
Full-State Keyed Duplex With
Built-In Multi-User Support

Joan Daemen1,2, Bart Mennink1,3, and Gilles Van Assche2

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
joan@cs.ru.nl, b.mennink@cs.ru.nl

2 STMicroelectronics, Diegem, Belgium
gilles.vanassche@st.com

3 CWI, Amsterdam, The Netherlands

Abstract. The keyed duplex construction was introduced by Bertoni
et al. (SAC 2011) and recently generalized to full-state absorption by
Mennink et al. (ASIACRYPT 2015). We present a generalization of the
full-state keyed duplex that natively supports multiple instances by de-
sign, and perform a security analysis that improves over that of Mennink
et al. in terms of a more modular security analysis and a stronger and
more adaptive security bound. Via the introduction of an additional pa-
rameter to the analysis, our bound demonstrates a significant security
improvement in case of nonce-respecting adversaries. Furthermore, by
supporting multiple instances by design, instead of adapting the secu-
rity model to it, we manage to derive a security bound that is largely
independent of the number of instances.

Keywords: Duplex construction, full-state, distinguishing bounds, au-
thenticated encryption.

1 Introduction

Bertoni et al. [8] introduced the sponge construction as an approach to design
hash functions with variable output length (later called extendable output func-
tions (XOF)). The construction faced rapid traction in light of NIST’s SHA-
3 competition, with multiple candidates inspired by the sponge methodology.
Keccak, the eventual winner of the competition and now standardized as SHA-
3 [27], internally uses the sponge construction. The sponge construction found
quick adoption in the area of lightweight hashing [19, 32]. Also beyond the area
of hash functions various applications of the sponge construction appeared such
as keystream generation and MAC computation [12], reseedable pseudorandom
sequence generation [10,30], and authenticated encryption [11,14]. In particular,
the ongoing CAESAR competition for the development of a portfolio of authenti-
cated encryption schemes has received about a dozen sponge-based submissions.

At a high level, the sponge construction operates on a state of b bits. This is
split into an inner part of size c bits and an outer part of size r bits, where b =
c+ r. Data absorption and squeezing is done via the outer part, r bits at a time,



interleaved with evaluations of a b-bit permutation f . Bertoni et al. [9] proved
a bound on the security of the sponge construction in the indifferentiability
framework of Maurer et al. [37]. While it was clear from the start that this
birthday-type bound in the capacity is tight for the unkeyed use cases, i.e.,
hashing, for the keyed use cases of the sponge it appeared that a higher level of
security could be achieved. This has resulted in an impressive series of papers
on the generic security of keyed versions of the sponge, with bounds improving
and the construction becoming more efficient.

1.1 Keyed Sponge and Keyed Duplex

Keyed Sponge. Bertoni et al.’s original keyed sponge [13] was simply the
sponge with input (K‖M) where K is the key. Chang et al. [21] suggested an
alternative where the initial state of the sponge simply contains the key in its
inner part. Andreeva et al. [2] generalized and improved the analyses of both the
outer- and inner-keyed sponge, and also considered security of these functions
in the multi-target setting. In a recent analysis their bounds were improved by
Naito and Yasuda in [42]. All of these results, however, stayed relatively close
to the (keyless) sponge design that absorbs input in blocks of r bits in the
outer part of the state. It turned out that, thanks to the secrecy of part of the
state after key injection, one can absorb data over the full state, and therewith
achieve maximal compression. Full-state absorbing was first explicitly proposed
in a variant of sponge for computing MACs: donkeySponge [14]. It also found
application in various recent sponge-inspired designs, such as Chaskey [41].

Nearly tight bounds for the full-state absorbing keyed sponge were given by
Gaži et al. [29] but their analysis was limited to the case of fixed output length.
Mennink et al. [38] generalized and formalized the idea of the full-state keyed
sponge and presented an improved security bound for the general case where the
output length is variable.

Keyed Duplex. Whereas the keyed sponge serves message authentication and
stream encryption, authenticated encryption is mostly done via the keyed duplex
construction [11]. This is a stateful construction that consists of an initialization
interface and a duplexing interface. Initialization resets the state and a duplexing
call absorbs a data block of at most r−1 bits, applies the underlying permutation
f and squeezes at most r bits. Bertoni et al. [11] proved that the output of
duplexing calls can be simulated by calls to a sponge, a fortiori making duplex
as strong as sponge.

Mennink et al. [38] introduced the full-state keyed duplex and derived a
security bound on this construction with dominating terms:

µN

2k
+
M2

2c
. (1)

Here M is the data complexity (total number of initialization and duplexing
calls), N the computational complexity (total number of offline calls to f), µ ≤
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2M is a term called the “multiplicity,” and k the size of the key. This security
bound was derived by describing the full-state keyed duplex in terms of the
full-state keyed sponge. A naive bounding of µ (to cover the strongest possible
adversary) yields a dominating term of the form 2MN/2k, implying a security
strength erosion of log2M with respect to exhaustive key search.

The duplex construction finds multiple uses in the CAESAR competition [20]
in the embodiment of the authenticated encryption mode SpongeWrap [11] or
close variants of it. The recent line of research on improving bounds of sponge-
inspired authenticated encryption schemes, set by Jovanovic et al. [35], Sasaki
and Yasuda [46], and Reyhanitabar et al. [44], can be seen as an analysis of
a specific use case of the keyed duplex. The Full-State SpongeWrap [38], an
authenticated encryption scheme designed from the full-state keyed duplex, im-
proves over these results. Particularly, the idea already found application in the
Motorist mode of the CAESAR submission Keyak [16].

Trading Sponge for Duplex. As said, the duplex can be simulated by the
sponge, but not the other way around. This is the case because duplex pads
each input block and cannot simulate sponge inputs with, e.g., long sequences of
zeroes. It is therefore natural that Mennink et al. [38] derived a security bound
on the full-state keyed duplex by viewing it as an extension to the full-state
keyed sponge. However, we observe that the introduction of full-state absorption
changes that situation: the full-state keyed duplex can simulate the full-state
keyed sponge. All keyed usages of the sponge can be described quite naturally as
application of the keyed duplex and it turns out that proving security of keyed
duplex is easier than that of keyed sponge. Therefore, in keyed use cases, the
duplex is preferred as basic building block over the sponge.

1.2 Multi-Target Security

The problem of multi-target security of cryptographic designs has been acknowl-
edged and analyzed for years. Biham [17] considered the security of blockciphers
in the multi-target setting and shows that the security strength can erode to
half the key size if data processed by sufficiently many keys is available. Various
extensions have subsequently appeared [7,18,34]. It has been demonstrated (see,
e.g., [5] for public key encryption and [22] for message authentication codes)
that the security of a scheme in the multi-target setting can be reduced to the
security in the single-target setting, at a security loss proportional to the number
of keys used.

However, in certain cases, a dedicated analysis in the multi-target setting
could render improved bounds. Andreeva et al. [2] considered the security of
the outer- and inner-keyed sponge in the multi-target setting, a proof which
internally featured a security analysis of the Even-Mansour blockcipher in the
multi-target setting. The direction of multi-target security got subsequently pop-
ularized by Mouha and Luykx [40], leading to various multi-target security re-
sults [4,33] with security bounds (almost) independent of the number of targets
involved.
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1.3 Our Contribution

We present a generalization of the full-state keyed duplex that facilitates mul-
tiple instances by design (Section 2.2). This generalization is realized via the
formalization of a state initialization function that has access to a key array K
consisting of u keys of size k, generated following a certain distribution. Given
as input a key index δ and an initialization vector iv, it initializes the state using
iv and the δth key taken from K. We capture its functional behavior under the
name of an extendable input function (XIF) and explicitly define its idealized
instance.

Unlike the approach of Mennink et al. [38], who viewed the full-state keyed
duplex as an extension to the full-state keyed sponge, our analysis is a dedicated
analysis of the full-state keyed duplex. To accommodate bounds for different
use cases, we have applied a re-phasing to the definition of the keyed duplex.
In former definitions of the (keyed) duplex, a duplexing call consisted of input
injection, applying the permutation f , and then output extraction. In our new
definition, the processing is as follows: first the permutation f , then output ex-
traction, and finally input injection. This adjustment reflects a property present
in practically all modes based on the keyed duplex, namely that the user (or
adversary) must provide the input before knowing the previous output. The re-
phasing allows us to prove a bound on keyed duplex that is tight even for those
use cases. The fact that, in previous definitions, an adversary could see the out-
put before providing the input allowed it to force the outer part of the state to a
value of its choice, and as such gave rise to a term in the bound at worst MN/2c

and at best µN/2c, where µ is a term that reflects a property of the transcript
that needs to be bound by out-of-band reasonings.

Alongside the re-phasing, we have eliminated the term µ and express the
bound purely as a function of the adversary’s capabilities. Next to the total
offline complexity N , i.e., the number queries the adversary can make to f and
the total online complexity M , i.e., the total number of construction queries (to
keyed duplex or ideal XIF), we introduce two metrics: L and Ω, both reflecting
the ability of the adversary to force the outer part of the state to a value of its
choice. The metric L counts the number of construction queries with repeated
path (intuitively, a concatenation of all data blocks up to a certain permutation
call), which may typically occur in MAC functions and authenticated encryption
schemes that do not impose nonce uniqueness. The metric Ω counts the number
of construction queries where the adversary can overwrite the outer part of the
state. Such a possibility may occur in authenticated encryption schemes that
release unverified decrypted ciphertext (cf., [1]). A comparison of the scheme
analyzed in this work with those in earlier works is given in Table 1.

We prove in Section 4 a bound on the advantage of distinguishing a full-
state keyed duplex from an ideal XIF in a multi-target setting. We here give the
bound for several settings, all of which having multiple keys sampled uniformly
at random without replacement. For adversaries with the ability to send queries
with repeated paths and queries that overwrite the outer part of the state, the
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Table 1: Comparison of the schemes analyzed in earlier works and this work. By
“pure bound” we mean that the derived security bound is expressed purely as a
function of the adversary’s capabilities. Differences in bounds are not reflected
by the table.

Full state Extendable Multi-target Pure bound
absorption output

Bertoni et al. [13] — X — X
Bertoni et al. [11] — X — X
Chang et al. [21] — X — X
Andreeva et al. [2] — X X —
Gaži et al. [29] X — — X
Mennink et al. [38] X X — —
Naito and Yasuda [42] — X — X
This work X X X X

dominating terms in our bound are:

qivN

2k
+

(L+Ω)N

2c
. (2)

The metric qiv denotes the maximum number of sessions started with the same
iv but different keys. For adversaries that cannot send queries with repeated
paths or send queries that overwrite the outer part of the state, one of the
dominating terms depends on the occurrence of multicollisions via a coefficient
νMr,c that is fully determined by the data complexity M and parameters r and c
(see Section 6.5, and particularly Figure 4). For wide permutations we can have
large rates (i.e., r > 2 log2(M) + c) and the dominating terms in our bound are:

qivN

2k
+

N

2c−1
. (3)

For relatively small rates the data complexity can be such that M > 2r−1 and for
that range the dominating terms are upper bounded by (assuming ν2Mr,c ≤ bM

2r+1 ):

qivN

2k
+
bMN

2b
+
M2

2b
. (4)

For the case in-between where M is in the range 2(r−c)/2 < M ≤ 2r−1, the
bound becomes (assuming ν2Mr,c ≤ min(b/ log 2r

2M , b/4)):

qivN

2k
+

bN

max(4, r − 1− log2M)2c−1
. (5)

This bound is valid for permutation widths of 200 and above. These bounds are
significantly better than that of [38].
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Table 2: Application of our analysis to Ketje, Ascon, NORX, and Keyak. For the
nonce misuse case, we consider L + Ω = M/2. A “Strength” equal to s means
that it requires a computational effort 2s to distinguish. Here, a = log2(Mr).

Parameters Respecting (Eqns. (3-5)) Misuse (Eqn. (2))

Scheme b c r Strength Eqn. Strength

Ketje [15] Jr. 200 184 16 min{196− a, 177} (4,5) 189− a
Sr. 400 368 32 min{396− a, 360} (4,5) 374− a

Ascon [24] 128 320 256 64 min{317− a, 248} (4,5) 263− a
128a 320 192 128 min{318− a, 184} (4,5) 200− a

NORX [3] 32 512 128 384 127 (3) 137− a
64 1024 256 768 255 (3) 266− a

Keyak [16] River 800 256 544 255 (3) 266− a
Lake 1600 256 1344 255 (3) 267− a

Concretely, in implementations of duplex-based authenticated encryption
schemes that respect the nonce requirement and do not release unverified plain-
text, we have L = Ω = 0. Assuming keys are randomly sampled without re-
placement, the generic security is governed by (3), (4), or (5). Depending on
the parameters, a scheme is either in case (3), or case (4-5), where a transition
happens for M = 2r−1. Table 2 summarizes achievable security strengths for the
duplex-based CAESAR contenders.

Our general security bound, covering among others a broader spectrum of
key sampling distributions, is given in Theorem 1. It is noteworthy that, via the
built-in support of multiple targets, we manage to obtain a security bound that
is largely independent of the number of users u: the only appearance is in the
key guessing part, qivN/2

k, which shows an expected decrease in the security
strength of exhaustive key search by a term log2 qiv. Note that security erosion
can be avoided altogether by requiring iv to be a global nonce, different for each
initialization call (irrespective of the used key).

Our analysis improves over the one of [38] in multiple aspects. First, our secu-
rity bound shows less security erosion for increasing data complexities. Whereas
in (1) security strength erodes to k− log2M , in (2) this is c− log2(L+Ω) with
L+Ω < M . By taking c > k+ log2Mmax with Mmax some upper bound on the
amount of data an adversary can get its hands on, one can guarantee that this
term does not allow attacks faster than exhaustive key search.

Second, via the use of parameters L and Ω our bound allows for a more flexi-
ble interpretation and a wide range of use cases. For example, in stream ciphers,
L = Ω = 0 by design. This also holds for most duplex-based authenticated en-
cryption schemes in the case of nonce-respecting adversaries that cannot obtain
unverified decrypted ciphertexts.

Third, even in the general case (with key size taken equal to c bits and no
nonce restriction on iv), our bound still improves over the one of [38] by replacing
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the multiplicity metric, that can only be evaluated a posteriori, by the metrics
L and Ω, that reflect what the adversary can do.

Fourth, in our approach we address the multi-key aspect natively. This allows
us to determine the required set of properties on the joint distribution of all
keys under attack. Theorem 1 works for arbitrary key sampling techniques with
individual keys of sufficient min-entropy and the probability that two keys in the
array collide is small enough, and demonstrates that the full-state keyed duplex
remains secure even if the keys are not independently and uniformly randomly
distributed.

Finally, we perform an analysis on the contribution of outer-state multi-
collisions to the bound that is of independent interest. This analysis strongly
contributes to the tightness of our bounds, as we illustrate in the Stairway to
Heaven graph in Figure 4.

1.4 Notation

For an integer n ∈ N, we denote Zn = {0, . . . , n − 1} and by Zn2 the set of bit
strings of length n. Z∗2 denotes the set of bit strings of arbitrary length. For two
bit strings s, t ∈ Zn2 , their bitwise addition is denoted s+ t. The expression bsc`
denotes the bitstring s truncated to its first ` bits. A random oracle [6] RO :
Z∗2 → Zn2 is a function that maps bit strings of arbitrary length to bit strings of
some length n. In this paper, the value of n is determined by the context. We
denote by (x)(y) the falling factorial power (x)(y) = x(x− 1) · · · (x− y + 1).

Throughout this work, b denotes the width of the permutation f . The pa-
rameters c and r denote the capacity and rate, where b = c+r. For a state value
s ∈ Zb2, we follow the general convention to define its outer part by s ∈ Zr2 and
its inner part by ŝ ∈ Zc2, in such a way that s = s||ŝ. The key size is convention-
ally denoted by k, and the number of users by u. Throughout, we assume that
u ≤ 2k, and regularly use an encoding function Encode : Zu → Zk2 , mapping
integers from Zu to k-bit strings in some injective way.

2 Constructions

In Section 2.1, we will discuss the key sampling technique used in this work.
The keyed duplex construction is introduced in Section 2.2, and we present its
“ideal equivalent,” the ideal extendable input function, in Section 2.3. To suit
the security analysis, we will also need an in-between hybrid, the randomized
duplex, discussed in Section 2.4.

2.1 Key Sampling

Our keyed duplex construction has built-in multi-user support, and we start
with a formalization of the key sampling that we consider. At a high level, our
formalization is not specific for the keyed duplex, and may be of independent
interest for modeling multi-target attacks.
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In our formalization the adversary can invoke a keyed object (block cipher,
stream cipher, PRF, keyed sponge, . . . ) with a key selected from a key array K
containing u keys, each of length k bits:

K = (K[0], . . . ,K[u− 1]) ∈
(
Zk2
)u
.

These keys are sampled from the space of k-bit keys according to some dis-
tribution DK. This distribution can, in theory, be anything. In particular, the
distribution of the key with index δ may depend on the values of the δ keys
sampled before.

Two plausible examples of the key distribution are random sampling with
replacement and random sampling without replacement. In the former case, all
keys are generated uniformly at random and pairwise independent, but it may
cause problems in case of accidental collisions in the key array. The latter distri-
bution resolves this by generating all keys uniformly at random from the space
of values excluding the ones already sampled. A third, more extreme, example
of DK generates K[0] uniformly at random and defines all subsequent keys as
K[δ] = K[0] + Encode(δ).

Different distributions naturally entail different levels of security, and we
define two characteristics of a distribution that are relevant for our analysis. Note
that the characteristics take u as implicit parameter. The first characteristic is
the min-entropy of the individual keys, defined as

Hmin(DK) = − log2 max
δ∈Zu,a∈Zk2

Pr(K[δ] = a) , (6)

or in words, minus the binary logarithm of the probability of the key value to
be selected with the highest probability. The three example samplings outlined
above have min-entropy k, regardless of the value u.

The second characteristic is related to the maximum collision probability
between two keys in the array:

Hcoll(DK) = − log2 max
δ,δ′∈Zu
δ 6=δ′

Pr(K[δ] = K[δ′]) . (7)

Uniform sampling with replacement has maximum collision probability equal to
2−k and so Hcoll(DK) = k. Sampling without replacement and our third example
clearly have collision probability zero, giving Hcoll(DK) =∞.

2.2 Keyed Duplex Construction

The full-state keyed duplex (KD) construction is defined in Algorithm 1, and it
is illustrated in Figure 1.

It calls a b-bit permutation f and is given access to an array K consisting
of u keys of size k bits. A user can make two calls: initialization and duplexing
calls.

In an initialization call it takes as input a key index δ and a string iv ∈ Zb−k2

and initializes the state as f(K[δ]||iv). In the same call, the user receives an r-bit
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Fig. 1: Full-state keyed duplex construction KDf
K. In this figure, the sequence

of calls is Z = KD.Init(δ, iv, σ, false), Z = KD.Duplexing(σ, true), and Z =
KD.Duplexing(σ, false).

output string Z and injects a b-bit string σ. A duplexing call just performs the
latter part: it updates the state by applying f to it, returns to the user an r-bit
output string Z and injects a user-provided b-bit string σ.

Both in initialization and duplexing calls, the output string Z is taken from
the state prior to the addition of σ to it, but the user has to provide σ before
receiving Z. This is in fact a re-phasing compared to the original definition of the
duplex [11] or of the full-state keyed duplex [38], and it aims at better reflect-
ing typical use cases. We illustrate this with the SpongeWrap authenticated
encryption scheme [11] and its more recent variants [38]. In this scheme, each
plaintext block is typically encrypted by (i) applying f , (ii) fetching a block of
key stream, (iii) adding the key stream and plaintext blocks to get a ciphertext
block, and (iv) adding the plaintext block to the outer part of the state. By
inspecting Algorithm 3 in [11], there is systematically a delay between the pro-
duction of key stream and its use, requiring to buffer a key stream block between
the (original) duplexing calls. In contrast, our re-phased calls better match the
sequence of operations.

The flag in the initialization and duplexing calls is required to implement de-
cryption in SpongeWrap and variants. In that case, the sequence of operations
is the same as above, except that step (iii) consists of adding the key stream and
ciphertext blocks to get a plaintext block. However, a user would need to see the
keystream block before being able to add the plaintext block in step (iv). One
can see, however, that step (iv) is equivalent to overwriting the outer part of the
state with the ciphertext block. Switching between adding the plaintext block
(for encryption) and overwriting with the ciphertext block (for decryption) is the
purpose of the flag. The usage of the flag, alongside the re-phasing is depicted
in Figure 1.

Note that in Algorithm 1 in the case that the flag is true, the outer part
of the state is overwritten with σ. For consistency with the algorithms of con-
structions we will introduce shortly, this is formalized as bitwise adding Z to σ
before its addition to the state if flag is true. Alternatively, one could define an
authenticated encryption mode that does not allow overwriting the state with
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Algorithm 1 Full-state keyed duplex construction KDf
K

Require: r < b, k ≤ b

Instantiation: KD← KDf
K with K an array of u keys of size k

Key array: KD.K
DK←−− K

Interface: Z = KD.Init(δ, iv, σ, flag) with δ ∈ Zu, iv ∈ Zb−k2 , σ ∈ Zb2, flag ∈
{true, false}, and Z ∈ Zr2
s← f(K[δ]||iv)
Z ← bscr
if flag = true then σ ← σ + Z
s← s+ σ
return Z

Interface: Z = KD.Duplexing(σ,flag) with σ ∈ Zb2, flag ∈ {true, false}, and Z ∈ Zr2
s← f(s)
Z ← bscr
if flag = true then σ ← σ + Z
s← s+ σ
return Z

the ciphertext block C. For example, encryption would be C = P + M × Z,
with P the plaintext block and M a simple invertible matrix. Upon decryption,
the outer part of the state then becomes C + (M + I)× Z. If M is chosen such
that M + I is invertible, the adversary has no control over the outer part of the
state after the duplexing call. This would require changing “σ ← σ + Z” into
“σ ← σ + M× Z” in Algorithm 1.

2.3 Ideal Extendable Input Function

We define an ideal extendable input function (IXIF) in Algorithm 2. It has the
same interface as KD, but instead it uses a random oracle RO : Z∗2 → Zr2 to
generate its responses. In particular, every initialization call initializes a Path
as Encode(δ)||iv. In both initialization and duplexing calls, an r-bit output is
generated by evaluating RO(Path) and the b-bit input string σ is absorbed by
appending it to the Path. Figure 2 has an illustration of IXIF (at the right).

Note that IXIF properly captures the random equivalent of the full-state
keyed duplex: it simply returns random values from Zr2 for every new path, and
repeated paths result in identical responses. IXIF is in fact almost equivalent to
the duplex as presented by Mennink et al. [38]: as a matter of fact, when (i) not
considering multiple keys for our construction and (ii) avoiding overlap of the
iv with the key (as possible in the construction of [38]), the ideal functionalities
are the same. In our analysis, we do not consider overlap of the iv with the key
as (i) it unnecessarily complicates the analysis and (ii) we discourage it as it
may be a security risk if the keys in the key array K are not independently and
uniformly randomly distributed.
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Algorithm 2 Ideal extendable input function IXIFRO

Instantiation: IXIF← IXIFRO

Path: IXIF.Path← empty string

Interface: Z = IXIF.Init(δ, iv, σ, flag) with δ ∈ Zu, iv ∈ Zb−k2 , σ ∈ Zb2, flag ∈
{true, false}, and Z ∈ Zr2
Path← Encode(δ)||iv
Z ←RO(Path)
if flag = true then σ ← σ + Z
Path← Path||σ
return Z

Interface: Z = IXIF.Duplexing(σ,flag) with σ ∈ Zb2 flag ∈ {true, false}, and Z ∈ Zr2
Z ←RO(Path)
if flag = true then σ ← σ + Z
Path← Path||σ
return Z

2.4 Randomized Duplex Construction

To simplify our security analysis, we introduce a hybrid algorithm lying in-
between KD and IXIF: the full-state randomized duplex (RD) construction. It
is defined in Algorithm 3. It again has the same interface as KD, but the calls
to the permutation f and the access to a key array K have been replaced by
two primitives: a uniformly random injective mapping φ : Zu ×Zb−k2 → Zb2, and
a uniformly random b-bit permutation π. The injective mapping φ replaces the
keyed state initialization by directly mapping an input (δ, iv) to a b-bit state
value. The permutation π replaces the evaluations of f in the duplexing calls.
In our use of RD, φ and π will be secret primitives. Figure 2 has an illustration
of RD (at the left).

3 Security Setup

The security analysis in this work is performed in the distinguishability frame-
work where one bounds the advantage of an adversary A in distinguishing a real
system from an ideal system.

Definition 1. Let O,P be two collections of oracles with the same interface.
The advantage of an adversary A in distinguishing O from P is defined as

∆A(O ; P) =
∣∣Pr
(
AO → 1

)
− Pr

(
AP → 1

)∣∣ .
Our proofs in part use the H-coefficient technique from Patarin [43]. We will
follow the adaptation of Chen and Steinberger [23]. Consider any information-
theoretic deterministic adversary A whose goal is to distinguish O from P, with
its advantage denoted

∆A(O ; P) .
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Algorithm 3 Full-state randomized duplex construction RDφ,π

Require: r < b

Instantiation: RD← RDφ,π

State: RD.s← 0b

Interface: Z = RD.Init(δ, iv, σ,flag) with δ ∈ Zu, iv ∈ Zb−k2 , σ ∈ Zb2, flag ∈
{true, false}, and Z ∈ Zr2
s← φ(δ, iv)
Z ← bscr
if flag = true then σ ← σ + Z
s← s+ σ
return Z

Interface: Z = RD.Duplexing(σ,flag) with σ ∈ Zb2 flag ∈ {true, false}, and Z ∈ Zr2
s← π(s)
Z ← bscr
if flag = true then σ ← σ + Z
s← s+ σ
return Z

The interaction of A with its oracle, either O or P, will be stored in a transcript
τ . Denote by DO (resp. DP) the probability distribution of transcripts that can
be obtained from interaction with O (resp. P). Call a transcript τ attainable if
it can be obtained from interacting with P, hence if Pr (DP = τ) > 0. Denote by
T the set of attainable transcripts, and consider any partition T = Tgood ∪ Tbad
of the set of attainable transcripts into “good” and “bad” transcripts. The H-
coefficient technique states the following [23].

Lemma 1 (H-coefficient Technique). Consider a fixed information-theoretic
deterministic adversary A whose goal is to distinguish O from P. Let ε be such
that for all τ ∈ Tgood:

Pr (DO = τ)

Pr (DP = τ)
≥ 1− ε . (8)

Then, ∆A(O ; P) ≤ ε+ Pr (DP ∈ Tbad).

The H-coefficient technique can thus be used to neatly bound a distinguishing
advantage in the terminology of Definition 1, and a proof typically goes in four
steps: (i) investigate what transcripts look like, which gives a definition for T ,
(ii) define the partition of T into Tgood and Tbad, (iii) investigate the fraction
of (8) for good transcripts and (iv) analyze the probability that DP generates a
bad transcript.
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4 Security of Keyed Duplex Construction

We prove that the full-state keyed duplex construction (KD) is sound. We do so
by proving an upper bound for the advantage of distinguishing the KD calling
a random permutation f from an ideal extendable input function (IXIF). Both
in the real and ideal world the adversary gets additional query access to f and
f−1, simply denoted as f .

The main result is stated in Section 4.2, but before doing so, we specify the
resources of the adversary in Section 4.1.

4.1 Quantification of Adversarial Resources

We will consider information-theoretic adversaries that have two oracle inter-
faces: a construction oracle, KDf

K or IXIFRO, and a primitive oracle f . For
the construction queries, it can make initialization queries or duplexing queries.
Note that, when querying IXIFRO, every query has a path Path associated to
it. To unify notation, we also associate a Path to each query (initialization or

duplexing) to KDf
K. This Path is defined the straightforward way: it simply con-

sists of the concatenation of Encode(δ), iv of the most recent initialization call
and all σ-values that have been queried after the last initialization but before
the current query. Using this formalization, every initialization or duplexing call
that the adversary makes to KDf

K or IXIFRO can be properly captured by a
tuple

(Path, Z, σ) ,

where, intuitively, Path is all data that is used to generate response Z ∈ Zr2, and
σ ∈ Zb2 is the input string (slightly abusing notation; σ = σ if flag = false and
σ = σ + (Z||0c) if flag = true).

Following Andreeva et al. [2], we specify adversarial resources that impose
limits on the transcripts that any adversary can obtain. The basic resource met-
rics are quantitative: they specify the number of queries an adversary is allowed
to make for each type.

– N : the number of primitive queries. It corresponds to computations requiring
no access to the (keyed) construction. It is usually called the time or offline
complexity. In practical use cases, N is only limited by the computing
power and time available to the adversary.

– M : the number of construction queries. It corresponds to the amount of
data processed by the (keyed) construction. It is usually called the data or
online complexity. In many practical use cases, M is limited.

We remark that identical calls are counted only once. In other words, N only
counts the number of primitive queries, and M only counts the number of unique
tuples (Path, σ).

It is possible to perform an analysis solely based on these metrics, but in
order to more accurately cover practical settings that were not covered before

13



(such as the multi-key setting or the nonce-respecting setting), and to eliminate
the multiplicity (a metric used in all earlier results in this direction), we define
a number of additional metrics.

– q: the total number of different initialization tuples (Encode(δ), iv). Param-
eter q corresponds to the number of times an adversary can start a fresh
initialization of KD or IXIF.

– qiv: iv multiplicity, the maximum number of different initialization tuples
(Encode(δ), iv) with same iv, maximized over all iv values.

– Ω: the number of queries with flag = true.

– L: equals the number of queries M minus the number of distinct paths. It
corresponds to the number of construction queries that have the same Path
as some prior query.

In many practical use cases, q is limited, but as it turns out re-initialization
queries give the adversary more power. The metric qiv is relevant in multi-target
attacks, where clearly qiv ≤ u. The relevance of Ω and L is the following. In
every query with flag equal to true, the adversary can force the outer part of the
input to f in a later query to a chosen value α by taking σ = α. Note that, as
discussed in Section 2.2, by adopting authenticated encryption schemes with a
slightly non-conventional encryption method, Ω can be forced to zero. Similarly,
construction queries with the same path return the same value Z, and hence
allow an adversary to force the outer part of the input to f in a later query
to a chosen value α by taking σ such that σ = Z + α. An adversary can use
this technique to increase the probability of collisions in f(s) + σ and to speed
up inner state recovery. By definition, L ≤M − 1 but in many cases L is much
smaller. In particular, if one considers KD in the nonce-respecting setting, where
no (Encode(δ), iv) occurs twice, the adversary never generates a repeating path,
and L = 0.

4.2 Main Result

Our bound uses a function that is defined in terms of a simple balls-into-bins
problem.

Definition 2. The multicollision limit function νMr,c, with M a natural number,
returns a natural number and is defined as follows. Assume we uniformly ran-
domly distribute M balls in 2r bins. If we call the number of balls in the bin with
the highest number of balls µ, then νMr,c is defined as the smallest natural number
x that satisfies:

Pr (µ > x) ≤ x

2c
.

In words, when uniformly randomly sampling M elements from a set of 2r el-
ements, the probability that there is an element that is sampled more than x
times is smaller than x2−c.

14



Theorem 1. Let f be a random permutation and RO be a random oracle. Let K
be a key array generated using a distribution DK. Let KDf

K be the construction

of Algorithm 1 and IXIFRO be the construction of Algorithm 2 and let νMr,c
be defined according to Definition 2. For any adversary A with resources as
discussed in Section 4.1, and with N +M ≤ 0.1 · 2c,

∆A(KDf
K, f ; IXIFRO, f) ≤ (L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2

)
2c

+

(M − q − L)q

2b − q
+
M(M − L− 1)

2b
+

(M − q − L)q

2Hmin(DK)+min{c,b−k} +
qivN

2Hmin(DK)
+

(
u
2

)
2Hcoll(DK)

.

The proof is given in Section 4.3.
For the case where k + c ≤ b − 1, and where DK corresponds to uniform

sampling without replacement, the bound simplifies to

∆A(KDf
K, f ; IXIFRO, f) ≤ (L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2

)
2c

+

qivN

2k
+

(M − q − L)q

2k+c−1
+
M(M − L− 1)

2b
.

The behavior of the function νMr,c is discussed in Section 6.5 and illustrated
in the Figure 4, which we refer to as the Stairway to Heaven graph.

4.3 Proof of Theorem 1

Let A be any information-theoretic adversary that has access to either, in the
real world (KDf

K, f), or in the ideal world (IXIFRO, f). Note that, as A is
information-theoretic, we can without loss of generality assume that it is deter-
ministic, and we can apply the technique of Section 3. By the triangle inequality,

∆A(KDf
K, f ; IXIFRO, f)

≤ ∆B(KDf
K, f ; RDφ,π, f) +∆C(RDφ,π, f ; IXIFRO, f) , (9)

where RDφ,π for random injection function φ and random permutation π is
the construction of Algorithm 3, and where B and C have the same resources
(N,M, q, qiv, L,Ω) as A.

In the last term of (9), RD calls an ideal injective function φ and a random
permutation π, both independent of f , and IXIF calls a random oracle RO, also
independent of f . The oracle access to f therefore does not “help” the adversary
in distinguishing the two, or more formally,

∆C(RDφ,π, f ; IXIFRO, f) ≤ ∆D(RDφ,π ; IXIFRO) . (10)

where D is an adversary with the same construction query parameters as A, but
with no access to f .

The two remaining distances, i.e, the first term of (9) and the term of (10),
will be analyzed in the next lemmas. The proof of Theorem 1 directly follows.
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Fig. 2: Distinguishing experiment of RD and IXIF.

Lemma 2. For any adversary D with resources as discussed in Section 4.1 but
with no access to f ,

∆D(RDφ,π ; IXIFRO) ≤
(
L+Ω+1

2

)
2c

+
M(M − L− 1)

2b
. (11)

Lemma 3. For any adversary B with resources as discussed in Section 4.1,

∆B(KDf
K, f ; RDφ,π, f) ≤ (L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
+

(M − q − L)q

2b − q
+

(M − q − L)q

2Hmin(DK)+min{c,b−k} +
qivN

2Hmin(DK)
+

(
u
2

)
2Hcoll(DK)

.

(12)

The proof of Lemma 2 is given in Section 5, and the proof of Lemma 3 is given
in Section 6.

5 Distance Between RD and IXIF

In this section we bound the advantage of distinguishing the randomized du-
plex from an ideal extendable input function, (11) of Lemma 2. The distin-
guishing setup is illustrated in Figure 2. The derivation is performed using the
H-coefficient technique.

Description of transcripts. The adversary has only a single interface, RDφ,π

or IXIFRO, but can make both initialization and duplexing queries. Following
the discussion of Section 4.1, we can unify the two different types of queries, and
summarize the conversation of D with its oracle in a transcript of the form

τC = {(Pathj , Zj , σj)}Mj=1 .

The values Zj correspond to the outer part of the state just before σj gets
injected. To make the analysis easier, we give at the end of the experiment for
each query the inner value of the state at the moment Zj is extracted (in the real
world). We denote this as tj = tj ||t̂j with tj = Zj . In the IXIF, t̂j is a value that
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is randomly generated for each path Path and can be expressed as RO′(Path)
for some random oracle RO′ with c-bit output. We integrate those values in the
transcript, yielding:

τ = {(Pathj , tj , σj)}Mj=1 .

Definition of good and bad transcripts. We define a transcript τ as bad if
it contains a t-collision or an s-collision, where s = t+ σ. A t-collision is defined
as equal t values despite different Path values:

∃(Path, t, σ), (Path′, t′, σ′) ∈ τ with
(
Path 6= Path′

)
AND

(
t = t′

)
. (13)

An s-collision is defined as equal s values despite different (Path, σ′) values:

∃(Path, t, σ), (Path′, t′, σ′) ∈ τ with(
(Path, σ) 6= (Path′, σ′)

)
AND

(
t+ σ = t′ + σ′

)
. (14)

In case the oracle is RDφ,π, a t-collision is equivalent to two different inputs to
π with identical outputs; an s-collision corresponds to the case of two identical
inputs to f where the outputs are expected to be distinct. By considering these
transcripts as bad, all queries properly define input-output tuples for φ and π.

Bounding the H-coefficient ratio for good transcripts. Denote O =
RDφ,π and P = IXIFRO for brevity. Consider a good transcript τ ∈ Tgood.
For the real world O, the transcript defines exactly q input-output pairs for φ
and exactly M − q − L input-output pairs for π. It follows that Pr (DO = τ) =
1/((2b)(q)(2

b)(M−q−L)). For the ideal world P, every different Path defines ex-

actly one evaluation of RO(Path)||RO′(Path), so Pr (DP = τ) = 2−(M−L)b. We

consequently obtain that
Pr (DO = τ)

Pr (DP = τ)
≥ 1.

Bounding the probability of bad transcripts in the ideal world. In
the ideal world, every t is generated as RO(Path)||RO′(Path). As the number
of distinct Path’s in τ is M − L, there are

(
M−L

2

)
possibilities for a t-collision,

each occurring with probability 2−b. The probability of such a collision is hence
(M−L2 )

2b
.

There are
(
M
2

)
occasions for an s-collision. Denote by S the size of the subset

of these occasions for which the adversary can (in the worst case) force the outer
part of s = t + σ to be a value of its choice. Note that S ≤

(
L+Ω+1

2

)
. In the

worst case, in these S occasions the outer part of s always has the same value
and s-collision probability is 2−c. For the

(
M
2

)
−S other occasions the s-collision

probability is 2−b. Thus, the probability of an s-collision is upper bound by
(using our bound on S):(

M
2

)
− S

2b
+
S

2c
≤
(
M
2

)
−
(
L+Ω+1

2

)
2b

+

(
L+Ω+1

2

)
2c

≤
(
M
2

)
−
(
L+1
2

)
2b

+

(
L+Ω+1

2

)
2c

.
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The total probability of having a bad transcript is hence upper bound by:(
M−L

2

)
2b

+

(
M
2

)
−
(
L+1
2

)
2b

+

(
L+Ω+1

2

)
2c

=
M(M − L− 1)

2b
+

(
L+Ω+1

2

)
2c

.

As the H-coefficient ratio is larger than 1, this is the bound on the distinguishing
advantage and we have proven Lemma 2.

6 Distance Between KD and RD

In this section we bound the advantage of distinguishing the keyed duplex from
a randomized duplex, (12) of Lemma 3. The analysis consists of four steps. In
Section 6.1, we revisit the KD-vs-RD setup, and exclude the case where the
queries made by the adversary result in a forward multiplicity that exceeds a
certain threshold Tfw. Next, in Section 6.2 we convert our distinguishing setup
to a simpler one, called the permutation setup and illustrated in Figure 3. In
this setup, the adversary has direct query access to the primitives φ and π of the
randomized duplex, and at the keyed duplex side, we define two constructions
on top of f that turn out to be hard to distinguish from φ and π. We carefully
translate the resources of the adversary B in the KD-vs-RD setup to those of
the adversary C in the permutation setup. In Section 6.3 we subsequently prove
a bound in this setup. This analysis in part depends on a threshold on backward
multiplicities Tbw. In Section 6.4 where we return to the KD-vs-RD setup and
blend all results. Finally, in Section 6.5 and Section 6.6 we analyze the function
νMr,c that plays an important role in our analysis.

We remark that forward and backward multiplicity appeared before in Bertoni
et al. [10] and Andreeva et al. [2], but we resolve them internally in the proof.
There is a specific reason for resolving forward multiplicity before the conver-
sion to the permutation setup and backward multiplicity after this conversion.
Namely, in the permutation setup, an adversary could form its queries so that the
forward multiplicity equals M−q, leading to a non-competitive bound, while the
backward multiplicity cannot be controlled by the adversary as it cannot make
inverse queries to the constructions. It turns out that, as discussed in Section 6.4,
we can bound the thresholds as functions of M , L, and Ω.

6.1 The KD-vs-RD Setup

As in Section 4.1, we express the conversation that B has with KDf
K or RDφ,π

in a transcript of the form:

τC = {(Pathj , Zj , σj)}Mj=1 .

We denote by µfw the maximum number of occurrences in this transcript of a
value Zj + σj over all possible values:

µfw = max
α

#{(Pathj , Zj , σj) ∈ τC | Zj + σj = α} . (15)
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We now distinguish between two cases: µfw above some threshold Tfw and be-
low it. Denoting O = (KDf

K, f) and P = (RDφ,π, f), we find using a hybrid
argument,

∆B(O ; P) =
∣∣Pr
(
BO → 1

)
− Pr

(
BP → 1

)∣∣
≤
∣∣Pr
(
BO → 1 ∧ µfw ≤ Tfw

)
− Pr

(
BP → 1 ∧ µfw ≤ Tfw

)∣∣ +∣∣Pr
(
BO → 1 ∧ µfw > Tfw

)
− Pr

(
BP → 1 ∧ µfw > Tfw

)∣∣
≤
∣∣Pr
(
BO → 1 ∧ µfw ≤ Tfw

)
− Pr

(
BP → 1 ∧ µfw ≤ Tfw

)∣∣ +

max
{

Pr (µfw > Tfw for O) ,Pr (µfw > Tfw for P)
}
. (16)

As we will find out (and explicitly mention) in Section 6.4, the bound we will
derive on Pr (µfw > Tfw) in fact applies to both O and P, and for brevity denote
the maximum of the two probabilities by PrO,P (µfw > Tfw).

6.2 Entering the Permutation Setup

To come to our simplified setup we define two constructions: the Even-Mansour
construction and a “state initialization construction.” The original Even-Mansour
construction builds a b-bit block cipher from a b-bit permutation f and takes
two b-bit keys K1 and K2 [25,26], and is defined as f(x+K1)+K2. We consider
a variant, where K1 = K2 = 0r||κ with κ a c-bit key, and define

Efκ(x) = f(x+ (0r||κ)) + (0r||κ) . (17)

The state initialization construction is a dedicated construction of an injective
function that maps an iv and a key selected from a key array K to a b-bit state
and that takes a c-bit key κ.

Ifκ,K(δ, iv) = f(K[δ]||iv) + (0r||κ) . (18)

Now, let κ
$←− Zc2 be any c-bit key. We call κ the inner masking key. Using the idea

of bitwise adding the inner masking key twice in-between every two primitive

evaluations [2, 21, 38], we obtain that: KDf
K = RDIfκ,K,E

f
κ . We thus obtain for

(16), leaving the condition µfw ≤ Tfw implicit:

∆B(KDf
K, f ; RDφ,π, f) = ∆B(RDIfκ,K,E

f
κ , f ; RDφ,π, f)

≤ ∆C(Ifκ,K, E
f
κ , f ; φ, π, f) . (19)

Clearly an adversary B can be simulated by an adversary C as any construction
query can be simulated by queries to the initialization function Oi (Ifκ,K in the

real world and φ in the ideal world) and the duplexing function Od (Efκ in the
real world and π in the ideal world). Hence, we can quantify the resources of
adversary C in terms of the resources of adversary B, making use of the threshold
Tfw on the multiplicity (cf., (16)). This conversion will be formally performed in
Section 6.4.
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6.3 Distinguishing Bound for the Permutation Setup

We now bound ∆C(I
f
κ,K, E

f
κ , f ; φ, π, f). The permutation setup is illustrated in

Figure 3. The derivation is performed using the H-coefficient technique.

Description of transcripts. The adversary has access to either (Ifκ,K, E
f
κ , f)

or (φ, π, f). The queries of the adversary and their responses are assembled in
three transcripts τf , τd, and τi.

τf = {(xj , yj)}Nj=1 The queries to f and f−1. The transcript does not code

whether the query was y = f(x) or x = f−1(y).

τi = {(δi, ivi, ti)}q
′

i=1 The queries to the initialization function Oi, I
f
κ,K in the

real world and φ in the ideal world.
τd = {(si, ti)}M

′

i=1 The queries to the duplexing function Od, Efκ in the real world
and π in the ideal world.

The resources of C are defined by the number of queries in each transcript: N ,
M ′, and q′, as well as qiv = maxα #{(δ, iv, t) ∈ τi | iv = α}. In addition, the
resources of C are limited on τd, for which the forward multiplicity must be below
the threshold Tfw:

max
α

#{(si, ti) ∈ τd | s̄i = α} ≤ Tfw .

To ease the analysis, we will disclose the full key array K and the inner
masking key κ at the end of the experiment (in the ideal world, κ and the
elements of K will simply be dummy keys). The transcripts are thus of the form
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τ = (K, κ, τf , τi, τd). Note that it is fair to assume that none of the transcripts
contains duplicate elements (i.e., the adversary never queries f twice on the same
value). Additionally, as we consider attainable transcripts only and φ, π, f are
injective mappings, τ does not contain collisions.

We define the backward multiplicity as characteristic of the transcript τ :

Definition 3. In the permutation setup, the backward multiplicity µbw is defined
as:

µbw = max
α

(
#{(si, ti) ∈ τd | t̄i = α}+ #{(δ, iv, ti) ∈ τi | t̄i = α}

)
.

Definition of good and bad transcripts. In the real world, every tuple in
(τf , τi, τd) defines exactly one evaluation of f . We define a transcript τ as bad if
it contains an input or output collision of f or if the backward multiplicity is
above some limit Tbw. In other words, τ is bad if one of the following conditions
is satisfied. Input collisions between:

τf and τi : ∃(x, y) ∈ τf , (δ, iv, t) ∈ τi with
(
x = K[δ]||iv

)
; (20)

τf and τd : ∃(x, y) ∈ τf , (s, t) ∈ τd with
(
x = s+ 0r||κ

)
; (21)

τi and τd : ∃(δ, iv, t) ∈ τi, (s′, t′) ∈ τd with
(
K[δ]||iv = s′ + 0r||κ

)
; (22)

within τi : ∃(δ, iv, t), (δ′, iv′, t′) ∈ τi with
(
δ 6= δ′

)
AND

(
K[δ]||iv = K[δ′]||iv′

)
.

(23)

Output collisions between:

τf and τi : ∃(x, y) ∈ τf , (δ, iv, t) ∈ τi with
(
y = t+ 0r||κ

)
; (24)

τf and τd : ∃(x, y) ∈ τf , (s, t) ∈ τd with
(
y = t+ 0r||κ

)
; (25)

τi and τd : ∃(δ, iv, t) ∈ τi, (s′, t′) ∈ τd with
(
t+ 0r||κ = t′ + 0r||κ

)
. (26)

Finally, τ is bad if the backward multiplicity µbw is above the threshold Tbw:

µbw > Tbw . (27)

Note that output collisions within τi are excluded by attainability of transcripts.
Similarly, collisions (input or output) within τf as well as collisions within τd are
excluded by attainability of transcripts.

Bounding the H-coefficient ratio for good transcripts. Denote O =
(Ifκ,DK

, Efκ , f) and P = (φ, π, f) for brevity. Consider a good transcript τ ∈ Tgood.
In the real world O, the transcript defines exactly q′+M ′+N input-output

pairs of f , so Pr (DO = τ) = 1/(2b)(q′+M ′+N). In the ideal world P, every tuple
in τf defines exactly N input-output pairs for f , every tuple in τi defines exactly
q′ input-output pairs for φ, and every tuple in τd defines exactly M ′ input-
output pairs for π. It follows that Pr (DP = τ) = 1/((2b)(N)(2

b)(q′)(2
b)(M ′)). We

consequently obtain that
Pr (DO = τ)

Pr (DP = τ)
≥ 1.
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Bounding the probability of bad transcripts in the ideal world. In the
ideal world, κ is generated uniformly at random. The key array K is generated
according to distribution DK, cf., Section 2.1. We will use the min-entropy and
maximum collision probability definitions of (6) and (7).

For (20), fix any (x, y) ∈ τf . There are at most qiv tuples in τi with iv equal
to the last b − k bits of x. For any of those tuples, the probability that the
first k bits of x are equal to K[δ] is at most 2−Hmin(DK), cf., (6). The collision
probability is hence at most qivN/2

Hmin(DK).
For (21), fix any (x, y) ∈ τf . There are at most Tfw tuples in τd with x = s.

For any of those tuples, the probability that x̂ = ŝ + κ is 2−c. The collision
probability is hence at most TfwN/2

c.
For (24) or (25), we will assume ¬(27). Fix any (x, y) ∈ τf . There are at most

Tbw tuples in τi ∪ τd with y = t. For any of those tuples, the probability that
ŷ = t̂+ κ is 2−c. The collision probability is hence at most TbwN/2

c.
For (22), fix any (δ, iv, t) ∈ τi and any (s′, t′) ∈ τd. Any such combination

sets (22) if 0k||iv + s′ = K[δ]||0b−k + 0r||κ. Note that the randomness of K[δ]
may overlap the one of κ. If k+ c ≤ b, the two queries satisfy the condition with
probability at most 2−(Hmin(DK)+c), cf., (6). On the other hand, if k > b− c, the
first b− c bits of K[δ] has a min-entropy of at least Hmin(DK)− (k− (b− c)). In
this case, the two queries satisfy the condition with probability at most

2−(Hmin(DK)−(k−(b−c))+c) = 2−(Hmin(DK)+b−k) .

The collision probability is hence at most M ′q′

2Hmin(DK)+min{c,b−k} , using that τi con-
tains q′ elements and τd contains M ′ elements.

For (26), fix any (δ, iv, t) ∈ τi and any (s′, t′) ∈ τd. As φ and π are only
evaluated in forward direction, and φ is queried at most q′ times, the probability
that t = t′ for these two tuples is at most 1/(2b − q′). The collision probability
is hence at most M ′q′/(2b − q′).

For (23), a collision of this form implies the existence of two distinct δ, δ′

such that K[δ] = K[δ′]. This happens with probability at most
(
u
2

)
/2Hcoll(DK),

cf., (7).
The total probability of having a bad transcript is at most:

(Tfw + Tbw)N

2c
+ PrP (µbw > Tbw) +

M ′q′

2b − q′
+

M ′q′

2Hmin(DK)+min{c,b−k} +
qivN

2Hmin(DK)
+

(
u
2

)
2Hcoll(DK)

.

(28)

As the H-coefficient ratio is larger than 1, Equation (28) is the bound on the
distinguishing advantage.

6.4 Returning to the KD-vs-RD Setup

The resources of C can be computed from those of B (see Section 4.1) in the
following way:
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– q′ ≤ q: for every query to Oi there must be at least one initialization query.
– M ′ ≤M − q−L: The minus L is there because queries with repeated paths

just give duplicate queries to Oi and the q initialization queries do not give
queries to Od.

The remaining resources have the same meaning for B and C. Filling in these
values in Equation (28) and combining with Equation (16) yields:

∆B(O ; P) ≤
(
TfwN

2c
+ PrO,P (µfw > Tfw)

)
+ (29a)(

TbwN

2c
+ PrP (µbw > Tbw)

)
+ (29b)

(M − q − L)q

2b − q
+

(M − q − L)q

2Hmin(DK)+min{c,b−k} + (29c)

qivN

2Hmin(DK)
+

(
u
2

)
2Hcoll(DK)

. (29d)

Clearly µfw ≤M − q − L and µbw ≤M − L. So by taking Tfw = Tbw = M − L,
lines (29a-29b) reduce to 2(M − L)N/2c. However, much better bounds can be
obtained by carefully tuning Tfw and Tbw.

Although the probabilities on the µfw and µbw are defined differently (the
former in the KD-vs-RD setup, the latter in the permutation setup), in essence
they are highly related and we can rely on multicollision limit function of Defini-
tion 2 for their analysis. There is one caveat. Definition 2 considers balls thrown
uniformly at random into the 2r bins, hence a bin is hit with probability 1/2r. In
Lemma 6 in upcoming Section 6.6, we will prove that for non-uniform bin allo-
cation where the probability that a ball hits any particular bin is upper bounded
by y2−r, the multicollision limit function is at most νyMr,c . In our case the states

are generated from a set of size at least 2b−M−N (for both O and P) and thus
its outer part is thrown in a bin with probability at most 2c/(2b−M−N), where
we use that M + N ≤ 2b−1. Using the fact that νMr,c is a monotonic function in

M and that 2b/(2b −M −N) < 2 for any reasonable value of M +N , we upper

bound the multicollision limit function by ν
2(M−L)
r,c

We first look at (29b) and treat µbw. As it is a metric of the responses of
queries to π and φ, it is a stochastic variable. It corresponds to the multicollision
limit function of Definition 2, where M − L balls are distributed over 2r bins,
and each bin is hit with probability at most 2/2r. Using above observation, we

take Tbw = ν
2(M−L)
r,c , and (29b) becomes

ν
2(M−L)
r,c N

2c
+
ν
2(M−L)
r,c

2c
=
ν
2(M−L)
r,c (N + 1)

2c
.

The case of µfw in (29c) is slightly more complex. As discussed in Section 4.1,
the adversary can enforce the outer part Zj + σj to match a value α in case
Pathj is a repeating path. Moreover, for queries with flag = true, it can also
enforce the outer part to any chosen value. These total to L + Ω queries. For
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Fig. 4: Stairway to Heaven graph: νMr,c computed with (33) for r + c = 256, with
upper bounds and asymptote for M →∞.

the remaining queries, for simplicity upper bound by M −L here, the adversary

has no control over the outer part. Therefore, if take Tfw = L+Ω+ν
2(M−L)
r,c , we

have Pr (µfw > Tfw) =
ν2(M−L)
r,c

2c . Namely, this is the probability that in the (at
most) M −L queries where the adversary has no control over the outer part, the

multiplicity is above ν
2(M−L)
r,c assuming that the L+Ω queries are manipulated to

hit the same outer value as those ν
2(M−L)
r,c queries. Equation (29a) now becomes:

(L+Ω + ν
2(M−L)
r,c )N

2c
+
ν
2(M−L)
r,c

2c
=

(L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
.

Plugging these two bounds into (29a-29b) yields the bound of Lemma 3.

6.5 Bounds on νM
r,c

We will upper bound νMr,c by approximating the term Pr(µ > x) in Definition 2
by simpler expressions that are strictly larger.

In Definition 2, µ is the maximum of the number of balls over all 2r bins.
If we model the number of balls in a particular bin as a stochastic variable Xi

with some distribution function Di(x) = Pr(Xi ≤ x), clearly, the distribution
function of the maximum over all bins is the product of the distribution functions:
Dmax(x) =

∏
iDi(x). Assuming all variables have the same distribution and that

they are independent, we hence obtain:

Pr(µ > x) = 1− Pr(µ ≤ x) = 1− (Pr(X ≤ x))
2r
. (30)
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The distributions that are of interest here are the number of balls in a bin,
and they are not independent as they must sum to M . This means that if we
know one distribution is high, the others are somewhat lower than if they would
be independent. This makes that the value obtained by taking the product of
factors Pr(X ≤ x) slightly underestimates the probability Pr(µ ≤ x). Using the
inequality (1− ε)y ≥ 1− εy, we obtain

(Pr(X ≤ x))
2r

= (1− Pr(X > x))
2r ≥ 1− 2r Pr(X > x) ,

and we obtain for (30):

Pr(µ > x) < 2r Pr(X > x) . (31)

We will now upper bound Pr(X > x). The number of balls x in any particular
bin has a binomial distribution. If the number of bins 2r and the total number
of balls M are large enough, for x > λ this is (tightly) upper bounded by a
Poisson distribution with λ = M2−r. The probability that a Poisson-distributed
variable X is larger than x is given by:

Pr(X > x) =
∑
i≥x

e−λλi

i!
=
e−λλx

x!

∑
i≥0

λi

(i+ x)(i)
<
e−λλx

x!

∑
i≥0

λi

xi
=

xe−λλx

(x− λ)x!
.

This yields for (31):

Pr(µ > x) < 2r
xe−λλx

(x− λ)x!
.

From Definition 2, we obtain that νMr,c is upper bounded by the smallest value x
that satisfies

2be−λλx

(x− λ)x!
≤ 1 , (32)

with λ = M2−r. Remarkably, the dependence of νMr,c on r, c and M is only via b =
r+ c and λ = M2−r. Hence, it is a function in two variables b and λ rather than
three. Taking the logarithm of (32), applying Stirling’s approximation (ln(x!) ≥
1
2 ln(2πx) + x(ln(x)− 1)) and rearranging the terms gives:

x (ln(x)− ln(λ)− 1) + ln(x− λ) +
1

2
ln(2πx) + λ ≥ ln(2)b . (33)

We will now derive expressions from (32) and (33) that give insight in the
behavior of this function for the full range of λ.

Case λ < 1. If we consider Equation (33) with value of x given and we look
for the maximum value of x such that it holds. This gives the value of λ where
νMr,c transitions from x− 1 to x. We can now prove the following lemma.
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Lemma 4. The value of λ where νMr,c transitions from x−1 to x is lower bounded

by 2−b/x.

Proof. We need to prove that for λ = 2−b/x, inequality (33) holds:

x(ln(x)− 1) + ln(x− 2−b/x) +
1

2
ln(2πx) + 2−b/x ≥ 0 .

For x > e all terms in the left hand side of this equation are positive and hence
the equation is satisfied. The only other relevant value is x = 2 and it can be
verified by hand that this is satisfied for all b. ut

If we substitute λ by M2−r, this gives bounds on M for which νMr,c achieves a

certain value. If we denote by Mx the value where νMr,c transitions from x− 1 to

x, we have Mx ≥ 2r−b/x = 2((x−1)r−c)/x. In particular M2 ≥ 2(r−c)/2. It follows
that νMr,c is 1 for M ≤ 2(r−c)/2. Clearly, M must be an integer value, so the value

of νMr,c for M = 1 will be above 1 if r < c+ 2.

Case λ = 1. Equation (33) for λ = 1 reads

x (ln(x)− 1) + ln(x− 1) +
1

2
ln(2πx) + 1 ≥ ln(2)b ,

and νMr,c is upper bounded by the smallest x such that this inequality holds, or
equivalently, such that

x ≥
ln(2)b− 1− ln(x− 1)− 1

2 ln(2πx)

ln(x)− 1
.

The right hand side of this equation is upper bounded by ln(2)b
ln(x)−1 . Therefore, νMr,c

is certainly upper bounded by the smallest x such that

x ≥ ln(2)b

ln(x)− 1
.

This expression can be efficiently evaluated for all values of b, and it turns out
that the value of ν2

r

r,c increases from b/4 for values of b close to 200 to values b/6
for values of b close to 2000.

Case λ > 1. For large λ, Equation (33) becomes numerically instable. We
derive a formula for integer values of λ, or equivalently values of M that are a
multiple of 2r (w.l.o.g.). By a change of variable from x to x = λ+ y we obtain
for the left hand side of (32):

2be−λλx

(x− λ)x!
=

2be−λλλ+y

y(λ+ y)!
=

2bλy

y(λ+ y)y

(λ/e)λ

λ!
≤ 2bλy

y
√

2πλ(λ+ y)y
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using Stirling’s approximation. Now (32) holds provided that

2bλy

y
√

2πλ(λ+ y)y
=

2b

y
√

2πλ
∏y
i=1(1 + i

λ )
≤ 1 .

Taking the logarithm:

y∑
i=1

ln

(
1 +

i

λ

)
+ ln(y) +

1

2
ln(2πλ) ≥ ln(2)b . (34)

This equation allows efficiently computing νMr,c for M > 2r and also to prove a
simple upper bound for the range λ > 1.

Lemma 5. For M a nonzero integer multiple of 2r, we have

νMr,c ≤
M

2r
+ ν2

r

r,c

⌈√
M

2r

⌉
.

Proof. First of all, note that for λ = 1, (34) is satisfied for y = ν2
r

r,c−1. Therefore,
we have

Ξ :=

ν2r

r,c−1∑
i=1

ln(1 + i) + ln(ν2
r

r,c − 1) +
1

2
ln(2π)− ln(2)b ≥ 0 .

Our goal is to prove that (34) holds for y = ν2
r

r,c

⌈√
λ
⌉
. Since Ξ ≥ 0, we will in

fact prove that

ν2r

r,c

⌈√
λ
⌉∑

i=1

ln

(
1 +

i

λ

)
+ ln(ν2

r

r,c

⌈√
λ
⌉
) +

1

2
ln(2πλ)− ln(2)b ≥ Ξ .

Note that

ν2r

r,c

⌈√
λ
⌉∑

i=1

ln

(
1 +

i

λ

)
+ ln(ν2

r

r,c

⌈√
λ
⌉
) +

1

2
ln(2πλ)− ln(2)b−Ξ

≥
ν2r

r,c

⌈√
λ
⌉∑

i=1

ln

(
1 +

i

λ

)
−
ν2r

r,c−1∑
i=1

ln(1 + i) .

This can be rewritten as

ν2r

r,c−1∑
i=0


⌈√

λ
⌉∑

j=1

ln

(
1 +

i
⌈√

λ
⌉

+ j

λ

)
− ln(1 + i)

 ,
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and our claim holds if we can prove that the summand is at least 0 for all
i = 0, . . . , ν2

r

r,c − 1. This is easily verified as⌈√
λ
⌉∑

j=1

ln

(
1 +

i
⌈√

λ
⌉

+ j

λ

)
≥

⌈√
λ
⌉∑

j=1

ln

(
1 +

i
⌈√

λ
⌉

λ

)
= ln

(1 +
i
⌈√

λ
⌉

λ

)⌈√λ⌉ ,

which is at least

ln

(
1 +

i
⌈√

λ
⌉2

λ

)
≥ ln(1 + i) ,

as in general (1 + x)y ≥ 1 + xy. ut

Clearly, for large M , νMr,c asymptotically converges to M/2r.

6.6 Dealing with Non-Uniform Sampling

In this section we address the non-uniform balls-and-bins problem. We consider
the balls-and-bins problems for some values r and c where the probability that
a ball hits a particular bin (of the 2r bins) is not 2−r. In other words, the
distribution is not uniform. In general the probability distribution for the n-th
ball depends on how the previous n − 1 balls were distributed. We denote this
distribution by D and define D(i | s) as the probability that a ball falls in bin i
given the sequence s of bins in which the previous n− 1 balls fell. We denote by
νD,Mr,c the variant of the function with the same name with the given distribution.

Definition 4. The multicollision limit function for some distribution D, νD,Mr,c ,
with M a natural number, returns a natural number and is defined as follows.
Assume we independently distribute M balls in 2r bins according to a distribution
D. If we call the number of balls in the bin with the highest number of balls µ,
then νD,Mr,c is defined as the smallest natural number x that satisfies:

Pr (µ > x) <
x

2c
.

We can now prove the following lemma.

Lemma 6. If for every bin, according to the distribution D the probability for
a ball to end up in that bin satisfies |D(i | s) − 2−r| ≤ y2−r for some y ≤ 0.1
and any i and s, then νD,Mr,c ≤ ν2Mr,c , provided M ≤ y2c and r ≥ 5.

Before proving Lemma 6, note that in our application of the lemma in Section 6.4,
the ith ball hits a certain bin with probability

2c − (i− 1)

2b − (i− 1)
≤ p ≤ 2c

2b − (i− 1)
.

Assuming that i − 1 ≤ y2c and y ≤ 0.1, we obtain that (1 − y) · 2−r ≤ p ≤
(1 + y) · 2−r, and that the condition imposed by Lemma 6 is satisfied. As in our
setup there are in total M +N queries to f , this is satisfied if M +N ≤ 0.1×2c.
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Proof. Consider the following two experiments:

– Experiment 1: we drop 2M balls into 2r bins and the distribution is uniform.
– Experiment 2: we drop M balls into 2r bins and the probability for a ball to

land in any particular bin is between (1− y) · 2−r and (1 + y) · 2−r.

We need to prove that ν2Mr,c of the first experiment is at least νD,Mr,c of the
second experiment. The general strategy is as follows. First, we prove that
ν2Mr,c is lower bounded by some threshold t. Then, if for all x ≥ t, we have

Pr
(
µexp 1 > x

)
≥ Pr

(
µexp 2 > x

)
, then νD,Mr,c ≤ ν2Mr,c because x = ν2Mr,c satisfies

the equation Pr
(
µexp 2 > x

)
< x

2c . Clearly, the condition above is satisfied if for

all x ≥ t and for all bins i, we have Pr
(
Xexp 1
i > x

)
≥ Pr

(
Xexp 2
i > x

)
, where

Xi is the number of balls in bin i. And in turn, it is satisfied if for all x ≥ t and

for all bins i, we have Pr
(
Xexp 1
i = x

)
≥ Pr

(
Xexp 2
i = x

)
.

First, by the pigeonhole principle, in experiment 1 there is always a bin with
max{2M/2r, 1} balls, and ν2Mr,c is at least this value: ν2Mr,c ≥ max{2M/2r, 1}.
Then, consider any bin and the probability that it contains exactly x balls. In
experiment 1, the bin contains exactly x balls if in the sequence of 2M balls, x
balls fall into the particular bin and 2M − x fall in another bin, and thus:

Pr
(
Xexp 1
i = x

)
=

(
2M

x

)
· (2−r)x · (1− 2−r)2M−x .

For experiment 2 we likewise obtain, using the fact that the ith ball ends in the
bin with probability (1− y) · 2−r ≤ p ≤ (1 + y) · 2−r for any i:

Pr
(
Xexp 1
i = x

)
≤
(
M

x

)
· ((1 + y) · 2−r)x · (1− (1− y) · 2−r)M−x .

Using that
(
2M
x

)
/
(
M
x

)
≥ 2x and (1−2−r)2 ≥ 1−2·2−r, the condition certainly

holds if (
2

1 + y

1− (1− y) · 2−r

1− 2−r

)x
≥
(

1− (1− y) · 2−r

1− 2 · 2−r

)M
,

which in turn certainly holds if(
2

1 + y

)x
≥
(

1 +
1 + y

2r − 2

)M
,

which in turn certainly holds if(
2

1 + y

)x
≥
(

1 +
1 + y

2r − 2

)max{M,2r−1}

. (35)

We have to prove that this condition holds for all x ≥ max{2M/2r, 1}. The left
hand side is increasing in x, whereas the right hand side is constant in x, and we
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therefore only have to prove it for x = max{2M/2r, 1} (w.l.o.g., assuming that
x is integral). Therefore, our goal now is to prove that

2

1 + y
≥
(

1 +
1 + y

2r − 2

)2r−1

.

Using that 1 + a ≤ ea and r ≥ 5, the condition is satisfied if

2

1 + y
≥ e(1+y) 16

30 ,

which in turn holds for y ≤ 0.1. ut
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