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Abstract. A multivariate quadratic public-key cryptography (MQ-PKC)
is one of the most promising alternatives for classical PKC after the even-
tual coming of a quantum computer. We propose a new MQ-signature
scheme, ELSA, based on a hidden layer of quadratic equations which is
an important role in dramatically reducing the secret key size and com-
putational complexity in signing. We prove existential unforgeability of
our scheme against an adaptive chosen-message attack under the hard-
ness of the MQ-problem induced by a public key of ELSA with a specific
parameter set in the random oracle model. We analyze the security of
ELSA against known attacks and derive a concrete parameter based on
the security analysis. Performance of ELSA on a recent Intel processor is
the fastest among state-of-the-art signature schemes including classical
ones and Post-Quantum ones. It takes 6.3 µs and 13.39 µs for signing
and verification, respectively. Compared to Rainbow, the secret size of
the new scheme has reduced by a factor of 88 % maintaining the same
public key size.
Key words: Isomorphism of Polynomials problem, Direct attack, Exis-
tential unforgeability, Key recovery attack, Multivariate-Quadratic prob-
lem.

1 Introduction

Online banking, e-commerce, mobile communication, and cloud computing
depend fundamentally on the security of the underlying cryptographic algo-
rithms. Public-key cryptography (PKC) is particularly crucial since they pro-
vide digital signatures and establish secure communication without requiring in-
person meetings. In 1996, Shor [49] proposed a quantum algorithm that solves
the integer factorization problem and the discrete logarithm problem in finite
fields and on elliptic curves in polynomial time. Thus, the existence of a suf-
ficiently large quantum computer would be a real-world threat to break RSA,
Diffie-Hellman key exchange, DSA and ECDSA the most widely used PKC in
practice. There are four well-known classes of cryptographic primitives that are
believed to remain secure in the presence of a quantum computer: code-based
cryptography (McEliece encryption [37]), lattice-based cryptography (NTRU
[30]), hash-based cryptography (Merkle’s hash-tree signatures [38]), and mul-
tivariate quadratic (MQ) cryptography (HFEv- [40], UOV [33]). These crypto-
graphic primitives have been resist classical and quantum cryptanalysis which



has inspired widespread confidence in their suitability as a post-quantum prim-
itive.

MQ-PKC is based on the hardness of solving large systems of multivariate
quadratic equations, called MQ-problem which is known to be NP-complete. To
construct MQ-PKC, it needs a way to hide a trapdoor. In MQ-PKC, a public key
is a system of multivariate quadratic polynomials and a trapdoor is hidden in
secret affine layers using the ASA (affine-substitution-affine) structure. A long-
standing challenge is to design PKC based on symmetric cipher components
which are similar to those used in mainstream block ciphers such as AES. Solving
this appealing but difficult challenge would not only increase the diversity in
PKC, but might also help reducing the considerable performance gap between
PKC and symmetric cryptography. One of the directions was to design public-
key schemes from symmetric components. A typical symmetric cipher is built
from layers of affine transformations (A) and S-boxes (S). This has been the
mainstream of MQ-PKC. The security of the ASA structure relies on the hardness
of the isomorphism-of-polynomials (IP) problem [40].

Several new ideas to build MQ-schemes from symmetric cipher components
were recently introduced by Biryukov et al. [10] at Asiacrypt 2014. They used the
so-called ASASA structure: combining two quadratic mappings S by interleaving
random affine layers A. With quadratic S layers, the overall scheme has degree 4,
so the polynomial description provided by the public key remains of reasonable
size. This is very similar to the 2R scheme by Patarin [43], which is broken by
several attacks [8, 18], including a powerful decomposition attack [25]. At Crypto
2015 and Asiacrypt 2015, Biryukov et al.’s two public-key encryption schemes
are broken by key recovery attacks [27, 39].

Since the first MQ-encryption scheme was proposed by Imai and Matsumoto
[36], a number of MQ-schemes in this MQ+IP paradigm have been proposed,
i.e., these MQ-schemes are not solely based on the MQ-Problem, but also on
some variants of the IP problem. Most of the MQ-schemes have been broken
due to the uncertainty of the IP problem. There are only two exceptions from
the MQ-IP paradigm: HFEv- variants [42, 45] and Unbalanced Oil-and-Vinegar
(UOV) variants [33, 16] as signature schemes. MQ-schemes require simplicity of
operations (matrices and vectors) and small fields avoid multiple-precision arith-
metic. So, they require only modest computational resources, which makes them
attractive for the use on low cost devices such as smart cards [11, 12]. In par-
ticular, MQ-signature schemes in the MQ+IP paradigm are superior to other
competitors in terms of performance and signature size. Despite these advan-
tages, MQ-schemes in the MQ+IP paradigm has two main problems: i) it has
relatively large key sizes and ii) all the schemes in the MQ+IP paradigm have
been proposed with actual parameters for practical, but they have no security
reduction to the hardness of the MQ-problem. The reason for this is that they
require a hidden structure which relies on the hardness of the IP problem. More-
over, cryptanalysis results of many MQ-schemes have shown that the IP-problem
relies on the MinRank problem [14, 24].

In the last years, a few researchers started designing provably secure MQ-
schemes based on the hardness of random instances of the MQ-problem. At



PKC 2012, Huang at al. [31] proposed a public-key encryption scheme with
a security reduction to the hardness of solving a set of quadratic equations
whose coefficients of highest degree are chosen according to a discrete Gaussian
distributions. The other terms are chosen uniformly at random. Such a problem
is a variant of the classical problem of solving a system of non-linear equations
(PoSSo, PoSSo problem with degree 2 equations is the MQ-problem), which is
known to be hard for random systems. They claimed that their variant is not
easier than solving the PoSSo problem for random instances. At PKC 2014,
Albrecht et al. [2] showed that Huang et al.’s new problem is reduced to an easy
instance of the Learning With Errors problem. They concluded that one cannot
find parameters for a secure and practical scheme: a public-key of at least 1.03
GB is required to achieve 80-bit security against the simplest of their attacks.

Another approach is to construction of an MQ-signature scheme from an
identification scheme (IDS) based on the MQ-problem via the Fiat-Shamir trans-
form. The resulting scheme [1] obtained from Sakumoto et al.’s IDS based on the
MQ-problem [47] via the Fiat-Shamir transform is the first provably secure MQ-
signature scheme, which solely relies on the MQ-problem. Recently, Chen et al.
[13] implemented the resulting signature scheme, MQDSS in [1]. MQDSS solves
the problem of large key sizes of MQ-PKC by removing the dependence of the
IP-problem, but loses the most significant advantages of MQ-ones, fast perfor-
mance and short signature size. Like this, the history of the design of public-key
schemes show that the stronger security arguments the larger performance gap.
Therefore, it still remains an open problem to design a practical MQ-signature
scheme with a security reduction to the MQ-problem.

For most practical purposes, one still requires a signature scheme that is
sufficiently fast and has a short signature size. There have been several attempts
to design MQ-signature schemes with higher performance. Gligoroski et al. [28]
proposed an MQ-signature scheme, MQQ-SIG, based on multivariate quadratic
quasigroups (MQQ). MQQ-SIG is the shortest secret key among MQ-ones and
the fastest in signing among known signature schemes, but it requires a huge
public key which is about 5.7 times and 12,336 times larger than that of Rainbow
and ECDSA, respectively. At PKC 2015, Faugère et al. [23] mounted polynomial-
time key-recovery attacks on all known constructions based on MQQ. They broke
an MQQ-SIG instance of an 80-bit security level in less than 2 days. An enhanced
version of the Tame Triangular System scheme (enTTS) [52, 15] uses very sparse
polynomials which make enTTS very efficient in terms of secret key size and
signing time, but its public key size is much bigger than other MQ-ones. In this
paper, we provide a solution to the two problems of MQ-schemes in the MQ+IP
paradigm by proposing a existential unforgeable MQ-signature scheme with a
highly optimized practicability for both performance and signature size.

Our Contributions. We propose a new MQ-signature scheme, ELSA, with
faster performance and shorter secret key.

– A New Signature Scheme. Our signature scheme is based on a hidden
layer of quadratic equations. This method makes it possible to remove the
use of the Gaussian elimination by reducing the complexity of signing from



O(n3) to O(n2). It plays an important role in dramatically reducing the
secret key size and computational cost in signing.

– High Speed for Both Signing and Verification. Our scheme is the
fastest public-key signature scheme for both signing and verification among
the state-of-the-art signature schemes including classical ones and Post-
Quantum ones. We implement our scheme for a secure and optimal pa-
rameter at a 128-bit security level. Signing of ELSA is about 3.2 times and
hundreds of times faster than that of Rainbow and MQDSS, respectively.
Also, signing and verification of ELSA is about 17.2 times and 2.3 times
faster than those of BLISS-BI, respectively, and signature size of BLISS-BI
is about 8.9 times larger than that of ELSA, where BLISS-BI is currently
the most efficient lattice-based signature scheme.

– Shorter Secret Key Size. Compared to Rainbow, the secret key size of
ELSA has reduced by a factor of 88% maintaining the same public key size.
Compared to enTTS, the public key size of ELSA have reduced by a factor
of 40%.

– Existential Unforgeability. We prove existential unforgeability of ELSA
against an adaptive chosen-message attack under the hardness of the MQ-
problem induced by a public key of ELSA with a specific parameter set in
the random oracle model.

Organization. The rest of the paper is organized as follows. In Section 2, we
propose a new MQ-signature scheme, ELSA. In Section 3, we analyze the security
of our scheme against all known attacks. In Section 4, we give a security proof of
ELSA under the hardness of the MQ-problem in the random oracle model. We
evaluate performance of our scheme for a secure and optimal parameter at the
128-bit security level and compare it to the state-of-the-art signature schemes in
Section 5. We conclude in Section 6.

2 A New MQ-Signature Scheme

Here, we propose a new MQ-signature scheme based on a hidden layer of
quadratic equations.

Let Fq be a finite field with elements q. A multivariate quadratic system
P = (P(1), · · · ,P(m)) of m equations in n variables is defined by

P(k)(x1, · · · , xn) =

n∑
i=1

n∑
j=i

p
(k)
ij xixj +

n∑
i=1

p
(k)
i xi + p

(k)
0 ,

for k = 1, · · · ,m, and p
(k)
ij , p

(k)
i , p

(k)
0 ∈R Fq. The main idea for the construction

of MQ-signature schemes is to choose a system F : Fnq → Fmq of m quadratic
polynomials in n variables which can be easily inverted. We call F a central
map. After that one chooses two affine or linear invertible maps S : Fmq → Fmq
and T : Fnq → Fnq to hide the structure of the central map F in the public key.
A public key is the composed quadratic map P = S ◦ F ◦ T which is supposed
to be hardly distinguishable from a random system and therefore be difficult to
invert. The secret key consists of (S,F , T ) which allows to invert P.



2.1 Our Construction

To construct a new central map for an MQ-signature scheme, we need to
define the following four index sets as

L = {1, · · · , l}, K = {l + 1, · · · , l + k}, R = {l + k + 1, · · · , l + k + r},

U = {l + k + r + 1, · · · , l + k + r + u},
where |L| = l, |K| = k, |R| = r, and |U | = u. A central map is a multivariate
quadratic system F = (F (1), · · · ,F (m)) of m equations and n variables defined
by
F (1)(x) = L1(xL+K+R)R11(xL+K) + · · ·+ Lr(xL+K+R)R1r(xL+K) + Φ1(xL),

...

F (k)(x) = L1(xL+K+R)Rk1(xL+K) + · · ·+ Lr(xL+K+R)Rkr(xL+K) + Φk(xL),


F (k+1)(x) = L1(xL+K+R)R′11(x) + · · ·+ Lr(xL+K+R)R′1r(x) + Ψ1(xL+K) + L′1(xL+K+R),

...

F (k+u)(x) = L1(xL+K+R)R′u1(x) + · · ·+ Lr(xL+K+R)R′ul(x) + Ψu(xL+K) + L′u(xL+K+R),

where xL = (x1, · · · , xl), xL+K = (x1, · · · , xl+k), xL+K+R = (x1, · · · , xl+k+r),
x = (x1, · · · , xn), m = k + u and n = l + r + m. We call F (i) for i = 1, · · · , k
and F (i) for i = k + 1, · · · , k + u polynomials in the first layer and the second
layer, respectively.

How to Define Li, Rij and R′ij.

– To define Li, it needs to construct a hidden layer L of quadratic equations.
Li is a linear equation in variables (x1, · · · , xl+k+r) for i = 1, · · · , r. We
define a system of r quadratic equations as

L :


L(xL)L1(xL+K+R) = ξ1,

...

L(xL)Lr(xL+K+R) = ξr,

where L is a linear equation in variables (x1, · · · , xl) and ξi ∈ F∗q . We choose
random βij for i = 1, · · · , r and j = 1, · · · , l + k + r such that an r × r

submatrix matrix Λr =

β1l+k+1 · · · · · · β1l+k+r
· · · · · · · · · · · ·

βrl+k+1 · · · · · · βrl+k+r

 of an r × (l + k + r)

matrix Λ is invertible, where

Λ =


β11 · · · · · · β1l+k+r
β21 · · · · · · β2l+k+r
· · · · · · · · · · · ·
βr1 · · · · · · βrl+k+r





is a coefficient matrix of (L1, · · · , Lr).
– Φi is a quadratic equation in variables (x1, · · · , xl) for i = 1, · · · , k defined

by Φi =
∑l
j=1

∑l
t=j ϕ

i
j,txjxt, for ϕij,t ∈R Fq.

– Rij is a linear equation in variables (x1, · · · , xl+k) for i = 1, · · · , k and

j = 1, · · · , r such that a k×k submatrix matrix Θk =

α1l+1 · · · · · · α1l+k

· · · · · · · · · · · ·
αkl+1 · · · · · · αkl+k


of a k × (l + k) matrix Θ is invertible, where Θ is a coefficient matrix of
(L(xL) · F (1)−L(xL) ·Φ1(xL), · · · , L(xL) · F (k)−L(xL) ·Φk(xL)) such that

L(xL) · F (1) − L(xL) · Φ1(xL)
L(xL) · F (2) − L(xL) · Φ2(xL)

· · ·
L(xL) · F (k) − L(xL) · Φk(xL)

 =


ξ1R11(x) + · · ·+ ξrR1r(xL+K)
ξ1R21(x) + · · ·+ ξrR2r(xL+K)

· · ·
ξ1Rk1(x) + · · ·+ ξrRkr(xL+K)



=


α11 · · · · · · α1l+k

α21 · · · · · · α2l+k

· · · · · · · · · · · ·
αk1 · · · · · · αkl+k

 ·


x1
x2
· · ·
xl+k

 .

– Ψi is a sparse polynomial in variables (x1, · · · , xl+k) for i = k+ 1, · · · , k+ u
defined by

Ψi =

l+k∑
j=1

ψi,jxjx(i+j−1)(mod l+k)+1

where ψi,j ∈R Fq so that the symmetric matrix of the quadratic part of each
Ψi has rank l+ k and any crossterms in Ψi for all i = k + 1, · · · , k + u don’t
overlap.

– L′i is a linear equation in variables (x1, · · · , xl+k+r) for i = 1, · · · , u defined

by L′i =
∑l+k+r
j=1 νijxj , where νij ∈R Fq.

– R′ij is a linear equation in variables (xl+k+r+1, · · · , xn) for i = 1, · · · , u and

j = 1, · · · , r. We chooseR′ij such that a u×u submatrix∆u =

 δ1l+k+r+1 · · · δ1n
· · · · · · · · ·

δul+k+r+1 · · · δun


of a u× n matrix ∆ =

 δ11 · · · δ1n
· · · · · · · · ·
δu1 · · · δun

 is invertible, where ∆ is a coefficient

matrix of (L(xL)·F (k+1)−L(xL)·Ψ1(xL+K)−L(xL)·L′1(xL+K+R), · · · , L(xL)·
F (k+u) − L(xL) · Ψu(xL+K)− L(xL) · L′u(xL+K+R)) such that

L(xL) · F (k+1) − L(xL) · Ψ1(xL+K)− L(xL) · L′1(xL+K+R)
L(xL) · F (k+2) − L(xL) · Ψ2(xL+K)− L(xL) · L′2(xL+K+R)

· · ·
L(xL) · F (k+u) − L(xL) · Ψu(xL+K)− L(xL) · L′u(xL+K+R)



=


ξ1R

′
11(x) + · · ·+ ξrR

′
1r(x)

ξ1R
′
21(x) + · · ·+ ξrR

′
2r(x)

· · ·
ξ1R

′
u1(x) + · · ·+ ξrR

′
ur(x)

 =

 δ11 · · · δ1n
· · · · · · · · ·
δu1 · · · δun

 ·
xl+k+r+1

· · ·
xn

 .



– From this construction, we store only (L,L′, Φ, ΨS , Θk
−1, Λr

−1, ∆u
−1) for F

instead of all the coefficients of F , where L = {L, ξi}ri=1, L′ = {L′i}
l+k+r
i=1 ,

Φ = {Φi}ki=1 and ΨS = {Ψi}ui=1.

How to Invert the Central Map. Given γ = (γ1, · · · , γm), to compute
F−1(γ) = s, i.e., to find s such that F(x) = γ, do the followings:

– In the first layer, compute L(xL)·F (i) = L(xL)·γi for i = 1, · · · , k by getting
a linear system of k equations with l + k variables as

ξ1R11(xL+K) + · · ·+ξlR1r(xL+K) = γ1 · L(xL)− Φ1(xL) · L(xL),

...

ξ1Rk1(xL+K) + · · ·+ξrRkr(xL+K) = γk · L(xL)− Φk(xL) · L(xL).

• Choose a random Vinegar vector sL = (s1, · · · , sl) ∈ Flq. If L(sL) = 0
then choose another random Vinegar vector. Plug sL into the above lin-
ear system by getting a new linear system of k equations with k variables.
• Solve the linear system by computing

sl+1

sl+2

· · ·
sl+k

 = Θ−1k ·


γ1 · L(sL)− Φ1(sL) · L(sL)− c1
γ2 · L(sL)− Φ2(sL) · L(sL)− c2

· · ·
γk · L(sL)− Φk(sL) · L(sL)− ck

 ,

where cj is a constant derived from the linear equation ξ1Rj1(xL+K) +
· · ·+ ξlRjr(xL+K) for j = 1, · · · , k.

– In the hidden layer, plug sL+K = (s1, . . . , sl+k) into a quadratic system L
by getting a linear system of r equations with r variables as

L1(sL+K, xl+k+1, · · · , xl+k+r) = L(sL)−1 · ξ1,
...

Lr(sL+K, xl+k+1, · · · , xl+k+r) = L(sL)−1 · ξk,

where L(sL) 6= 0. Get a solution (sl+k+1, · · · , sl+k+r) by computing
sl+k+1

sl+k+2

· · ·
sl+k+k

 = Λ−1k ·


L(sL)−1 · ξ1
L(sL)−1 · ξ2

· · ·
L(sL)−1 · ξk

 .

– In the second layer, compute L(xL) ·F (i) = L(xL) ·γi for i = k+1, · · · , k+u
getting a linear system of u equations with l + k + r + u variables as
ξ1R

′
11(x) + · · ·+ξlR′1r(x) = γk+1 · L(xL)− Ψ1(xL) · L(xL)− L′1(xL+K+R) · L(xL),

ξ1R
′
21(x) + · · ·+ξlR′2r(x) = γk+2 · L(xL)− Ψ2(xL) · L(xL)− L′2(xL+K+R) · L(xL),

· · ·
ξ1R

′
u1(x) + · · ·+ξlR′ur(x) = γk+u · L(xL)− Ψu(xL) · L(xL)− L′u(xL+K+R) · L(xL),



and plug sL+K+R = (s1, · · · , sl+k+r) into the linear system getting a linear
system of u equations with u variables. Get a solution (sl+k+r+1, · · · , sl+k+r+u)
by computing

sl+k+r+1

sl+k+r+2

· · ·
sl+k+r+u

 = ∆−1u ·


γk+1 · L(sL)− Ψ1(sL) · L(sL)− c′1
γk+2 · L(sL)− Ψ2(sL) · L(sL)− c′2

· · ·
γk+u · L(sL)− Ψu(sL) · L(sL)− c′u

 ,

where c′i is a constant of the linear equation ξ1R
′
i1(sL+K,xR)+· · ·+ξrR′ir(sL+K,xR)

for i = 1, · · · , u.
– Finally, we get a solution (s1, · · · , sn) of F(x) = γ by performing only three

matrix multiplications and computation of quadratic terms without using
the Gaussian elimination.

Now, we construct a new MQ-signature scheme based on this central map.

� ELSA (Efficient Layered Signature Scheme).

• KeyGen(1λ). For a security parameter λ, generate a public/secret key pair

< PK,SK >=< P, (S̃, T̃ ,F = (L,L′, Φ, ΨS , Θ̃r, Λ̃k, ∆̃u)) > as

– Choose randomly two affine maps S̃ and T̃ . If neither S̃ nor T̃ is invertible
then choose again, where X̃ = X−1.

– Choose randomly L, Φ, ΨS , Θ̃r, Λ̃r and ∆̃u, where L = {L, ξi}ri=1, L′ =
{L′i}ui=1, Φ = {Φi}ki=1 and ΨS = {Ψi}ui=1 satisfy all the conditions de-

scribed above. If neither Θ̃r, Λ̃k nor ∆̃u is invertible then choose again.
– Compute P from P = S ◦ F ◦ T .

• Sign(SK, m). Given a message m,

– Compute h(m) and S̃(h(m)) = γ, where γ = (γ1, · · · , γm).
– Compute s such that F−1(γ) = s, i.e., F(s) = γ as the above. Then

s = (s1, · · · , sn) is a solution of F (x) = γ.

– Compute T̃ (s) = σ. Then σ is a signature of m.

• Verify(PK, m, σ). Given a signature σ on m and a public key P, check P(σ) =
h(m). If it holds, accept σ, otherwise, reject it.

Remark. 1. We now explain how the public key and secret key sizes of ELSA

are calculated. The public key requires
m(n+ 1)(n+ 2)

2
field elements as their

coefficients. The secret maps S and T require m(m + 1) and n(n + 1) field
elements, respectively. It requires (l+r+l+1) field elements for L, u(l+k+r+1)

field elements for L′,
k(l + 1)(l + 2)

2
field elements for Φ, u(l+ k) field elements

for ΨS , k2 field elements for Θ̃k, r2 field elements for Λ̃k and u2 field elements

for ∆̃u. Thus, the secret key requires n(n + 1) + m(m + 1) +
k(l + 1)(l + 2)

2
+

u(2l + 2k + r + 1) + (k2 + r2 + u2) + (l + r + 1) field elements.



2. UOV and Rainbow requires the use of Gaussian elimination for solving linear
systems in signing. In these schemes, the majority of computational cost for
signing count for that of the Gaussian elimination. In ELSA, only three matrix
multiplications using Θr

−1, Λk
−1, ∆u

−1 are required for solving the resulting
linear systems in signing without using the Gaussian elimination. So, it achieves
O(n2) complexity in signing instead of O(n3).

3 Security Analysis of ELSA

The security of all MQ-schemes in the MQ+IP paradigm is not only based on
the MQ-Problem, but also on some variant of the Isomorphism of Polynomials
(IP) problem. Furthermore, layered MQ-schemes require the hardness of the
MinRank problem. These underlying problems are defined as follows:

• Polynomial System Solving (PoSSo) Problem: Given a system P =
(P(1), · · · ,P(m)) of m nonlinear polynomials defined over Fq with degree of d
in variables (x1, · · · , xn) and y = (y1, · · · , ym) ∈ Fmq , find x′ = (x′1, · · · , x′n) ∈
Fnq such that P(x′) = y, i.e., P(1)(x′1, · · · , x′n) = y1, · · · ,P(m)(x′1, · · · , x′n) =
ym.

• EIP (Extended Isomorphism of Polynomials) Problem: Given a non-
linear multivariate system P such that P = S◦F ◦T for linear or affine maps
S and T , and F belonging to a special class of nonlinear polynomial system
C, find a decomposition of P such that P = S′ ◦ F ′ ◦ T ′ for linear or affine
maps S′ and T ′, and F ′ ∈ C.

• MinRank Problem: Let m,n, r, k ∈ N and r,m < n. The MinRank(r)
problem is, given (M1, · · · ,Ml) ∈ Fm×nq , find a non-zero k-tuple (λ1, · · · , λk) ∈
Fkq such that Rank(

∑k
i=1 λiMi) ≤ r.

The PoSSo problem is proven to be NP-complete [26]. For efficiency, MQ-PKC
restrict to quadratic polynomials. The PoSSo problem with all polynomials
(P (1), · · · , P (m)) of degree 2 is called the MQ-Problem for multivariate quadratic.
The IP problem was first described by Patarin at Eurocrypt’96 [40], there is not
much known about the difficulty of the IP problem in contrast to the MQ-
problem. The problem of finding a low rank linear combination of matrices was
originally introduced in [48] as one of the natural questions in linear algebra,
and the authors proved its NP-completeness.

A feature of MQ-PKC in the MQ+IP paradigm is that there exist a large
number of different secret keys for a given public key [51]. Informally, sup-
pose that < P, (S,F , T ) > is a public/secret key pair of an MQ-PKC, we call
(S′,F ′, T ′) is an equivalent key of (S,F , T ) if P = S ◦ F ◦ T = S′ ◦ F ′ ◦ T ′,
where S′ and T ′ are invertible affine maps, and F ′ preserves all zero coefficients
of F . The concept of equivalent keys plays a major role in the cryptanalysis of
MQ-schemes. If an attacker finds any of the equivalent keys then he can forge
a signature. Thus, the attacker wants to find an equivalent key with the sim-
plest structure. Known attacks of MQ-schemes be divided into the following two
classes:



• Direct Attack. Given a public key P and y ∈ Fmq , find a solution x ∈ Fnq
of P(x) = y.

• Key Recovery Attack (KRA). Given P = S ◦F ◦T , find equivalent keys
of (S,F , T ):

– KRAs using equivalent keys and good keys,
– Rank-based KRAs to find linear combinations associated matrices at

some given rank, to find nontrivial invariant subspaces of linear com-
binations associated matrices and so on: MinRank attack, HighRank
attack, Kipnis-Shamir attack.

3.1 Direct Attacks

Direct attacks use equation solvers like XL and Gröbner basis algorithms
such as Buchberger, F4 and F5 for solving the MQ-problem. Complexity of the
MQ-Problem is determined by that of the HybridF5 (HF5) algorithm [7]. The
basic idea is to guess some of the variables to create overdetermined systems
before applying Faugère’s F5 algorithm [22]. When doing so, one has to run
the F5 algorithm several times to find a solution of the original system. When
guessing k variables over Fq, this number is given by qk. The complexity of
solving a semi-regular (random) system of m quadratic equations in n variables
over Fq by HF5 can be estimated as

CHF5(q,m, n) = mink≥0 q
k · O

((
m ·

(
n− k + dreg − 1

dreg

))ω)
,

where the degree of regularity dreg is the index of the first non-positive coefficient

in the Sm,n =
(1− z2)m

(1− z)n
and 2 ≤ ω ≤ 3 is the linear algebra constant of solving

a linear system. The internal equations used by HF5 are very sparse and thus
ω = 2 can be used to obtain a lower bound on the complexity. If we really want
to break a scheme, we either calculate the correct α or use ω = 2.8 as an upper
bound [50].

Using HF5 algorithm (ω = 2), we summarize the lower bounds of the numbers
of equations (m) for solving determined systems defined over F28 required to
achieve given security levels in Table 1.

λ 80 96 128 192 256

m 26 31 43 68 93

Table 1. Lower Bounds of the Numbers of Quadratic Equations for Determined
Systems over F28 at Each Security Level.

3.2 Replacement Attacks

Our central map has a special feature for inverting: each central polynomial
uses a linear combination of the products of two lines and additional quadratic
terms. This feature and hidden quadratic systems make it possible to remove
the use of the Gaussian elimination resulting in the reduction of signing cost



and secret key size. In particular, Li for i = 1, · · · , r are used in all the central
polynomials F (i) for i = 1, · · · , k + u. Thus, one can replace Li with a new
variable via an appropriate changing of variables. More precisely, one can replace
Li(xL+K+R) with yl+k+i for i = 1, · · · , r and xj with yj for j = 1, · · · , l+ k, l+

k+r+1, · · · , l+k+r+u. Then one gets a new central map, F = (F (1)
, · · · ,F (m)

)
in the new variables (y1, · · · , yn) as
F̂ (1)(y) = yl+k+1R11(yL+K) + · · ·+ yl+k+rR1r(yL+K) + Φ1(yL),

...

F̂ (k)(y) = yl+k+1Rk1(yL+K) + · · ·+ yl+k+rRkr(yL+K) + Φk(yL),


F̂ (k+1)(y) = yl+k+1R

′
11(y) + · · ·+ yl+k+rR

′
1r(y) + Ψ1(yL+K) + L1(yL+K+R),

...

F̂ (k+u)(y) = yl+k+1R
′
u1(y) + · · ·+ yl+k+rR

′
ur(y) + Ψu(yL+K) + Lu(yL+K+R),

where yL = (y1, · · · , yl), yL+K = (y1, · · · , yl+k) and yL+K+R = (y1, · · · , yl+k+r).
Then the public key can be written as

P = S ◦ (F ◦ TR) ◦ (T−1R ◦ T ) = S ◦ F ◦ T ,

where F = F ◦ TR, T = T−1R ◦ T and TR is an invertible map defined by

TR(xT) =


IL+K 0 0

0 L1 0
0 L2 0
· · · · · · · · ·
0 Lr 0
0 0 IU

 ·
 x1
· · ·
xn

 =

 y1
· · ·
yn

 ,

where IL+K and IU are an (l+ k)× (l+ k)-identity matrix and a u× u-identity
matrix, respectively. In this case, we can consider the public key P = S ◦ F ◦ T
with the secret key (S,F , T ) since F is still invertible with the same way as in
§2.1. We provide security analysis of ELSA against all attacks with respect to
these two types of secret keys (S,F , T ) and (S,F , T ) for the public key P.

3.3 Key Recovery Attacks

In 2008, Ding et al. [17] presented Rainbow Band Separation (RBS) attacks
on Rainbow. Later, Thomae [50] applied the attacks to other MQ-schemes using
the concept of good keys which is a generalization of the RBS attacks. In this
subsection, we analyze security of ELSA against the key recovery attacks (KRAs)
using equivalent keys and good keys.

Let F (i) (1 ≤ i ≤ m) be symmetric matrices associated to the homogeneous
quadratic part of the i-th component of the central map F . The matrices F (i) are
depicted in Fig. 1, where white parts denote zero entries and gray parts denote



arbitrary entries. The matrices are the same as those of Rainbow [44]. After
mounting the replacement attack described in §3.2, we get symmetric matrices

F
(i)

(1 ≤ i ≤ m) representing the quadratic part of the i-th component of F (i)

which is depicted in Fig. 2.

Fig. 1. Symmetric Matrices for Quadratic Parts of F .

Fig. 2. Symmetric Matrices for Quadratic Parts of F .

Analogously, we denote P (i) (1 ≤ i ≤ m) be symmetric matrices representing
the quadratic part of the i-th component of the public key P. Due to the structure
of F , we know that certain coefficients in F (i) are systematically zero. Since
P = S ◦ F ◦ T , we obtain F = S̃ ◦ P ◦ T̃ , where S̃ = S−1 and T̃ = T−1. From
this, we get the following equality:

F (i) = T̃T

 m∑
j=1

s̃ijP
(j)

 T̃ , ∀1 ≤ i ≤ m.

The corresponding system of equations is:

f
(i)
βγ =

m∑
x=1

n∑
y=1

n∑
z=1

c(x)yz s̃ixt̃yβ t̃zγ (1)

for some coefficient c
(x)
yz , as we have already known that f

(i)
βγ = 0 for some i, β, γ

by the construction of F . Since the number equations obtained by (1) equals

the number of zeros in all F (k), we get
kr(r + 1) +mu(u+ 1)

2
+ku(n−u) cubic

equations. The number of variables in S̃ and T̃ is n2 + m2. The number of
equations for F is

k(n− l)(n+ l + 1) + u(n− r)(n+ r + 1)

2
− r[(l + k)k + (n− r)u]− u(l + k).



The complexity of solving such systems using HF5 is very large. To improve this
complexity, we use the concept of equivalent keys [51, 50]. Let GLn(Fq) be a
general linear group of degree n over Fq, for an integer n.

Definition 3.1. [Equivalent Key] Let S, S′ ∈ GLm(Fq) and T, T ′ ∈ GLn(Fq)
and F ,F ′ ∈ Fq[x1, ..., xn]m. We say that (F , S, T ) is equivalent to (F ′, S′, T ′) if
and only if S ◦ F ◦ T = S′ ◦ F ′ ◦ T ′ and F|I = F ′|I , that is, F and F ′ share the
same structure when restricted to a fixed index set I = {I(1), · · · I(m)}.

If S ◦F ◦T = P = S′ ◦F ′ ◦T ′, where F ′ preserves all systematic zero coefficients
of F then we call S′ and T ′ equivalent keys. Thus, an attacker who has any
of equivalent keys can forge signatures on any messages. If we can find simpler
equivalent keys, we can reduce the number of variables in S and T . If there are
two invertible linear maps Σ ∈ GLm(Fq) and Ω ∈ GLn(Fq) such that

P = S ◦Σ−1 ◦ (Σ ◦ F ◦Ω) ◦Ω−1 ◦ T,

and F ′(= Σ ◦ F ◦ Ω) and F have the same structure then (F ′, S′, T ′) is an
equivalent key.

Fig. 3. Equivalent Keys of ELSA w.r.t. F .

Fig. 4. Equivalent Keys of ELSA w.r.t. F .

For the original central map F , its equivalent keys are the same as those of
Rainbow since the matrices (F (1), · · · , F (m)) are the same as those of Rainbow
[50]. Thus, the equivalent keys for F are of the form given in Fig. 3, in this case,

F ′(i) also have same form as F ′(i) given in Fig. 1.
Next, we find equivalent keys for the central map F . To preserve the struc-

ture in second layer, we can find Ω and Σ of the form given in Fig. 4, so we
get equivalent keys of the form given in Fig. 4. However, we can find simpler
equivalent keys than ones given in Fig. 4 to improve the complexity significantly
by changing the preservation set, i.e., the set of indices for the quadratic terms
with zero coefficients. For it, we consider the generalized version of F denoted



by F̂ which is depicted in Fig. 5. So, we need to find equivalent keys (F̂ ′, S′, T ′)
such that F̂ ′

(i)
preserves the generalized version F̂ (i) .

Fig. 5. F̂ : Generalized Version of F .

Lemma 3.1. For the generalized central map F̂ given in Fig. 5, we can find
equivalent keys S′ and T ′ of the form given in Fig. 6 with high probability,
where gray parts denote arbitrary entries and white parts denote zero entries
and there are ones at the diagonal.

Fig. 6. Equivalent Keys of ELSA w.r.t. F̂ .

Proof. As in [50], we can find Σ and Ω given in Fig. 6. With high probability,
there exist equivalent keys (S′, T ′) of the form given in Fig. 6. �

After applying the transformations Σ and Ω in Lemma 3.1., we also get the
central map F̂ ′ = Σ ◦ F̂ ◦ Ω as in Fig. 5. From the equivalent key given in

Fig. 6, we get a system of
k(n− l)(n+ l + 1)

2
− kr(l + k) cubic equations and

u2(2l + 2k + u+ 1)

2
quadratic equations with n(n− u) + k(u− k − r)− l2 − r2

variables. However, the complexity of solving such a system is still large: for
ELSA with (Fq, l, k, r, u) = (F28 , 6, 28, 30, 15), lower bound on the complexity of
solving the system by HF5 is 21696. To further decrease this complexity, we use
the notion of good keys which is a generalization of equivalent keys. Good keys
don’t preserve all the zero coefficients of F , but just some of them. Hence, we
can choose Σ and Ω more widely and further reduce the number of variables.

Definition 3.2. [Good Key] Let S, S′′ ∈ GLn(Fq) and T, T ′′ ∈ GLm(Fq) and
F ,F ′′ ∈ Fq[x1, ..., xn]m, and J = {J (1), · · · , J (m)} ⊂ I = {I(1), · · · , I(m)} for
all k with at least one J (k) 6= φ. We say that (F ′′, S′′, T ′′) is a good key for (F ,
S, T ) if and only if S ◦ F ◦ T = S′′ ◦ F ′′ ◦ T ′′ and F|J = F ′′|J .



To find good keys, let (F ′, S′, T ′) be an equivalent key for ELSA. If

P = S′ ◦ F ′ ◦ T ′ = (S′ ◦Σ′−1) ◦ (Σ′ ◦ F ′ ◦Ω′) ◦ (Ω′−1 ◦ T ′)

for some two linear mapsΣ′ ∈ GLm(Fq) andΩ′ ∈ GLn(Fq), and F ′′ = Σ′◦F ′◦Ω′
satisfies the condition in above definition, then

(F ′′, S′′, T ′′) = (Σ′ ◦ F ′ ◦Ω′, S′ ◦Σ′−1, Ω′−1 ◦ T ′),

S′′ and T ′′ are good keys. The following proposition shows the existence of good
keys for ELSA.

Lemma 3.2. Let (S′, F̂ ′, T ′) be an equivalent key for ELSA given in Fig. 6.

Then there are good keys (S′′, F̂ ′′, T ′′) of the form given in Fig. 7. Only the last

column of T̃ ′′ contains arbitrary values in the first l+k+r rows, which are equal
to the corresponding values in T̃ ′. Respectively, only u values of the k-th row of
S̃′′ contain arbitrary values, which are equal to the corresponding values in S̃′.

Fig. 7. Good Keys of ELSA.

Proof. Using linear algebra, we can obtain unique Σ′ and Ω′ given in Fig. 7. It
shows the existence of a good key (S′′, T ′′) of the form given in Fig. 7. �

Fig. 8. Central Map F̂ ′′ After Applying Σ′ and Ω′ in Lemma 3.2.

Finally, after applying the transformations Σ′ and Ω′, we get the central map
F̂ ′′ = Σ′ ◦ F̂ ′ ◦Ω′ as given in Fig. 8. Finally, we obtain the following Theorem.

Theorem 3.1. The main complexity of the key recovery attack using good
keys on ELSA is determined by solving n − 1 bihomogeneous equations and m
quadratic equations with n variables.



After obtaining one column of T ′ and one row of S′, all the other parts of T ′

and S′ are revealed by linear equations as in [50]. Consequently, we recover the
equivalent keys T ′ and S′.

We find different equivalent keys for three types of central maps F , F and
F̂ , where F , F and F̂ are the original central map, the resulting central map
after the replacement attack and the general version of F , respectively. The
KRAs using equivalent keys for F̂ are more effective than those for F and F .
However, F , F and F̂ have the same forms of good keys resulting in the same
complexities given in Theorem 3.1. Table 2 shows improvements of lower bound
(α = 2) and upper bound (α = 2.8) on the complexities of solving such a system
by HF5 achieved by the KRAs using equivalent keys and good keys for ELSA
with (Fq, l, k, r, u) = (F28 , 6, 28, 30, 15).

ELSA # of Equ. # of Vari. dreg Comp. (low./upp.)

KRA (F) 45,060(Cubic) 8,090 1017 29215/212901

KRA (F) 77,197(Cubic) 8,090 727 27263/210169

KRA (F̂) 68,782(Cubic) 8,090 779 27632/210686

KRA Equi. (F) 28,980(Cubic)+16,080(Quad.) 2,400 53 2760/21064

KRA Equi. (F) 77,197(Cubic) 5,731 425 24481/26274

KRA Equi. (F̂) 59,332(Cubic)+9,450(Quad.) 3,588 135 21696/22375

KRA Good 121(Quad.) 79 16 2131/2183

Table 2. Lower-bounds/Upper-bounds on the Complexities of the KRAs using
Equivalent Keys and Good Keys for ELSA under Different Forms of Central Maps,

F , F and F̂ with (F28 , 6, 28, 30, 15)

Key Recovery Attacks using Linear Part of the Central Map. It is also
known that some coefficients of linear terms in the central map are zero. This
does not significantly affect the KRAs since the number of quadratic terms with
zero coefficients is much larger than that of linear terms with zero coefficients.
When we reduce the number of variables in good key recovery, we use Ω′ where
each coordinate function has at least n− 1 linear terms (See Lemma 3.2). Even

if F ′(k) has only one linear term for each k, F ′(k) ◦ Ω′ has at least n− 1 linear
terms. Nevertheless, if there is no linear term in F , we can get nm linear terms
with zero coefficients of F ′ ◦ Ω′ and n variables in the constant part of T̃ ′′ by
choosing Ω and Ω′ carefully satisfying Lemma 3.1 and Lemma 3.2. Then we can

set Σ′ =
(
S̃′
)−1

= S′ so that the variables in S̃′′ are removed. Finally, we get a

system of m(n + 1) quadratic equations with 2n − u variables. In this case, for
ELSA with (F28 , 6, 28, 30, 15), the complexity of solving this system by HF5 is
271.

3.4 Rank-based Attacks

•MinRank attack. In MinRank attacks, one tries to find linear combinations
M =

∑m
i=1 µiP

(i) of the matrices P (i), where M has a minimal rank. Under-
lying idea of an algorithm to solve this MinRank problem [48] is to search for
a vector lying in the kernel of the desired linear combination M . Complexity



of the MinRank attack is determined by that of finding the linear combination.
Since the forms of symmetric matrices of ELSA w.r.t. F are the same as those
of Rainbow, we can get that its complexity against the attack is ql+k+1 from
[9, 44]. Next, by using similar technique, we investigate the complexity of ELSA

w.r.t. F̂ against the attack in Proposition 3.1.

Proposition 3.1. The complexity of ELSA w.r.t. F̂ against the MinRank attack
is min{ql+2r−k+1, ql+2r+1, q2l+k+1}.
Proof. In MinRank attacks, we must find a vector v ∈ Fnq such that v ∈ kerP ,

where P is a matrix with the minimal rank in Span{P (i)}. The probability for
finding such a vector is the same as that of finding v′ ∈ Fnq such that v′ ∈ kerQ,

where Q is a matrix with the minimal rank in Span{F̂ (i)} and F̂ (i) is the matrix

of the quadratic part of F̂ . More precisely, F̂ (i) has of the form

∗ 0 ∗
0 0 ∗
∗ ∗ 0

 in

the first layer as given in Fig. 2. Then F̂ (i) · (0, ∗, 0)T = (0, 0, ∗)T . Let wi =

F̂ (i) · (0, ∗, 0)T = (0, 0, ∗)T . Then the probability that wi is linearly dependent is

1−
k−1∏
i=0

(1− qi

qr
) > 1/qr−k+1.

Note that
∑k
i=1 λiF̂

(i) has a minimal rank. Hence, the probability of v′ ∈
ker(

∑k
i=1 λiF̂

(i)) for a random vector v′ and non-trivial λi is 1/ql+r ·1/qr−k+1 =
1/ql+2r−k+1, where the provability that the vector v′ has of the form (0, ∗, 0) is

1/ql+r. Similarly, the probabilities for F̂ (i)·(∗, 0, 0) and F̂ (i)·(0, 0, ∗) are 1/ql+2r+1

and 1/q2l+k+1, respectively. �

Finally, the complexity of ELSA against the MinRank attack ismin{ql+k+1, ql+2r−k+1,
ql+2r+1, q2l+k+1}.

• HighRank Attack. In HighRank attacks, one tries to identify the variables
appearing the lowest number of times in the central polynomials. The variables
xl+k+r+1, · · · , xn appear only in the quadratic terms of the central polynomials
(F (k+1), · · · ,F (k+u)) of the second layer of ELSA. Thus, it is similar to that
of Rainbow. As in [44], we get its complexity against the HighRank attacks is

qu · n
3

6 .

•Kipnis-Shamir Attack (UOV Attack). Kipnis-Shamir attack [34] was orig-
inally used to break the balanced Oil and Vinegar signature scheme [41]. We
consider the generalization to the unbalanced case. We have already known that
the complexity of ELSA w.r.t. F against the Kipnis-Shamir attack is qn−2u−1 ·u4
as in [44] since the forms of symmetric matrices of ELSA w.r.t. F are the same
as those of Rainbow.

Now, we give security analysis of ELSA with the central map F̂ against the
Kipnis-Shamir attacks. We first define the following four index sets as

D1 = {i|1 ≤ i ≤ l}, D2 = {i|l + 1 ≤ i ≤ l + k},



D3 = {i|l + k + 1 ≤ i ≤ l + k + r}, D4 = {i|l + k + r + 1 ≤ i ≤ n}.
We define five meaningful subspaces of Fnq for the attacks on ELSA as

V1000 = {(x1, · · · , xn)|xi = 0, i /∈ D1}, V0100 = {(x1, · · · , xn)|xi = 0, i /∈ D2},

V0010 = {(x1, · · · , xn)|xi = 0, i /∈ D3}, V0001 = {(x1, · · · , xn)|xi = 0, i /∈ D4},
V1110 = {(x1, · · · , xn)|xi = 0, i ∈ D4}.

The goal of the attacks is to find the preimage of the above subspaces under
an equivalent key T ′. We use the following property: any linear combinations of

the matrices F̂ (1), · · · , F̂ (m) is of the form


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0

 · · · (∗) from Fig. 2. The

following Theorems show why invariant subspaces exist with a certain probabil-
ity.

Lemma 3.3. Let φ : Fnq → Fnq be a linear transformation of the form (∗). Then
we get that φ(V0001), φ(V1000), and φ(V0100) are subspaces of V0010, V1110 and
V1110, respectively.

Note that the image of other subspaces except the three subspaces in Lemma
3.3 under the map φ is the full space Fnq .

Let H =
∑m
i=1 λiF̂

(i) be a linear combination of the matrices F̂ (i). Note that H
has the form of (∗). Then we get the following Theorem as in [34].

Theorem 3.2. Assume that, for some k (1 ≤ k ≤ m), the matrix F̂ (k) is

invertible. Then, the map (F̂ (k))−1 ·H has nontrivial invariant subspace φ(V0001),
φ(V1000) and φ(V0100) with probability not less than q−r+u, q−k−r and q−l−r,
respectively.

Proof. They are obtained from the following fact: [(F̂ (k))−1 · F̂ (i)](V0001) ⊂
(F̂ (k))−1(V0010) and V0001 ⊂ (F̂ (k))−1(V0010), let Φ = (F̂ (k))−1 · F̂ (i), then as in
[33], we have

Pr[Φ(V0001) ⊂ V0010] ≥ q−r+u,
where u = dim(V0001) and r = dim(V0010). Thus, we get a nontrivial invariant
subspace V0001 with probability not less than q−r+u. �

Theorem 3.3. Let W =
∑m
i=1 λiP

(i) be a linear combination of the matrices
P (i) and let P (k) (for some k, 1 ≤ k ≤ m) be invertible. Then the map (P (k))−1 ·
W has nontrivial invariant subspaces V0010, V1110 and V1110 which are subspaces
of T−1(V0010), T−1(V1000) and T−1(V0100) with probability not less than q−r+u,
q−k−r and q−l−r, respectively.

Proof. They are obtained from the Theorem 3.2 and the following:

(P (k))−1 ·W = (P (k))−1 ·
m∑
i=1

λiP
(i) = (TT · F (k) · T )−1 ·

m∑
i=1

λi · (TT · F̂ (i) · T )



= T−1 · (
m∑
i=1

λi(F̂
(k))−1 · F̂ (i)) · T.

(P (k))−1 ·W (T−1(V0001)) = (T−1 · (
m∑
i=1

λi(F̂
(k))−1 · F̂ (i)) · T )(T−1(V0001))

= T−1 · (
m∑
i=1

λi(F
(k))−1 · F (i))(V0001) ⊂ T−1(V0010).

Thus, we get a nontrivial invariant subspace V0001 with probability not less than
q−r+u. �

Consequently, the complexity of ELSA against the Kipnis-Shamir attack ismin{qr−u,
qk+r, ql+r, qn−2u−1 · u4}.

Based on these security analysis, we can select secure parameter sets (Fq, l, k, r, u)
that achieve given security levels.

4 Existential Unforgeability of ELSA

Here, we prove existential unforgeability of ELSA against an adaptive chosen-
message attack under the hardness of the MQ-problem induced by a public key
of ELSA.

4.1 Formal Security Model and Complexity Assumption

In this section, we describe formal security models of signature schemes. The
most general security notion of signature schemes is existential unforgeability
against an adaptive chosen-message attack. Its formal security model is defined
as follows:

Existential Unforgeability against Adaptive Chosen-Message At-
tacks (EUF-acma). An adversary A’s advantage AdvPKS,A is defined as its
probability of success in the following game between a challenger C and A:

• Setup. The challenger runs Setup algorithm and its resulting system pa-
rameters are given to A.
• Sign Queries. A issues the following queries: adaptively, A requests a sig-

nature on a message mi, C returns a signature σi.
• Output. Eventually, A outputs σ∗ on a message m∗ and wins the game if

i) Verify(m∗, σ∗) = 1,
ii) m∗ has never requested to the Sign oracle.

Definition 4.1. A forger A(t, gH , qS , ε)-breaks a signature scheme if A runs in
time at most t, A makes at most qH queries to the hash oracle, qS queries to the
signing oracle and AdvPKS,A is at least ε. A signature scheme is (t, qE , qS , ε)-
EUF-acma if no forger (t, qH , qS , ε)-breaks it in the above game.

Next, we need to define the following sets as:



– MQELSA(Fq,m, n): a set of all quadratic equations defined over Fq with m
equations and n variables induced by all public keys of ELSA(Fq, l, k, r, u),
where m = k + u and n = l + r +m.

– MQR(Fq,m, n): a set of all random quadratic equations defined over Fq of
m equations and n variables.

Definition 4.2. We say that the MQ-problem in MQX(Fq,m, n) is (t, ε)-hard
if no t-time algorithm has advantage at least ε in solving the MQ-problem in
MQX(Fq,m, n).

To prove existential unforgeability of ELSA against an adaptive chosen-
message attack, we want to find a reduction to the hardness of MQ-problem
in MQELSA(Fq,m, n). The hardness of the MQ-problem for a system of m
quadratic equations with n variables mainly depends on the selection of Fq,
m and n. However, the security of ELSA against the attacks presented in §3
depends on the selection of the specific parameter set (Fq, l, k, r, u) such that
m = k + u and n = l + r + m. If the parameter set (Fq, l, k, r, u) is chosen be
secure against the MinRank attack, HighRank attack and Kipnis-Shamir attack,
then it remains only two attacks to consider: the direct attack and KRAs with
good keys. In Theorem 3.1, we have shown that the security of KRAs with good
keys for ELSA is still reduced to the intractability of the MQ-problem, i.e., the
complexity of the KRAs using good keys on ELSA is determined by solving n−1
bihomogeneous equations and m quadratic equations with n variables.

4.2 Existential Unforgeability

Now, we prove existential unforgeability of ELSA against an adaptive chosen-
message attack under the hardness of the MQ-problem induced by a public key
of ELSA in the random oracle model.

Theorem 4.1. If the MQ-problem inMQELSA(Fq,m, n) is (t′, ε′)-hard, ELSA(Fq, l, k, r, u)
is (t, qH , qS , ε)-EUF-acma, for any t and ε satisfying

ε ≥ e · (qS + 1) · ε′, t′ ≥ t+ qH · cV + qS · cS ,
where e is the base of the natural logarithm, and cS and cV are time for a
signature generation and a signature verification, respectively, where m = k+u,
and n = l+r+m if the parameter set (Fq, l, k, r, u) is chosen to be secure against
the MinRank attack, HighRank attack, Kipnis-Shamir attack and KRAs using
good keys.

Proof. An instance (P, η) of the MQ-problem in MQELSA(Fq,m, n) is given,
where P is a quadratic system of m equations and n variables. Suppose that A
is a forger who breaks ELSA(Fq, l, k, r, u) with the target public key P. We will
construct an algorithm B which outputs a solution x ∈ Fnq such that P(x) = η
by using A. Algorithm B performs the following simulation by interacting with
A.

Setup. Algorithm B sets PK = P, which is a public key of ELSA(Fq, l, k, r, u).



At any time, A can query a random oracle H and Sign oracle. To answer
these queries, B does the following:

H-Queries. For H-queries, B maintains a list of tuples (mi, ci, τi) as explained
below. We call this list H-list. When A queries H at mi ∈ {0, 1}∗,
1. If the query already appears on H-list in a tuple (mi, ci, τi,P(τi)) then B
returns H(mi) = P(τi).

2. Otherwise, B picks a random coin ci ∈ {0, 1} with Pr[ci = 0] = 1
qS+1 .

– If ci = 1 then B chooses a random τi ∈ Fnq , adds a tuple (mi, ci, τi,P(τi)) to
H-list and returns H(mi) = P(τi).

– If ci = 0 then B adds (mi, ci, ∗, η) to H-list from the instance and returns
H(mi) = η.

Sign Queries. When A makes a Sign-query on mi, B finds the corresponding
tuple (mi, ci, τi,P(τi)) from H-list.

– If ci = 1 then B responds with τi.
– If ci = 0 then B reports failure and terminates.

All responses to Sign queries not aborted are valid. If B doesn’t abort as a result
of A’s Sign query then A’s view in the simulation is identical to its view in the
real attack.

Output. Finally, A produces a signature τ∗ on a message m∗. If it is not valid
then B reports failure and terminates. Otherwise, a query on m∗ already appears
on H-list in a tuple (m∗, c∗, τ∗,P(τ∗)): if c∗ = 1 then reports failure and
terminates. Otherwise, c∗ = 0, i.e., (c∗, m∗, ∗, η), then P(τ∗) = η. Finally, B
outputs τ∗ is a solution of P.

To show that B solves the given instance with probability at least ε′, we
analyze three events needed for B to succeed:

– E1: B doesn’t abort as a result of A’s Sign query.
– E2: A generates a valid and nontrivial signature forgery τi on mi.
– E3: Event E2 occurs, ci = 0 for the tuple containing mi in H-list.

Algorithm B succeeds if all of these events happen. The probability Pr[E1 ∧E3]
is decomposed as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 ∧ E1] · Pr[E3|E1 ∧ E2] · · · (∗∗).

The probability that B doesn’t abort as a result of A’s Sign query is at least
(1− 1

qS+1 )qS since Amakes at most qS queries to the Sign oracle. Thus, Pr[E1] ≥
(1 − 1

qS+1 )qS . If B doesn’t abort as a result of A’s Sign query then A’s view is

identical to its view in the real attack. Hence, Pr[E1∧E2] ≥ ε. Given that events
E1, E2 and E3 happened, B will abort if A generates a forgery with ci = 1. Thus,
all the remaining ci are independent of A’s view. Since A could not have issued a
signature query for the output we know that c is independent of A’s current view



and therefore Pr[c = 0|E1 ∧ E2] = 1
qS+1 . Then we get Pr[E3|E1 ∧ E2] ≥ 1

qS+1 .

From (∗∗), B produces the correct answer with probability at least

(1− 1

qS + 1
)qS · ε · 1

qS + 1
≥ 1

e
· ε

(qS + 1)
≥ ε′.

Algorithm B’s running time is the same as A’s running time plus the time
that takes to respond to qH H-queries, and qS Sign-queries. The H- and Sign-
queries require a signature verification and a signature generation, respectively.
We assume that a signature generation and a signature verification take time cS
and cV , respectively. Thus, the total running time is at most t′ ≥ t+ qH · cV +
qS · cS . �

5 Selection of Parameter and Implementation

Here, we evaluate practical feasibility of ELSA targeting a recent Intel pro-
cessor. We choose a secure and optimal parameter for ELSA and provide com-
parisons between ours, classical ones and Post-Quantum ones in terms of per-
formance, key sizes and signature sizes.

5.1 Selection of Secure and Optimal Parameter

We want to select secure parameter set (Fq, l, k, r, u) for ELSA with the
optimal secret key size at a 128-bit security level where m = k + u and n =
l+r+m. Based on our security analysis in §3, we choose (F28 , 6, 28, 30, 15) at the
128-bit security level. We summarize complexities of our parameter against the
known attacks in Table 3. For computing of complexities against direct attacks
and KRAs using good keys, we use HF5 with ω = 2.

(Fq, l, k, r, u) Direct KRA (Good) Kipnis-Shamir attack MinRank HighRank

(F28 , 6, 28, 30, 15) 2131 2131 2136 2280 2143

Table 3. Complexities of ELSA(F28 , 6, 28, 30, 15) against All the Attacks.

5.2 Result and Comparison

We implement ELSA(F28 , 6, 28, 30, 15) on an Intel Core i5-6600 3.3 GHz
whose result is an average of 1,000 measurements for each function using the
C++ programming language with g++ compiler. We follow the standard prac-
tice of disabling Turbo Boost and hyperthreading. For comparison, we also im-
plement Rainbow(F28 , 36, 21, 22) on the same platform based on open source
codes given by the eBACS project [6] since there is no record for Rainbow at the
128-bit security level. Table 4 gives benchmarking results of ELSA and compares
the benchmarks to state-of-the-art results from the literatures or given by the
eBACS project [6].

Our scheme is the fastest signature scheme in both signing and verification
among classical ones and Post-Quantum ones. Compared to Rainbow, the secret
key size of ELSA is reduced by a factor of 88% maintaining the same public key



Scheme Sig. Size PK SK Sign Verify CPU
λ (Bytes) (Bytes) (Bytes) (Cycles) (Cycles)

Classical ones

RSA-3072e 361 384 3072 8,802,242 87,360 Intel Core i5-
128 6600 3.3 GHz

ECDSA-256e 64 64 96 163,994 310,048 Intel Core i5-
128 6600 3.3 GHz

ed25519e [4] 64 32 64 48,976 165,322 Intel Core i5-
128 6600 3.3 GHz

Lattice-based

TESLA-416t [3] 1,280 1,331,200 1,011,744 697,940 250,264 Intel Core i7-
128 4770K(Haswell)

TESLA-768t [3] 2,336 4,227,072 3,293,216 2,232,906 863,790 Intel Core i7-
> 128 4770K(Haswell)

BLISS-BI [20, 19] 700 875 250 358,400 102,000 Intel Core i7
128 3.4 GHz

ntrumls 439xe [29] 988 1,112 1,305 485,580 223,488 Intel Core i5-
128 6600 3.3GHz

Hash-based

SPHINCS 256s [5] 41,000 1,056 1,088 51,636,372 1,451,004 Intel Xeon E3-
256 1275 3.5 GHz

Code-based

CFS [35] 75 20,968,300 4,194,300 4,200,000,000 – Intel Xeon
80 W3670 3.2GHz

MQ-based

MQDSS-31-64 [13] 40,952 72 64 8,510,616 5,752,616 Intel Core i7-
> 128 4770K 3.5GHz
enTTS

(F28 , 15, 60, 88) [52, 15] 88 234,960 13,051 – – –
128

Rainbowo 79 139,320 105,006 64,658 44,397 Intel Core i5-
(F28 , 36, 21, 22) [6] 6600 3.3 GHz

128
ELSA 79 139,320 12,427 20,880 44,190 Intel Core i5-

(F28 , 6, 28, 30, 15) 6600 3.3 GHz
128

Table 4. Performance, Key Sizes and Signature Sizes of Ours, Classical-Ones and
Post-Quantum Ones.

Sig. Size, PK and SK represent signature size, public key and secret key, respectively.
ed25519 is EdDSA signatures using Curve25519.
> 128 means that the scheme achieves 2λ security level, where λ > 128.
tThe scheme has a tight security reduction to the underlying problem.
sThe scheme is provably secure in the standard model.
eThe result is given by the eBACS project [6].
oWe implement Rainbow based on the code in [6] at the 128-bit security level on Intel
Core i5-6600 3.3 GHz.



size. Compared to enTTS, the public key size of ELSA have reduced by a factor
of 40%. Signing of ELSA is about 3.2 times faster than that of Rainbow. Signing
and verification of ELSA is hundreds of times faster than those of MQDSS,
respectively. Signing and verification of ELSA is about 17.2 times and 2.3 times
faster than those of BLISS-BI, respectively. It takes 6 µs and 13.3 µs for signing
and verification, respectively.

6 Conclusion

We have proposed a new MQ-signature scheme, ELSA, based on a hidden
layer of quadratic equations. Our scheme is the fastest signature scheme in both
signing and verification among classical ones as well as Post-Quantum ones.
Compared to Rainbow, the secret key size in ELSA is reduced by a factor of 88%
maintaining the same public key size. Signing of ELSA is about 3.2 times than
that of Rainbow on Intel Core i5-6600. It takes 6.3 µs and 13.39 µs for signing
and verification, respectively. There is still room for improvements in terms of
performance. We believe that our scheme is a leading candidate for low-cost
constrained devices. We have also shown that ELSA(Fq, l, k, r, u) is existential
unforgeable against an adaptive chosen-message attack under the hardness of
the MQ-problem in MQELSA(Fq,m, n) in the random oracle model. However,
this reduction doesn’t mean the reduction to the MQ-problem inMQR(Fq,m, n)
although it haven’t been proved that the public key of the MQ-schemes could be
distinguished from random one. It still remains an open problem to construct a
high-speed MQ-signature schemes with a security reduction to the hardness of
the MQ-problem in MQR(Fq,m, n).
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