our Contributions

In summary, we provide the first implementation and detailed evaluation
of Valiant’s 4-way UC and propose an even more efficient hybrid UC. We
elaborate on the size of the generalized k-way UCs for k 6= 2 and k 6= 4.

After revisiting Valiant’s UC construction [Val76,KS16] and its k-way
generalization [LMS16] in §2, we provide the following contributions:

Our modular programming algorithm (§3): We detail a modular
algorithm that provides the description of the input function f as program
bits pf to the UC, both for Valiant’s 4-way UC as well as for the k-way
UC of Lipmaa et al. [LMS16].

New universal circuit constructions (§4): We start with a new 3-way
UC. After providing modular building blocks for this UC, we show that it
is asymptotically larger than Valiant’s UCs. Then, we propose a hybrid UC
construction that can efficiently combine k-way constructions for multiple
values of k.2 With this, we combine Valiant’s 2-way and 4-way UCs to
achieve the smallest UC known so far.

Size of UCs (§5): We compare the asymptotic and concrete sizes of
Valiant’s (2-way and 4-way) UCs and that of different k-way UCs. We
show that of all k-way UCs, Valiant’s 4-way UC provides the best results
for large circuits. Moreover, our hybrid UC in most cases improves over
the 2-way UC by up to around 4.5% in its size, and over the 4-way UC by
up to 2% (for large input circuits). In Table 1 we compare the concrete
communication of PFE using SFE and our new UC implementation to
the previous works on special-purpose OT-based PFE protocols.

Implementation of Valiant’s 4-way UC and experiments (§6):
We implement Valiant’s 4-way UC and describe how our implementation
can directly be used in the PFE framework of [KS16]. We experimentally
evaluate the performance of our UC generation and programming algo-
rithm with a set of example circuits and compare it on the same platform
with the 2-way UC compiler of [KS16].

2Our hybrid UC is orthogonal to that of [KS16], who combine Valiant’s UC with
building blocks from [KS08b] for the inputs and outputs.
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Special-purpose PFE UC-based PFE using Yao
n [MS13] [BBKL17] 2-way UC [KS16] Our 4-way UC Our Hybrid UC
103 3.5 MB 2.0 MB 0.6 MB 0.6 MB 0.6 MB
104 44.8 MB 26.3 MB 8.4 MB 8.4 MB 8.2 MB
105 549.6 MB 324.0 MB 109.6 MB 107.8 MB 106.2 MB
106 6 509.9 MB 3 847.9 MB 1 360.3 MB 1 308.4 MB 1 308.4 MB
107 75 236.5 MB 44 562.1 MB 16 038.8 MB 15 677.7 MB 15 413.7 MB

Table 1: Comparison of overall communication between special-purpose
PFE protocols and UC-based ones for simulated circuits of size n. The
numbers are for 128 bit symmetric security. The underlying SFE pro-
tocol for UC-based PFE is Yao’s protocol [Yao86] with the garbled row
reduction optimization [NPS99] and X- and Y-switching blocks are instan-
tiated using free XORs as described in [KS08a]. This yields one ciphertext
per X- and Y-switching block, and three ciphertexts per universal gate.

2 Preliminaries

In this section, we summarize the existing UC constructions. We pro-
vide necessary background information in §2.1, explain Valiant’s con-
struction [Val76] in §2.2 and the improvements of [KS16,LMS16] on the
2-way, 4-way and k-way UCs in §2.3, §2.4 and §2.5, respectively.

2.1 Preliminaries to Valiant’s UC Constructions

Let G = (V,E) be a directed graph with set of nodes V and edges
E ⊆ V × V . The number of incoming [outgoing] edges of a node is called
its indegree [outdegree]. A graph has fanin [fanout ] d if the indegree [out-
degree] of all its nodes is at most d. In the following, we denote by Γd(n)
the set of all acyclic graphs with fanin and fanout d having n nodes. Simi-
larly, the fanin [fanout] of a circuit can be defined based on the maximal
number of incoming [outgoing] wires of all its gates, inputs and outputs.

Let G = (V,E) ∈ Γd(n). A mapping ηG : V → {1, . . . , n} is called
topological order if (ai, aj) ∈ E ⇒ ηG(ai) < ηG(aj) and ∀a1, a2 ∈ V :
ηG(a1) = ηG(a2) ⇒ a1 = a2. A topological order in G ∈ Γd(n) can be
found with computational complexity O(dn).

A circuit Ck∗u,v with u inputs, k∗ gates and v outputs and fanin or
fanout d > 2 can be reduced to a circuit with fanin and fanout 2. Shan-
non’s expansion theorem [Sha49, Sch08] describes how gates with larger
fanin can be reduced to gates with two inputs by adding additional ga-
tes. [Val76,KS16] describe adding copy gates in order to eliminate larger
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(d) EUG U5(Γ2)

Fig. 1: Fig. 1a shows an example Γ2(5) graph G. Figs. 1b-1c show the
edge-embedding of G into two U5(Γ1) instances with poles (p1, . . . , p5).
Fig. 1d shows the edge-embedding of G into one U5(Γ2) graph.

fanout and elaborate on the implied overhead (k ≤ 2k∗+v). [KS08b,KS16]
implement these methods and we thus assume that our input Boolean cir-
cuit Cku,v has fanin and fanout 2 for all its u inputs, k gates and v outputs.
We transform Cku,v into a Γ2(n) graph G with n = u+ v+ k by creating a
node for each input, gate and output, and an edge for each wire in Cku,v.

Edge-embedding is a mapping from graphG = (V,E) intoG′ = (V ′, E′)
with V ⊆ V ′ and E′ containing a path for each e ∈ E, such that
the paths are pairwise edge-disjoint. A graph Un(Γd) = (VU , EU ) is an
Edge-Universal Graph (EUG) for Γd(n) if every graph G ∈ Γd(n) can be
edge-embedded into Un(Γd).3 Un(Γd) has distinguished nodes called po-
les {p1, . . . , pn} ⊆ VU where each node a ∈ V is mapped to exactly one
pole with a mapping ϕ, such that every node inG has a corresponding pole
in Un(Γd). This mapping is defined by a concrete topological order ηG of
the original graph G, i.e., ϕ : V → VU with ϕ(a) = pηG(a). Besides the po-
les, Un(Γd) might have additional nodes that enable the edge-embedding.
For each edge (ai, aj) ∈ E we then define a disjoint path between the
corresponding poles (ϕ(ai), . . . , ϕ(aj)) = (pηG(ai), . . . , pηG(aj)) in Un(Γd),
i.e., without using any edge in Un(Γd) in more than one path.

3For the sake of simplicity, we denote this graph with Un(Γd) instead of U(Γd(n)).

6



Let Un(Γ1) be an EUG for graphs in Γ1(n) with poles P = {p1, . . . , pn}.
The poles have fanin and fanout 1, while all other nodes have fanin and fa-
nout 2. An EUG Un(Γd) for d ≥ 2 can be created by taking d instances of
Un(Γ1) EUGs, and merging each pole pi with its multiple instances, allo-
wing the poles to have fanin-fanout d. Let Un(Γd) = (V ′U , E

′
U ) be an EUG

with fanin and fanout d, with Un(Γ1)1 = (V1, E1), . . . , Un(Γ1)d = (Vd, Ed).
P contains the merged poles and V ′U = P ∪di=1 Vi\Pi and E′U = ∪di=1Ei.

We give an example for better understanding. Let G = (V,E) be the
graph with 5 nodes in Fig. 1a. Our aim is to edge-embed G into EUG
U5(Γ2). Therefore, we use two instances of U5(Γ1): U5(Γ1)1 in Fig. 1b and
U5(Γ1)2 in Fig. 1c. The edges (a1, a4), (a2, a3) and (a3, a5) are embedded
in U5(Γ1)1, and the edges (a1, a3) and (a3, a4) in U5(Γ1)2. Merging the
poles of U5(Γ1)1 and U5(Γ1)2 produces U5(Γ2) shown in Fig. 1d.

2.2 Valiant’s UC Constructions

The size of a function f represented by a circuit Cku,v with fanin and
fanout 2 is n = u+ v+ k. In the following, we describe Valiant’s UC con-
struction [Val76,Weg87] that can be programmed to evaluate any function
of size n. Circuit Cku,v is represented as a graph G ∈ Γ2(n) (cf. §2.1).

Valiant’s UC is based on an EUG Un(Γ2) = (VU , EU ) with fanin and
fanout 2, which can be transformed to a Boolean circuit. P ⊆ VU con-
tains the poles of Un(Γ2) (cf. §2.1). Poles {1, . . . , u} correspond to the
inputs, {(u+ 1), . . . , (u+ k)} to the gates, {(u+ k + 1), . . . , n} to the out-
puts of Cku,v. The edges of the graph of the circuit G = (V,E) have to be
embedded into Un(Γ2). After the transformations described in §2.1, every
node in G has fanin and fanout 2, and we denote a topological order on V
by ηG. We briefly describe the edge-embedding process in §2.3 and §3.

Translating a Un(Γ2) into a Universal Circuit. Every node w ∈ VU
fulfills a task when Un(Γ2) is translated to a UC. Programming the UC
means specifying its control bits along the paths defined by the edge-
embedding and by the gates of circuit Cku,v. Depending on the number of
incoming and outgoing edges and its type, a node is translated to:

G1 If w is a pole and corresponds to an input or output in G, then w is
an input or output in Un(Γ2) as well.

G2 If w is a pole and corresponds to a gate in G, w is programmed as a
universal gate (UG). A 2-input UG supports any of the 16 possible gate
types represented by the 4 control bits of the gate table (c1, c2, c3, c4).
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It implements function ug: {0, 1}2 × {0, 1}4 → {0, 1} that computes:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4. (1)

Generally, a UG can be implemented with 3 AND and 6 XOR gates
(resp. with a two-input gate when using Yao’s protocol for SFE) [KS16].

G3 If w is no pole and has indegree and outdegree 2, w is programmed
as an X-switching block, that computes fX : {0, 1}2×{0, 1} → {0, 1}2
with fX((x1, x2), c) = (x1+c, x2−c). This block can be implemented
with 1 AND and 3 XORs (resp. a one-input gate with Yao) [KS08a].

G4 If w is no pole and has indegree 2 and outdegree 1, w is programmed
as a Y-switching block that computes fY : {0, 1}2 × {0, 1} → {0, 1}
with fY ((x1, x2), c) = x1+c. This block can be implemented with 1
AND and 2 XORs (resp. a one-input gate with Yao) [KS08a].

G5 If w is no pole and has indegree 1 and outdegree 2, it has been
placed to copy its input to its two outputs. Therefore, when transla-
ted to a UC, w is replaced by multiple outgoing wires in the parent
node [KS16], since the UC itself does not have the fanout 2 restriction.
In Un(Γ2), w is added due to the fanout 2 restriction in the EUG.

G6 If w is no pole and has indegree and outdegree 1, w is removed and
replaced by a wire between its parent and child nodes.

The nodes programmed as UG (G2), X-switching block (G3) or Y-
switching block (G4) are so-called programmable blocks. This means that
a programming bit or vector is necessary besides the two inputs to define
their behavior as described above. These programming bits and vectors
that build up the programmig of the UC pf are defined by the paths in the
edge-embedding of G (the graph of circuit Cku,v describing f) into Un(Γ2).

Recursion Base. Valiant’s construction is recursive, and the recursion
base is reached when the number of poles is between 1 and 6. These recur-
sion base graphs are shown in [Val76,KS16]. U1(Γ1) is a single pole, U2(Γ1)
and U3(Γ1) are two and three connected poles, respectively. U4(Γ1), U5(Γ1)
and U6(Γ1) are constructed with 3, 7 and 9 additional nodes, respectively.

2.3 Valiant’s 2-Way UC Construction

We described in §2.1 that a Un(Γd) EUG can be constructed of d instances
of Un(Γ1) EUGs. Therefore, Valiant provides an EUG for Γ1(n) graphs,
two of which can build an EUG for Γ2(n) graphs. Let P = {p1, . . . , pn} be
the set of poles in U (2)

n (Γ1) that have indegree and outdegree 1. Valiant’s
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2
−1e r2dn
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−1e

(d) Tail Block (2)

pn

r1dn
2
−1e

(e) Tail Block (1)

Fig. 2: Fig. 2a shows Valiant’s 2-way EUG U
(2)
n (Γ1) [Val76]. Fig. 2c shows

the corresponding head block, Fig. 2b and Figs. 2d–2e show body and tail
blocks, respectively, for different numbers of poles.

2-way EUG construction for Γ1(n) graphs of size ∼ 2.5n log2 n is shown
in Fig. 2, where we emphasize the poles as large circles and the additional
nodes as small circles or rectangles. The corresponding UC has twice the
size ∼ 5n log2 n, since it corresponds to the EUG for Γ2(n) graphs.

The rectangles are special nodes that build the set of poles in the next
recursion step, i.e., R1

dn
2
−1e = {r

1
1, . . . , r

1
dn
2
−1e}, R

2
dn
2
−1e = {r

2
1, . . . r

2
dn
2
−1e}.

Another EUG is built with these poles which produces new subgraphs with
size d d

n
2
−1e
2 − 1e, s.t. we have four subgraphs at this level.

This construction is called the 2-way EUG or UC construction. An
open-source implementation of this construction optimized for PFE is
provided in [KS16]. Independently, [LMS16] also implemented this 2-way
UC, additionally optimizing for the total number of gates.

2.4 Valiant’s 4-Way UC Construction

Valiant provides another, so-called 4-way EUG or UC construction [Val76].
U

(4)
n (Γ1) has a 4-way recursive structure, i.e., nodes in special sets R1

dn
4
−1e,

R2
dn
4
−1e, R

3
dn
4
−1e and R4

dn
4
−1e are the poles in the next recursion step

(cf. Fig. 4a on p. 12). The recursion base is the same as in §2.2. This
construction results in UCs of smaller size ∼ 4.75n log2 n but has not
been implemented before due to its more complicated structure.
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r1i

r2i
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rki
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r2i+1

..
.

rki+1

Permutation
Network P (k)

Permutation
Network P (k)

EUG(k)

Y2Y1 . . . Yk−1

Fig. 3: k-way EUG construction U (k)
n (Γ1) [LMS16].

2.5 Lipmaa et al.’s Generalized k-Way UC Construction

In [LMS16], Lipmaa et al. generalize Valiant’s approach by providing a
UC with any number of recursion points k, the so-called k-way EUG or
UC construction. We note that their construction slightly differs from
Valiant’s EUG construction, since they do not consider the restriction
on the fanout of the poles, i.e., the nodes in the EUG that correspond
to universal gates or inputs (cf. §2.2). This optimization has also been
included in [KS16] when translating an EUG to a UC, but including it in
the block design leads to better sizes for the number of XOR gates.

The idea is to split n = u + v + k in m = dnk e blocks as shown
in Fig. 3. Every block i consists of k inputs r1i , r

2
i , . . . , r

k
i and k out-

puts r1i+1, r
2
i+1, . . . , r

k
i+1 as well as k poles, except for the last block which

has a number of poles depending on n mod k. For every j ≤ k, the list of
all rji builds the poles of the j

th subgraph of the next recursion step, i.e. we
have k subgraphs. Additionally, every block begins and ends with a Waks-
man permutation network [Wak68] such that the inputs and outputs can
be permuted to every pole. A Y-switching block is placed in front of every
pole pi which is connected to the ith output of the permutation network
as well as the ith output of a block-intern EUG Uk(Γ1). Thus, [LMS16]
reduce the problem of finding an efficient k-way EUG U

(k)
n (Γ2) to the

problem of finding the smallest EUG Uk(Γ1). Their solution is to build
the block-intern EUG with the UC construction of [KS08b], which was
claimed to be more efficient for smaller circuits than [Val76]. However,
they calculate the optimal k value to be around 3.147, which implies that
the best solutions are found using small EUGs, for which Valiant provides
hand-optimized solutions (i.e., for k = 2, 3, 4, 5, 6) [Val76].

3 Our Modular Edge-Embedding Algorithm

The detailed embedding algorithm and the open-source UC implementa-
tion of [KS16] was specifically built for the 2-way UC, dealing with the
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whole UC skeleton as one block. In contrast, based on the modular design
of [LMS16], we modularize the edge-embedding task into multiple sub-
tasks and describe how they can be performed separately. In this section,
we detail this modular approach for edge-embedding a graph into Vali-
ant’s 4-way EUG: the edge-embedding can be split into two parts, which
are then combined. In §3.1, we describe our modular approach based on
the edge-embedding algorithm of [KS16] for Valiant’s 2-way EUG. This
can be generalized to any 2i-way EUG construction. Moreover, the same
algorithm can be applied with a few modifications for Lipmaa et al.’s
k-way recursive generalization [LMS16], which we describe in §3.2.

3.1 Edge-Embedding in Valiant’s 4-Way UC

Similar to the 2-way EUG construction (cf. §2.3), Valiant provides a 4-way
EUG construction for Γ1(n) graphs which can be extended to an EUG
for Γ2(n) graphs by utilizing two instances U (4)

n (Γ1)1 and U
(4)
n (Γ1)2 as

described in §2.1. The construction with our optimizations is visualized
in Fig. 4. Valiant offers the main, so-called Body Block (Fig. 4a) consisting
of 4 poles (large circles), 15 nodes (small circles) as well as 8 recursion
points (squares). These body blocks are connected such that the 4 top
[bottom] recursion points of one block are the 4 bottom [top] recursion
points of the next block. Similarly to the 2-way EUG, 4 sets are created
for n nodes, i.e., R1

dn
4
−1e = {r

1
1, . . . , r

1
dn
4
−1e}, R

2
dn
4
−1e = {r

2
1, . . . , r

2
dn
4
−1e},

R3
dn
4
−1e = {r

3
1, . . . , r

3
dn
4
−1e}, and R

4
dn
4
−1e = {r

4
1, . . . , r

4
dn
4
−1e} which are the

poles of 4 Udn
2
e−1(Γ1) EUGs in the next recursion step. Then, these also

create 4 subgraphs until the recursion base is reached, cf. §2.2.
We note that the top [bottom] block does not need the upper [lower]

recursion points since its poles are the inputs [outputs] in the block. The-
refore, we provide so-called Head and Tail Blocks. A Head Block occurs
at the top of a chain of blocks (cf. Fig. 4e), it has 4 poles, no inputs, 4
output recursion points and 10 nodes, of which the first one (denoted by
a filled circle) has one input and therefore translates to wires in the UC.

As a counterpart, Tail Blocks occur at the bottom of a chain of blocks,
have at most 4 poles, 4 input recursion points, no outputs and at most 10
nodes depending on the number of poles. The 4 tail block constructions
are depicted in Figs. 4f–4i and are used, based on the remainder of n
modulo 4, with the respective body or head blocks when n ∈ {5, 6, 7}, the
lower parts of which are shown in Figs. 4a–4d.
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p4i+1

p4i+2

p4i+3

p4i+4

r1i r2i r3i r4i

r1i+1 r2i+1 r3i+1 r4i+1

(a) Body Block (4)
. . . . . .

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e

(b) Body/Head Block (3)
. . .

r1dn
4
−1e r2dn

4
−1e

(c) Body/Head Block (2)
. . .

r1dn
4
−1e

(d) Body/Head Block (1)

p1

p2

p3

p4

r11 r21 r31 r41

(e) Head Block (4)

pn−3

pn−2

pn−1

pn

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e r4dn

4
−1e

(f) Tail Block (4)

pn−2

pn−1

pn

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e

(g) Tail Block (3)

pn−1

pn

r1dn
4
−1e r2dn

4
−1e

(h) Tail Block (2)

pn

r1dn
4
−1e

(i) Tail Block (1)

Fig. 4: Fig. 4a shows Valiant’s 4-way EUG U
(4)
n (Γ1) [Val76]. Fig. 4e shows

our head block construction, Figs. 4a–4d and Figs. 4f–4i show our body
and tail block constructions, respectively, for different numbers of poles.
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Block Edge-Embedding. In this first part of the edge-embedding pro-
cess, we consider the 4 top [bottom] recursion points of the block as inter-
mediate nodes where the inputs [outputs] of the block enter [leave]. The
blocks are built s.t. any of these inputs can be forwarded to exactly one
of the 4 poles of the block and the output of any pole can be forwarded
to exactly one output or another pole having a higher topological order.

We formalize this behaviour as follows: In U (4)
n (Γ1) = (VU , EU ), let B

be the block visualized in Fig. 4a with poles p4i+1, . . . , p4i+4. Let map-
ping ηU : VU → N+ denote a topological order of VU . Then, the no-
des r1i , . . . , r

4
i and r1i+1, . . . , r

4
i+1 denote the input and output recursion

points of block B. Additionally, let in = (in1, . . . , in4) ∈ {0, . . . , 4}4 and
out = (out1, . . . , out4) ∈ {0, . . . , 7}4 denote the input and output vectors
of B. The value 0 of the input and output vectors is a dummy value which
is used if an input [a pole] is not forwarded to any pole [output] of B. The
output vector has a larger value range, since a pole can be forwarded to
another pole or an output recursion point. Therefore, we use values 1, 2
and 3 for poles p2, p3 and p4 and values 4, 5, 6 and 7 for the output recur-
sion points. Pole p1 cannot be a destination for a path in B, since ηU (p1)
is less than the topological order of any other pole in B. Additionally, the
values of in and out need to be pairwise different or 0. Every combination
of input and output vector covering the conditions formalized below in
Eqs. 2–6 are valid for B. A pair (rli, pj) ∈ P or (pj , r

l
i+1) ∈ P is a path

from rli to pj or pj to rli in the set of all paths P in B. Then, PB ⊆ P
denote the paths that are to be edge-embedded (cf. 6.1).

∀l ∈ {1, . . . , 4} : inl 6= 0→(rli, pinl
) ∈ PB, (2)

outl 6= 0 ∧ outl < 4→(pj , p1+outl) ∈ PB ∧ η
U (pj) < ηU (p1+outl) (3)

outl > 3→(pj , r
l−3
i+1) ∈ PB. (4)

∀ini, inj ∈ in : i 6= j →ini = 0 ∨ ini 6= inj . (5)
∀outi, outj ∈ out : i 6= j →outi = 0 ∨ outi 6= outj . (6)

Recursion Point Edge-Embedding. The block edge-embedding covers
only the programming of the nodes within a block. Another task left
is to program the recursion points. We use the supergraph construction
of [KS16] which, in every step, splits a Γ2(n) graph in two Γ1(n) graphs,
which are merged to two Γ2(dn2 − 1e) graphs. [KS16] use this for defining
the paths in Valiant’s 2-way EUG. For Valiant’s 4-way EUG, we use every
second step of their algorithm with a minor modification.
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Let Cku,v be the Boolean circuit computing function f that our UC
needs to compute, and G ∈ Γ2(n) its graph representation (cf. §2.2).

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: As described
in §2.1, Valiant’s UC is derived from an EUG for Γ2(n) graphs, which
consists of two EUGs for Γ1(n) graphs merged by their poles. Therefore,
G is split into two Γ1(n) graphs G1 and G2. G1 and G2 then need to
be edge-embedded into EUGs (U

(4)
n (Γ1))1 and (U

(4)
n (Γ1))2, respectively.

G = (V,E) ∈ Γ2(n) is split by 2-coloring its edges as described in [Val76,
KS16], which can always be done due to Kőnig’s theorem [Kő31, LP09].
After 2-coloring, E is divided to sets E1 and E2, using which we build
G1 = (V,E1) and G2 = (V,E2), with the following conditions:

∀e ∈ E :(e ∈ E1 ∨ e ∈ E2) ∧ ¬(e ∈ E1 ∧ e ∈ E2). (7)
∀e = (v1, v2) ∈ E1 :¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3. (8)
∀e = (v1, v2) ∈ E2 :¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3. (9)

2. Merging a Γ1(n) graph into a Γ2(dn2−1e) graph: In an EUG, the number
of poles decreases in each recursion step and therefore, merging a Γ1(n)
graph into a Γ2(dn2 − 1e) graph provides information about the paths
to be taken. Let G1 = (V,E) ∈ Γ1(n) be a topologically ordered graph
and Gm = (V ′, E′) ∈ Γ2(dn2 e) be a graph with nodes v′1, . . . , v′dn

2
e. We

define two labellings ηin and ηout on Gm with ηin(vi) = i and ηout(vi) =
ηin(vi) − 1 = i − 1. Additionally, we define a mapping θV that maps a
node vi ∈ V to a node vj ∈ V ′ with θV (vi) = v′d i

2
e. That means two nodes

in G1 are mapped to one node in Gm. At last, we define a mapping θE
that maps an edge ei = (vi, vj) ∈ E to an edge ej ∈ E′ with θE((vi, vj)) =
(vηin(θV (vi)), vηout(θV (vj))). That means every edge in G1 is mapped to an
edge in Gm as follows: e = (vi, vj) ∈ E is mapped to e′ = (v′k, v

′
l) ∈ E′,

s.t. v′k = θV (vi), but v′l is not the new node of vj in Gm but v′l+1. Gm
is built as follows: V ′ = {v′1, . . . , v′dn

2
e} and E′ =

⋃
e∈E θE(e). Then for

all e = (v′i, v
′
j) ∈ E′ and j < i, e is removed from E′, along with the

last node vdn
2
e (due to the definition of θE , it does not have any incoming

edges). The resulting Gm is a topologically ordered graph in Γ2(dn2 − 1e).

3. The supergraph for Valiant’s 4-way EUG construction: In the first step,
G is split to two Γ1(n) graphs G1 and G2. G1 and G2 contain all the edges
that should be embedded as paths between poles in the first and second
EUGs for Γ1(n), respectively. We now explain how to edge-embed the
Γ1(n) graph G1 into an EUG U

(4)
n (Γ1) (for G2 it is the same).
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For embedding in a 2-way UC, G1 is firstly merged to a Γ2(dn2 e)
graph Gm. Gm is then 2-colored and split into two Γ1(dn2 e) graphs G1

1

and G2
1 [KS16]. These get merged to two Γ2(d

dn
2
−1e
2 − 1e) graphs G1

m

and G2
m. G1

1 is the first and G2
1 is the second subgraph of G1. Then G

ψ◦1
1

and Gψ◦21 denote the first and second subgraph of Gψ1 , respectively. These
steps are repeated until the Γ1 subgraphs have at most 4 nodes.

In Valiant’s 4-way EUG construction [Val76], a supergraph that cre-
ates 4 subgraphs in each step is necessary. We require a merging method
where a Γ1(n) graph is merged to a Γ4(dn4 −1e) graph where 4 nodes build
a new node, and 4-color this graph to retrieve 4 subgraphs. However, this
can directly be solved by using the method described above from [KS16]:
after repeating the 2-coloring and the merging twice, we gain 4 subgraphs
(G11

1 , G12
1 , G21

1 and G22
1 ). These can be used as if they were the result of

4-coloring the graph obtained by merging every 4 nodes into one.
However, there is a modification in this case: the first 2-coloring is

a preprocessing step, which does not map to an EUG recursion step.
Therefore, we have to define another labelling ηoutP (v) = ηin(v), since
in this preprocessing step we need to keep node vdn

2
e. Then the creation

of the supergraph for the 4-way EUG construction works as follows: We
merge G1 to a Γ2(dn2 e) graph with labelling ηin and ηoutP and get Gm.
After that, we splitGm into two Γ1(dn2 e) graphsG

1
1 andG2

1. These get mer-
ged to Γ2(dn4 e−1) graphs G

1
m and G2

m using the ηin and ηout labellings. Fi-
nally, these two graphs get splitted into 4 Γ1(dn4−1e) graphs G

11
1 , G12

1 , G21
1

and G22
1 . These are the relevant graphs for the first recursion step in Vali-

ant’s 4-way EUG construction. Now we continue for all 4 subgraphs until
we reach the recursion base with 4 or less nodes.

4-way Edge-Embedding Algorithm. In Listing 1, we combine block
edge-embedding and recursion point edge-embedding:

Let U denote the part of U (4)
n (Γ1) without recursion steps (the main

chain of blocks) and G1 = (V,E) be the Γ1(n) graph which is to be edge-
embedded in U (4)

n (Γ1). S denotes the set of the 4 subgraphs of G1 in the
supergraph, i.e. S = {G11

1 , G
12
1 , G

21
1 , G

22
1 }. A recursion step graph of U is

one of the graphs having one of the 4 sets of recursion points as poles
(e.g. r11, . . . , r1dn

4
−1e) without the recursion steps. R denotes the set of all

4 recursion step graphs of U , and B denotes the set of all blocks in U .
We give a brief explanation of Listing 1 that describes the edge-

embedding process. For any edge e = (vi, vj) ∈ E in G1, bi and bj denote
the block numbers in which vi and vj are. There are 2 cases:
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Listing 1: Edge-embedding algorithm for Valiant’s 4-way EUG
1 procedure edge−embedding (U , G1 = (V,E))
2 Let S be the s e t o f the 4 Γ1 subgraphs o f G1 in the supergraph
3 Let R be the 4 r e cu r s i on step graphs
4 Let B be the s e t o f b locks in U
5 for a l l e = (vi, vj) ∈ E do
6 Let i′ and j′ denote the p o s i t i o n s o f vi and vj in t h e i r b locks
7 bi ← d i4 e , bj ← d j4 e // number o f b l o c k in which vi and vj are
8 Let out [ r1 ] denote the output vec to r [ r e cu r s i on po in t s ] o f Bbi
9 Let in [ r0 ] denote the the input vec to r [ r e cu r s i on po in t s ] o f Bbj

10 i f bi = bj do // vi and vj are in the same b l o c k
11 i f vi 6= vj do
12 outi′ ← j′ − 1
13 end i f
14 else // vi and vj are in d i f f e r e n t b l o c k s
15 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi , pbj−1

) ∈ E′
↪→ and e′ i s not marked

16 Mark e′

17 Let x denote the number with s = Sx

18 Set the con t r o l b i t o f rx0 to 1
19 i f bj = bi + 1 do // bj and bi are neighbours
20 y ← 0
21 else
22 y ← 1
23 end i f
24 Set the con t r o l b i t o f rx1 to y
25 outi′ ← x+ 4 , inx ← j′

26 end i f
27 end for
28 Edge−embed a l l b locks in U // edge−embed a l l sub−b l o c k s
29 for i = 1 to 4 do
30 i f Si e x i s t s do
31 ca l l edge−embedding (Ri , Si )
32 end i f
33 end for
34 end procedure

1. vi and vj are in the same block: bi = bj. The edge-embedding can
be solved within the block and no recursion points have to be program-
med for this path. Therefore, vector out of block Bbi is set accordingly.

2. vi and vj are in different blocks: bi 6= bj. There exists an edge e′ =
(bi, bj−1) in one of the four Γ1(dn4 − 1e) subgraphs of G1 that is not
yet used for an edge-embedding. This determines that the path in the
next recursion step has to be between poles pbi and pbj−1

. We denote
with s ∈ S the subgraph of G1 which contains e′, and x denotes its
number in S, i.e. Sx = s. This implies in which of the 4 recursion step
graphs we need to edge-embed the path from pbi to pbj−1

, and so which
recursion points we need to program. We first set the programming
bit of the x-th input [output] recursion points to 1 since the path bet-
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ween the poles with labelling i and j enters [leaves] the next recursion
step over this recursion point. A special case to be considered here
is when blocks Bbi and Bbj are neighbours (i.e. bj = bi + 1). Then,
the path enters and leaves the next recursion step graph at the same
node, whose programming bit thus has to be 0. The output vector of
block Bbi is the i′th value to the xth recursion point and the input
vector of block Bbj is the xth value to the j′th pole in this block.

We repeat these steps for all edges e ∈ E. Since all in- and output
vectors of all blocks in B are set, they can be embedded with the block
edge-embedding. For all 4 subgraphs of G1 in the supergraph and in the
EUG, we call the same procedure with Si ∈ S, Ri ∈ R, 1 ≤ i ≤ 4.

3.2 Edge-Embedding in Lipmaa et al.’s k-way UC

In this section, we extend the recent work of [LMS16] by providing a
detailed and modular embedding mechanism for any k-way EUG con-
struction described in §2.5. We provide the main differences to the edge-
embedding of the 4-way EUG construction detailed in §3.1.

k-way Block Edge-Embedding. In this setting, our main block is a
programmable block B of size x with k poles p1, . . . , pk, and k input [out-
put] recursion points r10, . . . , rk0 [r11, . . . , rk1 ]. B is topologically ordered with
mapping ηU as defined in §2.1. Vectors in = (in1, . . . , ink) ∈ {0, . . . , k}k,
and out = (out1, . . . , outk) ∈ {0, . . . , 2k − 1}k denote the input and out-
put vectors of B, respectively. Values k, . . . , 2k − 1 in out denote the
recursion point targets r11, . . . , rk1 (cf. §3.1). We formalize the setting of in
and out in Eqs. 10–14. We denote with P the set of all paths in B, and
the PB ⊆ P the paths that get edge-embedded in B.

∀i ∈ {1, . . . , k} : ini 6= 0→(ri0, pini) ∈ PB, (10)

outi 6= 0 ∧ outi < k →(pi, p1+outi) ∈ PB ∧ ηU (pi) < ηU (p1+outi)
(11)

outi > k − 1→(pi, r
i−k+1
1 ) ∈ PB. (12)

∀ini, inj ∈ in : i 6= j →ini = 0 ∨ ini 6= inj . (13)
∀outi, outj ∈ out : i 6= j →outi = 0 ∨ outi 6= outj . (14)

k-way Recursion Point Edge-Embedding. G ∈ Γ2(n) denotes the
transformed graph of a Boolean circuit Cku,v, where n = u+ k + v.
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1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: Similarly as
in §3.1, we first split G into two Γ1(n) graphs G1 and G2 with 2-coloring.

2. Merging a Γ1(n) graph into a Γk(dnk−1e) graph: G1 = (V,E) ∈ Γ1(n) is
merged into a Γk(dnk − 1e) graph Gm = (V ′, E′) (same for G2). Therefore,
we redefine mapping θV (cf. §3.1) that maps node vi ∈ V to node vj ∈ V ′.
In this scenario, k nodes in V build one node in V ′, so θV (vi) = vd i

k
e. The

mapping of the edges θE is the same as in the 4-way EUG construction,
and (v′i, v

′
j) ∈ E′ where j < i edges are removed along with vdn

k
e in the

end. Gm is then a topologically ordered graph in Γ1(dnk − 1e).

3. The supergraph for Lipmaa et al.’s k-way EUG construction: The next
step is to split Gm ∈ Γ1(dnk − 1e) into k Γ1(dnk − 1e) graphs. This is
done with k-coloring: a directed graph K = (V,E) can be k-colored, if k
sets E1, . . . , Ek ⊆ E cover the following conditions:

∀i, j ∈{1, . . . , k} : i 6= j → Ei ∩ Ej = ∅. (15)
∀e ∈E : ∃i ∈ {1, . . . , k} : e ∈ Ei. (16)
∀i ∈{1, . . . , k} : ∀e = (v1, v2) ∈ Ei :
¬∃e′ = (v3, v4) ∈ Ei : v2 = v4 ∨ v1 = v3. (17)

According to Kőnig’s theorem [Kő31,LP09], Γk(n) graphs can always be
k-colored efficiently (cf. full version [GKS17, §A] for details). The rest of
the supergraph construction and the way it is used for edge-embedding is
the same as for the 4-way EUG construction as described in §3.1.

k-way Edge Embedding Algorithm. The edge-embedding algorithm
is the same as shown in Listing 1, after replacing every 4 with k.

4 New Universal Circuit Constructions

Here, we describe our ideas for novel, potentially more efficient, UC con-
structions. Firstly, in §4.1, we describe modular building blocks for a 3-way
UC. We show that Valiant’s optimized U3(Γ1) cannot directly be applied
as a building block in the construction due to the fact that it must have
an additional node to be a generic EUG. We prove that the EUG without
this node is not a valid EUG by showing a counterexample. Therefore,
it actually results in a worse asymptotic size than Valiant’s 2-way and
4-way UC constructions. Secondly, in §4.2, we propose a hybrid UC con-
struction, utilizing both Valiant’s 2-way and 4-way UC constructions so
that the overall size of the resulting hybrid UC is minimized, and is at
least as efficient as the better construction for the given size.
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4.1 3-way Universal Circuit Construction

The optimal k value for minimizing the size of the k-way UC was cal-
culated to be 3.147 in [LMS16]. We describe our idea of a 3-way UC
construction. Intuitively, based on an optimization by Valiant [Val76],
this UC should result in the best asymptotic size. The asymptotic size of
any k-way UC depends on the size of its modular body block Bk (e.g.,
Fig. 4a for the 4-way UC). Once it is determined, the size of the UC is
size(U (k)

n (Γ2)) = 2·size(U (k)
n (Γ1)) ≈ 2· size(Bk)

k n logk n = 2· size(Bk)
k log2(k)

n log2 n.
The modular block consists of two permutation networks P (k), an EUG
Uk(Γ1), and (k − 1) Y-switching blocks (cf. §2.5, [LMS16]).

Size of Body Block B3 with Valiant’s Optimized U3(Γ1). Ac-
cording to Valiant [Val76], an EUG U3(Γ1) with 3 poles contains only 3
connected poles (used as recursion base in §2.2). An optimal permutation
network P (3) that achieves the lower bound has 3 nodes as well. This
implies that size(B3) = 2 · P (3) + size(U3(Γ1)) + (3− 1) = 11. Then, the
size of the UC becomes ≈ 2 · 11

3 log2 3
n log2 n ≈ 4.627n log2 n, which means

an asymptotically by around 2.5% smaller size than that of the 4-way UC.
However, there is a flaw in this initial design. Valiant’s U3(Γ1) only

works as an EUG for 3 nodes under special conditions, e.g., when it is
a subgraph within a larger EUG construction. There are 3 possible ed-
ges in a topologically ordered graph G = (V,E) in Γ1(3): (1, 2), (2, 3)
and (1, 3). (1, 2) and (2, 3) can be directly embedded in U3(Γ1) using
(p1, p2) and (p2, p3), respectively. (1, 3), however, has to be embedded as
a path through node 2, i.e., as a path ((p1, p2), (p2, p3)). When U3(Γ1)
is a subgraph of a bigger EUG, this is possible by programming p2 ac-
cordingly. However, when we use this U3(Γ1) as a building block in our
EUG construction, it cannot directly be applied. A generic U3(Γ1) that
can embed (1, 3) without going through p2 as before has an additional
Y-switching block.

We depict in Fig. 5a the 3-way body block that uses Valiant’s optimi-
zed U3(Γ1) in the k-way block design of [LMS16]. Assume that the output
of pole p3i+1 has to be directed to pole p3i+3. Then, it needs to go through
pole p3i+2, which means that the edge going in to p3i+2 is used by this
path. However, there might be an other edge coming from the permuta-
tion network as an input to p3i+2, e.g., from p3i from the preceding block.
This cannot be directed to p3i+2 anymore as shown in Fig. 5a. Therefore,
in the 3-way body block construction, it does not suffice to use Valiant’s
optimized U3(Γ1) [Val76].
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p3i+1

p3i+2

p3i+3

r1i r2i r3i

r1i+1 r2i+1 r3i+1

(a) Body Block with Valiant’s U3(Γ1)

p3i+1

p3i+2

p3i+3

r1i r2i r3i

r1i+1 r2i+1 r3i+1

(b) Body Block with our generic U3(Γ1)

Fig. 5: Body block construction for our 3-way EUG U
(3)
n (Γ1).

Size of Body Block B3 with Our Generic U3(Γ1). In Fig. 5b, we
show the 3-way body block with the generic U3(Γ1) that allows the output
from p3i+1 to be directed to p3i+3 without having to go through p3i+2. This
results in size(B3) = 2 ·P (3) + size(U3(Γ1)) + (3− 1) = 12, which implies
that the asymptotic size of the UC is ≈ 2 · 12

3 log2 3
n log2 n ≈ 5.047n log2 n.

Unfortunately, this is worse than the asymptotic size of the 2-way con-
struction, and we therefore conclude that the asymptotically most efficient
known UC construction is Valiant’s 4-way UC construction.

4.2 Hybrid Universal Circuit Construction

In this section, we detail our hybrid UC that minimizes its size based
on Valiant’s 2-way and 4-way UCs, which are asymptotically the smallest
UCs to date. Given the size of the input circuit Cku,v, i.e., n = u+k+v, we
can calculate at each recursion step if it is better to create 2 subgraphs of
size dn2−1e and utilize the 2-way recursive skeleton, or it is more beneficial
to create a 4-way recursive skeleton with 4 subgraphs of size dn4 − 1e.

We assume that for every n, we have an algorithm that computes the
size (size(Uhybrid

n (Γ1))) of the hybrid construction for sizes smaller than
n. We give details on how it is computed in §5. Then, Listing 2 describes
the algorithm for constructing a hybrid UC, at each step based on which
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Listing 2: Hybrid construction algorithm
1 procedure hybrid (p1, . . . , pn , K = {2, 4})
2 Let s i z e (Uhybrid

n′ (Γ1)) be the func t i on c a l c u l a t i n g the s i z e o f the
↪→ sma l l e r hybrid c on s t ru c t i on s with s i z e n′ ≤ n

3 for a l l k ∈ K do // Number o f po l e s in the l a s t b l o c k f o r a l l k
4 i f n | k do
5 mk ← k
6 else
7 mk ← n mod k
8 end i f
9 sk ← size(Headk(k)) +

(
dn
k
e − 3

)
· size(Bodyk(k)) + size(Bodyk(rk)) + size(Tailk(mk)) +

↪→ m2 · size
(
size(Uhybrid

dn
2
−1e(Γ1))

)
+ ((k −mk) · size

(
size(Uhybrid

bn
k
−1c(Γ1))

)
10 end for
11 si ← min(sk : k ∈ K) // Choose the b e t t e r cons t ruc t i on
12 Create sk e l e t on for i−way cons t ruc t i on with n po l e s
13 ca l l hybrid

(
r11 , . . . , r

1
dn

i
−1e,K

)
, . . . , hybrid

(
r
mi
1 , . . . , r

mi
dn

i
−1e,K

)
14 i f (i−mi) > 0 do
15 ca l l hybrid

(
r
mi
1 , . . . , r

mi
bn

i
−1c,K

)
, . . . , hybrid

(
ri1, . . . , r

i
bn

i
−1c,K

)
16 end i f
17 end procedure

strategy is more efficient. We note that our hybrid construction is generic,
and given multiple k-way UC constructions as parameter K (K = {2, 4}
in our example), it minimizes the concrete size of the resulting UC.

5 Size of UC Constructions

Lipmaa et al.’s k-way UC construction is depicted in a modular manner
in [LMS16, Fig. 12] and discussed briefly in §2.5 and Fig. 3. They show that
a k-way body block consists of two permutation networks P (k), an EUG
for k nodes, i.e., Uk(Γ1), and additionally, (k − 1) Y-switching blocks. In
this section, we recapitulate the sizes (Table 2) of the k-way EUG and give
an estimate for the leading constant for Lipmaa et al.’s EUG construction
with size O(n log2 n), for k ∈ {2, . . . , 8}. For a detailed discussion on
the depth of the UCs, the reader is referred to the full version of this
paper [GKS17, §5]. We conclude that the best asymptotic size is achieved
by Valiant’s 4-way UC. This result does not exclude the possibility for
a more efficient UC in general, but it shows that the most efficient UC
using Lipmaa et al.’s k-way UC from [LMS16] is the 4-way UC. Two k-way
EUGs for Γ1(n) graphs build up an EUG for Γ2(n) graphs as described
in §2.1. Therefore, the leading constant for the size of the UC is twice that
of the EUG U

(k)
n (Γ1), which is summarized in the same table.
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k Uk(Γ1) U
KS08(k) P l(k) PW(k) BW

k U
(k)
n (Γ1) (·n log2 n) UC (·n log2 n)

2 2 2 1 1 5 2.5 5
3 4 6 3 3 12 ≈ 2.524 ≈ 5.047
4 6 7 5 5 19 2.375 4.75
5 10 11 7 8 30 ≈ 2.584 ≈ 5.168
6 13 14 10 11 40 ≈ 2.579 ≈ 5.158
7 19 19 13 14 53 ≈ 2.697 ≈ 5.394
8 23 21 16 17 62 ≈ 2.583 ≈ 5.167

Table 2: The leading factors of the asymptotic O(n log2 n) size for
k-way edge-universal graphs (U

(k)
n (Γ1)) and universal circuits (UC) for

k ∈ {2, . . . , 8}. n denotes the size of the input Γ2(n) circuit, Uk(Γ1) the
size of Valiant’s edge-universal graph with k poles, UKS08(k) the size of
the UC of [KS08b], P l(k) the lower bound for the size of a permutation
network for k nodes, and PW(k) the size of Waksman’s permutation net-
work [Wak68]. BW

k is the size of the body block.

5.1 Asymptotic Size of k-Way UC Constructions

We review the sizes of the building blocks of a k-way body block, i.e., the
size of an EUG Uk(Γ1) for k, and the size of a permutation network P (k)
with k inputs and outputs, as well as the size of the resulting UCs.

Edge-Universal Graph with k Poles. Valiant optimized EUGs up
to size 6 by hand in [Val76]: for k = 2, U2(Γ1) has two poles, for k = 3
we discussed in §4.1 that an additional node is necessary. For k ∈ {4, 5, 6}
the sizes are {6, 10, 13}, as shown in [KS16, Fig. 1] (note that the nodes
noted as empty circles disappear in the UC). For k = 7 and k = 8, we
observe that Valiant’s 2-way UC results in a better size than that of the 4-
way UC due to the smaller permutation network and less recursion nodes.
Therefore, we use these constructions to compute the size of U7(Γ1) and
U8(Γ1). As mentioned in [LMS16], another possibility is to use the UC
of [KS08b] instead of these EUGs since they have better sizes for small
circuits. These UCs UKS08(k) are built from two smaller UKS08(k2 ), a P (

k
2 )

and k
2 Y switches. It results in a smaller size of 21 for k = 8.

Permutation Networks. Waksman in [Wak68] showed that the lo-
wer bound for the size of a permutation network is dlog2(k!)e for k ele-
ments. We present this lower bound in Table 2 as P l(k). The permu-
tation network with the smallest size is Waksman’s permutation net-
work PW(k) [Wak68, BD02]. For k ∈ {2, 3, 4} its size reaches the lower
bound, but for larger k values, his permutation network utilizes additi-
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onal nodes. Since these are the smallest existing permutation networks,
we use these when calculating the size of the UC. Even with the lower
bound P l(k), for k ∈ {5, 6, 7, 8} we would have the respective leading
terms {4.824, 4.900, 5.190, 5}, which are larger than 4.75 for k = 4.

Body Blocks. A body block BW
k is built of (k−1) Y-switching blocks,

an EUG for k nodes, and two permutation networks [LMS16] (cf. Fig. 3).
The size ofBW

k is the sum of the sizes of its building blocks, i.e., size(BW
k ) =

min
(
size(Uk(Γ1)), size(UKS08(k))

)
+ 2 · size(PW (k)) + k − 1.

Edge-Universal Graphs and Universal Circuits with n Poles.
The asymptotic size of EUG U

(k)
n (Γ1) is determined as size(U (k)

n (Γ1)) =
size(BW

k )
k log2 k

n log2 n and the leading factor for a UC is twice this number.

5.2 Concrete Size of UC Constructions

The size of Lipmaa et al.’s k-way universal circuits depends on the size
of their building blocks [LMS16]. More concretely, finding either better
edge-universal graphs for small number of nodes or optimal permutation
networks could improve the sizes of these UCs. Lipmaa et al. calculated the
optimal k value for minimizing the size of a k-way UC to be 3.147 [LMS16].

Table 2 shows that the smallest sizes are achieved by the 4-way, fol-
lowed by the 2-way UCs. The 3-way UC, as mentioned in §4.1, is less
efficient due to the additional node in U3(Γ1). We observe that the sizes
grow with increasing k values due to the permutation networks and EUGs.

Concrete Sizes of 4-Way and 2-Way UCs. Based on the parity (2-
way UC) and the remainder modulo 4 (4-way UC), not only the size of the
outest skeleton, but also that of the smaller subgraphs can be optimized.
It was considered in [KS16] for the 2-way UC, and we now generalize the
approach for k-way UCs. We provide a recursive formula for the concrete
size of the optimized k-way EUG as follows. Let mk be defined as

mk :=

{
n mod k if k - n,
k if k | n.

(18)

Then, given the designed Head, Body and Tail blocks with sizes shown
in Table 3, we can compute the size by calculating the size of all the
components of the outest skeleton, and the sizes of the smaller subgraphs
with the recursive formula shown in Eq. 19.4

4We note that for k ≥ 3, there exist Head(k − 1), . . . , Head(1) blocks. These are
used for one n, e.g., Head(1) when n = k + 1, and Head(k − 1) when n = 2k. For
simplicity, we consider these as special recursion base numbers in our calculations.
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Block Head Body Tail
k\Poles 4 3 2 1 4 3 2 1 4 3 2 1
Fig. - - 2c - - - 2a 2b - - 2d 2e
2-way - - 4 - - - 5 5 - - 4 1
Fig. 4e 4g 4h 4i 4a 4b 4c 4d 4f 4g 4h 4i
4-way 14 14 13 12 19 19 18 17 14 9 4 1

Table 3: The sizes of building blocks of the 2-way and 4-way
UCs (cf. Figs. 2, 4).

size(U (k)
n (Γ1)) = size(Head(k)) +

(⌈n
k

⌉
− 3
)
· size(Body(k))+

size(Body(mk)) + size(Tail(mk))+

mk · size
(
U

(k)

dnk−1e
(Γ1)

)
+ (k −mk) · size

(
U

(k)

bnk−1c
(Γ1)

)
. (19)

Concrete Size of our Hybrid UC. We provide a hybrid UC in §4.2 for
minimizing the size of the resulting UC. This construction chooses at each
step the skeleton that results in the smallest size and therefore, we provide
the recursive algorithm for determining its size in Eq. 20. size(Headk(i)),
size(Tailk(i)) and size(Bodyk(i)) are the values from Table 3 for k = 2
and k = 4. The size of the hybrid UC is minimized as

size(Uhybrid
n (Γ1)) = min

(
size(Headk(k)) +

(⌈n
k

⌉
− 3
)
· size(Bodyk(k))+

size(Bodyk(mk)) + size(Tailk(mk)) +mk · size
(
Uhybrid
dnk−1e

(Γ1)

)
+

(k −mk) · size
(
Uhybrid
bnk−1c

(Γ1)

)
; k ∈ {2, 4}

)
, (20)

which can be computed using a dynamic programming algorithm.

Improvement of 4-way Construction. The bottom (blue) line in
Fig. 6 shows the concrete improvement in percentage of the 4-way UC
construction over the 2-way UC construction up to ten million nodes in
the simulated input circuit. From the asymptotic leading factors in Ta-
ble 2, we expect an improvement of up to 1− 4.75

5 = 5%. For the smallest n
values (n ≤ 15), the 2-way UC is up to 33.3% better than the 4-way UC.
However, from n = 212 on, the 4-way UC construction is better, except
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Fig. 6: Improvement of our hybrid and Valiant’s 4-way UC over Valiant’s
2-way UC for 15 ≤ n ≤ 107 with logarithmic x axis.

for some short intervals as shown in Fig. 6 (the difference in these in-
tervals, however, is at most 3.45%). From here on, the 4-way UC is on
average 3.12% better in our experiments, where the biggest improvement
is 4.48%. Moreover, from n = 10 885 on, the 4-way UC always outperforms
the 2-way UC.

Improvement of Hybrid Construction. The improvement achieved
by our hybrid construction (cf. §4.2) is depicted in the same Fig. 6, as the
top (green) line. For some n values the hybrid UC achieves the same size
as the 2- or 4-way UCs, but due to its nature, it is never worse. This means
that the improvement of our hybrid UC is always nonnegative, and greater
than or equal to the improvement achieved by the 4-way UC. Moreover, in
most cases the hybrid UC results in better sizes than any of the other two
constructions: this means that some subgraphs are created for an n for
which the 2-way UC is smaller, and therefore the 2-way recursive structure
is utilized. The overall improvement for all n values is on average 3.65%
and at most 4.48% over the 2-way UC construction.
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6 Implementation and Evaluation

The first implementation of Valiant’s 2-way UC, along with a toolchain for
PFE (cf. §1.1) was given in [KS16]. The 4-way UC has smaller asymptotic
size ∼ 4.75n log2 n, but has not been implemented before due to its more
complicated structure and embedding algorithm.

In this work, we improve the implementation of the open-source fra-
mework of [KS16] by using the 4-way UC construction that can directly be
applied in the PFE framework. Our improved implementation is available
at http://encrypto.de/code/UC. Firstly, the functionality is translated
to a Boolean circuit using the Fairplay compiler [MNPS04,BNP08]. This
is then transformed into a circuit in Γ2(n), i.e., with at most two inco-
ming and outgoing wires for each gate, input and output. This is done in
a preprocessing step of the framework in [KS16]. The input circuit des-
cription of our UC implementation is the same as that of the UC compiler
of [KS16], and we also adapt our output UC format to that of [KS16] that
includes the gate types described in §2.2. This format is compatible with
the ABY framework [DSZ15] for secure function evaluation.

We discuss our implementation of Valiant’s 4-way UC in §6.1 and give
experimental results in §6.2. For a description on how the hybrid UC can
be implemented, the reader is referred to the full version [GKS17, §6.3].

6.1 Our 4-Way Universal Circuit Implementation

The architecture of our UC implementation is the same as that of [KS16],
and therefore, we describe our UC design based on the steps described
in [KS16, Fig. 6]. Our implementation gets as input a circuit with u inputs,
v outputs and k gates, and outputs a 4-way UC with size n = u+ k + v,
as well as the programming pf corresponding to the input circuit (cf. §1).

Transforming circuit Cku,v into Γ2(u+ k + v) graph G. As a first
step, we transform the circuit Cku,v into a Γ2(n) graph G = (V,E) with
n = u+k+v (cf. §2.1). Then, we define a topological order ηG on the nodes
of G s.t. every input node vi has a topological order of 1 ≤ ηG(vi) ≤ u
and every output node vj is labelled with u+ k+1 ≤ ηG(vj) ≤ u+ k+ v.

Creating an EUG U
(4)
n (Γ2) for Γ2(n) graphs. An EUG U

(4)
n (Γ2) is

constructed by creating two instances of U (4)
n (Γ1) as shown in §2.2. The

two instances get merged to U (4)
n (Γ2) so that one builds the left inputs

and outputs and the other builds the right inputs and outputs of the ga-
tes (based on the two-coloring of G). We create the EUGs with Valiant’s
4-way EUG [Val76] with our optimized blocks from §3.1 (cf. Fig. 4).
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Circuit n Circuit size (#AND gates) UC generation (ms)
u + v + k 2-way UC

[KS16]
Our 4-

way UC
Our Hy-
brid UC

2-way UC
[KS16]

Our 4-
way UC

AES-non-exp 46 847 2.96 · 106 2.93 · 106 2.86 · 106 9 008.9 10 325.8
AES-exp 38 518 2.39 · 106 2.38 · 106 2.31 · 106 6 961.7 8 361.3
DES-non-exp 31 946 1.96 · 106 1.92 · 106 1.89 · 106 5 563.8 6 599.5
DES-exp 32 207 1.98 · 106 1.94 · 106 1.90 · 106 5 654.0 6 765.0
md5 66 497 4.42 · 106 4.26 · 106 4.26 · 106 14 805.5 14 897.8
sha-256 201 206 1.49 · 107 1.46 · 107 1.44 · 107 81 889.1 57 439.0

add_32 342 9.58 · 103 9.55 · 103 9.44 · 103 29.6 35.3
add_64 674 2.21 · 104 2.27 · 104 2.17 · 104 53.9 89.6
comp_32 216 5.53 · 103 5.54 · 103 5.49 · 103 17.7 21.2
mult_32x32 12 202 6.54 · 105 6.50 · 105 6.35 · 105 1 639.2 2 177.1

Branching_18 200 4.92 · 103 5.07 · 103 4.88 · 103 21.0 24.2
CreditChecking 82 1.50 · 103 1.51 · 103 1.49 · 103 3.1 12.7
MobileCode 160 3.65 · 103 3.88 · 103 3.61 · 103 10.6 29.0

Table 4: Comparison of the sizes of the UCs (2-way, 4-way, and hybrid)
for sample circuits from [TS15]. Bold numbers denote if the 2-way or the
4-way UC is smaller; the smallest size is always achieved by our hybrid
UC. The UC generation time is given for both implemented UCs.

Programming U (4)
n (Γ2) to compute Cku,v. We edge-embed graphG

into U (4)
n (Γ2) as described in §3.1. [KS16] use their supergraph construction

to define the paths between the poles uniquely for Valiant’s 2-way EUG.
We modify this supergraph as described in §3.1 for Valiant’s 4-way EUG
and perform the edge-embedding as described in Listing 1. The program-
ming bits of the nodes are set during the edge-embedding process along
the paths between the poles. The block edge-embedding is done by ana-
lyzing the possible input values and defining the valid paths as described
in §3.1.

Outputting a universal circuit with its programming. As a fi-
nal step, EUG U

(4)
n (Γ2) is topologically ordered and output in the UC

format of [KS16]. The programming bits pf defined by the embedding are
also output in a separate file based on the topological order.

6.2 Our Experimental Results

In order to show the improvement of our method, we ran experiments on a
Desktop PC, equipped with an Intel Haswell i7-4770K CPU with 3.5 GHz
and 16 GB RAM, and provide our results in Table 4. To compare with
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the runtime of the UC compiler of [KS16], we ran the same experiments
on the same platform using their 2-way UC implementation.

As [KS16], we use a set of real-life circuits from [TS15] for our bench-
marks, and compare the sizes of the resulting circuits and the generation
and embedding runtimes. We can see that from the 2-way and 4-way UC
constructions, the 4-way UC, as expected, is always smaller for large cir-
cuits than the 2-way UC. However, it is sometimes better even for small
circuits, e.g., for 32-bit addition with n = 342. The hybrid construction
always provides the smallest UC for our example circuits.

In the last two columns, we report the runtime of the UC compiler
of [KS16] and our 4-way UC implementation for generating and program-
ming the universal circuit corresponding to the example circuits. Table 4
shows that the differences in runtime are not significant, and due to its
more complicated structure, the 4-way UC takes more time to generate
and program in general. However, we can see from the largest example
with more than 200 000 nodes that asymptotically, the 4-way UC results
in a runtime improvement as well, as less nodes need to be programmed.
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